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Abstract. This paper describes an event dissemination algorithm that imple-
ments a topic-based publish/subscribe interaction abstraction in mobile ad-hoc
networks (MANETs). Our algorithm is frugal in two senses. First, it reduces the
total number of duplicates and parasite events received by the subscribers. Sec-
ond, both the mobility of the publishers and the subscribers, as well as the validity
periods of the events, are exploited to achieve a high level of dissemination relia-
bility with a thrifty usage of the memory and bandwidth. Besides, our algorithm
is inherently portable and does not assume any underlying routing protocol. We
give simulation results of our algorithms in the two most popular mobility mod-
els: city section and random waypoint. We highlight interesting empirical lower
bounds on the minimal validity period of any given event to ensure its reliable
dissemination.

1 Introduction

The publish/subscribe (pub/sub) communication abstraction is a very appealing candi-
date for disseminating events in mobile ad-hoc networks (MANETs) [1]. In such net-
works, devices are mobile, they may not know each other and might not always be up
and running. With a pub/sub abstraction, remote devices can communicate by playing
two roles: thepublishersproduce events that are disseminated in the network andsub-
scribersreceive events they are interested in. Publishers and subscribers are decoupled
in time, space and flow [2]. This makes the pub/sub abstraction appropriate for loosely
coupled MANET applications.

Whereas the writing of MANET applications is appealing with a pub/sub abstrac-
tion, the effective implementation of such abstraction is not an easy task. In particular,
ensuring a reasonable level of reliability of the dissemination is challenging without
flooding the entire network. Indeed, devices in a MANET can directly broadcast infor-
mation in their geographical neighborhood but need multiple indirections to reach far
away devices. In addition, the devices typically run with a limited amount of memory
and the dissemination algorithm cannot use a large portion of it just for buffering events.
Similarly, the battery power of a device is (dynamically) limited and cannot anyway en-
tirely be devoted to receiving and forwarding events, especially if those are duplicates
or of no interest (i.e.,parasiteevents).

? The work presented in this paper was sponsored both by the European IST PALCOM project
(OFES No 03.0495-1), as well as by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322.



This paper presents an event dissemination algorithm that implements a topic-based
pub/sub abstraction in MANETs. Our algorithm is inherently portable and does not
assume any specific multicast routing protocol: we only rely on a standard Media Ac-
cess Control (MAC) layer (e.g., Bluetooth [3] or 802.11 [4]). Events are (1) assumed
to have a validity period that represents the time interval after which they are of no use
and (2) are arranged according to a topic-hierarchy. The originality of our algorithm
lies in its frugality, and this covers two aspects: first, despite the broadcast nature of
the communication medium, we ensure that the subscribers receive a minimal number
of duplicates and parasite events; second, both the mobility and validity periods of the
events are used to enforce the reliability of the dissemination with a thrifty usage of the
memory and bandwidth.

Our algorithm goes through three phases: (1) neighborhood detection based on ex-
changes of heartbeats in surrounding environments; (2) events dissemination after back-
off periods calculated as functions of the frequency of the heartbeats and the number
of events to send; and (3) garbage collection using the validity periods of the events as
well as the number of times they have been propagated (a logical notion of “age”).

We give simulations that highlight empirical lower bounds on the validity period
needed to achieve a certain level of reliability. Interestingly, the lower bounds depend
on the number of devices (publishers/subscribers), their speed, their interests (sub-
scriptions), and the considered mobility models (i.e., random waypoint [5] or city sec-
tion [6]). For instance, in the random waypoint model, an event with a validity period of
180 seconds is received by 95% of the 120 devices which move at 10 meters per second
in an area of 25[km2].

We compare our algorithm with three different flooding variants and show that, for
the same reliability, our algorithm outperforms the alternatives in terms of bandwidth,
duplicates and parasite events. For instance, for disseminating one event of 400 bytes in
the very same previously described environment, we save between 300% and 450% of
the bandwidth and each subscriber receives between 70 and 100 times less duplicates
and between 50 and 90 times less parasite events.

The rest of the paper is structured as follows: Section 2 describes the MANET envi-
ronment we consider. Section 3 gives an overview of the algorithm. Section 4 details the
main elements of our algorithm. Section 5 gives various simulation results. Section 6
discusses related work and concludes our paper.1

2 Model

In this section we present some basic elements of the underlying MANET we con-
sider. We discuss the communication medium, the network topology and the processes
involved in the pub/sub interaction.

1 An implementation of our algorithm for a parking application is given in [7]. The cars leaving
the car parks act as publishers and propagate the information of free parking spots. When
receiving such information, other cars, acting as subscribers, are able to locate the free place
that is closest to their destination.



Overview. What we call a process in this paper is the piece of software of a mobile
device that is responsible of disseminating/forwarding the events subscribed to by the
application running on the device. We assume the processes to be mobile (they move
with their host device) and to communicate directly with their immediate neighborhood
(i.e., one-hop neighbors). A process can represent a publisher, a subscriber or both. All
processes run our algorithm directly on top of the MAC layer (e.g., Bluetooth [3] or
802.11 [4]), without relying on any routing algorithm.

Communication Medium.The range of a process is the geographical zone within which
it can directly reach other processes using a simple send communication primitive of
the underlying MAC layer (one-hop). The set of processes in the range of a process
pi is called the neighborhood ofpi. A process cannot send a message to only one of
its neighboring processes nor directly send a message to processes multiple hops away
(i.e., no underlying unicast/multicast routing algorithm is assumed).

Network Topology.We assume that the network is completely ad-hoc and no fixed
infrastructure is present. We do not make any assumption on the size of the network
(number of processes), nor on the connection graph of the processes. In particular, the
graph does not need to be fully connected at any given point in time. The processes
are assumed to be mobile. When analyzing our algorithm, we will study the two most
popular mobility models: (1) random waypoint [5] and (2) city section [6], which we
recall below.

– In the random waypoint model, a process moves from its current location to a new
location by randomly choosing a direction and a speed. The speed and direction
are chosen from pre-defined ranges, [speedmin, speedmax] and[0, 2π] respectively.
This model includes pause times between changes in direction and/or speed.

– In the city section model, the mobility area is a street network that typically repre-
sents a section of a city. In this model, the processes follow predefined guidelines
like speed limits, one way lanes, and other traffic laws. Each process begins the
simulation at a predefined point on some street, and randomly chooses a destina-
tion. It is common to consider specific characteristics like pause times, acceleration
and deceleration in certain intersections.

Processes, Topics and Events.Each processpi has a unique identifieri. All processes
have to deal with limited bandwidth, energy and memory. A process can move in and
out of the range of other processes, or crash (or recover), at any time.

Each eventeTk
j published by a processpi: (1) has a unique identifierj,2 (2) a validity

period, i.e.,val(eTk
j ) = t, after which the information carried by the event is of no use

in the system, and (3) is associated to a specific topic, e.g.,Tk. Topics are arranged in
a hierarchy (e.g.,.grenoble.conferences.middleware) and a subscriber that subscribes
to a specific topic (e.g.,.grenoble.conferences) is expected to receive events of this
topic and all its subtopics (e.g.,.grenoble.conferences.middleware). The root topic of
the topic tree is denoted by thedot (.)sign. An event of a topic, which a process has not
subscribed to, is called aparasiteevent for that process.

2 In the paper, we assume, without loss of generality, that the size of the event identifier is smaller
than the size of the data carried by the event.



3 Algorithm Overview

We give here an overview of our algorithm before detailing it in subsequent sections.
Our algorithm goes through three phases: (1) neighborhood detection, (2) event dissem-
ination and (3) garbage collection. We first introduce these phases and then give a short
example to illustrate their execution.

Phase 1: Neighborhood detection.The processes periodically exchange heartbeat mes-
sages, each contains the following elements: (1) the identifier of the process, (2) a list
of its current subscriptions (i.e., a list of topicsTi, Tj , ...,Tn)3 and, (3) its current speed
(this information is only useful for optimization purpose and is not mandatory). Each
processpi uses the heartbeat messages it receives to construct a dynamic one-hop neigh-
borhood table, containing the identifiers of the processes in the neighborhood along with
their subscriptions and their current speed (if available). Only the processes whose sub-
scriptions match with the ones ofpi, are kept inpi’s table. Other one-hop neighbors
are ofno interestto pi. The neighborhood table is continuously garbage collected and
updated (depending on the periodicity of the heartbeats). If the speed information of
the processes is available (for example with the help of a tachometer), the process can
adjust the periodicity of the heartbeats to match to the dynamicity of its environment.
Otherwise, this periodicity is set to a static value (see Section 4.2).

When processes detect each other, they exchange a list of identifiers of the events
they have kept after receiving them and which are still valid. When receiving event
identifiers, each process checks if its neighbor is interested in an event it has not already
received (i.e., needs the event). In this case, the processes proceed to the dissemination
phase (see below). Sending the events identifiers instead of the events themselves pre-
serves network bandwidth and CPU processing power. Indeed, it might happen that a
processpi has already received the same events as processpj . Consequently, it makes
no sense forpj to send these events topi again.

Phase 2: Dissemination.When a process detects that one of its neighbor needs an event
(when comparing the list of events identifiers it receives with its own list of events), it
broadcasts the required event to its neighborhood together with the list of its interested
neighbors, after a back-off period (see Section 4.2).

After receiving the event, the neighboring processes of the sender might decide to
propagate the event if they know other processes, in their neighborhood, that have not
yet received it and that are interested in it (see Section 4.3). If the processes that receive
the event have subscribed to the topic of this event and have not received it yet, they
deliver it to the application and store it, until it is garbage collected. A process that
receives an event it is not interested in (parasite event), simply drops it. This way, we
minimize the burden induced by parasite events and save valuable memory.

Phase 3: Garbage collection.Throughout the two previous phases of our algorithm,
we mainly use two main data structures (see Section 4.1) at every process.4 The first

3 This list can change at any point in time with respect to the interests of the process.
4 Other data structures are involved in the algorithm, but those cannot induce memory problems.



one is used for storing the list of neighbors that shares the same subscriptions as the
process itself (neighborhood table). The second one is used for storing the events. The
neighborhood table is constantly updated (based on the periodicity of the heartbeats)
and its size is bounded.5

The data structure used to store the events can grow rapidly. This is because the
total number of events published in the system is unbounded and the processes have to
store them until their validity period expires. It can thus happen that a process receives
an event and cannot store it because its memory is full. Our garbage collection scheme
collects, every time a new event has to be stored and if the memory is full, the events
according to their validity period and the number of times they have been propagated
(sent/forwarded) by the processes.

Illustration. Figure 1 depicts a simple scenario illustrating the three phases of our al-
gorithm. We consider a hierarchy made of three topics:T0, T1 andT2; T1 is a subtopic
of T0 whereasT2 is a subtopic ofT1. Three processes,p1, p2 andp3 are involved:p1

has subscribed toT1, p2 has subscribed toT2 andp3 has subscribed toT0. Three events
are published in the system:eT1

3 , eT2
4 andeT2

5 . We assume thatp1 has already received
eT1
3 andp2 has already receivedeT2

4 andeT2
5 .

In part I of Figure 1, processesp1 andp2 become neighbors and hence know their
common subscriptions. They then exchange the identifiers of the events corresponding
to the topics they have commonly subscribed to. As a consequence,p2 sends top1

eventseT2
4 andeT2

5 (asT1 is a super-topic ofT2).
In part II of Figure 1, all three processes become neighbors, and exchange their

event identifiers:p1 andp2 realize thatp3 misses events,eT1
3 , eT2

4 andeT2
5 . As bothp1

andp2 have events to send, they both send them after a back-off period. It is important
to notice that, becausep1 has more events to send thanp2, p1 has a smaller back-off
period thanp2 (see Section 4.3).

In part III of Figure 1,p1 moves on, butp2 andp3 still remain in range. Asp2 was
in the range ofp1 when it sent the events list,p2 heard the events thatp1 sent forp3.
Now, p2 andp3 know that they do not have to exchange events anymore.

4 Algorithm Description

In this section we first detail the data structures involved in the algorithm. Then we de-
scribe the neighborhood detection, the dissemination and finally the garbage collection.

4.1 Data Structures

As illustrated in Figure 4, we consider a list ofsubscriptionsfor every processpi

(pi.subscriptions), aneighborhood table(neighborhoodTable) and anevent table
(eventsTable). These two tables are detailed below. There is also the list containing the
events to send(eventsToSend). The different parameters used, as listed in Figure 4, are:
the heartbeat delay (HBDelay), the neighborhood garbage collection delay (NGCDelay)
and the back-off delay (BODelay).

5 The upper bound corresponds to the maximum number of neighbors a process can handle. This
bound depends on the structure of the network and on the amount of memory of the processes.
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Fig. 1. Illustration of our algorithm

Subscriptions of a process.The different subscriptions of every processpi are stored in
the listpi.subscriptions. We assume, without loss of generality, that the size of this list
is bounded as the number of subscriptions of a process is usually limited in the topic-
based scheme. In this scheme, a process only has to subscribe to a topic to receive all
the events regarding this topic and all its subtopics. A process can change the list of its
subscriptions at any time.

Neighborhood Table.Figure 2 illustrates the neighborhood table of a process. The first
column of this table stores the identifiers of the neighbors of a process. The second
column stores the topics those processes have subscribed to. The third column stores
the identifiers of the events the neighbors have received, the fourth column contains the
speed of the neighbors (this column is not mandatory and the speed of the processes is
only used for optimization purpose) and the last column contains the time when the en-
try has been stored/updated into the table. This last entry is used for garbage collection
purpose. We discuss in more detail the use of the neighborhood table in Section 4.3 and
present its garbage collection algorithm in Section 4.4.
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Event Table.Each process stores an event table as shown in Figure 3. This table con-
tains a list of topics the process has subscribed to, together with the list of events this
process has received and/or published. These events are stored according to the topic



hierarchy (from the partial topic tree information the process has). Each event has a
unique identifier (id), a validity period (validity), a counter (counter), a topic (topic)
and its internal data information (data: this information is not shown in Figure 3). The
validity period expresses the time interval after which the event can be removed from
the system. The counter represents the number of times an event has been forwarded;
it is used, together with the validity period, in the garbage collection phase (see Sec-
tion 4.4).

The events to send.This structure contains the events a process sends to its neighbors.
This structure can be, at most, as big as the event table (if a process has to send all its
events to its neighbors). The structure is reset each time the events are sent (i.e., after
each back-off).

4.2 Neighborhood Detection

Before detecting neighbors, the processes have to subscribe to topics they are inter-
ested in. The subscription/unsubscription sub-protocol is depicted in Figure 5. Basi-
cally, when a process wants to subscribe to a specific topic, it adds this topic to its list
of subscriptions and starts theheartbeatandneighborhoodGC6 tasks. A process that
wants to unsubscribe to a topic, removes this topic from its list of subscriptions. When
the list of subscriptions is empty, theheartbeatandneighborhoodGCtasks are stopped.

For each processpi

1: {The subscriptions of the process}
2: pi.subscriptions =∅;
3: {The neighborhood table}
4: neighborhoodTable =∅;
5: {The event table}
6: eventsTable =∅;
7: {The structure containing the events to

send}
8: eventsToSend =∅;
9: {The default heartbeat delay}
10: HBDelay = 15000;
11: {The default neighborhood garbage col-

lection delay}
12: NGCDelay = HBDelay*HB2NGC;
13: {The default back-off delay}
14: BODelay = HBDelay

HB2BO ;

Fig. 4.Data structures

For each processpi

1: {The subscription algorithm}
2: upon SUBSCRIBE(Tk) do
3: pi.subscriptions =pi.subscriptions∪ Tk;
4: if (HEARTBEAT not started)then
5: startHEARTBEAT;
6: end if
7: if (NEIGHBORHOODGC not started)then
8: startNEIGHBORHOODGC;
9: end if
10: end upon

11: {The unsubscription algorithm}
12: upon UNSUBSCRIBE(Tk) do
13: pi.subscriptions =pi.subscriptions\ Tk;
14: if (pi.subscriptions ==∅) then
15: stopHEARTBEAT; stopNEIGHBORHOODGC;
16: end if
17: end upon

Fig. 5.Subscription, unsubscription

The heartbeats of a process carry the list of subscriptions of the process (e.g., “T0,
T1,..., Tn”) along with its process identifier and its current speed. As we pointed, the

6 TheneighborhoodGCtask is used for garbage collecting the entries of the neighbors’ identities
from the neighborhood table; it is presented in Section 4.4.



information about the speed of the processes is not mandatory and is only used as an
optimization. For instance, this information can be used to tune the number of heartbeat
messages according to the speed of the process and the speed of its neighbors. In a
dynamic environment, the delay between two heartbeats could be set to a shorter period
than in a more static one.

After receiving the heartbeat messages, each process builds a view of its neighbor-
hood, together with a list of their subscriptions. If two neighboring processes do not
share any common topics, these topics are not stored in their respective neighborhood
table. The neighborhood information of a process is stored in a specific table (Figure 2)
and updated accordingly (using theUPDATENEIGHBORINFO() method7).

For each processpi

1: {The heartbeat task}
2: task HEARTBEAT

3: SEND(i,pi.subscriptions, [currentSpeed]);
4: end

5: {When receiving a heartbeat message}
6: upon RECEIVE(j,subscriptions,[speed])do
7: if subscriptions∈ pi.subscriptionsthen
8: RAISE new neighborEvent(j,subscriptions);
9: if (j /∈ neighborhoodTable)then
10: neighborhoodTable∪

(j,subscriptions,[speed],currentTime);
11: else
12: UPDATENEIGHBORINFO(j,

subscriptions,[speed],currentTime);
13: end if
14: end if
15: COMPUTEHBDELAY (neighborhoodTable);
16: COMPUTENGCDELAY ();
17: end upon

For each processpi

18: {A new neighbor has been detected}
19: upon new neighborEvent(j,subscriptions)do
20: if subscriptions∈ pi.subscriptionsthen
21: SEND(i,GETEVENTSIDS(subscriptions,

eventsTable));
22: end if
23: end upon

24: {Reception of a list of events identifiers}
25: upon RECEIVE(j, eventsIDs)do
26: if j ∈ neighborhoodTablethen
27: for all eventID∈ eventsIDsdo
28: UPDATENEIGHBOREVENTINFO(j, eventID,

currentTime);
29: end for
30: RETRIEVEEVENTSTOSEND();
31: end if
32: end upon

Fig. 6.Neighborhood detection

If the subscriptions of a process match the ones of its neighbor, they then exchange
the event identifiers they have subscribed to (the event identifiers are retrieved via
the GETEVENTSIDS() method8). Once those event identifiers are received, the pro-
cess updates its neighborhood table with those and checks if it has to send events to
its neighbors (via theRETRIEVEEVENTSTOSEND() method, described in Section 4.3).
The identifiers of the events are exchanged instead of the actual events to minimize the
duplicate messages. It may happen that a process and its neighbors have the same set of
events; in this case, there is no need for them to exchange the events.

The computation of the time intervals for (1) the heartbeat messages, (2) the neigh-
borhood garbage collection and (3) the back-off period are determined at the reception

7 This method is omitted for space limitations. It simply consists of updating the information
(i.e., subscriptions, speed and store time) corresponding to the right neighbor.

8 Again, this method is omitted for space limitations. It consists in retrieving, from the
eventsTable, the event identifiers of the received events corresponding to a certain topic.



For each processpi

1: {Computation of the events to send}
2: function RETRIEVEEVENTSTOSEND()
3: eventsToSend= ∅;
4: for all neighbor∈ neighborhoodTabledo
5: if neighbor.subscriptions∈ pi.subscriptionsthen

6: for all e
Tj
k ∈ eventsTabledo

7: if Tj ∈ neighbor.subscriptions&&
k /∈ neighbor.eventsIDs&&

val(e
Tj
k ) < currentTimethen

8: eventsToSend∪ e
Tj
k ;

9: end if
10: end for
11: end if
12: if eventsToSend6= ∅ then
13: COMPUTEBODELAY ();
14: if backOff not started &&

BODelay != nullthen
15: start backOff with computed BODelay;
16: end if
17: end if
18: end for
19: end

Fig. 7.Event retrieval

For each processpi

1: {Computation of the hearbeat delay}
2: function COMPUTEHBDELAY (neighborhoodTable)
3: averageSpeed =

AVERAGESPEED(neighborhoodTable);
4: if averageSpeed6= null then
5: HBDelay = x

averageSpeed ;

6: end if
7: HBDelay =MIN (HBDelay, heartbeat upper bound);
8: HBDelay =MAX (HBDelay, heartbeat lower bound);
9: end

10: {Computation of the neighborhood
garbage collection delay}

11: function COMPUTENGCDELAY ()
12: NGCDelay = HBDelay*HB2NGC;
13: end

14: {Computation of the back-off delay}
15: function COMPUTEBODELAY ()
16: if BODelay == nullthen
17: BODelay =

HBDelay
HB2BO∗sizeof(eventsT oSend) ;

18: else
19: BODelay =MIN (BODelay,

HBDelay
HB2BO∗sizeof(eventsT oSend) );

20: end if
21: end

Fig. 8.Computing delays

of the heartbeat messages, using respectively the following methods: (1)COMPUTE-
HBDELAY (), (2) COMPUTENGCDELAY () and (3)COMPUTEBODELAY (). Figure 8
describes an implementation of these methods. Parameterx represents a variable the
programmer can use to tune the heartbeat delay with respect to the average speed of the
processes (for instance,x can represent the propagation radius of the wireless device).
ParametersHB2BO, respectivelyHB2NGC, represent the factors by which the heartbeat
delay is divided, respectively multiplied, in order to set the periodicity of the back-off
delay, respectively the neighborhood garbage collection delay.

4.3 Dissemination

Our dissemination scheme algorithm is described in Figure 9. Basically the process
uses thePUBLISH() method to send the event to the neighboring processes if at least
one of those has subscribed to the topic of the event. In calling this method, the process
updates the neighbor information in its neighborhood table (via theUPDATENEIGH-
BOREVENTINFO() method9).

As soon as a process receives an event, it updates its neighborhood table (using
the UPDATENEIGHBOREVENTINFO() method) with the list of neighbor identifiers it

9 For space limitation, this method is not shown in the algorithm; it basically consists in updating
the list of the presumed received events of a neighbor with the event identifier given as a
parameter.



received with the events. The process then checks if it has subscribed to the topic of
that event and if so, it delivers it to the application and adds it to its event table (after
checking that the event table is not full, otherwise it calls theGARBAGECOLLECT()
method). If the process has not subscribed to the topic of the event, it simply drops it.
Once it has delivered the event to the application, the process checks if it has to forward
its events to its neighbors (i.e.,RETRIEVEEVENTSTOSEND() method, Figure 7).

If a processpi finds out that some of its neighbors have subscribed to the topic of the
still valid eventspi owns,pi starts a back-off period (the back-off delay is determined by
the functionCOMPUTEBODELAY ()10). Taking into account the events that have been
received by the processes reduces the number of useless retransmissions and hence
prevents duplicates and saves bandwidth.

Once the back-off delay expires, the events to send are recomputed (in case the
neighborhood of the process has changed between the beginning and the end of the
back-off or if the validity period of an event expires) and the new events are sent, to-
gether with a list of its neighbor identifiers. The sending process then updates its neigh-
borhood table and increments the counter of each event that has just been sent.

4.4 Garbage Collection

We present here how the different data structures are garbage collected in order to con-
serve the sparse memory optimally.

Subscription list of a process.As stated in Section 4.1, we can assume that the size of
this data structure is limited and the information it contains is constantly updated when
the process decides to subscribe or unsubscribe to specific topics.

Neighborhood table.Each time theneighborhood garbage collection delayexpires, the
process identities whose store times have expired are collected from the neighborhood
table (see Figure 10). As this task is executed periodically and as we assume that the
total number of neighbors is limited, the size of the table is bounded.

Event table.Each time a new event has to be stored in theeventsTable, a check to test if
the memory is full is done. If the check succeeds, one event, whose validity period has
expired, is garbage collected. If all the events in theeventsTableare still valid, we run a
garbage collection algorithm based on the notion of validity period and on the number
of times an event was propagated. This algorithm ensures that events with high validity
periods that have been propagated several times are garbage collected before events
with short validity periods that have never been forwarded. Equation 1 captures the
way we collect the events, based on: (1) their validity period (i.e., val(e

Tj

k )) and (2) the

number of times an event has been forwarded (i.e., fwd(e
Tj

k )). The garbage collection

function for an eventeTj

k is given as (∀val(eTj

k ), fwd(eTj

k ) ∈ N∗):

10 An implementation is given in Figure 8. In this implementation, the back-off delay depends on
the heartbeat delay and the total number of events to send.



For each processpi

1: {Executed when the back-off expires}
2: upon backOff expirationdo
3: BODelay = null;
4: if eventsToSend6= ∅ then
5: SEND(i, eventsToSend, neighborsIDs);
6: eventsIDs =GETEVENTSIDS(eventsToSend);
7: for all neighborID∈ neighborhoodTabledo
8: for all id ∈ eventsIDsdo
9: UPDATENEIGHBOREVENTINFO(neighborID,

id);
10: end for
11: end for
12: INCREMENT(eventsToSend, eventsTable);
13: end if
14: end upon

15: {Reception of a list of events}
16: upon RECEIVE(j, events, neighborsIDs)do

17: for all e
Tj
k ∈ eventsdo

18: for all neighborID∈ neighborsIDsdo
19: UPDATENEIGHBOREVENTINFO(neighborID,

k);
20: end for
21: if Tj ∈ pi.subscriptions &&

e
Tj
k /∈ eventsTablethen

22: interested = true;STOPbackOff timer;
23: if eventsTable is fullthen
24: garbageCollect(eventsTable);
25: end if
26: eventsTable∪ e

Tj
k ;DELIVER(e

Tj
k );

27: end if
28: end for
29: if interestedthen
30: RETRIEVEEVENTSTOSEND();
31: end if
32: end upon

For each processpi

33: {Publication of a new evente
Tj

k }

34: function PUBLISH(i, e
Tj
k , neighborsIDs)

35: for all neighbor∈ neighborhoodTabledo
36: if neighbor.subscriptions∈

pi.subscriptionsthen
37: interested = true; break;
38: end if
39: end for
40: if interestedthen
41: SEND(i, e

Tj
k , neighborsIDs);

42: for all neighborID∈ neighborhoodTabledo
43: UPDATENEIGHBOREVENTINFO(neighborID,

k);
44: end for
45: end if
46: if eventsTable is fullthen
47: garbageCollect(eventsTable);
48: end if
49: eventsTable∪ e

Tj
k ; DELIVER(e

Tj
k );

50: if (NEIGHBORHOODGC not started)then
51: startNEIGHBORHOODGC;
52: end if
53: end

Fig. 9.Dissemination

For each processpi

1: {Garbage collection of the neighborhood
table}

2: task neighborhoodGC
3: for all neighbor∈ neighborhoodTabledo
4: if currentTime - NGCDelay> neighbor.storeTime

then
5: REMOVE(neighbor,neighborhoodTable);
6: end if
7: end for
8: end

For each processpi

9: {Garbage collection of the events table}
10: function garbageCollect(eventsTable)
11: gc = null;

12: for all e
Tj
k ∈ eventsTabledo

13: if val(e
Tj
k ) > currentimethen

14: gc =e
Tj
k ; break;

15: end if

16: if
val(e

Tj
k

)

(fwd(e
Tj
k

)+val(e
Tj
k

))
≤

val(gc)
(fwd(gc)+val(gc)) then

17: gc =e
Tj
k ;

18: end if
19: end for
20: REMOVE(gc,eventsTable);
21: end

Fig. 10.Garbage collection



gc(eTj

k ) =
val(eTj

k )

(fwd(eTj

k ) + val(eTj

k ))
(1)

For instance, an event with a validity period of 2[min] that has been forwarded less
than 2 times, will be collected after an event with a validity period of 5[min] that has
been forwarded 5 times.

The events to send.As discussed in Section 4.1, the data structure capturing the events
to be sent does not need to be garbage collected as it is reset every back-off period.
Moreover, its size depends on the size of the event table, but as this data structure is
efficiently garbage collected, the size of theevents to sendlist cannot grow indefinitely.

5 Performance

We present here performance results obtained from simulating our algorithm, according
to the two popular mobility models. We first describe the simulation setting and then
give the actual performance measurements.

5.1 Environment

Our algorithm was simulated usingQualnet 3.7[8], directly on the 802.11b MAC layer,
in the two different mobility models: (1) random waypoint [5] and (2) city section [6].

Configuration Parameters.The size of the events is set to 400 bytes,x to 40,HB2BOto
2 andHB2NGCto 2.5. The heartbeat upper bound period is set to 1[s] for the random
waypoint model and varies in the city section model. The mobility of the processes
and the validity periods of the events vary (see the following performance measurement
configuration). The choice of these values (i.e.,x, HB2BO and HB2NGC) reflects a
trade off between the overall number of messages sent (heartbeats, events identifiers,
and actual events) and the reliability of the dissemination. For the random waypoint
model, the data were gathered after the first 600 seconds of the simulation time (due to
the high variability in the neighborhood percentage during these first seconds [9]).

Random Waypoint in Qualnet.In our experiments, the pause time is always set to 1[s].
The maximum and minimum speed vary during the entire set of experiments, see Sec-
tion 5.2. Moreover, in this model, we have conducted our experiments on a virtual area
of 25[km2], populated randomly with 150 processes. Regarding the overall settings
of the simulator, a “standard” 802.11b ad-hoc network was used. The transmission
power is 15[db] for all the rates 1,2,6 and 11[Mbps], whereas the reception sensitiv-
ity is -93[db], -89[db], -87[db] and -83[db] for 1,2,6 and 11[Mbps] respectively.11 The
channel frequency is 2.4[Ghz] and uses a statistical propagation model, with a limit of
-111[dbm] and a two ray path loss model. Each process has an omni-directional antenna
with an efficiency of 0.8.
11 This corresponds to a radio range of a sphere which radius is 442[m], 339[m], 321[m] and

273[m] respectively.



City Section in Qualnet.For this model, the map of our campus at EPFL was chosen
and a specific mobility model for 15 processes was created. The EPFL campus cov-
ers 1200x900[m2]. The processes do not walk/drive randomly on each of the roads.
The real traffic conditions were considered (e.g., some roads are more often used than
others). The overall settings of the simulator are the same as for the random waypoint,
except for the reception sensitivity which is -65[db] for all rates (1,2,6 and 11[Mbps])12.
We have adapted these values to simulate the real radio range of a city.

5.2 Results

Random Waypoint Model.We conducted the simulation for different speeds: 0[mps],
1[mps], 5[mps], 10[mps], 20[mps], 30[mps] and 40[mps]. All the simulations were run
30 times with different initialization (i.e., seed) values and the results presented in each
case were averaged over the 30 obtained values. One event is published in each case.

In the first experiment, the validity period of the events and the speed of the pro-
cesses were considered. The plain and dashed graphs of Figure 11 represent reliability
values obtained when only 20% and 80%, of the processes, have respectively subscribed
to the topic of the event. We can see that, when few processes have subscribed to that
topic (20%), it is very difficult to achieve high reliability, unless if the processes move at
high speed. We can explain this by the fact that the area is far too big with respect to the
number of subscribers. If only 20% of them have subscribed to the topic of the event, we
end up with only 30 processes for a region of 25[km2]; the network is too sparse. How-
ever, when more processes have subscribed to the topic (80%), we can achieve a fairly
high reliability with different validity periods and different speeds of the processes. For
example, processes moving at 10[mps] and publishing events with a validity period of
180[s] have the same 95% reliability than processes moving at 30[mps] and publishing
events with a validity period of 90[s]. Interestingly, under some lower bounds of valid-
ity period, it is possible, to achieve a specific reliability given different mobility models
and speeds of the processes.
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Fig. 11. Probability of event reception as a
function of the validity period, the speed of the
processes and the number of subscribers
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Fig. 12. Probability of event reception as a
function of the validity period and the num-
ber of subscribers, in a heterogeneous mobile
environment

12 This corresponds to a radio range of a sphere which radius is 44[m].



In Figure 12, we depict the same experiments as before, except that now we have a
more heterogeneous mobile network, in which the processes randomly move between
1[mps] and 40[mps]. With a low number of subscribers, the reliability is low also. How-
ever, even if only 60% of the processes have subscribed to the topic of an event with
a validity period of 120[s], all of them receive the event. We can relate these results
to the ones of a network in which all processes move at a speed of 20[mps]. Indeed,
according to our results, the overall reliability depends on the validity period and the
average speed of the processes in the network, rather than on the specific speed of each
process.

City Section Model.In this model, all 15 processes drive at a given speed which is
the speed limit of the road they are currently driving on (which is between 8[mps] and
13[mps]) and it may happen that they stop for a while for several reasons (red light,
parking etc.). In all experiments, all processes, in turn, become the original publisher.
This basically means that the original publisher is not always the same process but
changes for each experiment. Again, all experiments were conducted 30 times and the
results we present are an average over these 30 times for the 15 publishers.

In the first set of experiments, the importance of the heartbeat period over the overall
reliability was measured. In such a network, with no upper bound set, the processes send
heartbeats every 4[s] (which is the fraction ofx over the average speed of 10[mps]).
Figure 13 depicts the different results obtained when varying the heartbeat upper bound
period from 1[s] to 5[s], where all the processes have subscribed to the topic of the
event and where the validity period of this event is 150[s].

Heartbeat upper bound period [s]

1 2 3 4 5
76.9%75.1%65.5%69.9%54.0%

Fig. 13. Probability of event reception as a
function of the heartbeat period

Subscribers [%]

20% 40% 60% 80% 100%
58.1%59.7%62.5%68.6%76.9%

Fig. 14. Probability of event reception as a
function of the number of subscribers

We can notice that there is no real difference in reliability between the heartbeats
sent every 1[s] or 2[s]. However, between 1[s]-2[s] and 5[s], we have a loss of 22%
reliability. Interestingly, having heartbeats every 4[s] is better than having them every
3[s]. This surprising result is explained by the fact that, with this heartbeat period of
3[s], the messages sent by the processes are more likely to collide.

In the second set of experiments, the heartbeat upper bound period was set to 1[s]
and the number of subscribers varied from 20% to 100%. Interestingly, these results are
not comparable with the ones obtained in the random waypoint model. Indeed, even if
only 20% of the processes have subscribed to the topic of the event, almost 60% of them
receive the event which is better than the previous model. This can be explained by the
fact that, in this model, the processes follow specific paths defined according to specific
rules, so they are more likely to become neighbors than in the random waypoint model,
especially if certain roads have more importance than others (which was the case in our



simulations). We also point out the importance of the path taken by the processes when
we compare the reliability achieved by each of the publishers. In Figure 15, we depict
the maximum difference between the minimum reliability and the maximum reliability
between the publishers, for different percentage of subscribers. There can be a huge
difference of reliability between the publishers that originally publish the event and this
difference is due to the path taken by the publisher.

Subscribers [%]

20% 40% 60% 80% 100%
40.9%44.7%47.9%53.9%60.0%

Fig. 15. Difference of reliability between the
processes

Event Validity Period[s]

25 50 75 100 125 150
11% 27% 44% 52% 69% 77%

Fig. 16. Probability of event reception as a
function of the event validity period

In the third set of experiments, the heartbeat upper bound period was set to 1[s]
and the validity period of the events varied between 20[s] and 150[s]. In Figure 16,
we can see that the validity period of the event has a crucial importance on the overall
reliability. This comes from the fact that, in this specific model, we cannot distinguish
whereandwhenthe processes become neighbors. In the random waypoint model, the
processes exchange information uniformly during the simulation: there is no real hot-
spot where the processes meet. On the contrary, in the city section model, the processes
are more likely to meet and exchange their information at social meeting points, hence
the huge differences in reliability.

Frugality. To quantify the frugality of our algorithm, it was compared with three alter-
native approaches: (1) simple flooding, (2) simple flooding while taking into account the
interests of the subscriber (interests-aware flooding) and (3) simple flooding in taking
into account the interests of both the subscriber and its neighbors (neighbors’ interests
flooding). In (1), an event is sent every second by a process to all its neighbors which
in turn, irrespective of their interests, propagates it with the same technique. In (2), the
processes, at every one second interval, propagate only the events they are interested in.
In (3), a process propagates an event to its neighbors only if the process itself and its
neighbors are interested in the event. We compared four different measurements: (1) the
bandwidth used per process, (2) the number of events sent per process, (3) the number
of duplicates received per process and (4) the number of parasite events received per
process.

All of the following measurements were averaged over 30 experiments and have
been done using the random waypoint model described above with the speed of the
processes set to 10[mps] (in order to compare the approaches with the same reliability
degree)13. The size of one heartbeat was set to 50 bytes and the size of one event iden-
tifier to 128 bits. We varied the number of subscribers from 20% to 100% as well as the
number of events from 1 to 20 (the size of one event has been set to 400 bytes).

13 Please note that approach (1) as always 100% reliability, due to its inherent behavior.



Figure 17 shows the bandwidth used per process during a simulation of 180[s].14

Our algorithm consumes less bandwidth than the other approaches in every cases, ex-
cept if the sum of the events’ sizes is lower than 1,5[kB] and the number of interested
processes is less or equal to 20%. In this very special case, the second alternative is
better. However, our algorithm is much less sensitive to the size of the events as we
send very few of them (see Figure 18). Our algorithm sends between 50 to 100 times
lesser events compared to the other alternative approaches. Consequently, if one event
is of size 1.6[kB] instead of 400 bytes, we outperform every other alternatives, even for
a small number of events published and a small number of subscribers.
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Fig. 17. Bandwidth usage per process as a
function of the number of events to publish and
the number of subscribers
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Fig. 18.Number of events sent per process as
a function of the number of events to publish
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Figure 19 depicts the number of duplicates received per process during the 180[s].15

Our algorithm outperforms approach (2) by a factor varying from 50 up to 80 and
approaches (1) and (3) by a factor between 80 to 700. On the worst case, when all the
processes are interested in receiving the events, they will at most receive them 4 times
during 180[s]. This corresponds to 1 duplicate per minute, which is very few.

Figure 20 depicts the number of parasite events received per process.16 Our algo-
rithm does not induce a lot of parasite events unlike the other two depicted alternatives.
Not surprisingly, the more the subscribers, the lesser the parasite events (because more
and more subscribers are interested in receiving the events). The greatest number of par-
asite events received per process is reached when 60% of the processes are interested in
receiving such events. In this case, we outperform the other approaches by a factor of
20 to 50 depending on the number of events.

14 Approach (3) is not shown in this figure because of the high bandwidth it consumes per process
(more than 1[MB]).

15 Again, in Figure 19, we do not show approach (1) and (3) in order to clearly depict the distinc-
tion between our algorithm and the best alternative approach (2).

16 Again, Figure 20 does not contain approach (1), because our algorithm outperforms it by a
factor of up to 800 times.
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6 Concluding Remarks

Many algorithms [10–18] have tackled the issue of disseminating events in a MANET.
In [10], thebroadcast stormproblem is introduced. This problem is raised when flood-
ing is used for broadcasting an event in a wireless network. Different schemes are com-
pared: (1) a probabilistic scheme, (2) a counter-based scheme, (3) a distance-based
scheme, (4) a location-based scheme and (5) a cluster-based scheme. The last two
schemes (i.e., (4) and (5)) rely on a GPS device and cluster heads respectively: as-
sumptions that we do not make in our algorithm. It has been shown in [10] that the
first scheme is outperformed by the others. The second and third schemes have been re-
visited in [19] and feature very interesting characteristics. In our algorithm, we did not
explore any distance-based techniques as this would imply more calculation for the mo-
bile devices and require more computing power. In addition, the distance-based scheme
together with the counter-based one have been proved to be outperformed by the neigh-
borhood scheme [20]. Our algorithm is close to the latter with certain specificities that
we discuss below.

The neighborhood scheme has often been studied in the literature [13–19]. The cor-
responding algorithms follow roughly one of two different patterns: (1) one-hop neigh-
bor information and (2) multi-hops neighbors information. The first pattern is called
self-pruning and the decision of rebroadcasting an event depends on the one-hop knowl-
edge of the neighbors of the processes [18, 13, 19]. This approach achieves fairly good
performance without involving too much processing time, which is not the case with the
second approach [13, 15–17], where the processes rebroadcast either according to their
two-hops neighborhood knowledge [15–17] or according to the decisions of other pro-
cesses [13]. As the decision of rebroadcasting is often based on a greedy algorithm [21],
this consumes a large amount of processing time and is not suited to highly mobile net-
works. To limit the number of duplicates messages, the neighborhood schemes can be
used with a back-off mechanism (like in [14]). In the model we consider, the processes
are mobile and only have information about their one-hop neighbors. In this sense,
our algorithm belongs to the one-hop category. In our approach however, a processpi



disseminates an event according to: (1) the validity period of the events ofpi, (2) the
subscriptions of the neighbors ofpi and (3) the events those neighbors have received.

The algorithms presented in [11, 12] make specific assumptions on the stabilization
of the network, use cluster heads, and switch to flooding when network partitions are
frequent. We make no assumption on the topology or stabilization of the network and
do not rely on any cluster heads or routing algorithms.

Topic-based pub/sub algorithms for MANETs were also presented in [22–24]. The
algorithm relies on brokers which are responsible for buffering the events the sub-
scribers are interested in. When the subscribers connect again to one of the brokers,
they ask for the events they have not yet received and the brokers are responsible for
providing them with these. Speeding up the bootstrapping latency has been tackled
in [25, 26], where client proxies are responsible for collecting events and dispatching
them to the real clients when those connect back to the brokers. All these schemes are
based on brokers. Our algorithm is completely decentralized.

The approaches described in [27–33] do not rely on brokers. In [27] a direct acyclic
graph is maintained between the subscribers and the publishers. To maintain this graph,
the network is supposed to remain unpartitioned for some period of time: we do not
make this assumption. Moreover, unlike in our algorithm, there can be a huge latency
in [27] before a publisher is allowed to publish an event.

A generic way to store data at the most interested mobile processes is described
in [28]. The dissemination scheme is not detailed and it is not clear how flooding is
avoided when different subscribers have subscribed to the same topic. A specific kind
of validity is considered in the sense that each data is associated with a counter which is
kept up to date only when the data is used, but the limited memory of the processes is not
addressed. In our approach, each event is associated with a timeout that never changes
during the entire lifetime of the publication, and after which the event is garbage col-
lected. Like [28], the algorithm presented in [29] implements a distributed hashtable in
a MANET. The algorithm of [29] uses dynamic source routing [5] (DSR) to create the
routes between publishers and subscribers and consequently floods the network with
request and reply messages, which is not the case of our algorithm. Unlike our algo-
rithm, the algorithm of [29] does not consider any validity period for the events and
mobile processes must route events they are not interested in. In [30], events are split
into several pieces and dispatched on the network. When a process wants to recover the
full event, it moves in the network, gathers the different pieces and re-conciliates them.
Though this algorithm does not make use of brokers, several processes receive pieces
of information they are not interested in, and no notion of validity period is considered.

A pub/sub implementation based on a weakly connected multicast tree is given
in [32]. The root of the multicast tree is responsible for publishing the events. This
scheme has two drawbacks: the maintenance is time consuming in a high mobile envi-
ronment and the processes located at the root of the multicast tree have more work to
perform than the ones at the leaves. Our algorithm does not need to create or maintain
a multicast tree, and processes that have not subscribed to a topic do not need to care
about events of that topic.

In the content-based pub/sub algorithm of [33], event dispatchers are responsible for
forwarding the events to the interested subscribers and need to store subscriber infor-



mation located multiple hops away. Our algorithm relies only on one-hop information
and events are only forwarded by mobile processes that are interested in those.

In the proximity-based algorithm of [31], the subscribers only receive events asso-
ciated to a certain geographical region. Filtering techniques are used to minimize the
burden at publishers and subscribers. In comparison, our algorithm is not limited to a
specific location, it supports the dynamic inclusion of topics and exploits the mobility
of the processes to disseminate events.
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