
Using End-to-End Data to Infer Lossy Links in
Sensor Networks

Hung X. Nguyen Patrick Thiran
School of Computer and Communication Sciences, EPFL

CH-1015 Lausanne, Switzerland
{hung.nguyen, patrick.thiran}@epfl.ch

Abstract— Compared to wired networks, sensor networks pose
two additional challenges for monitoring functions: they support
much less probing traffic, and they change their routing topolo-
gies much more frequently. We propose therefore to use only end-
to-end application traffic to infer performance of internal net-
work links. End-to-end data do not provide sufficient information
to calculate link loss rates exactly, but enough to identify poorly
performing (lossy) links. We introduce inference techniques based
on Maximum likelihood and Bayesian principles, which handle
well noisy measurements and routing changes. We evaluate the
performance of both inference algorithms in simulation and on
real network traces. We find that these techniques achieve high
detection and low false positive rates.

I. INTRODUCTION

Sensor technology has matured to the point where several
sensor networks have been built for real-life applications such
as, to name a few, scientific data gathering, environment
monitoring (air, water, soil, chemistry), surveillance, smart
homes, smart offices, personal medical systems and robotics
[1], [2]. Real-life experiences of sensor networks [2], [3]
reveal that networks experience long periods of outage and
that network managers do not have the appropriate tools to
diagnose the problems. These experiences have demonstrated
the obvious need for network monitoring tools. Monitoring
wireless sensor networks (WSNs) has thus recently generated
a surge of interest from the research community [3]–[8].
Similarly to other applications for sensor networks, monitoring
systems are also restrained by the following limitations [9]:

1) Sensor nodes use a broadcast communication paradigm
and have stringent bandwidth constraints.

2) Sensor nodes have limited resources (power, memory
and computational power). Any algorithm therefore must
sparingly use the resources that exist.

Many existing routing algorithms (e.g., [10]) for sensor
networks require that each node continuously monitor the
quality of links to all of its neighbors and use this information
to select the routes. Each sensor node has thus a complete local
knowledge about its neighboring links. However, regularly
sending the loss information from sensor nodes to the sink
requires significant communication overheads. Furthermore,
contrary to wired networks where network monitoring infor-
mation can be delivered reliably, reports sent from sensor
nodes to the sink also suffer losses. In consequence, the sink
has no guarantee that it will receive up-to-date information of
link loss rates.

Each sensor network is deployed to support a certain appli-
cation, hence its nodes regularly send application data to the
sink. End-to-end application data can therefore be a valuable
and reliable network monitoring tool, if they can be used for
network diagnosis purposes. In this paper, we propose two
algorithms that help network managers identify links with high
loss rates (lossy links) without requiring each sensor to send
their estimations of neighboring links to the sink. Our method
is to passively monitor application traffic between sensor nodes
and the sink, and to use the end-to-end data observations
to infer the performance of interior links. We would like to
emphasize here that our objective is not to infer instantaneous
loss rates of all links (which is done by the routing algorithms),
nor to locate every link with a high loss rate over a short
period of time, but rather to identify links with high loss rates
that are persistently used to route traffic from the sensors to
the sink. Indeed, it is not essential to locate all lossy links
in a wireless sensor network, as the network should quickly
self-organize around them. The problem occurs when all links
surrounding a sensor node have high loss rates because of low
battery or physical obstacles. In this case, there is no other
choice to access this node than to use a lossy link. There are
a number of ways in which a network can benefit from the
identification of lossy links. First, information on bottlenecks
within the network could be used to tune network algorithms.
Second, such information gives early warnings to the network
managers about the status of the nodes surrounding the lossy
links, as failing nodes may no longer be able to generate these
warnings themselves.

Our contributions in this paper are: (i) a feasibility study
of the lossy link inference problem in a real sensor network,
including the analysis of link loss rates and end-to-end data
transmissions, (ii) a new efficient and simple maximum like-
lihood algorithm (named LLIS in this paper), based on a
set cover heuristic, to isolate links with high loss rates, de-
spite routing changes and noisy measurements, (iii) thorough
validations both by simulations and on real sensor network
measurements, and (iv) a comparison of the LLIS algorithm
with a more complex Bayesian inference technique (named
MCMC) adapted to sensor networks with routing changes, and
with existing passive WSN monitoring algorithms.

The paper is organized as follows. In Section II, we relate
and contrast our approach with existing work on network
monitoring and diagnosis. We describe our analysis of packet

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE

losses in a real sensor network in Section III, from which
we deduce a network model in Section IV. In Section V, we
explain our inference techniques. In Section VI, we validate
our algorithms in three ways: we compare our results with
other approaches in the literature; we evaluate the performance
of our algorithms in different network scenarios with simula-
tions; and finally we validate our algorithms with data of a
real sensor network. We conclude the paper in Section VII.

II. RELATED WORK

A. Monitoring Sensor Networks

Like monitoring techniques of other networks, sensor net-
work monitoring techniques are separated into two groups:
active and passive monitoring.

1) Active Monitoring: Active monitoring methods [3]–[6]
require the injection of additional traffic into the network.
Zhao et al. [4] propose a scheme (eScan) where each node
monitors its remaining energy level. Whenever the energy
level of a node drops significantly, it reports this energy
level and its location to the manager. The same authors also
propose a hierarchical monitoring scheme, in which network
nodes continuously calculate some high level, summarized
information such as the average or maximum energy level
among all nodes in the network [5]. When the high level
information indicates anomalies, a low level and more energy
consuming procedure such as the eScan scheme is used to
accurately locate the trouble spots. Hsin et al. [6] proposed
a different monitoring scheme for WSNs where each sensor
monitors its neighbors by periodically sending them active
probes. More recently, Tolle et al. [3] propose the Sensor
Network Management System (SNMS) scheme to poll sensor
nodes for monitoring information. All four schemes require
additional traffic to be injected in the network, which may
reduce the lifetime of wireless sensor networks because of
communication costs.

2) Passive Monitoring: Recently, [7] and [8] have shown
that the application data that the sensors send to the sink
can be used to monitor the network. Hartl et al. [7] use
the traditional network tomography techniques for wired-line
networks [11] to infer loss rates of nodes in a reverse broadcast
tree, whereas Mao et al. [8] use a factor graph decoding
method to infer the link loss rates. These two loss rate
inference methods require two restrictive assumptions: first, a
stable, fixed network topology, and second, the aggregation of
application data and transit traffic at each sensor node before
being sent to the sink. The first assumption is not verified
in many sensor networks, as we show in Section III-D. The
second assumption is needed in these algorithms to guarantee
a strict correlation between packets sent from sensor nodes to
the sink, but it relies on a specific data forwarding scheme,
where each node has to wait for packets from all of its children
before forwarding upward and cannot therefore be applied to
other more general settings.

B. IP Network Tomography

Wired-line IP Network tomography is an active research
area (see e.g. [11] for a summary). Most tomography systems
assume inherent correlations between the probe packets by
using either multicast packets, or a cluster of unicast packets.
Recently, Padmanabhan et al. [12] and Duffield [13] used
uncorrelated end-to-end packets to locate lossy links in IP
networks. A notable feature of the model considered in [12],
[13] is that the link loss rates are not statistically identifiable
from the data (the server-to-client loss rates), meaning that
there exist different sets of link loss rates that give the same
statistical distribution of data. Nevertheless, their methods are
quite successful in identifying the lossiest links of the network,
both in simulated and real networks. The underlying reason
behind this success is that identifying bad links amounts to
finding the smallest set of lossy links, which does not require
the computation of the exact loss rates.

The two inference methods of this paper are closely related
to those of [12], [13].

The first one is the smallest consistent failure set (SCFS)
technique proposed by Duffield [13], who formulates the
tomography problem as a set-cover problem and solves it on a
tree topology. The main differences with the LLIS algorithm
introduced in Section V-A are due to the specificities of
wireless sensor networks: multiple routing trees and noisy
monitoring information, which are absent from the SCFS
algorithm, but need to be factored in our LLIS algorithm.

The second technique is a Gibbs sampler, which is one of
the most accurate techniques developed in [12]. Its main idea
is to estimate the distribution of loss rates on each link from
observed end-to-end data and prior knowledge about network
links. It is in principle more accurate, but also much more
computationally intensive, than set cover heuristics. We adapt
this technique to tolerate routing changes in Section V-B.

C. Analysis of Losses in Sensor Networks

Recently, quite a few studies carried out on wireless sensor
networks with a significant number of nodes (most often
Berkeley Mica and Mica2 motes), and in several different
environments, have given a better understanding of packet
delivery performance [14]–[17]. Ganesan et al. [14] and Zhao
et al. [15] deployed experimental platforms that consist of
hundreds of Rene [14] or Mica [15] motes to capture link,
MAC and application layer characteristics in wireless multihop
communication. Their data firmly establish that packet recep-
tion rate is not strictly correlated with the distance between
the transmitter and the receiver. Especially, there is a “grey
area” where two neighboring receivers can have very different
reception rates. In a series of studies conducted at Berkerley,
Woo et al. [16] used experimental measurements to derive
a packet loss model based on aggregate statistical measure
such as mean and standard deviation of reception rates. They
showed that, despite statistical variation, a simple Binomial
distribution is a fairly good model to approximate the number
of losses in sensor links. The parameter of the Binomial
distribution (i.e., packet loss rate) is stable in the absence

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

of external physical influences. As a result [17], routes with
good end-to-end delivery quality (i) are the ones using high
quality and symmetric links at each sensor node, and (ii) are
normally stable over several minutes. These conclusions have
been supported by additional experiments and demonstrations
of new protocols [1]. The minimum expected transmission
(MT) routing protocol of [17] is widely used in many different
real-life applications [1], [2].

III. EMPIRICAL STUDIES OF LINK LOSS RATES AND

END-TO-END DATA TRANSMISSIONS

In order to develop a practical lossy link inference algo-
rithm, we first need to understand the packet loss behavior
of the network. In this section, we study packet losses and
end-to-end data transmissions in a real sensor network, the
Sensorscope [2]. The observations made in this section will
drive the network model and the algorithms of the following
sections. Sensorscope is a wireless sensor network deployed
in the BC building on the EPFL campus mainly for research
purposes. Contrary to existing analyses of real sensor networks
[16]–[18], which concentrated mostly on understanding packet
delivery on individual wireless links or on the performance of
routing protocols, our analysis focuses on the combined effects
of wireless links and routing algorithms on the packet losses
and end-to-end data delivery in real sensor networks. The
analysis of Sensorscope, however, is not our primary objective.
Indeed, all of our findings from Sensorscope agree with previ-
ous findings albeit in different settings (i.e., network topology
and surrounding environment). We analyze Sensorscope data
mainly to understand packet losses, link loss rates and routing
in real sensor networks. We then use our knowledge of losses
to develop suitable inference algorithms for sensor networks,
which is our main objective. Specifically, we analyze the data
to answer three questions:

1) How do link loss rates vary among the links? The end-
to-end loss rate of a path is influenced by the loss rates of
all links in the path. To infer lossy links from end-to-end
observations, we need to know the distribution of link
loss rates among different links. We call the variation of
link loss rates among different links the spatial variation.

2) How do link loss rates vary with time? Inferences from
the measurements are most valuable when they can be
used for prediction. This happens only when the qualities
that we try to infer remain stationary for a certain period
in the future. We call the variation of link loss rates with
time the temporal variation.

3) How stable are end-to-end paths? The stability of end-
to-end paths directly affects the way data should be
collected and analyzed.

A. Hardware Platform and Analysis Method

Sensorscope consists of approximately 20 Mica2 and
Mica2dot motes, each equipped with a variety of sensors such
as light and temperature. The motes are static and do not move.
A typical routing tree in Sensorscope is shown in Figure 1. The
motes use tinyOS (version 1.17) [19]. Basic tinyOS multihop

routing and the full AM stack implementations are used. At the
MAC layer, Sensorscope uses B-MAC [20] and its low-power
listening scheme. The routing algorithm is the MintRoute
algorithm of tinyOS [17]. The traffic traces were gathered at
the sink. The sink is connected to a computer where data is
stored and processed. The data that we analyze here were
collected over 10 days, from 26.12.2004 to 6.1.2005. The
network settings during this period are as follows [2]: Low
Power Listening is set to 4; RF power is -14 dBm; each mote
sends application data every 2 minutes, reports its parent every
5 minutes and its estimations of neighboring links every 15
minutes to the sink.

Fig. 1. A typical routing graph of the Sensorscope network. The Sensorscope
network consists of approximately 20 motes located on two floors of the BC
building at EPFL. The motes form a multihop sensor network to carry data
to the sink.

All communications in Sensorscope are done via wireless
channels. Hence, similar to application data, monitoring data
in Sensorscope are unreliably delivered: during the period of
observation, only 60% of monitoring data were successfully
delivered to the sink.

In this paper, we are only interested in the long-term
behavior of network links, and therefore will only work with
average, and not instantaneous, loss rates. These average loss
rates are calculated over a time window of length T . The
choice for the values of T is a trade-off between the accuracy
(the longer T , the smaller the variance) and ability to detect
changes at small time scales (the shorter T , the better the
average follows changes at small time scales). In Sensorscope,
each sensor node is configured to send 30 packets to the
sink every hour. To guarantee that we have enough data to
accurately calculate link and path loss rates, we choose a
time window T of 4 hours, or equivalently a window size
of 120 data packets. Having chosen T , we calculate the
average link loss rate as follows. The instantaneous link loss
rates in Sensorscope are estimated using the tinyOS default
window mean with exponential weighted moving average
(WMEWMA) estimator [17] and are reported to the sink
every 15 minutes. Note here that the analyzed version of
Sencorscope requires nodes to report their estimations of
neighboring links to the sink. Our inference methods do not
use this information and indeed our goal is to eliminate the
need for such information. Assume that in the time window

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

W (of length T), we receive n instantaneous loss rates for link
ek. The average loss rate of ek is the average of these reported
loss rates. We calculate the path loss rates based on the number
of packets received and the number of packets lost over the
time window W : if ri packets are received and fi are lost on
a path Pi, the loss rate on this path is: fi/(ri + fi) = fi/T .

B. Spatial Variation of Link Loss Rates

We start with the analysis of how link loss rates vary
among the links at a given time. We use the data collected
in Sensorscope over 10 days, from 26.12.2004 to 6.1.2005.
In this 10-day period, we divide time into 60 time slots of
4 hours. Figure 2 plots the cumulative distribution (CDF) of
link loss rates at 60 different time slots, each curve represents
a time slot.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link loss rate

F
ra

ct
io

n
of

 li
nk

s

CDF of link loss rates at different times

Fig. 2. Cumulative distribution (CDF) of link loss rates averaging over
120 packets (4 hours) intervals. There are 60 curves in the figure, each
corresponding to a time window of 4 hours.

The figure shows that link loss rates follow an elbow-curve
with the elbow in the interval [0.1, 0.2]. Specifically, more
than 80% of links have loss rates rates below 0.2, and a
non-negligible number (20%) of links have loss rates higher
than 0.2. The observation of the elbow curves for link loss
rates has not been made before in the literature but can be
explained by the link characteristics and the routing algorithm
as reported in [17], [18]. [17] and [18] report that the loss
rate of a wireless link is either small or large, but is rarely
in between (intermediate loss rates). Furthermore, links that
have intermediate loss rates (links that are in the so-called
“grey” region [17]) tend to be one-directional and are rarely
used by the MintRoute routing algorithm of tinyOS, which
gives priority to links with small and symmetric loss rates.
The routing policy in tinyOS is to route data on links with
low loss rates. A bad link is used only when there is no better
alternative. The identification of these few bad links can thus
help improve the network performance.

C. Temporal Variation of Link Loss Rates

We now turn our attention to how a link loss rate varies with
time. Over the 10-day period, 90 links were used to route data.
Similarly to Section III-B, we divide the 10-day period into 60

time slots of 4-hours (120 data packets) each. In each time slot,
we calculate the average loss rate for all links that are used
to transmit data in that time window. We plot in Figure 3 the
loss rates of these 90 links in the time slots that they are used
to route data. For each link, we plot the maximum, average
and minimum loss rates.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Links

Li
nk

 L
os

s
R

at
es

Variation of link loss rates with time

Fig. 3. Variation of link loss rates with time. There are 90 links and 60 time
slots. The 90 links are ordered from 1 to 90 in increasing order of their loss
rates averaging over the 60 time slots. Each vertical bar shows the maximum
(the upper bound), average and minimum (the lower bound) loss rates for
each link.

Confirming our observation of Section III-B, the majority
of links (about 80 links) have loss rates consistently below
0.2, among them about 50 links have loss rates below 0.1.
Furthermore, all these links with low loss rates (below 0.2)
have loss rates that vary in a small range. A small fraction of
links have loss rates consistently higher than 0.2 and the loss
rates of these links are spread out over a larger range than
the loss rates of links with low loss rates. Figure 3 shows that
links either have consistently low or high loss rates, only 4
links (links number 14, 83, 84 and 85) out of 90 have loss
rates fluctuating between the two categories. Remember that
we only analyze links that appear in the routing trees, which
are presumably the best available links. Our observation is
consistent with the observations in [17] and [18]: without
external physical influences, loss rates of a wireless link are
stable. In an indoor environment such as the environment of
Sensorscope, random physical influences are often short-lived
and do not greatly affect the link loss rates averaging over
long periods of 4 hours as in our analysis.

We also investigate the correlation between loss rates on
different links. We calculate the 0.01 level significant 2-tailed
Pearson Correlation for all pairs of links. We observe that links
physically far apart are not correlated (most of them have a
correlation coefficient less than 0.1), as we can expect. More
surprisingly, neighboring links (links that share one common
end node) also appear to be quite uncorrelated. Note here
that the loss rates are average loss rates over intervals of
4 hours (120 packets); over these long intervals, correlated
influences have a small effect on link loss rates. We conclude
that the loss rates of links in Sensorscope are not far from

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

being independent.

D. Stability of End-to-End Paths

In this section, we investigate the stability of end-to-end
paths that are used by the sensor nodes to transport data to
the sink. It is well documented in [1] and [2] that, even in
static networks, nodes frequently change their parents because
of fluctuation in link quality and node batteries dying out.
Previous results in [1] show that 80% of packets in their
network are delivered by less than 20% of all links. We want
to investigate whether the 80-20 behavior for links also applies
to end-to-end paths in Sensorscope. We do this by looking at
the lifetime of paths in Sensorscope and the number of packets
delivered through the specific paths. Path lifetime is defined
as the number of packets successfully delivered through the
path. Figure 4 shows the CDFs of both path lifetimes and of
the number of packets delivered by each path.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Path life time (packets delivered)

C
D

F

CDF of paths and packets delivered through those paths

Fraction of Paths
Fraction of Packets

Fig. 4. CDF of path life times and of packets delivered through those paths.
Long-lived, stable paths (one that delivered more than 25 packets and are on
the right side of the vertical dashed line) constitute almost 30% of all the
paths, yet they deliver more than 78% of the total packets.

Figure 4 shows that 70% of the paths are used to deliver
less than 25 packets. We call these paths short-lived paths.
Less than a third of the paths are stable (deliver more than 25
packets). The graph (the part on the right side of the vertical
dashed line) shows the 78-30 behavior: 78% of the packets are
delivered by only 30% of paths. Our observation is consistent
with that of [1] (with the same hardware) for link lifetime.
Therefore, even though sensor nodes change their end-to-end
paths frequently, a few dominant paths are used to transporting
most of the data.

E. Summary

The findings in this section suggest that: (i) In sensor
networks, links are separated into two categories: good links
with consistently low loss rates, and bad links with consistently
high loss rates. With Sensorscope, the value 0.2 appears as
a clear threshold to separate good and bad links. (ii) It is
reasonable to perform inference based on end-to-end packet
loss information gathered over a few end-to-end paths because
a link remains good or bad for a long period of time and a
few dominant paths are used to transport most of the data.

Our findings are based on the data collected in Sensorscope,
and are consistent with or can be explained by findings in other
experiments in the literature. We expect that the conclusions in
this section hold for other sensor networks that use the same
hardware and routing mechanisms.

IV. NETWORK MODEL AND PROBLEM SETTINGS

In this section, we develop the network model and define the
problem of identifying lossy links based on the observations
made in Section III. As noted in Section II, most of the
existing works on estimating the loss rates of network links
have been based on the assumption that the network uses one
fixed routing tree. In contrast, our goal here is to study the
inference of lossy links where the routing topologies change
frequently.

A. Network Topology

We consider a static sensor network with a single sink (as
in Sensorscope). We collect and analyze data that arrive at
the sink in a time window W of length T . At any given
instant, the sensor nodes form a tree to route data to the sink
(as depicted in Figure 5). The construction of such a routing
tree is described in [17]. Empirical studies in Section III-D
have shown that in sensor networks, the routing trees change
frequently. To accommodate routing changes, we divide the
time window W into small time slots of equal length TR,
which is the time between routing updates (The window is
made of 48 intervals of TR = 5 minutes in the case of
Sensorscope). We call these slots the routing time slots and
we assume that the routing tree remains the same in each
time slot. We aggregate the routing trees that appear in the
time window W to obtain a forest of trees that have the sink
as the common root. Let P be the set of all end-to-end paths
in this forest that are used to route data. Denote by S the set
of all sensor nodes (nodes that are involved in collecting or
routing the data) and by E the set of links that appear in P .
We use a matrix R of dimension |P| × |E|, called the routing
matrix, to represent the information relating paths and links.
Each row (respectively, column) of R represents a path in P
(respectively, link). The entry Rij is 1 if the link ej is in the
path Pi. In Sensorscope, we obtain R from the routing reports
sent to the sink from the sensor nodes every 5 minutes. The
routing matrix for the trees in Figure 5 can be constructed as
follows.

0

3 4 5 76

1 2

e1 e2

e3 e4 e5 e6
e7

0

3 4 76

1 2

5

e8

e9

Fig. 5. Two routing trees are used to route data in a time window W . The
set of network paths consists of all the paths of the two trees and the set of
links consists of all the links appearing in either trees.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

The aggregated routing topology contains 7 end-to-end
paths: P1 : 3 − 1 − 0, P2 : 4 − 1 − 0, P3 : 5 − 1 − 0, P4 :
6 − 2 − 0, P5 : 7 − 2 − 0, P6 : 6 − 1 − 0, and P7 : 5 − 0;
and 9 directed links: e1 to e9 as shown in the figures, with the
routing matrix

R =




1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0




.

The routing matrix R contains therefore the information of
links belonging to all the paths in the forest, and not only in a
single tree. This enables us to accommodate topology changes.

B. Performance Model

Our performance model is as follows. During each routing
time slot TR, we passively observe traffic from the nodes to
the sink to determine the number of packets arrived at the
sink from each sensor node. Based on the sampling rate of the
sensors, we also know how much data should be transmitted
to the sink during this time interval and hence the number
of packets that were lost on the path. (This assumption of a
fixed data reporting rate can be easily eliminated by using the
sequence number of packets). We assume that packets traverse
a link ek independently of other links. This assumption holds
for wireless links as observed in [17]. When traversing a link
ek, each packet is lost with a probability 1 − φek

, with φek

being the average transmission rate of the link. If the path Pi

comprises m links e1, ..., em, the transmission rate of the path
Pi = {e1, ..., em}, denoted by φi, is given by φi =

∏m
k=1 φek

.
Knowing the end-to-end packet transmission rates usually

is not sufficient enough to calculate the transmission rate on
each network link. Each path Pi gives an equation relating the
path transmission rate and the link transmission rates as φi =∏m

k=1 φek
. Given np = |P| paths and ne = |E| links, we have

at most np constraints defined over ne variables. The solution
is not unique for this set of constraints if np < ne, which
is often the case (with Sensorscope, typically, np = 30 and
ne = 50 for a time window of 4 hours). The non-uniqueness
of link loss rates is illustrated in the example of Figure 6 [13].

We are not interested in the exact loss rate of each link, we
are only interested in detecting links with high loss rates. To
this end, we use a threshold tl, the link threshold, to determine
whether a link ek is good (φek

≥ tl); or bad (lossy) (φek
< tl).

The threshold tl can be set either to meet a given transmission
rate target, or on the basis of data history that shows a clear
value separating good and bad performing links. From the
analysis of Section III we adopt the latter approach with tp =
0.8 in Sensorscope. We evaluate other values of tp for different
loss models in Section VI.

The problem of identifying bad links without finding exact
link loss rates amounts to finding the most probable solution
for the observed end-to-end data. Knowing that bad links are

0

φe1

φe2 φe3

1

32

0

φe1c

φe2c
−1

φe3c
−1

1

32

Fig. 6. In the figure, φek denotes the transmission rate of link ek and c is a
constant between max{φe2 , φe3} and 1/φe1 . Both set of link transmission
rates give the same end-to-end transmission rates. Link transmission rates
therefore cannot be exclusively calculated from end-to-end transmission rates.
Using end-to-end data, however, one can infer the links with high loss rates.

not frequent, the most probable solution is the one giving
the least number of lossy links. Let us consider the example
in Figure 6. Under the loss model in Section III, where the
threshold separating good and bad links is 0.8, if the end-to-
end transmission rates to the sink of both nodes 2 and 3 are
below 0.64 (= 0.8 × 0.8), the most probable explanation is
that link 1-0 is lossy (having transmission rate less than 0.8).
Other explanations require at least two links to be lossy and
are much less likely.

C. Problem Settings

The lossy link inference (LLI) problem is defined as follows.
We are given the following information:

• The set of wireless links E = {e1, ..., ene
};

• The set of paths P = {P1, ..., Pnp
};

• The set of end-to-end data D = {D1, ...,Dnp
} where

each entry Di contains the number of successful packet
transmissions (ri) and the number of failed transmissions
(fi) for each path Pi, i.e., Di = {ri, fi};

• The routing matrix R of the network, as defined in
Section IV-A.

• A threshold tl to separate good and bad links. A link is
good if φek

≥ tl.

The LLI problem is to find the most probable candidate bad
links X ⊆ E that are consistent with the outcomes of the end-
to-end data deliveries. For simplicity, we define an indicator
vector x of size ne = |E|, where xk = 1 if the link ek ∈ X
(φek

< tl); and xk = 0 otherwise. The LLI problem can be
formulated as finding

argmax
X⊆E

P(X|D). (1)

In addition to the above information, our inference tech-
niques also make use of the following assumptions:

• Lossy links are rare, that is, the probability of a link to
be lossy is much less than 0.5;

• Links have the same probability p of being lossy;
• The event that a link is lossy is independent of events on

other links.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

All of the above assumptions are supported by our analysis
of Sensorscope data in Section III.

In the remaining sections of the paper, we first propose a
fast and efficient set cover heuristic (named LLIS) that uses
end-to-end transmission rates to solve the LLI problem in (1).
When the end-to-end transmission rates can not be calculated
accurately, we adapt the Bayesian inference technique [12] to
solve the LLI problem.

V. INFERENCE TECHNIQUES

A. Set-Cover Inference (LLIS Algorithm)

We begin with a fast algorithm to solve the LLI problem
in (1). As mentioned in Section IV-B, link transmission
rates and path transmission rates are related by an under-
dimensioned system of equations. Since there are many so-
lutions for such an under-dimensioned system of equations,
there are also multiple solutions for the questions of whether
transmission rates of links are below or above a threshold.
The set-cover technique relies explicitly on the assumption
that bad links are rare, and tries to find the solution with the
least number of bad links. The ideas are as follows. From the
observed data Di for each path Pi, we calculate the observed
transmission rate on the path Pi as φi = ri/(ri + fi).

We define a path to be lossy if at least one of the links
in the path is lossy, otherwise the path is lossless. The set
cover approach begins by specifying a threshold tp, the path
threshold, to determine whether a path Pi is good (lossless);
φi ≥ tp or bad (lossy); φi < tp. Note here that the path
threshold tp is an artificial threshold and is used purely to
facilitate the lossy link inference problem. A path is called
false positive if the path is actually good but we identify it
as bad. A path is called false negative if the path is bad but
we identify it as good. For each choice of tp, each path has a
false positive probability of pp and a false negative probability
of pn as explained in Figure 7.

pp

pn

1-pp

1-pn

Pi is good

Pi is bad

Pi is classified as good

Pi is classified as bad

Fig. 7. A path is called false positive if the path is actually good but we
identify it as bad. A path is called false negative if the path is bad but we
identify it as good.

If we set tp = tl, any path Pi containing a bad link (φek
<

tl for some ek ∈ Pi) will have a transmission rate below
tp (φi =

∏
ek∈Pi

φek
≤ tl = tp). Hence, there cannot be a

false negative, and pn = 0. Furthermore, if we set tp = tml ,
where m is the number of links in the path, then pp = 0
because if a path has a transmission rate smaller than tml then
at least one of its links must have a transmission rate less
than tl. Without knowing the distribution of link loss rates,

an optimal choice for tp cannot be determined analytically. In
this paper, unless otherwise stated, we choose an intermediate
value tp = (tl + tml)/2 to obtain small values of pp and pn.

We denote PG and PB as the sets of good and bad paths
from D with a given path threshold tp. We define the domain,
Domain(ek), of a link ek as the set of paths that contain ek.
The LLI problem in (1) now can be viewed as

argmax
X⊆E

P(X|PG,PB) (2)

where P(X|PG,PB) is the probability that X is the set of bad
links given the data observations D (i.e., PG and PB).

From Bayes’ rule,

P(X|PG,PB) = P(PG,PB |X)P(X)/P(PG,PB).

As P(PG,PB) only depends on D, and not on the choice of
X , we are left with the equivalent maximization problem

argmax
X⊆Ec

P(PG,PB |X)P(X) =

argmax
X⊆Ec

P(PG|X)P(PB |X)P(X), (3)

where P(X) is the probability that X is the set of bad links,
which reads

P(X) =
ne∏

k=1

pxk(1 − p)(1−xk), (4)

and where P(PG|X) (resp, P(PB |X)) is the probability that
all paths in PG (resp, PB) are good (resp, bad), given the set
X of bad links. Making the reasonable assumption that the
qualities of paths are independent of each other if we know
the quality of all of their constituent links, we have:

P(PG|X) =
∏

Pi∈PG

P(Pi is good|X), (5)

P(PB |X) =
∏

Pj∈PB

P(Pj is bad|X). (6)

Let us denote by P0
B(X) the set of bad paths when X is

the set of bad links in the ideal case without corrupted paths:
P0

B(X) =
⋃

e∈X Domain(e). The set of false positive paths
when all links of X are diagnosed as bad is given by AF (X) =
PB\P0

B(X). Similarly, the set of false negative paths when
all links of X are diagnosed as bad is given by AM (X) =
PG ∩ P0

B(X). Now P(PG|X) becomes:

P(PG|X) =
∏

Pi∈PG

P(Pi is good|X)

= p|AF (X)|
p (1 − pn)|PG|−|AF (X)|

P(PB |X) =
∏

Pi∈PB

P(Pi is bad|X)

= p|AM (X)|
n (1 − pp)|PB |−|AM (X)|.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Note that P(PG|X) = P(PB |X) = 1 if pn = pp = 0.
Taking the logarithm of (3) with the values of P(PG|X) and
P(PB |X) given above, and eliminating the constant terms, we
obtain the following problem:

argmax
X⊆E

[
|X | log

p

1 − p
+ |AF (X)| log

pp

1 − pn

+ |AM (X)| log
pn

1 − pp

]
. (7)

We call the above maximization problem the Lossy Link
Inference using Set-Cover (LLIS) problem. Since the proba-
bilities p, pn and pt are unknown, the maximization problem in
(7) cannot be solved as is and requires some approximations.
We propose the heuristic to first minimize the number of
corrupted paths |AM (X)| + |AF (X)| and next minimize the
number of lossy links with the corrupted paths cleaned. The
LLIS algorithm below contains two steps. In the first step,
it iteratively chooses at each iteration a link whose domain
contains: (i) more bad paths than good paths and (ii) the
smallest number of good paths (compared with all other links).
The output of the first step is a set of links XEC , which
approximately minimizes |AM (X)|+|AF (X)|. The algorithm
then corrects the false negative paths AM (X) by turning
them into bad paths, and the false positive paths AF (X) by
turning them into good paths. In the second step, the LLIS
algorithm tries to minimize the number of lossy links |X |
with the cleaned set of paths by iteratively choosing at each
iteration a link whose domain contains the largest number of
bad paths. The detailed algorithm is as follows. The algorithm
uses auxiliary set variables QB , QG, XEC and PC

B .
The LLIS Algorithm
Minimize Detection Errors

• Step 1:

1) Initialize XEC to an empty set: XEC = ∅, and
QG = PG, QB = PB .

2) Find e that minimizes |QG ∩ Domain(e)|.
• Step 2: While |QB∩Domain(e)|−|QG∩Domain(e)| ≥

0
1) Add e to XEC : XEC = XEC ∪ {e}.
2) Update the sets: QB := QB \ Domain(e),

QG := QG \ Domain(e) and Domain(ek) :=
Domain(ek) \ Domain(e) for all ek ∈ Ec.

3) Find e that minimizes |QG ∩ Domain(e)|.
• Step 3: Calculate the inferred set of good and bad paths:

PC
B = {PB\AF (XEC)} ∪ AM (XEC) and PC

G = P\PC
B.

Minimize the Number of Lossy Links

• Step 4: Initialize X to an empty set, i.e., xk = 0 for all
1 ≤ k ≤ |EA|, and QB = PC

B .
• Step 5: While QB �= ∅

1) Find a link ek ∈ EA that minimizes |QB \
Domain(ek)|.

2) Add ek to the solution X : X := X ∪ {ek}, set
xk = 1.

3) Update the sets: QB = QB \ Domain(ek) and
Domain(ej) = Domain(ej)\Domain(ek) for all
ej ∈ EA.

• Step 6: Output X .
The LLIS algorithm has the advantage of being simple, but

it is sensitive to estimation errors of end-to-end transmission
rates and the choice of the path threshold tp. The end-to-
end transmission rates are only accurate when we have a
sufficiently large number of packets. To handle the cases
where there are not sufficient data to calculate the end-to-end
transmission rates, we propose to adapt the second technique,
namely the Bayesian inference technique [12], which is less
vulnerable to end-to-end loss rates but also much more com-
plex.

B. Bayesian Inference (MCMC Algorithm)

In this section, we model the lossy link inference problem
as a Bayesian inference problem. The idea here is to try to
generate a set of possible link transmission rates that can
explain the observations of end-to-end data. This technique
has been used to identify lossy links in IP networks [12]. We
adapt it here to solve the lossy link inference problem in sensor
networks. We begin by presenting some brief background
information; for details, please refer to [21].

Denote by Φk the random variable that represents the
transmission rate of link ek and Φ as the multivariate random
variable Φ = {Φ1,Φ2, ...,Φne

}. The goal of Bayesian infer-
ence is first to determine the posterior distribution, P(Φ|D),
of Φ given the observed data, D. The notation P(Φ|D) is a
short hand for P(Φ = φ|D) where φ = {φe1 , φe2 , ..., φene

} is
a specific realization of the link transmission rates. Knowing
P(Φ|D), we can draw samples from this distribution where
each sample is a vector containing the transmission rates for all
the links in the network that can explain the observed data. We
then collect the transmission rates of each link in all samples
and compare them with the threshold tl. If the majority of the
sampled transmission rates of a link are bad (< tl) then the
link is declared as bad. Otherwise it is declared good.

In general, it is hard to compute P(Φ|D) directly due to
the complex integrations when Φ is a vector. It is also hard to
obtain samples of the distribution P(Φ|D).

An indirect approach to obtain the samples from P(Φ|D)
is to construct a Markov chain whose stationary distribution
is exactly equal to P(Φ|D). When such a Markov chain is
run for a sufficiently large number of steps, it converges to its
stationary distribution. We can then obtain samples from this
stationary distribution and view the samples as samples from
the posterior distribution P(Φ|D). This way, we do not have to
determine the distribution P(Φ|D) and then draw the samples
from it. This method is called the Markov Chain Monte Carlo
(MCMC) simulation method.

To construct the Markov chain whose stationary distribution
matches P(Φ|D), Gibbs sampling [21] is commonly used. The
basic idea of Gibbs sampling is that at each transition of the
Markov chain, only a single variable (i.e., only one component
of the Φ) is varied. In the remaining of this section, we will

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

show how Gibbs sampling can be used in our specific lossy
link inference problem.

Remember here that each entry Di in the observed data
set D contains the number of successful packet transmissions
(rj) and the number of failed (i.e., lost) transmissions (fj)
on path Pi. Also remember that Φ = {Φ1, ...,Φne

} is the
multivariate random variable that represents link transmission
rates. The objective of the lossy link inference problem is to
draw samples from the posterior distribution P(Φ|D) that can
be computed using Bayes’ rule:

P(Φ = φ|D) =
P(Φ = φ)P(D|Φ = φ)∫

Φ
P(Φ = φ)P(D|Φ = φ)dφ

. (8)

Let φ = {φe1 , φe2 , ..., φene
} be a vector of specific loss rates

of links in the network. To calculate (8), we need to have P(Φ)
and P(D|Φ = φ) for all possible values of φ.

P(Φ) is the prior knowledge about the lossiness of the links.
Since we do not have reasons to privilege any links over any
others, so we assume that P(Φ) is uniform (by default of any
better assumption).

The likelihood P(D|Φ = φ) is the probability that we
observe the data D given the link loss rates φ, and is given by

P(D|Φ = φ) =
∏

Pi∈P
φri

i (1 − φi)fi (9)

where φi =
∏

ek∈Pi
φek

is the transmission rate for path Pi.
Now to obtain samples from P(Φ|D) and to make inference

decisions from the samples, we use MCMC with Gibbs
sampling as in the following algorithm. We call the algorithm
the MCMC algorithm.

The MCMC algorithm starts with an arbitrary initial as-
signment of link transmission rates, Φ = φ, i.e., {Φ1 =
φe1 , ...,Φne

= φene
}.

The algorithm then repeatedly performs the following pro-
cedure. It sequentially loops through all links. For each link
ek, the algorithm performs the following two steps. In the first
step, it computes the posterior distribution of the transmission
rate for that link ek alone conditioned on the observed data
D and the transmission rates assigned to all other links. Let
φek

= ∪j �=kφej
, the posterior distribution for link ek is

P(Φek
|D,Φek

) =
P(D|{Φek

}, {Φek
})P(Φek

)∫
φek

P(D|{Φek
}, {Φek

})P(Φek
)dφek

.

Since P(Φ) is uniform, P(Φek
) is the same for all φek

.
Furthermore, P(D|{Φek

}, {Φek
}) = P(D|Φ), and thus

P(Φek
|D,Φek

) =
P(D|Φ)∫

Φek

P(D|Φ)dφek

. (10)

In the second step, using equation (10), the algorithm
numerically computes the posterior distribution P(Φek

=
φek

|D, {Φek
}) and draws a sample from this distribution to

get a new value, φ∗
ek

, for the transmission rate of link ek.
The MCMC algorithm iterates the above procedure 1000

times. That is, it cycles through all links and assigns each link

a new loss rate 1000 times. After the burn-in period of 500
iterations, it starts collecting sample transmission rates for the
next 500 iterations. These 500 samples can be viewed as the
samples from the distribution P (Φ|D). For each link ek, if
more than 250 samples of φek

are smaller than tl, then ek is
added to the solution set X , which originally is empty.

Finally, the algorithm returns X as the solution for the lossy
link inference problem.

The MCMC algorithm only requires the number of packets
sent and received on each end-to-end path. It therefore can
be used for end-to-end paths that do not carry enough data
packets for the transmission rates to be calculated exactly. The
MCMC algorithm however requires much more computation
time than the LLIS algorithm.

VI. EVALUATION

We verify our proposed algorithms using three levels of
evaluation. First, we compare our algorithms with the existing
algorithms that use passive traffic as a monitoring tool [7], [8]
by simulations using the same settings (one fixed routing tree
and correlated monitoring traffic). Second, we evaluate our
algorithms in more realistic settings using simulations with
changing routing trees and uncorrelated monitoring traffic.
Finally, we test our algorithms on the real data collected in
Sensorscope.

The performance of the algorithms are evaluated in terms of
two metrics: the detection rate (DR), which is the percentage
of links that are correctly diagnosed as bad, and the false
positive detection rate (FPR), which is the percentage of links
that are working correctly but are diagnosed as bad. With F
denoting the set of the actual bad links, and X the set of links
identified as bad by an inference algorithm, these two rates
are given by:

DR =
|F ∩ X |
|F| ; FPR =

|X\F|
|X | .

A. Comparison with Previous Algorithms

We begin our validation by comparing our algorithms with
the existing algorithms of [7] and [8]. These algorithms cannot
be directly compared with our algorithms because of the
different assumptions (see section II-A.2) and objectives: we
try only to infer whether a link loss rate is above or below a
threshold, not the actual value of this loss rate as in [7] and
[8]. But these algorithms can be compared in terms of the
ability to detect lossy links. The network topologies are the
random trees generated as in [7] and [8].

We use two different models for assigning loss rates to the
links. In the first loss model (LM1), which was introduced
in [7], good links have transmission rates of 0.99 and bad
links have deterministic transmission rates of 0.75. For this
loss model, we choose the link threshold tl = 0.8. In the
second loss model (LM2), which was introduced in [8],
link transmission rates are drawn from a distribution with
probability density function f(ξ) = λξ(λ−1), for 0 < ξ ≤ 1,
parameterized by λ > 1. The expected value of this random
variable is λ/(1 + λ). In our simulations, we choose λ = 4

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

so that the expected link loss rate is 0.8, and we set tl =
λ/(1 + λ) = 0.8. Once each link is assigned a loss rate, we
use Bernoulli loss processes at each link for both LM1 and
LM2. That is, each packet traversing a link is dropped with a
fixed probability independently of the others. The end-to-end
traffic is generated as in [7] and [8]: in each simulation, 200
packets are sent from each sensor node to the sink, in rounds.
The results are shown in Table I.

We observe that our algorithms provide similar detection
rates but much lower false positive rates. The explanation for
the high false positive rates of the algorithms in [7], [8] is that
they try to infer exact loss rates. Even though the estimation
errors are small (with the mean absolute error in the order of
0.1), they are still large enough to make many inferred loss
rates erroneously cross the threshold, which results in links
being wrongly identified as lossy.

We note that the LLIS algorithm has a higher DR than the
MCMC algorithm in LM1, and a smaller FPR for both loss
models. The MCMC has higher FPR because it tries to find
the most probable answer for the lossy link inference problem
whereas the LLIS algorithm explicitly finds the least number
of bad links.

We also observe that our algorithms are less accurate for
LM2 than LM1. There are two reasons for this. First, in LM2,
the transmission rates of good and bad links are contiguous
(bad links have transmission rates in the interval [0, 0.8],
and good links have transmission rates in [0.8, 1]) whereas
in LM1 transmission rates of bad links and good links are
sufficiently far apart (0.75 and 0.99, respectively). The use of
link threshold tl = 0.8 to separate good and bad links in LM2
is therefore less accurate than in LM1. Second, the network
sizes of the simulations for LM2 are much larger than for
LM1.

B. Simulations with Different Network Settings

In this section, we evaluate the effect of changing topologies
and non-correlated monitoring traffic on the performance of
our algorithms. Our inference algorithms are the first solutions
to the lossy link inference problem under these conditions.

Packets are delivered to the sink in rounds of data collection
and are not aggregated before being forwarded upward in the
routing trees. In all simulations of this section, 200 packets
are sent from each sensor, i.e, there are 200 rounds of data
collection. In each round, a routing tree is used to deliver data
to the sink. After every r rounds of packet delivery, the routing
tree changes. The overall routing topology is the aggregate of
multiple routing trees with the same root node and the same
number of nodes (v). To construct the routing matrix R, we
update the routing trees after every 10 rounds of data delivery
(i.e., the length of the routing time slot TR is 10), as explained
in Section IV-A. The branching ratio at each non-leaf node is
randomly chosen between 1 and an upper bound of 10. A
fraction of links (f) are classified as “bad” and the rest as
“good”. We vary the time between routing changes (r), the
number of nodes (v), the fraction of bad links (f), and the

link loss models in our simulations. We repeat each setting 5
times and report the average results.

1) Effects of Routing Changes: We begin with the eval-
uation of the effect of routings changes on the inference
algorithms in Section V. The network size is kept at v = 1000
and the fraction of bad links is f = 0.2. The link loss model is
LM1 with Bernoulli losses. The length of the routing time slot
TR is always kept equal to 10, but we vary the time between
routing change r.

r=1 r=5 r=10 r=15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time between routing changes (in packets)

D
R

 a
nd

 F
P

R

Varying time between routing changes

DR using LLIS
FPR using LLIS
DR using MCMC
FPR using MCMC

Fig. 8. Varying the time between routing changes, the network size is v =
1000, the fraction of lossy links is f = 0.2, and the loss model is LM1 with
Bernoulli losses.

Figure 8 shows the results when r varies from 1 to 15. When
the time between routing changes is longer than or equal to
the length of the routing time slot (r ≥ TR), all the routing
changes are captured, hence the numbers of packets delivered
(ri) and lost (fi) calculated for each each path are correct.
However, this is no longer the case when r < TR. When
routing changes are more frequent than routing updates, we
are not able to exactly identify which paths the packets take to
get to the sink and we can only assume that the packets take
the same path between routing updates, which may not be true.
Therefore, the numbers ri and fi for each path Pi may not be
correct. As expected the smaller r, the worse the performance
of the two algorithms. We also observe that the LLIS algorithm
handles errors caused by frequent routing changes better than
the MCMC algorithm because the former explicitly corrects
the errors, whereas the latter does so only implicitly.

2) Effects of Topology Sizes: We present in this section
simulation results for different number of nodes (v). The time
between routing changes r is set to 10 and the loss model is
LM1 with Bernoulli losses.

Figure 9 shows the simulations with different network sizes
(v ranges from 100 to 3000). We observe that as the network
size increases, both algorithms have high DR and low FPR
but the accuracies of the two algorithms are slightly reduced.

3) Effects of the Number of Lossy Links: Figure 10 shows
the simulation results in 1000-node topologies with f varying
from 0.05 to 0.25. We note that as the fraction of bad links
increases, the accuracy of both algorithms decreases. Both
algorithms implicitly (the LLIS algorithm) or explicitly (the
MCMC algorithm) rely on the assumption that bad links
are rare, therefore as the fraction of bad links increases the
assumption becomes weaker and the two algorithms perform

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

of nodes Loss model EM FG LLIS MCMC
9 LM1 DR = 99%, FPR = 50% N/A DR = 99%, FPR = 2% DR = 95%, FPR = 7%
115 LM1 DR = 97%, FPR = 55% N/A DR = 98%, FPR = 5% DR = 92%, FPR = 9%
5000 LM2 N/A DR = 92%, FPR = 31% DR = 89%, FPR = 7% DR = 91%, FPR = 14%
10000 LM2 N/A DR = 90%, FPR = 33% DR = 85%, FPR = 10% DR = 88%, FPR = 16%

TABLE I

COMPARISON BETWEEN THE TWO ALGORITHMS OF SECTION V AND THE ALGORITHMS IN [7] AND [8]. THE COLUMN UNDER “EM” (RESPECTIVELY,

FG) REPRESENTS THE RESULTS OF THE EM ALGORITHM IN [7] (RESPECTIVELY, THE FACTOR GRAPH ALGORITHM IN [8]). THE “N/A” NOTATION

INDICATES THAT WE DO NOT SIMULATE THE ALGORITHM OF [7] IN THE SETTING OF [8] AND VICE VERSA.

v=100 v=1000 v=3000
0

0.2

0.4

0.6

0.8

1

Topology size

D
R

 a
nd

 F
P

R

Varying topology size

DR using LLIS
FPR using LLIS
DR using MCMC
FPR using MCMC

Fig. 9. Varying the number of nodes v, the fraction of lossy links f = 0.2,
the time between routing change is r = 10 and the link loss model is LM1
with Bernoulli losses.

f=0.05 f=0.15 f=0.25
0

0.2

0.4

0.6

0.8

1

D
R

 a
nd

 F
P

R

Varying fraction of bad links

DR using LLIS
FPR using LLIS
DR using MCMC
FPR using LLIS

Fig. 10. Varying the fraction of lossy links. Networks have fixed size v =
1000, the time between routing change is r = 10 and the link loss model is
LM1 with Bernoulli losses.

less accurately.
4) Effects of Loss Processes: We now evaluate the effect of

loss processes on our algorithms. The network size is kept at
v = 1000. In Section VI-A, we have shown the results of the
LLIS and MCMC algorithms with Bernoulli losses. We want
to investigate how our inference algorithms perform with other
non i.i.d loss processes such as the correlated Gilbert losses,
where links fluctuate between good and bad states. When in
the good state, the link does not drop any packets, when in
the bad state the link drops all packets. The transition between
good and bad states are chosen so that the average loss rate
matches the loss rate assigned to the link.

Figure 11 shows the results of the loss model LM2 with
Bernoulli and Gilbert losses. We observe that our algorithms
are quite insensitive to loss models. We attribute the reasons
for the above observation to the fact that our algorithms only

infer good and bad links based on average loss rates, and not
the loss rates themselves.

Bernoulli Gilbert
0

0.2

0.4

0.6

0.8

1

D
R

 a
nd

 F
P

R

Varying link loss processes

DR using LLIS
FPR using LLIS
DR using MCMC
FPR using MCMC

Fig. 11. Varying the loss processes, network size is v = 1000, the fraction
of lossy links f = 0.2, the time between routing change is r = 10 and the
loss model is LM2.

C. Experimental Results on Sensorscope

In this section, we evaluate our inference algorithms using
the Sensorscope data. The validation approach we use is to
compare our inference results with the real loss rates reported
by the sensor nodes and to check for consistency in the
inferences made by the two algorithms (LLIS and MCMC).

We present here the evaluation of the data trace collected in
Sensorscope in December, 2004. We divide the time into 60
slots of 4 hours, as described in Section III. The set of true
bad links F are determined using reports sent from sensor
nodes. We run our algorithms on these 60 slots and report the
average DR and FPR values. Many paths in Sensorscop are
used to transport a small number of packets. These paths do
not provide enough data to reliably calculate the end-to-end
loss rates. We therefore only consider paths that delivered at
least a threshold number of packets, t, which is set to 20,
60 and 100 in our evaluation. The choice of t is a trade-off
between the number of links that can be covered and accuracy
of the inference results. The larger t, the more accurate the
inference results, but the smaller the coverage. We plot in
Figure 12 the results of our algorithms.

A total of 50 links appear in the paths that deliver at least
20 packets over 60 time slots. The link estimations reported
to the sink indicate that 12 out of these 50 links are lossy.
The LLIS algorithm correctly identifies 7 lossy links and
the MCMC algorithm correctly identifies 9 lossy links. The

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

t=20 t=60 t=100
0

0.2

0.4

0.6

0.8

1
D

R
 a

nd
 F

P
R

Sensorscope network

DR using LLIS
FPR using LLIS
DR using MCMC
dFPR using MCMC

Fig. 12. Applying the inference algorithms to Sensorscope. The algorithms
achieve high DR and low FPR.

MCMC algorithm also gives 1 false positive and the LLIS
algorithm gives 2 false positives. The DR and FPR rates are
plotted in Figure 12. We observe that the minimum trace
length t must be large enough to obtain good detection rates,
especially for the LLIS algorithm. An additional source of
noise in the measurements for Sensorscope is the fact that the
interval r between routing changes may be much smaller than
the routing time slot TR, which is set to 5 minutes. When
r < TR, there is noise in calculating the numbers ri and fi

on each path Pi as we saw in the previous subsection.
When t = 100, both algorithms identify almost all bad links

and have negligible false positive rates. However, as we can
expect, the number of paths that deliver more than t = 100
packets is much smaller than when t = 20, hence the number
of links appearing in these paths is also small (20 links).

Most of the lossy links are persistent. A bad link usually
remains so in at least 2 time slots (i.e., 8 hours). More
importantly, the lossy links identified by the two algorithms are
consistent. All 7 lossy links identified by the LLIS algorithm
when t = 20 are also the lossy links identified by the MCMC
algorithm.

VII. CONCLUSIONS

In this paper, we have proposed an algorithm called the
LLIS algorithm to infer lossy links using only end-to-end data
in sensor networks. The LLIS algorithm is fast and accurate if
there are enough data to calculate the end-to-end transmission
rates accurately. When this is not the case, we adapt the
second algorithm, the MCMC, that takes much longer time
than the LLIS algorithm to solve the lossy link inference
problem. We observe that the LLIS algorithm can handle
routing changes better than the MCMC algorithm because
it explicitly corrects errors caused by routing changes. Both
algorithms perform better than existing passive monitoring
methods in the literature, especially in terms of false positive
rates. They also perform well in simulations and with real data
collected from Sensorscope.

Our ongoing work is centered on making the inference
algorithms real time on large sensor networks.

ACKNOWLEDGEMENTS

We are grateful to Henri Dubois-Ferriere and Thomas
Schmid (EPFL) for providing and helping us understand the
Sensorscope data. We also thank Maciej Kurant and Alaeddine
El Fawal for feedback on the early drafts. This work is finan-
cially supported by grant DICS 1830 of the Hasler Foundation
and by the Swiss NCCR “Self-Organizing Mobile Information
and Communication Systems”.

REFERENCES

[1] R. Szewczyk, J. Polastre, A. Mainwaring, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in Proceed-
ings of The Second ACM Conference on Embedded Networked Sensor
Systems (Sensys), 2004.

[2] T. Schmid, H. Dubois-Ferriere, and M. Vetterli, “Sensorscope: Experi-
ences with a wireless building monitoring,” in Proceedings of Workshop
on Real-World Wireless Sensor Networks (REALWSN’05), 2005.

[3] G. Tolle and D. Culler, “Design of an application-cooperative manage-
ment system for wireless sensor networks,” in Proceedings of Second
European Workshop on Wireless Sensor Networks (EWSN), 2005.

[4] J. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for
monitoring wireless sensor networks,” in Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC’02), May 2002.

[5] ——, “Computing aggregates for monitoring wireless sensor networks,”
in Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

[6] C. Hsin and M. Liu, “A distributed monitoring mechanism for wireless
sensor networks,” in Proceedings of the ACM workshop on Wireless
security, Atlanta, GA, USA, April 26-27 2002, pp. 57 – 66.

[7] G. Hartl and B. Li, “Loss inference in wireless sensor networks based on
data aggregation,” in Proceedings of the Third IEEE/ACM International
Symposium on Information Processing in Sensor Networks (IPSN 2004),
April 26-27 2004, pp. 396–404.

[8] Y. Mao, F. R. Kschischang, B. Li, and S. Pasupathy, “A factor graph
approach to link loss monitoring in wireless sensor networks,” IEEE
JSAC, Special Issue on Self-Organizing Distributed Collaborative Sensor
Networks, April 2005.

[9] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, pp. 393–422,
2002.

[10] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The emergence of networking abstractions
and techniques in tinyos,” in Proceedings of Mobile Ad Hoc and Sensor
System (MASS 2004), 2004.

[11] M. Coates, A. Hero, R.Nowak, and B. Yu, “Internet tomography,” IEEE
Signal Processing Magazine, vol. 19, May 2002.

[12] V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Server-based inference of
internet performance,” in Proceedings of the IEEE INFOCOM’03, San
Francisco, CA, April 2003.

[13] N.Duffield, “Simple network perormance tomography,” in Proceedings
of the IMC’03, Miami Beach, Florida, October 2003.

[14] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex behavior at scale: An experimental study of low-
power wireless sensor networks,” in UCLA Computer Science Technical
Report UCLA/CSD-TR 02-0013, February 2002.

[15] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proceedings of Sensys 03, Los
Angeles, CA, USA, November 2003.

[16] A. Woo and D. Culler, “Evaluation of efficient link reliability estimators
for low-power wireless networks,” in UCB Technical Report, November
2003.

[17] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multhop routing in sensor networks,” in Proceedings of Sensys
03, Los Angeles, CA, USA, November 2003.

[18] N. Reijers, G. Halkes, and K. Langendoen, “Link layer measurements
in sensor networks,” in Proceedings of the Networked Systems Design
and Implementation (NSDI 2004), 2004.

[19] www.tinyOS.net.
[20] J. Polastre and D. Culler, “Versatile low power media access for wireless

sensor networks,” in Proceedings of Sensys 04, 2004.
[21] M. A. Tanner, Tools for Statistical Inference. Springer-Verlag, 1991.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

	Select a link below
	Return to Main Menu
	Return to Previous View

