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Supporting Loop Proofs in KeYby using BLAST1Mathias Krebs
Abstra
tIn 
ontrast to beta-testing, formal veri�
ation 
an guarantee 
orre
t-ness of a program against a spe
i�
ation. Two basi
 veri�
ation te
hniquesare theorem proving and model 
he
king. Both have strengths and weak-nesses. Theorem proving is powerful, but di�
ult to use for a softwareengineer. Model 
he
king is fully automati
, but less powerful and hard toextend. This paper shows a possibility, how to 
ombine both approa
hes,in order to surround the weaknesses. Con
retely, we automatize the proofof while loops in the theorem prover KeY, by using the model 
he
kerBLAST.

1This is a revised version of M.Krebs' diploma thesis, written at EPFL and �nished inFebruary 2006.
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1 Introdu
tion1.1 MotivationDriven by the high number of bugs in industrial and 
onsumer software, 
om-puter s
ientists try to �nd better methods in quality assuran
e. The mainstreamapproa
h today is testing. Elaborated beta-testing pro
edures are known, butthere is a prin
ipal problem. As Djikstra said, testing 
an never show the ab-sen
e of errors, only that there are errors. It's not possible to tell if software is
orre
t by testing, be
ause the fa
t not to have found errors does not guaranteean error free program.Software engineering is more than writing program 
ode nowadays. Doingseveral re�nement steps before writing the 
ode is standard. Interesting forour purpose is that developers often spe
ify the 
ode. A usual spe
i�
ationexpresses what we expe
t a fun
tion to do under whi
h 
onditions. It 
ouldbe a text written in a natural language su
h as English. Unfortunately, thisleaves room to ambiguities and losses. A more s
ienti�
 approa
h 
onsists inusing a formal language su
h as OCL [11℄. Another possibility is to use higherorder logi
 languages, whi
h are well known to mathemati
ians and 
omputers
ientists.If we have program 
ode and a formal spe
i�
ation of what it should dounder whi
h 
onditions, we have set the base for formal veri�
ation. Noti
ethat when doing veri�
ation, we 
an not ex
lude all errors. If there is an errorin the spe
i�
ation, we 
annot dis
over it using logi
.Two groups of tools 
an be identi�ed today in the formal method 
ommunity.One group uses the theorem proving approa
h, the other the model 
he
kingapproa
h. In one senten
e we 
an say, that theorem proving is more powerful,but harder to use than model 
he
king.A sophisti
ated theorem prover is the KeY System [10℄. It provides a 
om-fortable user interfa
e for proving. KeY fo
uses on the JAVA language, morepre
isely on a subset 
alled JAVA CARD [6℄. Additionally, a version for C is indevelopment, but we fo
us on the JAVA version.A major sour
e of di�
ulties for KeY users are loop 
onstru
ts. If thenumber of iterations is not predetermined in the 
ode, all available heuristi
sfail. The reason of failure is, that the program 
annot be entirely unrolled, giventhe number of iterations is unknown. Two ways to over
ome this problem exist,the indu
tion method and the invariant method. We use the invariant methodin this paper. However, we believe that knowledge on invariants 
an also beused for indu
tion.The basi
 idea of our approa
h is to use another tool, BLAST, to dis
overthe invariants of a loop. This tool is often able to �nd automati
ally the solutionof a problem, even when the heuristi
s of KeY fail. We 
an bene�t of that by�nding the invariants, and apply the knowledge in KeY. The advantage of ourapproa
h in 
ontrast to dire
tly using BLAST is the fa
t, that we 
an showtotal 
orre
tness, and not just partial 
orre
tness (see se
tion 2.4, to learn moreabout 
orre
tness). 3



1.2 Related WorkIn summary, we have 
reated a new formal theory for an expressive temporallogi
 and used it to develop 
on
rete te
hnology to demonstrate that using atheorem prover as a tool programming platform provides us with several theo-reti
al advantages without too high a performan
e penalty. We thus hope thatthis work will be of interest to the resear
h 
ommunity and also be of use to in-dustrial pra
titioners. The approa
h developed in [1℄ 
ombines model 
he
kingand theorem proving for an expressive temporal logi
. The proje
t fo
us is theintegration of model 
he
kers and theorem provers in general, rather than thedevelopment of te
hniques exploiting su
h an integration. A formal theory ofthe modal µ-
al
ulus was developed as theoreti
al support. The implementationwas done for the HOL theorem prover.Another 
ombination is outlined in [2℄. The tool prioni 
ombines a model
he
ker and a theorem prover in the following way. First, the spe
i�
ation istested by model 
he
king, eventual spe
i�
ation errors 
an be eliminated. Af-terwards, a proof attempt on the re�ned spe
i�
ation using the theorem prover
an be started. If the attempt is not su

essful, but a part of the problem issolved, it is possible to 
ontinue with model 
he
king for the rest. The mainbene�t of prioni is, that it helps the user 
he
king his spe
i�
ation, before hedoes the proof. On the other hand, no support is provided for theorem provingby the model 
he
ker.1.3 OutlineOur paper is divided into four major parts. In 
hapter 2, we explain BLASTand KeY. Additionally we provide some fundamental knowledge on formal ver-i�
ation. This se
tion does not 
over topi
s spe
i�
 to this paper, but gives ageneral introdu
tion. The reader 
an skip the se
tion or parts of it, if he knowsthe basi
s of KeY and BLAST. In 
hapter 3, we explain how we 
ombine themodel 
he
king with the theorem proving paradigm. We introdu
e our idea andgive the theoreti
al argumentation justifying our approa
h. No pra
ti
al ques-tions on implementation are mentioned here. For that purpose, the reader isreferred to 
hapter 4. Here, we give an overview of the ar
hite
ture of our plu-gin, and dis
uss implementation features, related to the KeY framework. In theappendix in 
hapter 7, we summarize the most interesting program exampleswe 
reated, to develop and 
ontrol our ideas.
4



2 Ba
kground of Tools and Theories2.1 Basi
s of Formal Veri�
ationFormal veri�
ation 
an be applied, if a spe
i�
ation and an implementation ofa program is given. It is then possible to 
he
k, if the implementation obeys orviolates the spe
i�
ation. We spe
ify program 
ode by de�ning a pre
onditionand a post
ondition for ea
h fun
tion 2. This kind of spe
i�
ation is known un-der the name 
ontra
ts in the literature [12℄. The pre
ondition de�nes the validinitial states, the post
ondition de�nes a warranty on the expe
ted out
ome.The example of a division fun
tion (see �gure 1) illustrates this 
on
ept.pre
ondition: b 6= 0double divide (double a, double b){ int 
 = a/b;return 
;}post
ondition: c · b = aFigure 1: Division fun
tion and spe
i�
ation.A division is only de�ned, if the divisor is not zero. More pre
isely, the be-havior of the implementation is spe
i�ed only for the 
ase the divisor is di�erentfrom zero. The division result 
an be 
he
ked by multiplying the result withthe divisor (noti
e, that in pra
ti
e, round-o� errors 
an o

ur).If we have a spe
i�
ation of this kind, there are no ambiguities left. Formalte
hniques 
an be applied, to determine if the program satis�es the post
on-dition, given the pre
ondition is respe
ted. An overview on formal methods isgiven in [8℄.2.2 Theorem Proving2.2.1 Introdu
tionTheorem provers use the same approa
h as mathemati
ians, when they provesomething. They rely on a set of rules, whi
h are given, and apply them in a
lever way. The set of rules one needs to prove 
orre
tness of software extendsthose used by mathemati
ians, be
ause the knowledge about the fun
tionalityof programs has to be en
oded.Another point is that formal proofs found by a theorem prover are mu
h moredetailed than a 
orresponding proof given by a mathemati
ian. Experiments2A fun
tion is also 
alled pro
edure, routine or method in programming language theory.In our 
ontext, we use the term fun
tion in this sense.5




arried out with the ILF system have shown, that on proof step done by amathemati
ian 
orresponds to ten steps in a formal proof.Let's introdu
e here a sample problem, that will help to understand theideas and the di�eren
es between the mathemati
al and the formal approa
h oftheorem proving. We want to prove the following statement for natural numbers.If we assume x = 0 or y = 0, we 
an 
on
lude that x · y = 0, if xand y are natural numbers.There are two 
ases to distinguish, x = 0 and y = 0, be
ause we assume thatonly one of them has to be true.1. If we assume y = 0, we 
an repla
e y by zero in x · y = 0, and we obtain
x · 0 = 0. By de�nition of the multipli
ation of natural numbers, we knowthat a · 0 = 0 is true for every natural number a.2. If we assume x = 0, we 
an repla
e x by zero in x · y = 0, and we obtain
0 · y = 0. Be
ause we know, that a · b = b · a in the 
ontext of naturalnumbers, we are allowed to rewrite the problem as y · 0 = 0. In the sameway as we do in 
ase 1, we 
on
lude this is true.Most mathemati
ians would a

ept su
h a proof, be
ause we use a pre
ise lan-guage and note things properly. However, we don't use any 
onvention thatwould help to guarantee 
orre
tness. We rely on the fa
t, that a person 
anunderstand and verify the proof.2.2.2 Formal ProvingAs mentioned before, mathemati
ians do not prove theorems formally. Thisdoes not mean, that their work is in
orre
t. They just omit steps, be
ause it'seasier this way to 
on
entrate on the problems of their domain.However, we want to exe
ute proofs me
hani
ally. In 
onsequen
e, we don'tomit intermediate steps. In order to show the di�eren
e, we prove the samplefrom se
tion 2.2.1 again, this time in a me
hani
al way. First of all, we writethe proof goal in a pre
ise way, using �rst order logi
.
∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0)Let's de
ode this expression. Every notation we use is explained below.

∀x ∈ N ∀y ∈ N(...) The phrase ∀x ∈ N means, that x is an arbitrarynatural number. We 
an read it as � for all x, x beingan natural number �. This operator belongs to thegroup of the quanti�ers. We quantify y in the sameway, be
ause we want to say that both are arbitrarynatural numbers.6



Figure 2: Formal proof of ∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0).
...⇒ ... We have to de
ompose the expression x = 0 ∨ y =

0 ⇒ x · y = 0 in whi
h ⇒ is the operator with thehighest priority. On the left hand side of the arrowis premise, on the right hand side the 
on
lusio. Innatural language, we might say �if x = 0 ∨ y = 0 istrue, we 
an 
on
lude that x · y = 0 is also true�.
... ∨ ... x = 0 ∨ y = 0 means that at least one of the two,

x = 0 and y = 0 is true. It 
orresponds to term �or � in the English language.For proving a goal, we will use in this thesis the sequent 
al
ulus. Thesame 
al
ulus is also used by the KeY system. The proof goal and any otherintermediate results of proof steps have always the form of a sequent.
Γ, list of hypothesises ⊢ list of goalsThe symbol ⊢ is also known as the sequent symbol, the list of hypotheses asante
edent, the list of goals as su

edent.For the investigated example, we 
an write the proof goal below.
Γ ⊢ ∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0)In our example, the list of hypothesis is empty. As we will see below, allaxioms on natural numbers 3 that are ne
essary to prove the goal are en
odedby the proof rules we use.We 
an transform the proof goal by applying proof rules. In general, su
ha transformation should make the remaining goal simpler. Certain transforma-tions 
an split the proof by generating more than one sub-goal. Therefore, the3An example of su
h an axiom is the fa
t, that multipli
ation of any number with zeroresults to zero. 7



�nal has the form of a tree, a proof goal on every leaf. The initial proof goalis proven, if every leaf of the 
orresponding tree is equal to true. The art offormal veri�
ation 
onsists in applying the proof rules leading to su

ess. Figure2 shows a 
omplete proof tree for the example of this se
tion.Every rule 
an be expressed, using the following, formal notation. If we 
anmat
h the 
urrent goal with the expression below a separator line, it is possibleto transform it into the expression above the line.In order to keep the rules �exible we use the two wild
ard symbols. Γ denotesan arbitrary list of hypothesises, ∆ an arbitrary list of goals.In the following, we explain the meaning of every rule appli
ation on �gure2. Noti
e that there is a huge set of su
h rules, that we don't introdu
e here. Asystemati
 introdu
tion into the �eld 
an be found in [13℄. We give an informaland the formal des
ription of ea
h rule we apply.1, 2) all_right We 
an transform ∀x ∈ NA,by substituting x is with new term. Wedenote this term by sk, be
ause it is often
alled Skolem term. 4 Γ⊢A[x/sk],∆
Γ⊢∀x∈N A,∆3) imp_right We get rid of the arrow, bymoving the expression on its left-hand side(premise) to the hypothesis list. The ex-pression on the right-hand side (
on
lusio)remains within the 
on
lusions to prove.This step moves the assumptions about xand y expli
itly into the list of hypothesis.
Γ,A⊢B,∆

Γ⊢A⇒B,∆

4) or_right Be
ause we have an expression
ontaining an or-operator in the hypothe-ses, we must split the proof. Both 
ases,
x = 0 and y = 0, have to be treated sepa-rately. Γ,A⊢△ Γ,B⊢△

Γ,A∨B⊢△

5.1, 6.1) apply_equality x · y 
an be repla
ed by
0 · y, be
ause x = 0 is a hypothesis. Γ,a=b⊢B[a/b],∆

Γ,a=b⊢B,∆5.2) mul_
omm 0 · y 
an be ex
hanged with
y · 0. We do this, be
ause the followingta
let is de�ned this way. Γ⊢A(b·a),△

Γ⊢A(a·b),△5.3, 6.2) times_zero y · 0 is equal to zero by de�-nition of the multipli
ation. y · 0 = 0 
anbe repla
ed by 0 = 0. Γ⊢B[a·0/0],∆
Γ⊢B,∆5.4, 6.3) equal_literals A 
laim of the form a = ais always true. Γ⊢true,∆

Γ⊢a=a,∆4We use the notation B[a/A] to express, that all free o

urren
es of the variable a in Bare repla
ed by A. An o

urren
es is free, if the variable is not quanti�ed.8



The formal pro
edure 
auses more work, but has the advantage that it 
anbe done me
hani
ally, sometimes even automati
ally by a 
omputer. We don'tuse hidden assumptions, at the 
ost of a detailed notation.2.2.3 Dynami
 Logi
So far, we did not tou
h the �eld of software veri�
ation by theorem proving.The key to this te
hnique is dynami
 logi
[3℄. It allows to use the power of the
lassi
al approa
h for proving program 
ode. For that purpose, we introdu
e anew symbol, the so 
alled diamond �< { } >�. En
losed by that gem, we 
anwrite the program 
ode to prove, and behind it the post
ondition to satisfy. Werewrite the division fun
tion of se
tion 2.1 in the following way, using dynami
logi
.
⊢ ∀aL : aL ∈ N ⇒ ∀bL : bL ∈ N, bL 6= 0
⇒
{a := aL}{b := bL} < {c = a/b; } >
(c · bL = aL ∨ c · bL = aL − 1)Be
ause program variables are integers by de�nition, we allow in the post-
ondition the 
ase of a round-o� error expli
itly. A very important point isthe distin
tion between logi
al and program variables. Using logi
al variables(denoted by an L-index here), we 
an de�ne the pre
ondition. By the meanof the so 
alled updates, the program variables are initialized using the logi-
al variables. Updates are en
losed by bra
kets. It is possible, to apply proofrules on a program en
losed by the diamond. Changes on program variables aretra
ked by the updates, whi
h represent the 
urrent state of a variable. Whenthe program has been rolled out 
ompletely, we assign the a
tual values of theprogram variables to the variables in the post
ondition. The remaining proofgoal is a �rst order logi
 expression without a diamond operator. Given theprogram satis�es the 
ontra
ts, it is possible to show 
orre
tness using Logi
 asintrodu
ed in se
tion 2.2.2.2.2.4 KeYKeY is a theorem prover suite, supporting a subset of the JAVA language. Theexa
t spe
i�
ation of the subset is given in [6℄. Three groups at the universitiesof Karlsruhe, Koblenz-Landau and Chalmers are developing the system. Itprovides an integration in Borland's Together CASE tool. KeY has a graphi
aluser interfa
e, that helps the user to exe
ute a proof (see �gure 3).Proof rules are en
oded as ta
lets in KeY. New ta
lets 
an be introdu
ed bydevelopers, as well as by the user. The asset of the ta
let system is its �exibility.Basi
ally, there are two possibilities on how to apply proof rules. The user 
anapply ta
lets by hand, using the interfa
e. An automati
 mode is available, too.The mode does not provide entire proof strategies, but it relies on heuristi
s.9



Figure 3: Interfa
e of the KeY System.The heuristi
s are powerful, but they show weaknesses, if quanti�ers are inuse. This is not amazing, be
ause theoreti
al problems exist related to auto-mati
 solution-�nding of quanti�ed proof goals. Another problem for the heuris-ti
s are loop 
onstru
ts in programs. The automati
 mode is only su

essful, ifthe number of loop-iterations is predetermined in the program. However, in 
asethe heuristi
s fail, the user 
an still try to solve the problem using the interfa
e.The theorem prover Simplify is integrated in KeY. Simplify is spe
ialized onarithmeti
 problems and �rst-order logi
. It's fully automati
 and may help theuser to 
lose a goal, even if the heuristi
s fail.The interfa
e of KeY is 
omposed of multiple panes. It shows the a
tualgoal to prove, as well as an overview of the whole tree. Very often, proofs andthe 
orresponding trees get 
ompli
ated. Therefore, the interfa
e provides thepossibility to expand and hide subtrees.In �gure 4, we 
ompare the proof tree of KeY with the 
lassi
 tree we elab-orated at se
tion 2.2.2. For detailed information on KeY, we re
ommend [10℄.2.2.5 Ta
lets in KeYThe goal of this se
tion is to give an overview to the reader on the 
on
eptand the usage of ta
lets. To illustrate this, we revisit the example we alreadyproved twi
e in this 
hapter. We don't give the entire solution, but we presentthe most interesting steps. First, we have to 
reate a KeY problem �le. Here isits 
ontent.
10



Figure 4: Classi
 proof tree vs. overview tree in KeY. The numbers 
orrespond.\problem{ \forall int x;\forall int y;( x=0 | y=0 -> x*y = 0)}The all_right Ta
let The aim of the ta
let is to eliminate the ∀-quanti�er.The basi
 idea 
onsists in repla
ing an all-quanti�ed variable x by an x0, rep-resenting a new 
onstant symbol having the same domain as x. The ta
let isen
oded in the following way in KeY ta
let syntax.all_right{ \find ( ==> \forall u; b )\repla
ewith { ==> {\subst u; sk}b }}The ==> symbol is equivalent to ⊢, introdu
ed in se
tion 2.2.2. The �nd -keyword spe
i�es the situation in whi
h the ta
let 
an be applied. all_rightlooks for an expression b in the su

edent, quanti�ed by a variable u. If themat
hing engine �nds su
h an expression, it 
an be repla
ed by the expression
b[u/sk]. In other words, the subst-keyword indi
ates a possible repla
ement ofu by sk.If user input is demanded in a ta
let, the interfa
e provides a pop up windowto spe
ify the input. In �gure 5, we show the impa
t on the goal and the situation11



Figure 5: Appli
ation of the all_right ta
let.
Figure 6: Appli
ation of the imp_right ta
let.in the overview tree. Noti
e, that we instantiate x by x_0 in our example.The imp_right Ta
let The aim of this ta
let is to move the premise ofan impli
ation expli
itly to the list of hypotheses. Its representation in ta
letsyntax isimp_right{ \find ( ==> b -> 
 )\repla
ewith {b ==> 
 }}The lookup pattern is ==> b− > c, the repla
ement option b ==> c. Theimpa
t of the rule appli
ation on the goal and on the tree is given in �gure 6.The or_left Ta
let The ta
let 
an be applied, if a term in the hypotheses
ontains an or-operator as top-level operator 5. In su
h a situation, the proof
an be split into two sub-goals, one for ea
h sub-term of the term 
ontainingthe or-operator. The 
orresponding ta
let is en
oded in the following way.5A top-level operator is the operator, that has to be evaluated �rst in a term, given theoperator priorities. In usual arithmeti
s for example, the top-level operator of the expression

a + b · c is the addition-symbol. 12



Figure 7: Appli
ation of the or_left ta
let.or_left{ \find ( b | 
 ==> )#
 { \repla
ewith {
 ==> } };#b { \repla
ewith {b ==> } }}The new property of this ta
let is, that a rule appli
ation may 
reate two ormore subgoals. The #-symbol allows to spe
ify a name for the sub-goal. Herethe name is simply the 
ontent of b and 
. Figure 7 shows the impa
t of theta
let appli
ation.2.3 Model Che
king2.3.1 Introdu
tionFor ea
h program, we 
an de�ne a state spa
e. A state des
ribes the statusof the program exe
ution at one moment. The status 
an be expressed by thea
tual lo
ation in the 
ode, and by a set of assertions on the program variables.Su
h an assertion is an abstra
tion of the 
on
rete system status. All possiblestates together form the state spa
e. The exe
ution of a program 
an be seen asa tra
e in the state spa
e. If 
ontrol stru
tures su
h as loops are in the program,there may be an in�nite number of tra
es. However, te
hniques based on thestate assertions allow to keep the state graph �nite.Model 
he
kers assemble all possible tra
es of the program in a graph. Givensu
h a graph, it's possible to 
he
k if a tra
e leads to a dangerous state, or ifthe program is safe in the sense, that the error state is not rea
hable (see �gure8). Let's 
onsider as an illustration a dangerous state in a UNIX system.
• The 
urrent 
ode lo
ation is the beginning of the routine, granting roota

ess to the user.
• The assertions on the program variables indi
ate, that the root passwordhas not been spe
i�ed. 13



dangerous state unrea
hable dangerous state rea
hableFigure 8: Two state spa
e diagrams. The dangerous state is represented by theskull.If the rea
hability analysis does not �nd su
h a state on one of the possible tra
es,we 
an guarantee the program is safe in the sense, that the root password isalways spe
i�ed when root a

ess is granted.2.3.2 The BLAST Proje
tBLAST (Berkeley Lazy Abstra
tion Software Veri�
ation Tool) is a model
he
ker engine written in O
aml. The target programming language of thesystem is C. The simplest possible use of BLAST is the 
he
k of rea
hability ofa spe
i�
 error label in the sour
e 
ode. Additionally, a spe
i�
ation languageexists. The goal of that language is to allow separation of spe
i�
ation from thesour
e 
ode. The interested reader is referred to [5℄ for detailed information.2.3.3 How BLAST worksControl Flow Automaton (CFA) BLAST doesn't work dire
tly on the
ode, it transforms the sour
e �rst into the CFA. A CFA is an automaton,representing the 
ontrol �ow of the program. The 
ontrol �ow shows in whi
horder the program lo
ations are exe
uted. A program lo
ation is basi
ally aline number, but it's important to noti
e the instru
tion on that line has notbeen exe
uted so far. It refers to that moment in the exe
ution, just before the
orresponding statement is exe
uted. The CFA relates the program lo
ationsby arrows. An outgoing arrow means that from the 
urrent state we 
an go tothe state the arrow points to. Arrows are annotated by the exe
uted a
tion atthe 
orresponding 
ode line. If the program lo
ation represents a 
ondition test,for example an if-
onstru
t, the 
ontrol �ow is split. Arrows are annotated bypredi
ates, indi
ating if the 
ondition evaluates to true or to false. If the 
ondi-tion is not atomi
6, we have more than just one state in the automaton for that
ondition evaluation, be
ause BLAST treats the atomi
 
onditions individually.On the other hand, BLAST resumes a sequen
e of basi
 instru
tions7 by onearrow. We give an example of a CFA 
onstru
tion in �gure 9.6In our 
ontext, atomi
 means that the expression does not 
ontain the or-operator andthe and-operator.7A basi
 instru
tion is always an assignment in our 
ontext, for example i = i − 1.14



sour
e 
ode CFAFigure 9: Sour
e 
ode and CFA of a simple de
rement C program.Abstra
t Rea
hability Tree (ART) The basi
 
on
ept of the rea
habil-ity analysis is the ART. Contrary to the CFA, the ART is a tree and not anautomaton. It 
ontains all possible exe
ution tra
es of the CFA.Every node of the ART 
an be annotated by an assertion on the programvariables, representing the environment at this moment.A leaf of a 
omplete ART satis�es one of the following 
onditions.1. It 
orresponds to a �nal state in the CFA. (su
h as exit in �gure 9)2. Its assertions on the program variables are 
ontradi
tory.3. It has the same status like an internal node (same CFA state, same orweaker assertions).The se
ond 
ondition re�e
ts the fa
t, that we never go in a 
ontradi
tory stateif we exe
ute a program on a 
omputer.ARTs may remain �nite. If a node represents the same program lo
ationas an internal node, and has the same or a weaker environment, the remainingtra
e is the same as for the internal node and 
an be ommited. In this paper,we use dashed lines on our �gures to represent this.Be
ause of the third 
ondition, an ART may remain �nite, even if an in�nitenumber of tra
es exist. If we unroll the CFA without that rule and the program
ontains a loop, the length of some tra
es would grow towards the in�nite.However, the rule exists. BLAST noti
es, if the leaf's status is equal to thestatus of an internal state. In su
h a situation, the 
ontinuation of the tra
emay already be 
overed by an internal state.The �nal ART is 
onstru
ted iteratively. The CFA is unrolled until an errorstate is rea
hable, or until the ART is 
omplete. If an error state is rea
hable inthe ART, an abstra
tion re�nement based on Craig Interpolation is laun
hed.Two out
omes are possible. The error may represent a real error, or it has15



Figure 10: First ART of the simple de
rement problem.o

urred be
ause of an insu�
ient abstra
tion. In the later 
ase, the Craiginterpolation allows to enhan
e the abstra
tion by delivering better environmentassertions.Craig Interpolation If the error state is rea
hable in the ART, a re�nementpro
edure tests by 
ounterexample guided abstra
tion re�nement, if the tra
e isfeasible. It is possible, that a real error has been found, or the tra
e may exist,be
ause the abstra
tion 8 is not good enough. The re�nement states that theerror is real, or it �nds a better abstra
tion that ex
ludes the a
tual error tra
e.After the re�nement pro
edure, the tree is re
onstru
ted, be
ause 
hanges ofassertions may also 
hange the shape of the tree. Given the new tree, BLASTstarts a new iteration of the pro
edure we des
ribed in this paragraph so far.The heart of the re�nement routine is its ability to make the 
urrent abstra
-tion more pre
ise. It is implemented in BLAST by Craig's interpolation [7℄. ψis a Craig interpolant of two formulas ϕ−and of ϕ+, if the following 
onditionsare satis�ed.1. ϕ− ∧ ϕ+ is unsatis�able2. ϕ− ⇒ ψ3. ψ ∧ ϕ+ is unsatis�able4. ψ only 
ontains symbols 
ommon to ϕ− and ϕ+Given an appropriate logi
 theory, su
h interpolants always exist. BLAST fol-lows the error tra
e step by step, by adding the predi
ates found on the arrows8In this 
ontext, abstra
tion denotes all assertion on program variables. The term isappropriate, be
ause it expresses the fa
t that the 
urrent assertion might not be as pre
iseas possible. 16



to ϕ−, the so 
alled path formula. ϕ+ denotes the predi
ates on the rest of thepath to the error label. In order to respe
t the e�e
t of assignments, BLASTuses the single assignment form9 . At every state, BLAST applies Craig inter-polation, if ϕ− ∧ ϕ+ is unsatis�able. The result of the Craig interpolation ψ isadded as new assertion on the state, where 
ontradi
tion was found.Example Figure 10 
ontains the ART, when a �rst path to the error statewas dis
overed. Two state annotations 
an be found by Craig interpolation.Annotation for the loop-
ondition State If we follow the error tra
e(bold arrows) in �gure 10, we �nd at the �rst state that ϕ− is i ≥ 0 and ϕ+ is
i ≤ 0 ∧ i 6= 0. The Craig interpolant ψ is i ≥ 0, be
ause1. i ≥ 0 ⇒ i ≥ 02. i ≥ 0 ∧ i ≤ 0 ∧ i 6= 0 is unsatis�able3. ψ only 
ontains symbols 
ommon to ϕ− and ϕ+Annotation for the Post
ond State We follow the error tra
e, by tak-ing the step from the loop-
ondition state towards the post
ond state. We �ndthat ϕ− is i ≥ 0 ∧ i ≤ 0 and ϕ+ is i 6= 0. The Craig interpolant ψ is i = 0,be
ause1. i ≥ 0 ∧ i ≤ 0 ⇒ i = 02. i = 0 ∧ i 6= 0 is unsatis�able3. ψ only 
ontains symbols 
ommon to ϕ− and ϕ+The 
urrent ART is modi�ed by inserting the two assertion ψ found. Theerror tra
e 
ontains a 
ontradi
tion, whi
h means that the this path is notfeasible. A new, re�ned ART (�gure 11) is the result.The error state is still rea
hable, by 
rossing the loop on
e. Again, byapplying Craig interpolation, we �nd a predi
ate, allowing us to say that thesituation after the loop is equivalent to the situation before the loop. Thisobservation leads to the �nal ART in �gure 12.BLAST re�nes iteratively the ART. Two 10 events may stop that pro
ess.Either a rea
hability of the error state 
an be ex
luded, or a feasible tra
e tothe error state is found.9An assignment 
an 
hange the value of a variable x, and predi
ates 
on
erning x beforeand beyond the assignment don't refer to the same x. Therefore, we give an index to x, whi
his 
hanged everytime something is assigned to x. A path formula like x > 0∧x = x−1∧x = 0,would be written as x1 > 0 ∧ x2 = x1 − 1 ∧ x2 = 0, in single assignment form.10Te
hni
ally, there exist a third option. BLAST may also terminate be
ause it does not�nd new predi
ates. 17



Figure 11: Se
ond ART of the simple de
rement problem.

Figure 12: Final ART of the simple de
rement problem.18



2.4 Partial and total 
orre
tnessTwo levels of 
orre
tness are usually distinguished in formal veri�
ation, partialand total 
orre
tness. Partial 
orre
tness 
onsists in demanding, that the post-
ondition is never violated. Total 
orre
tness additionally imposes the programto terminate. If BLAST shows that an error state is not rea
hable, this doesn'ttell anything why this is the 
ase. It is possible that just before the error statean in�nite loop blo
ks the program exe
ution. Therefore, the post
ondition isjust a safety 
ondition in the 
ontext of model 
he
kers. That's why we speak ofpartial 
orre
tness, meanwhile we denote by 
omplete 
orre
tness, if terminationis shown by theorem proving.Dynami
 logi
 en
odes total 
orre
tness by the diamond operator (see se
tion2.2.3), partial 
orre
tness by the box operator � [{ }]�.

19



3 Dis
overing&Exploiting Invariants3.1 OverviewThe advantage of the model 
he
ker BLAST is the fa
t, that no user intera
-tion is ne
essary when proving. KeY, an intera
tive theorem prover, providesautomated heuristi
s, but they usually fail when working with loops.We start BLAST �rst, if su

essful we look for invariants and feed the KeYprover with them. This approa
h 
an also be applied to subgoals in a proof.Invariants 
an be applied in the KeY system, using a spe
ial proof rule. In
ontrast to BLAST, we 
an prove total 
orre
tness in KeY. In this way, we
ombine the power of KeY with the 
omfort of BLAST.Please note that in the following, we will sometimes use the abbreviation
onventions in �gure 13. Symbol Meaning
φ pre
ondition
ψ post
ondition
γ loop-
ondition
ω invariant
χ variantFigure 13: Abbreviation symbol table.3.2 Loop InvariantsA loop invariant is basi
ally an assertion on the program variables, being truewhen the 
ondition of the loop is evaluated. During the exe
ution of the body,the invariant is not supposed to be true. The invariant assertion is an importantinformation for the formal proof of a program 
ontaining a loop. In fa
t, we sayit is strong enough, if it is possible to show 
orre
tness of the post
ondition by
ombining the invariant with the negation of the loop-
ondition. The simplestinvariant is the assertion true, but in almost all 
ases, this is not enough to showthe post
ondition. Hen
e, the 
hallenge is to dis
over invariants being strongenough.3.3 Problem BlueprintTo keep the ideas simple, we de�ne the problem to solve. We 
onsider problems
ontaining one loop. Nested loops or sequen
es of loops are not allowed so far.A problem blueprint for KeY and BLAST 
an be found at �gure 14.3.4 Dis
overing Invariants in ARTsThis 
hapter is dedi
ated to the art of �nding invariants in ARTs. We fo
ushere on problems respe
ting the de�ned blueprint. A pre
ondition is imposed,20



if(pre
ondition){ while(loop
ondition){ body}if (!(post
ondition)){ ERROR:}}
pre
ondition->{updates}\<{while(loop
ondition){ body}}\>post
onditionBLAST style KeY styleFigure 14: Problem blueprint in BLAST and in KeY style. No other loop is
ontained in the body.and after the exe
ution of the loop, a post
ondition is demanded. Using anexample (see �gure 15), we present our idea on how we �nd the invariant. The
orresponding ART 
an be found at �gure 16. We simpli�ed the ART diagram,su
h that there are only states important for the 
ontrol �ow.In order to be sure that no path leads to the error, BLAST generates allpossible tra
es through the body of the loop. If we look at the ART, we 
ansee that �rst the pre
onditions are pro
essed. If they are violated, we do notsay anything on the program and its post
ondition. In the 
ontrary 
ase, weenter the loop a �rst time. It is not possible that we don't even enter on
e,be
ause by the pre
ondition we know that z1 > 0, initially. Then, z1 and z2are de
remented until one of them is zero. If z1 is zero, we exit the loop andBLAST guarantees, that the post
ondition is satis�ed. If z2 is zero, we go onand de
rement z3 to zero. Afterwards, z1 is �nally de
remented to zero, andthe program terminates. An interesting point is, that BLAST does not en
odein the ART that z3 is de
remented �rst, and z1 afterwards. Although this isthe 
ase in the real program, BLAST is too lazy to 
he
k that out. In fa
t, itguarantees already at this abstra
tion level, the post
ondition is never violated.We stated earlier, that an invariant should1. always be true before the loop-
ondition is 
he
ked.2. be strong enough to prove the post
ondition.If we look at the sample ART, we 
an see that a 
andidate for the invariant mustbe the expression α0∨α1∨α2∨α3. It satis�es the �rst invariant 
riterion, be
auseBLAST generates all possible tra
es at a 
ertain level of abstra
tion. Further,we know that the αi are true at the 
orresponding state on the tra
e. Be
ause21



Pre
ondition: z1 > 0 ∧ z2 ≥ 0 ∧ z3 > 0while (z1 > 0){ if (z2 > 0){ z1--;z2--;}else if (z3 > 0){ z3--;}else{ z1--;}}Post
ondition: z1 = 0 ∧ (z3 > 0 ∨ z3 = 0)Figure 15: Example problem for invariant dis
overy.we 
onne
t the αi by an or operator, we 
an 
on
lude that every time before theloop-
ondition is evaluated, one of the αi is true. The se
ond invariant 
riterionis satis�ed under the assumption, the annotation of a state resumes all importantinformation so far. We dis
uss this in detail in se
tion 3.7.1, here we assume itis true. A good way to understand is to go ba
kwards on the tra
e of the ART.Let's start at the post
ondition evaluation. Here, BLAST 
an guarantee thatthe post
ondition is true, otherwise the re�nement would not have stopped oran error had been found. By going a step ba
kwards, we see that the negationof the loop-
ondition ¬γ has been added to the path, before the post
ondition
he
k. Now we are for sure at a state before the loop-
ondition step, be
auseour problem blueprint does not allow to have other program statements behindthe loop. We 
an see, that the state is annotated by αi, hen
e αi ∧¬γ is strongenough to show the post
ondition is true (remember the assumption, that allimportant information is resumed in an annotation). We should also have alook at the 
ase of α0, at the beginning of the tra
e. The post
ondition is outof rea
h. This is not a problem, α0 ∧ ¬γ is strong enough too, be
ause it is
ontradi
tory and does imply anything by de�nition.In general, we state the invariant is α0∨ ... ∨αn, if we have n loop-
onditionstates and if we denote their assertion by αi. Loop-
ondition states that are leafs
an be ignored, be
ause their assertions are 
ontained by de�nition in internalnodes. In se
tion 3.7, we dis
uss why this invariant is strong enough and ful�llsall ne
essary formal 
riteria. 22



Figure 16: This is the simpli�ed ART of the example problem. φ is the pre-
ondition, γ the loop-
ondition and ψ the post
ondition. The αi denote the
onditions true before the loop-
ondition is evaluated. We use shorthand forthe post
ondition part of the ART, detailed in the left legend.23



φ(n0, .. , nL)
⇒
{m0 := f0(n0, .. , nL)} .. {mP := fP (n0, .. , nL)}
< {while(γ(m0, .. ,mP )){body}} >
ψ(m0, .. ,mP , n0, .. , nL)Figure 17: Problem blueprint in formal dynami
 logi
. We assume, that noother while loop is situated in the body.3.5 VariantThe variant is a fun
tion of the program variables, having the following proper-ties.1. At ea
h iteration step of the loop, the variant gets smaller.2. If the variant is smaller or equal to a �xed n ∈ Z, the loop-
onditionevaluates to false.The �rst property ensures, that the exe
ution of the loop does never freeze.The se
ond property ensures the existen
e of an interval I = (−∞, n]; n ∈ Z,where the loop-
ondition is false, if the variant is in I. Both properties togetherguarantee termination, be
ause a stri
tly de
reasing fun
tion rea
hes su
h aninterval I ne
essarily.For the moment, we leave the dis
overy of the variant as an unsolved problemto the user. Note that the BLAST proof does not 
ontain information that 
ouldyield the variant. This is be
ause BLAST 
an ensure, that the post
onditionis never violated, but it does not tell something about termination expli
itly.We 
on
lude, that an invariant always 
an be found in the ART, be
ause this
on
ept is related to the 
orre
tness of the post
ondition. Further, we 
on
ludethat the variant is not ne
essarily in the ART, be
ause the model 
he
kingapproa
h of BLAST does not 
over termination.3.6 The Invariant Ta
letKeY 
ontains a ta
let that allows to prove while loop programs by using theinvariant [4℄. It's our interfa
e to use the information from the BLAST proof,within KeY.The invariant ta
let is well appropriated for our approa
h. The tasks ofproving termination and 
orre
tness of the post
ondition are separated, by the
on
epts of the variant and invariant.The problem blueprint from �gure 14 would look like the statement shownin �gure 17 when reformulating it in dynami
 logi
. We assume the problemhas L logi
al variables, denoted by n0 up to nL. Additionally, we assume thereare P program variables, denoted by m0 up to mP . The program variables areinitialized by fun
tions of the logi
al variables, denoted by f0 upto fP .24



invariant initially valid ⊢ φ⇒ ωbody preserves invariant ⊢ ω ⇒ (γ ⇒ [body]ω)variant de
reasing ⊢ ω ∧ χ > 0 ⇒ γ ⇒< body > (χ < χ@pre)termination ⊢ ω ∧ χ ≤ 0 ⇒ ¬γuse 
ase ⊢ ω ∧ ¬γ ⇒ ψFigure 18: The �ve sub-goals of the while invariant ta
let in KeY.A problem of the form as de�ned in �gure 17 
an be solved by the invariantta
let of KeY (see �gure 18). Basi
ally, the user of KeY must deliver twoinformations for that proof rule. First, there is the invariant, we dis
ussedalready in the previous se
tions. As the se
ond formula, the ta
let needs is thevariant, denoted by χ in this 
ontext.In the next �ve se
tions, we explain the sub-goals of the invariant ta
let,introdu
ed in �gure 18.3.6.1 Invariant Initially Valid
⊢ φ⇒ ωThe goal demands, that a given invariant ω is valid, when the loop is enteredthe �rst time. Logi
ally this means, that the invariant is a 
onsequen
e of thepre
ondition φ.3.6.2 Body Preserves Invariant
⊢ ω ⇒ (γ ⇒ [body]ω)This goal exists, be
ause it guarantees that ω is a real invariant. We assumethe invariant ω and the loop-
ondition γ are true. The goal demands, given theassumptions, that if the body is exe
uted, ω remains true.3.6.3 Variant De
reasing
⊢ ω ∧ χ > 0 ⇒ γ ⇒< body > (χ < χ@pre)The goal here is to ensure, the variant de
reases at ea
h iteration. In otherwords we prove, that by every possible exe
ution of the loop body, we do a steptowards the termination of the loop.3.6.4 Termination
⊢ ω ∧ χ ≤ 0 ⇒ ¬γTo show termination we are supposed to prove, given the invariant is true andthe variant smaller or equal to zero, the loop-
ondition is false. We stated inse
tion 3.5, that χ must be smaller or equal than an arbitrary n ∈ Z, but25



here the ta
let imposes n to be zero. This is not a prin
ipal problem, be
ausewe 
an transform a variant χn suitable for n to a variant χ0 suitable for 0 by
χ0 = χn − n.3.6.5 Use Case

⊢ ω ∧ ¬γ ⇒ ψThis 
laim goal ensures the invariant to be strong enough to show the post
on-dition. As already mentioned at se
tion 3.2, an invariant is strong enough, if in
ombination with the negation of the loop-
ondition, it 
an be used to show thepost
ondition.3.7 BLAST's Invariant in KeYWe show in this se
tion, why an invariant of the form of se
tion 3.4 
an beapplied su

essfully using the ta
let of se
tion 3.6. The appli
ation of the ta
let
reates �ve new sub-goals. For the simple examples we investigated, the goalsare simple enough, su
h that the heuristi
s of the KeY system 
an solve themautomati
ally.3.7.1 Relation between State Annotations in ARTsWe introdu
e here an important property of state annotations in an ART, be-
ause it helps to understand the 
orre
tness of the BLAST invariant.We start with an observation at an arbitrary ART state, annotated by αi.From here, we walk along one spe
i�
 path, by adding the predi
ates and up-dates pi to the path formula. The formula is 
onstru
ted using the single as-signment form (see se
tion 2.3.3). After n steps, we arrive at a state annotatedby αj (see �gure 19). BLAST implements Craig interpolation in a way, su
hthe following statement is true.
αpath

i ∧ p0 ∧ .. ∧ pn ⇒ αpath
jThe path-index means, that the α-statements are written by variables indexedby the single assignment pro
edure. In BLAST, the Craig interpolation pro-du
es results with indexed variables su
h as x1 < 4 ∧ y2 = 4, but the �nalstate annotation is x < 4 ∧ y = 4. We distinguish this two notations by the

path-index, su
h that we 
an write the property properly.3.7.2 Equivalen
e of Symboli
 Program Exe
ution and the Path For-mulaWe 
an 
ombine the model 
he
ker and the theorem prover paradigm, be
ause ofthe equivalen
e between path formula and symboli
 exe
ution. The impli
ation
ϕ− ⇒ ψ of the Craig interpolation 
an be used by the theorem prover. If thetheorem prover exe
utes symboli
ally the path represented by ϕ−, we know26



Figure 19: The annotation of a state resumes all important information so far.pre
ondition: trueif (z != 5){ z = 5;}z = z -1;post
ondition: z = 4Figure 20: Toy problem and its ART.that ψ 
an be 
on
luded. An assignment in symboli
 exe
ution 
hanges theupdate values of the variable on the left hand side of the assignment. Thisallows the prover to keep tra
k of the a
tual value of the program variable inthe logi
 
ontext. The same e�e
t has the single assignment poli
y. For everyassignment, a new instan
e of the variable is introdu
ed, representing the a
tualvalue. A predi
ate on the path is introdu
ed dire
tly with the a
tual instan
esof the variables in BLAST. In KeY, the predi
ate is added to the hypothesesusing the a
tual update values.The following example may help to �x the idea. Let's have a look at the toyproblem and its ART in �gure 20. We are interested in the bold tra
e of theART. The tra
e formula up to the post
ondition state is
z0 6= 5 ∧ z1 = 5 ∧ z2 = z1 − 1 ⇒ z2 = 4The annotation z = 4 is su�
ient to 
on
lude the program is safe. We demon-strate now, how BLASTs tra
e formula 
an be found in the equivalent KeYproof. Initially, we assume that z is equal to an arbitrary z0.==>{z := z0} <{ if (z != 5) {z = 5;} z = z - 1; }> z = 427



The �rst rule appli
ation 
on
erns the if-statement. We split the proof into twosub-goals, 
orresponding to the possibilities that z 6= 5 and z = 5. The samefa
t is represented by the two outgoing arrows from the start-state in �gure 20.We 
onsider here the 
ase z 6= 5, be
ause it 
orresponds to tra
e we have 
hosenfor the path formula.
z0 6= 5==>{z := z0} <{ z = 5; z = z - 1; }> z = 4The se
ond step treats the assignment z = 5. KeY would by default 
hange theupdate dire
tly to {z := 5}. We use a less dire
t pro
edure for our demonstra-tion. We introdu
e an intermediate logi
al variable z1.
z0 6= 5, z1 = 5==>{z := z1} <{ z = z - 1; }> z = 4Instead of assigning the value 5 dire
tly to z, we use the new variable z1. Inthe hypotheses, we spe
ify z1 = 5. This ensures that we do exa
tly the same asKeY does originally. We pro
eed in the same way with the next assignment.
z0 6= 5, z1 = 5, z2 = z1 − 1==>{z := z2} <{ }> z = 4The diamond is empty, be
ause the program has been exe
uted 
ompletely.Therefore, we 
an remove the diamond and assign the a
tual update values tothe program variables to the post
ondition.
z0 6= 5, z1 = 5, z2 = z1 − 1==>
z2 = 4At this stage, the remaining goal is equivalent to the path formula, be
ausewe introdu
ed variables to �x the update values. We 
on
lude that a stateannotation somewhere on a tra
e is also true at the 
orresponding moment atsymboli
 program exe
ution.3.7.3 Invariant Dis
ussionWe 
laimed in se
tion 3.4, that α0 ∨ ... ∨ αn is a valid invariant for a problemrespe
ting the blueprint in �gure 17. In this se
tion, we show that the invariantdoes ful�ll the formal requirements of the while invariant ta
let. We dis
uss forthat reason the three sub-goals, 
on
erning the invariant. Formally, we repla
e

ω, representing a general invariant in the ta
let, by our invariant α0 ∨ ... ∨ αn.We 
an show by using the properties introdu
ed in se
tions 3.7.1 and 3.7.2, thatour invariant ful�lls the ta
let's requirements.28



Invariant Initially Valid
Γ, φ ⊢ α0 ∨ ... ∨ αnThe invariant is supposed to be true, given the pre
onditions as hypothesis.Let's denote the assertions of the ART nodes, 
orresponding to the moment weenter the loop the �rst time, by αinit. From Craig interpolation we know, that
ϕ− ⇒ ψ,given ϕ− is the path up to a state and ψ is the assertion on the state. Fromthis observation, we 
an 
on
lude that
φ⇒ αinit.This re�e
ts the fa
t, that a path a
ross the pre
onditions leading to one of the

αinit exists, for every initial loop-
ondition state.Body Preserves Invariant
Γ, α0 ∨ ... ∨ αn, γ ⊢ [body]α0 ∨ ... ∨ αnBy 
onstru
tion of the invariant, we are supposed to show preservation, for ea
h

αi given as hypothesis. More formal, the proof of the goal above is equivalentto the proof of n sub-goals, of the form
Γ, αi, γ ⊢ [body]α0 ∨ ... ∨ αn.In order to be more pre
ise, we have to mention the updates pre
eding the

[body]-statement. We denote in the following the variables modi�ed in [body] by
mmodi

j , the others by mconst
j . In order to represent an arbitrary situation of loopexe
ution, the ta
let introdu
es a new logi
al variable nnew

j for ea
h modi�edvariable. The sub-goal above 
an be written as the following statement, byintrodu
ing that notation (remember also, that fj is the original initializationof the program variable mj).
Γ, αi[m

modi
j /nnew

j ], γ[mmodi
j /nnew

j ] ⊢

{mmodi
j := nnew

j } .. {mconst
j := fj(n0, .. , nL)}[body]α0 ∨ ... ∨ αnAll variables modi�ed in [body] have to be initialized by a new logi
al variable.Be
ause the invariant and the loop-
ondition γ is spe
i�ed in terms of programvariables, we also repla
e the o

urren
es of the program variables by the 
or-responding logi
al variables in these terms. The aim of the repla
ements andthe update modi�
ations is to guarantee, that we are in an arbitrary iterationof the loop's exe
ution.We explain in the following, why a sub-goal of this form is true. Let's revisitfor that purpose the example of se
tion 3.4. We show again the same ARThere, but we use another layout to point out the idea (see �gure 21). The states29



are grouped in three zones. One zone represents the body of the loop, one theloop-
onditions and one the post
ondition 
he
ks. The loopbody zone may bevery 
ompli
ated, and there may be mu
h more loop-
ondition states, but thezones still 
an be identi�ed. Figure 22 resumes the three possibilities on whatmay happen to a tra
e entering the loop-
ondition body.Tra
e 
rosses Body The ART tra
e outgoing from the loop
ond-zonetowards the loopbody-zone 
omes ba
k to the loop
ond-zone (left and rightdiagram on �gure 22). Let's start an observation on state annotated by αi.We follow a tra
e through the loop body, by building the path formula pi→j
11.Finally, we arrive at αj . By the property introdu
ed in se
tion 3.7.1, we knowthat αpath

i ∧ pi→j ⇒ αpath
j . This impli
ation is important, be
ause we knowthat we 
an make a link between the path formula and the symboli
 exe
ution(se
tion 3.7.2). αpath

i 
orresponds to the hypothesis αi in the goal. The pathformula pi→j is equivalent to what happens when the 
orresponding tra
e in
[body] is unrolled. The Craig interpolation guarantees by the impli
ated αpath

j ,that one of the invariant's α0, ... , αn is a valid post
ondition for the sub-goal.Tra
e is Contradi
tory in Body Further, we dis
uss the possibilityshown in the 
entral diagram of �gure 22. The tra
e doesn't 
ross the body,be
ause it's 
ontradi
tory. Be
ause of the equivalen
e between path formulaand the symboli
 exe
ution, we 
an 
on
lude that unrolling this tra
e leads to a
ontradi
tion in the hypotheses. A proof goal having 
ontradi
tory hypothesesis true by de�nition.Use Case
Γ ⊢ (α0 ∨ ... ∨ αn) ∧ ¬γ ⇒ ψBe
ause the invariant 
onsists of several sub-terms 
onne
ted by ∨-operators,we have to prove in fa
t n sub-goals of the form
Γ ⊢ αi ∧ ¬γ ⇒ ψ.In other words, we are supposed to show that ea
h αi is strong enough for thepost
ondition. The property, we introdu
ed in se
tion 3.7.1 helps us here. On�gure 23 at the left hand side, the situation is outlined. If we quit the loop, wefollow a tra
e annotated by ¬γ 12. Be
ause we know that αpath

i ∧ p¬γ ⇒ ψi
13istrue, we 
on
lude the sub-goal is true by the equivalen
e of the paradigms(se
tion 3.7.2). ψi is by de�nition 
ontradi
tory to ¬ψ and does therefore notallow a violation of the post
ondition.11By pi→j , we denote the sequen
e of steps p0 ∧ .. ∧ pn, leading from the loop-
onditionstate annotated by αi to the one annotated by αj .12If the loop-
ondition is not atomi
, the path formula from αi to the state before the errorstate implies ¬γ by de�nition.13We denote the subsequen
e of the path-formula from αi upto the state before the errorlabel by p¬γ . 30



Figure 21: ART of �gure 16, using another layout. We use the same 
onventionshere as for the mentioned �gure. 31



Figure 22: A tra
e into the loopbody zone mat
hes to one of these three 
ases.

Figure 23: The invariant is strong enough, be
ause ea
h αi is strong enough.The 
on
lusion remains true, if the post
ondition isn't annotated by ψi, butby false. αpath
i ∧p¬γ ⇒ false 
orresponds to a 
ontradi
tion in the hypothesesof the sub-goal (see �gure 23, righthand side).3.7.4 Extension of the BlueprintUp to here, we 
onstrained ourselves to the given problem blueprint. In the
urrent se
tion, we dis
uss possible extensions.Code before the Loop We assume here a problem, where some loop-freeprogram 
ode is exe
uted, before we enter the loop. Figure 24 gives an exampleof su
h a program. An approa
h leading to su

ess in su
h a 
ase is symboli
exe
ution of the pie
e of 
ode before the loop. Be
ause of the 
ase distin
tion,we get two 
laims in the example 
ase (see �gure 25) . The 
ode exe
uted so fardoes in�uen
e the pre
onditions virtually. Be
ause we assign n1 or n2 to z1, weenri
h the pre
onditions by z1 = n1 for one 
ase, and by z1 = n2 for the other
ase. Having done so, the problems to solve are of the known form, and we 
anapply the knowledge of the previous se
tions.
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pre
ondition: n1 ≥ 0 ∧ n2 ≥ 0if (n1>n2){ z1 = n1;}else{ z1 = n2;}while (z1 > 0){ z1 = z1 - 1;}post
ondition: z1 = 0Figure 24: Loop-free program 
ode before the while loop.pre: n1 ≥ 0 ∧ n2 ≥ 0 ∧ z1 = n1while (z1 > 0){ z1 = z1 - 1;}post: z1 = 0

pre: n1 ≥ 0 ∧ n2 ≥ 0 ∧ z1 = n2while (z1 > 0){ z1 = z1 - 1;}post: z1 = 0Figure 25: After symboli
 exe
ution, two 
laims in a simple form remain.Code after the Loop The se
ond extension 
on
erns loop-free 
ode afterthe while 
onstru
t. First of all, we know that the invariant dis
overed remainsa valid invariant, the 
ode behind the loop does not in�uen
e it. Therefore,we don't have problems for the sub-
laims of the invariant ta
let, 
on
erningtermination and 
orre
tness of the invariant. More interesting is the use 
ase,be
ause the appli
ation of the ta
let does result in a more di�
ult expressionhere. If we formalize the blueprint as in �gure 26 on the left, the appli
ation ofthe while invariant ta
let delivers a use 
ase 
laim as shown on the same �gureon the right. Su
h an expression does not impose any spe
ial problem.
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pre
ondition: φwhile (loop
ond){ body}post
odepost
ondition: ψ Γ ⊢ ω ∧ ¬γ ⇒< postcode > ψ

Extended Blueprint, 
ontaining
ode after the loop. New use 
ase 
laim. The post
on-dition must be true, after the post-
ode exe
ution.Figure 26: Extended blueprint and use 
ase 
laim.Loop Sequen
es At �rst step towards the solution of loop sequen
es is al-ready given in the previous paragraph. Γ ⊢ ω ∧ ¬γ ⇒< postcode > ψ is theuse 
ase of su
h a problem, if we denote the instru
tions after loop by postcode.We 
an apply the ta
let a se
ond time, using the same approa
h on �ndingthe invariant for the se
ond loop. We do not need to apply BLAST again, allne
essary information is already 
ontained on the �rst ART. This is granted,be
ause the invariant of the se
ond loop must also 
ontain the information ofthe �rst loop. We know that for sure, otherwise BLAST 
ouldn't ex
lude thetra
es to the error state.Nested Loops The nested loop problem is more di�
ult, be
ause of theinner loop. The invariant we �nd is strong enough for the use 
ase, by the samearguments we used for the 
lassi
 
ase.The heuristi
s of the problem prover fail, when proving invariant preservationof the body. The body 
ontains itself a loop, so it 
annot be unrolled simply.The problem o

urs again when we prove the de
reasing nature of the variant.An approa
h to solve the sub-goals is to get the invariant of the inside loop bythe same mean as for the outside loop and to apply the while invariant ta
let.However, BLAST proofs of nested loops get 
ompli
ated. Therefore we didnot study this problem detailed.
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4 Software Do
umentationThe plugin for KeY we implemented, using the ideas of the previous 
hapters,is do
umented here. First, we present the ar
hite
ture of the system, in orderto give an overview. We try to show all important steps, su
h that a 
ompletepi
ture of the software work-�ow gets visible. Se
ond, we will point out someinteresting features of the implementation. The goal is to do
ument how weused the 
lasses that KeY already provides.4.1 Ar
hite
ture4.1.1 ClassesWe introdu
e and resume all 
lasses of the plugin in this se
tion. A stru
turaldiagram of the situation is given in �gure 27. We show all publi
 methods of the
lass, in most 
ases. Noti
e that this diagram is part of a bigger pi
ture, be
ausethe software is embedded in the KeY system. We only show 
lasses 
on
erningour plugin. With one ex
eption, all 
lasses are part of the blastappli
ationpa
kage.ARTNode This 
lass extends DefaultMutableTreeNode, an element of theJAVA standard library. All operations we expe
t of a tree node are alreadyimplemented in DefaultMutableTreeNode. We add only ART spe
i�
 attributesand methods. The tree itself is rooted in the 
lass DotFileInterpreter. Ev-ery node 
an have an arbitrary number of 
hildren. The list of su

essors 
anbe extended by the add method. The fun
tion getConne
torLabelAt gives theannotation of the ART transition toward a 
hild.BlastAppli
ationRule This is the main 
lass of the plugin. It implementsthe interfa
e BuiltInRule, that allows the programmer to 
reate a super-rule.Another example of a BuiltInRule is UpdateSimpli�
ation, dealing with the up-dates of the program variables. Be
ause of the interfa
e spe
i�
ation, an isAp-pli
able and an apply method must be provided. isAppli
able has the task tode
ide if the rule is visible in the 
ontext menu (see �gure 28) of the user. applyis 
alled, when the user sele
ts the menu entry of the rule.The 
lass 
ontains an instan
e of itself. We add this instan
e to a LinkedListin the ProblemInitializer. We follows this pro
edure to subs
ribe the new rulein the system.BlastSyntaxer The aim of the syntaxer is simple. BLAST prints out predi-
ates in a 
ertain form, using pre�xed notation. Be
ause we want to use themin KeY, this 
lass implements a parser and translator for su
h expressions.The 
onvertCondition method has a string parameter for the BLAST expres-sion, and returns a string, 
ontaining the translation for KeY. As an example,the expression And[, i == 0, Or[, j == 9, j == 0]] would be translated into
i = 0&(j = 9|j = 0). 35



Figure 27: Class diagram of the plugin. We show the publi
 methods of the
lasses, but we omit getters and setters.36



Figure 28: Context menu, extended by our rule BLAST analysis.CProgramCodeWizard The aim of the wizard is to en
apsulate fun
tionsworking on C 
ode. Basi
ally, we want to annotate states of the ART by theirlo
ation in the sour
e 
ode. This is not an easy task, be
ause this implies 
odeparsing, and the evaluation of 
onditions for C.We explain the use of this 
lass by the mean of pseudo 
ode in �gure 29.Remember the goal is to go through an ART and annotate the states.We walk along the tree, by keeping tra
k in the 
ode. First of all, we set theroot annotation to the result of the method �ndFirstCodeLo
. At ea
h step, wetest �rst if we are on a 
ode lo
ation where the 
ontrol �ow is split.
• Split Control Flow. This is the 
ase for if and while statements. A split
ontrol �ow means, that the 
orresponding ART state has a 
hild for thesplit-
ondition being true , and another for the split-
ondition being false.Be
ause 
onditions of while and if statements 
an be 
omposed by morethan one atomi
 
ondition, the 
ondition 
he
k may build a subtree withinthe ART. To keep tra
k of the progress, we use the 
ondEvalProgress
onstru
t, that stores the results of the atomi
 
ondition evaluations. Ifthe progress is su�
ient to show that the 
ondition evaluates to true orto false, we look for the next 
ode lo
ation. Otherwise, we remain on thesame lo
ation, but with an extended 
ondEvalProgress.
• Dire
t Control Flow. This 
ase is simpler than the splitted 
ontrol �ow.We are in a situation, where the a
tual 
ode lo
ation points on a seriesof simple statements. Be
ause BLAST does handle them as a blo
k in anART, we jump behind that series here to �nd the new 
ode lo
ation.DotFileInterpreter If BLAST 
an solve a given problem, it generates a �le
alled rea
htree.dot 
ontaining the ART. The �le is written using a standardnotation, allowing to draw the tree automati
ally by the dot tool (whi
h ispart of the Graphviz toolset [9℄). The interpreter 
lass does only provide the37



fun
tion start(ARTRoot,wizard){ setLineNumbers(ARTRoot,wizard.findFirstCodeLo
,wizard,emptyProgress)}fun
tion setLineNumbers(node,
odeLo
,wizard,
ondEvalProgress){ node.setCodeLo
(CodeLo
);if (wizard.isSplittingCodeLo
(
odeLo
)){ forea
h 
hild of node{ p = extend 
ondEvalProgress by true or false,depending on the 
hild
ondEval = wizard.evaluateCondition(
odeLo
,p)if (
ondEval is true or false){ newCodeLo
 =wizard.findSplittingCodeLo
Continuation(
odeLo
,newCondEval)setLineNumbers(node.
hild,newCodeLo
,wizard,emptyProgress)}else{ setLineNumbers(node.
hild,
odeLo
,wizard,p)}}}else if (wizard.isDire
tCodeLo
(
odeLo
)){ newCodeLo
 = wizard.findDire
tCodeLo
Continuation(
odeLo
)setLineNumbers(node.
hild,newCodeLo
,wizard,emptyProgress)}}Figure 29: Pseudo 
ode illustrating how to use the CProgramCodeWizard, toannotate an ART. 38



�ndInvariant method. If it is 
alled, the ART is builded (using ARTNodes),on the base of the rea
htree.dot �le. By applying the CProgramCodeWizard asdes
ribed in �gure 29, the states of the ART are annotated. The reason of thisstep is, that we want to identify the states 
ontaining interesting annotations.The invariant is then pi
ked of the tree, by implementing the idea explained inse
tion 3.4.IOTools This 
lass is a toolbox for the dialog with the operating system. Thegoal is to simplify the program 
ode, by adding a new level of abstra
tion.
• terminal takes a string, and exe
utes it on the terminal. It interrupts theprogram �ow, until the order has been pro
essed.
• deleteFiles takes a list of �les and deletes them, if they exist.
• �leExists returns true, if a given �le exist, false otherwise.
• loadFile takes a �lename as parameter, and returns a string 
ontainingthe 
ontent.
• saveFile stores a given 
ontent to a given lo
ation.JavaToCPrettyPrinter Key uses a pretty printer to display a JAVA pro-gram in a ni
e form. A program is stored as a tree internally. An instan
eof the printer 
lass does visit ea
h node of that tree. Depending on the typeof the node, the 
orresponding method of the printer is 
alled. JAVA and Chave very similar syntax at the base. Be
ause we treat basi
 programs so far,we did not 
hange any syntax, but we forbade JAVA spe
i�
 stru
tures su
has ex
eptions. For that purpose, we extended the dangerous methods of thePrettyPrinter, and throw an ex
eption if 
alled. We don't show the methods onthe diagram, be
ause there are too many.KeYServi
eProvider The servi
e provider en
apsulates the ex
hange withthe KeY system. It simpli�es the internal appli
ation of ta
let for the program-mer. An instan
e of the 
lass 
an be 
reated, by passing the goal to resolve inthe 
onstru
tor.The method setTa
letAppByDisplayName prepares the appli
ation of a ta
let.It has one parameter of type string, that should 
ontain the name of the ta
letthe programmer wants to apply. If su
h a ta
let 
annot be applied on the goal,the method returns false.After setting up the ta
let, applyTa
let 
an be 
alled. Instantiations valuesfor the ta
let are transmitted via parameters of the method. We use a simplepattern mat
hing, to 
onne
t the available input �elds of the ta
let with theinstantiation. The method may throw an ex
eption, when problems 
on
erningthe instantiation are en
ountered.The printTerm and printJavaBlo
k method form a se
ond group of methods.They make use of KeYs Logi
Printer 
lass. We modify the logi
 printer in twoways. 39



Figure 30: Idea of KeY (box above) to BLAST (box below) translation. Weassume to have L logi
 variables ni, B pre
ondition terms, P program variables
mi with a 
orresponding initialization fun
tion fi.1. Terms, formerly written in KeY syntax (ex. a = 4|b >= 3), 
an be printedusing C syntax (ex. a == 4 || b >= 3).2. JAVA programs 
an be translated to C, be
ause of the JavaToCPret-tyPrinter, our extension to the standard PrettyPrinter.The methods allow to translate a given problem in KeY to a C program. Thisis not entirely implemented in this 
lass, but we de
ided to provide the printmethods in this 
lass, be
ause they make use of internal fun
tion of the KeYsour
e 
ode.The 
he
kTermForOps method �nally 
he
ks if a term does only 
ontainoperators we allow. We �lter the pre
onditions using this fun
tion, be
auseBLAST 
annot treat every sort of pre
ondition possible in KeY.KeYToCTranslator The purpose of the translator is to 
onvert a KeY prob-lem into a BLAST problem. The method 
onvertProgramTermToC gets a KeY-Servi
eProvider as parameter, in order to be able to print terms by using the
lasses of KeY. The main task of the translator is, to extra
t 
ertain importantpie
es of the term and assemble them to a C program. Figure 30 shows themain steps. 40



Figure 31: User input panels spe
i�ed in the PluginUI 
lass.PluginUI We en
apsulate the user interfa
e in this spe
i�
 
lass. The methodvariantsViaDialog takes a LinkedList 
ontaining the invariants dis
overed so far.It gives the user the possibility to modify the invariant and to spe
ify a vari-ant. If apply is pushed, the method returns the invariant and variant spe
i�ed.The messageWindow method has two strings as parameter. This allows theprogrammer to 
ommuni
ate with the user, by spe
ifying an image and a text.The programmer 
an 
lose this window in the 
ode by the 
loseMessageWindowmethod. Two samples of su
h windows are shown in �gure 31.4.1.2 Collaboration DiagramsWe present in this se
tion the most interesting 
ollaboration diagrams. Wedo
ument by using them the work-�ow of the most important a
tions. Toin
rease the readability, we omitted fun
tion parameters on the diagram.Laun
h the Plugin by apply The method apply in the 
lass BlastAppli
a-tionRule is 
alled by the interfa
e, if the user starts our plugin. Most of thework to do is outsour
ed to other 
lasses. Our goal of this dispat
hing is toin
rease 
ode readability in the BlastAppli
ationRule 
lass. The 
ollaborationdiagram of apply is in �gure 32.
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Figure 32: Collaboration diagram of the method apply in 
lass BlastAppli
a-tionRule.1. 
reate (goal, servi
es) A servi
e provider obje
t is 
re-ated. It stores all information
on
erning the proof.2. setTa
letAppByDisplayName( �while_invariant_...�) This method 
all prepares theta
let appli
ation. The name ofthe ta
let is passed by parame-ter. If the ta
let 
annot be ap-plied, the method returns false.We assume the ta
let 
an be ap-plied.3. applyBlast (aProvider) This fun
tion groups the ne
-essary operations to invokeBLAST.3.1 aRV =
onvertProgramTermToC(aProvider) The method returns a string,
ontaining a C program. The pa-rameter aProvider 
ontains the
urrent goal, whi
h is the basefor 
onstru
ting the C sour
e
ode.3.2 saveFile (aRV, �blast.
�) The method saveFile of theIOTools 
lass saves the 
ontentin the �rst parameter into a �lenamed by the se
ond parameter.3.3 terminal(�pblast.opt blast.
 ...�) The method exe
utes BLASTin the terminal. We assumepblast.opt is in the path. Thetarget �le blast.
 was written byoperation 3.2.42



3.4 invariants = �ndInvariant(�rea
htree.dot�,�blast.
�) The �ndInvariant method re-turns the invariant as a string.The parameters 
ontain thenames of the dot and the C �le.The �les have been generated atoperation 3.2 and 3.3.4. variants = variantsViaDialog(invariants) The method pops up a windowto the user. The user 
an spe
-ify the variant and 
ontrol the in-variant.5. applyTa
let(patterns, instants) Be
ause we have the informa-tion on variant and invariant, theta
let set at operation 2. 
an beapplied.6. applyAutomatedStrategy This fun
tion releases the auto-mated heuristi
s of KeY.Transform the Problem by 
onvertProgramTermToC This is the onlypubli
 method of the KeYToCTranslator. It takes a KeyServi
eProvider ob-je
t as parameter, and returns a string with the 
orresponding C program forBLAST. Figure 33 
ontains the 
ollaboration diagram of the method.

Figure 33: Collaboration diagram of method 
onvertProgramTermToC from
lass KeYToTranslator.1. getTATerm() This getter returns the programterm 
ontained in the instan
e ofthe KeYServi
eProvider.2. printTerm(updateTerm, CStyle) Print the updates in form of Cinteger variable de
larations.3. printJavaBlo
k(programTerm) Print the JAVA program asC, using the extended prettyprinter.43



4. printTerm(postTerm,CStyle) Print the post
ondition of theprogram in C style.5. addPre
onditions(aProvider, progString) The fun
tions adds the pre
ondi-tion tests to the progString 
re-ated so far.6. getAnte
edent() Get the ante
edent, to �nd even-tual pre
onditions.7. getSu

edent() Get the su

edent, to �nd even-tual pre
onditions.8. 
he
kTermForOps(ante
edentFormula, validOps) Che
k for ea
h statement in theante
edent, if it 
ontains justvalid operators (and, or, ..).9. a) addS
hemaVariables(ante
edentFormula) If the formula 
ontained onlyvalid operators at 8., we add itto the s
hema variables.10. a) printTerm(ante
edentFormula, CStyle) If the formula 
ontained onlyvalid operators at 8., we print itas a pre
ondition into the C pro-gram.9. b) printTerm(ante
edentFormula,KeYStyle) If the formula 
ontained unsup-ported operators at 8., we print amessage for the user in KeY syn-tax.11. 
he
kTermForOps(su

edentFormula, validOps) Che
k for ea
h statement in thesu

edent, if it 
ontains just validoperators (and, or, ..).12. addS
hemaVariables(su

edentFormula) If the formula 
ontained onlyvalid operators at 11., we add itto the s
hema variables.13. printTerm(su

edentFormula, CStyle) If the formula 
ontained onlyvalid operators at 11., we printits negation as a pre
onditioninto the C program.Invariant Dis
overy by �ndInvariant This is an important method, be-
ause it en
apsulates the dis
overy of the invariant in an ART. The ART is givenunder the form of a dot-�le. This �le format makes automated graph drawingpossible by the Graphviz tool. The 
lass DotFileInterpreter is able to read su
ha �le into an internal tree, and to �nd the invariant. We implement here thetheory developed above. The method 
al
ulates the 
ode position of ea
h ARTstate for that purpose, by using an instan
e of CProgramCodeWizard. In thisway, we 
an lo
ate the loop-
ondition states in the ART. The 
ollaborationdiagram of �ndInvariant is in �gure 34.
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Figure 34: Collaboration diagram of method �ndInvariant in 
lass DotFileIn-terpreter.1. 
reate(�leName) We 
reate an instan
e of the wiz-ard, by spe
ifying the name ofthe C �le.2. buildTree(�rstNodeID, DotFileContent) This method gets the 
ontent ofthe dot-�le, and returns the rootto the tree it builds, representingthe ART.45



2.1 
reate(nodeID) A node is 
reated, for the nodeID given by the dot-�le.2.2 buildTree(
hildID, DotFileContent) For ea
h 
hild of the node in theART, a 
hild is 
reated by a re-
ursive 
all to buildTree.2.3 add(
hildNode, arrowAnnoation,
hildID) All 
hildren of the node are 
on-ne
ted with the 
urrent node.3. setLineNumbers(ARTRoot, �rstCodeLo
,aWizard, emptyWay) We start to 
al
ulate line num-bers at the root. The way
onstru
t keeps tra
k of theprogress, when a 
ompli
ated
ondition leads to several ARTstates. It stores somehow theway through the 
ondition.3.1 setCodeLo
(
odeLo
) The 
urrent ART state is anno-tated by the 
urrent 
ode lo
a-tion. Depending on the type ofthe 
ode lo
ation, we 
hoose sev-eral times path a) or on
e pathb).3.2 a) 
he
kTruthValue(arrowAnnotation) The wizard 
he
ks, if the arrowto the 
urrent 
hild-node repre-sents the 
ase the sub-
onditionsevaluates to true or to false.3.3 a) evaluateCondition(
odeLo
, aWay) The wizard 
he
ks, if the 
urrentway through a 
ondition is 
om-plete in the sense, that it evalu-ates to true or false.3.4 a) �ndSplittingCodeLo
Continuation(
odeLo
, 
onditionEval) If the 
ondition has evaluated totrue or to false in 3.3 a), we goahead in the 
ode.3.5 a) setLineNumbers(
hildNode, 
odeLo
,aWizard, aWay) We 
all the fun
tion setLi-neNumbers re
ursively for theART su

essor states. Either
odeLo
 or aWay has been mod-i�ed by the 
urrent 
all.3.2 b) �ndDire
tCodeLo
Continuation(
odeLo
) The 
urrent ART state has onlyone su

essor. This means,the outgoing arrow representsa blo
k of basi
 instru
tions inthe program. The method �ndsthe next position after the basi
blo
k in the program.46



3.3 b) setLineNumbers(
hildNode, 
odeLo
,aWizard, aWay) We 
all the fun
tion setLi-neNumbers re
ursively for thesu

essor state.4. assembleInvariants(ARTRoot, whileCodeLo
) The method walks through thetree and adds the annotation ofloop-
ondition states to the in-variant.4.2 Implementation FeaturesWe resume in this 
hapter the most interesting points of the implementation.Someone who wants to extend KeY or our plugin, �nds here the most interestingaspe
ts we dis
overed or elaborated when implementing our plugin.4.2.1 Integrate a Plugin into KeYWe integrated the plugin, by implementing BuiltInRule, an interfa
e alreadygiven in the KeY sour
e 
ode. In this way, we 
reated the 
lass BlastAppli
a-tionRule. We oriented ourselves at the 
lass UpdateSimpli�
ationRule. BlastAp-pli
ationRule has two publi
 methods, apply and isAppli
able. The aim of is-Appli
able is to test whether the method 
an be applied on the 
urrent goalor not. If it returns false, the 
ontext menu does not 
ontain the menu entry,allowing to apply the rule. The aim of apply is to start the exe
ution of therule, if 
hosen by the user in the 
ontext menu.Finally, we have to register the new 
lass to the KeY system. For thatpurpose, we add an instan
e of our 
lass to a linked list in the ProblemInitializer
lass.4.2.2 Ta
let Appli
ation in the Sour
e CodeFirst we have to 
reate an instan
e of the 
lass Ta
letApp, representing a ta
letappli
ation. First, we 
reate an iterator of the formulas in the su

edent. Weuse the instru
tionIteratorOfConstrainedFormula aItOfCF =goal.node().sequent().su

edent().iterator()By a loop, we treat all elements of that iterator. Be
ause an element is aformula, we want to know what ta
lets 
an be applied on that formula. We
reate another iterator of all possible Ta
letApp, by the following 
ode.bCF = (ConstrainedFormula)(aItOfCF.next());aPosIC = new PosInO

urren
e(bCF, PosInTerm.TOP_LEVEL,goal.sequent());aItOfTA = goal.ruleAppIndex().getTa
letAppAt(Ta
letFilter.TRUE,aPosIC,servi
es,bCF.
onstraint()).iterator(); 47



We 
an identify the Ta
letApps by their names. In our 
ase, we are looking fora Ta
letApp for the ta
let 
alled while_invariant_with_variant_de
. We testsear
h by the instru
tionif (ta
letApp.rule().displayName().equals(�while_invariant_with_variant_de
�)){ myTa
letApp = ta
letApp;}The easiest way to instantiate the ta
let, is to use the 
lass Ta
letInstantiation-sTableModel. The following lines of 
ode demonstrate, how an instan
e of the
lass 
an be 
reated.Namespa
eSet aNSPSet = goal.node().proof().getNamespa
es();AbbrevMap aMapOfAbr = goal.node().proof().abbreviations();Ta
letInstantiationsTableModel aTableModel =new Ta
letInstantiationsTableModel(myTa
letApp, servi
es, aNSPSet, aMapOfAbr, goal);The goal of this obje
t 
reation is beeing able to instantiate the ta
let as theuser does, by simply writing a string into the 
orre
t �eld (see �gure 35). If wewant for example to instantiate a �eld 
alled variant by the string myVariant,we 
an do it in the following way.for (int i=0;i<aTableModel.getRowCount();i++){ if (((S
hemaVariable)(aTableModel.getValueAt(i,0))).toString().equals(�variant�)){ aTableModel.setValueAt(myVariant,i,1);break;}}We go through the rows of the internal table in the Ta
letInstantiationsTable-Model by 
he
king if a �eld of the �rst 
olumn 
ontains the string �variant�. Ifwe �nd su
h a row, we set the value of its se
ond 
olumn to myVariant. Bydoing so for su
h �eld of the ta
let, we 
an 
omplete the instantiation. Thefollowing 
ode lines 
an be used to apply the ta
let.
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Figure 35: Ta
let appli
ation window of the interfa
e, for the while_invariantta
let.aTA = aTableModel.
reateTa
letAppFromVarInsts();ListOfGoal result = goal.apply(aTA);4.2.3 Heuristi
s and Simpli�
ation in the Sour
e CodeIt is possible to laun
h the heuristi
s and the simpli�er in the sour
e 
ode.Additionally, the heuristi
s 
an be 
on�gured. In our 
ode example, we setthe number of steps to numOfSteps and the strategy on �Simple JAVACardDLwithout unwinding loops and method bodies�. The name of the strategy is storedin KeY as an instan
e of the JAVA default 
lass Name. Instead of 
reating anew Name obje
t, we use a getter of the SimpleJavaCardDLOptions 
lass.Main.getInstan
e(true).mediator().setMaxAutomati
Steps(numOfSteps);Main.getInstan
e(true).mediator().setStrategy(SimpleJavaCardDLOptions.NOTHING.name());The 
lass Main is de�ned in the gui folder. After de�ning the parameters, we
an laun
h the heuristi
s. We de�ne also an listener, in order to be able to
apture the event, when the heuristi
s terminate.49



Figure 36: The attributes of the logi
 printer, and the inheritan
e of the Pro-gramPrinter.private 
lass Notifi
ationListenerimplements AutoModeListener{ publi
 void autoModeStarted(ProofEvent e){ .. }publi
 void autoModeStopped(ProofEvent e){ .. }}Notifi
ationListener aListener = new Notifi
ationListener();Main.getInstan
e(true).mediator().addAutoModeListener(aListener);Main.getInstan
e(true).mediator().startAutoMode();If the heuristi
s exe
ution terminates, we apply the simpli�er to eventually 
losesome more goals.Main.getInstan
e(true).applySimplifi
ationOnGoals();4.2.4 Extending the Logi
PrinterAn important task of our plugin is the transformation of the problem in KeYto a BLAST problem. The 
on
eptual approa
h is outlined in �gure 30. Here,we explain some te
hni
al aspe
ts of the problem transformation.The tools to print obje
ts of type Term in the KeY framework are en
apsu-lated in the Logi
Printer 
lass. In order to represent terms in C notation, we
reate our own Logi
Printer.First, we have to translate JAVA program into a C program. We extend theProgramPrinter, spe
ialized on JAVA sour
e 
ode, by our own JavaToCPret-tyPrinter. For every JAVA 
ode 
onstru
t that we 
an't translate, an ex
eptionis thrown in the JavaToCPrettyPrinter. The user is informed of the problem bythe interfa
e.Se
ond, we also translate terms in use as pre
onditions and post
onditions.A term like a = 5&b >= 3 in KeY syntax should be translated into a ==50



5&&b >= 3, in order to respe
t C syntax. The simplest way here is to use theNotationInfo obje
t, given by the framework. It provides methods to de�ne thesyntax. We present here a sample of our de�nitions.NotationInfo aNI = NotationInfo.
reateInstan
e();aNI.
reatePrefixNotation(Op.NOT, "!");aNI.
reateInfixNotation(Op.AND, "&&");aNI.
reateInfixNotation((Fun
tion) aNS.lookup(new Name("leq")), "<=");The NotationInfo and the JavaToCPrettyPrinter obje
t 
an be given to theLogi
Printer by the 
onstru
tor.
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5 Future Work5.1 Programming Language Related5.1.1 Swit
h Case Statementsswit
h 
ase is not supported in our plugin so far. The problem is its in�uen
eon the 
ontrol �ow of a program. The 
lass CProgramCodeWizard 
annot keeptra
k of the program lo
ations 
orre
tly, if this statement is in use. It is possibleto extend the 
lass for that purpose, but we gave more attention to the if thenelse 
onstru
t. A dire
t translation of a swit
h 
ase statement into an if then elsestatement is not a good solution, be
ause the break keyword provides additionalfreedom to the swit
h 
ase statement.5.1.2 Re
onstru
tion of JAVA Features in CSome features of the JAVA language 
annot be translated dire
tly to C. Anexample is the ex
eption handling. However, it is possible to 
apture the impa
tof su
h statements on theorem proving. The statement in question 
ould thenbe translated into C, su
h that the logi
 e�e
t on the proof remains the same.5.2 BLAST Related5.2.1 BLAST TuningBLAST is a sophisti
ated and 
omplex tool. It 
ontains sour
e-
ode and byte-
ode of other theorem provers, su
h as Fo
i. The mode of operation 
an bein�uen
ed by many parameters. We use in our plugin the option -fm
, to indi-
ate that we want to use the Fo
i model 
he
ker. Further, we use the options-
raig 1 -s
ope for the Craig interpolation. However, a better understanding ofthe BLAST tool and its possibilities and limits is desirable, be
ause this mightenhan
e the power of our plugin.5.2.2 Invariant OptimizationInvariant optimization 
an a

elerate the time of exe
ution of the heuristi
sin KeY. This gets important for bigger problems. The only optimization ofour invariant algorithm is the fa
t that we ignore loop-
ondition states beingleafs. We know that their annotations 
an already be found on internal nodes.We believe that for 
omplex loop-
onditions, other optimization exist. Anotheroptimization potential lies in the annotations of BLAST. Logi
ally, they arealways 
orre
t. However, it happens that the annotation en
odes a fa
t in a
ompli
ated way. For example, x ≥ 0 ∧ x ≤ 0 
an be written dire
tly as x = 0.5.2.3 Error Tra
esIf BLAST �nds a feasible path to an error lo
ation in the ART, it generates aso 
alled 
ounter example. The 
ounter example represents an exe
ution of the52



program, leading to an error. This information 
ould help the user to redesignhis program or the spe
i�
ation. Unfortunately, the 
ounter examples are hardto understand. However, the e�ort to translate them into a human-readableformat would be a great asset for the KeY system.5.3 User Interfa
e Related5.3.1 StyleThe look of the user interfa
e was not a priority of this proje
t. In order not to
onfuse the users, it should be adapted to the general style of KeY. The windowmanagement is not very good at the moment. A better strategy here wouldimprove the experien
e of the user.5.3.2 InputWe don't 
ontrol the input dire
tly. We wait until the user tries to apply thevalues. We rely on the fa
t, that the appli
ation of a ta
let fails and throws anex
eption, if bad values have been spe
i�ed. The ta
let parameter input windowof KeY uses an approa
h, that is more user friendly. It 
ontrols the values whenthe user is writing. This is a 
lear advantage, be
ause eventual errors show upimmediately. It would be good to provide the same servi
e in the plugin.5.4 Theory Extensions5.4.1 Variant Dis
overyThe user has to spe
ify the variant himself so far. We 
ould argue, that this is nota real problem be
ause it's not too di�
ult to �nd the variant of a problem. Thisis 
ertainly true for simple problems, but the variant gets easily 
ompli
ated.The importan
e of variant dis
overy is also given, be
ause the �nal goal is toa
hieve a full automatization. The 
ommon user doesn't want to learn theories,he just wants to solve his problem as fast as possible.5.4.2 Multiple LoopsOur plugin supports only simple loops so far. However, it is possible to extra
tinvariants for nested loops and loop sequen
es from an ART. A good way toover
ome this limitation might be a analysis of the problem stru
ture. Theanalysis should provide information on how the loops are nested and 
as
aded.Given that information, the invariants 
ould be sear
hed �rst. Afterwards, theymight also guide the plugin on how to apply ta
lets to resolve the problem.5.4.3 Loops in ContextWe assume, that the loop is isolated and not in a 
ontext of other statements.An enhan
ement of the plugin would be to allow other statements before andafter the loop. 53



6 Con
lusionTwo basi
 veri�
ation te
hniques are theorem proving and model 
he
king. The-orem proving is powerful, but di�
ult to use. Model 
he
king is fully automati
,but less powerful and hard to extend. We found a possibility to 
ombine advan-tages of both approa
hes.We propose a method to in
rease the degree of automation in loop proving.Using the model 
he
ker BLAST, we 
an �nd loop invariants for problems of agiven form. This allows the user, to show partial 
orre
tness automati
ally inthe theorem prover KeY. In 
ontrast to model 
he
king, the user 
an go furtherand show 
omplete 
orre
tness, by spe
ifying the variant.In order to support our method, we identify the equivalen
e between a pathformula in model 
he
king and symboli
 exe
ution of sour
e 
ode in theoremproving. Further, we present an important property of state annotations inBLAST rea
hability trees. These theoreti
al basi
s allow us to explain, why theinvariant dis
overy method we propose is 
orre
t.We implemented the invariant dis
overy algorithm as a plugin for the KeYsystem. We fo
us on single loop problems. Be
ause KeY is a tool for JAVAand BLAST is a tool for C, we had to 
onvert the proof goals. This led to somerestri
tions on what JAVA statements the plugin is able to treat.We applied the algorithm su

essfully on di�erent sample problems. At the
urrent state, we don't �nd the best invariant in every 
ase. Nevertheless, if theproblem is 
ompli
ated, automated invariant dis
overy is a real asset, espe
iallyfor unexperien
ed users.
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7 Appendix, Example DatabaseWe present in this 
hapter a sele
tion of six problem examples. The examplesare sele
ted in a way, to illustrate di�erent properties a loop problem 
an have.We present for ea
h example a des
ription and the ART.7.1 Single De
reaseDes
ription z1 is initially greater than n. A while loop de
re-ments it down to n, using steps of one. Thepost
ondition demands z1 to be n, after the loopexe
ution. The ART of this problem is in �gure37.Classi�
ation - simple loop- one variable modi�edKeY Proof Goal n_pre_0 < z1_pre_0==>{n:=n_pre_0, z1:=z1_pre_0}\<{ while ( z1>n ) { z1--; } }\> z1 = nOptimal Invariant z1 ≥ nInvariant Found z1 > n ∨ (n = z1 ∨ (z1 > n ∧ n 6= z1)))Degree of Automation Variant z1 − n has to be spe
i�ed.

Figure 37: ART of a program de
reasing a variable to n.55



7.2 Triple In
reaseDes
ription z1 is initially smaller than n. A while loop in-
rements it up to n, using steps of three. Thepost
ondition demands z1 to be bigger or equalto n and smaller than n+ 3. The BLAST ARTis given in �gure 38.Classi�
ation - simple loop- one variable modi�ed- in
rement step is threeKeY Proof Goal z0_0 < n0_0==>{n:=n0_0, z1:=z0_0}\<{ while ( z1<n ) { z1=z1+3; } }\>(!z1 < n & z1 < n + 3)Optimal Invariant z1 ≤ n+ 2Invariant Found z1 ≤ n+ 2 ∨ z ≤ n− 1Degree of Automation Variant n− z1 has to be spe
i�ed.

Figure 38: ART of a program in
reasing a variable to n by steps of three.
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7.3 AdditionDes
ription z2 is added to z1 in this program. z2 is de
re-mented to 0 in the loop. Meanwhile, z1 is in-
remented. Finally, z1 is equal to the sum, we
al
ulate in the beginning. The 
orrespondingART is given in �gure 39.Classi�
ation - simple loop- two variables modi�edKeY Proof Goal z1_pre_0 >= 0, z2_pre_0 >= 0,==>{res:=z1_pre_0+z2_pre_0, z1:=z1_pre_0,z2:=z2_pre_0}\<{ while ( z2>0 ) { z2--; z1++; } }\>z1 = resOptimal Invariant res = z1 + z2 ∧ z2 ≥ 0Invariant Found ((res = z2 + z1 ∧ res = z1 ∧ z2 ≤ 0) ∨ (res =
z2 + z1 ∧ z2 > 0)) ∨ ((res = z2 + z1 ∧ res =
z1) ∨ (1 ≤ z2 ∧ res = z2 + z1 ∧ res 6= z1)))Degree of Automation Variant z2 has to be spe
i�ed.

Figure 39: ART of a program adding two variables.57



7.4 Nested LoopDes
ription Two variables z1 and z2 are de
remented. z1 isde
remented in the outer loop. For ea
h itera-tion in the outer loop, z2 is de
remented from
z1 to zero in the inner loop. The ART is givenin �gure 40.Classi�
ation - nested loop- two variables modi�edKeY Proof Goal z2_pre_0 = 0, z1_pre_0 >= 0==>{z1:=z1_pre_0, z2:=0}\<{while ( z1>0 ){ z1--;z2=z1;while ( z2>0 ) { z2--; }}}\> (z1 = 0 & z2 = 0)Optimal Invariant z1 ≥ 0 ∧ z2 = 0Invariant Found (z1 ≥ 0 ∧ z2 = 0) ∨ ((z2 = 0 ∧ z1 = 0 ∧ z1 ≤
0) ∨ z1 > 0)Degree of Automation Variant z1 has to be spe
i�ed. Inner loop doesblo
k the automati
 proof of two sub-goals.7.5 De
imal Number SimulatorDes
ription Two variables z1 and z2 are de
remented, su
hthey behave like a de
imal number together.Every-time if z2, the se
ond digit of the num-ber, is zero, we set it to 9 and de
rease z1. TheART is given in �gure 41.Classi�
ation - simple loop- two variables modi�ed- 
ase distin
tion
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KeY Proof Goal z2_pre >= 0, z1_pre_0 >= 0==>{z1:=z1_pre_0, z2:=z2_pre}\<{while ( z1>0||z2>0 ){ if (z2==0) { z1--; z2=9;}else { z2--; }}}\> (z1 = 0 & z2 = 0)Optimal Invariant z1 ≥ 0 ∧ z2 ≥ 0Invariant Found (0 ≤ z2 ∧ 0 ≤ z1) ∨ (0 ≤ z2 ∧ 0 ≤ z1 ∧ z1 ≤ 0)Degree of Automation Variant z1 · 10 + z2 has to be spe
i�ed.

Figure 40: ART of a program 
ontaining a nested loop.
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Figure 41: ART of a program simulating a de
imal number.60



7.6 Complex De
reaseDes
ription Two variables z1 and z2 are de
remented. z2is the 
ontrol variable. It triggers the behaviorof z1, the variable tested in the post
ondition.The ART for this example is given in �gure 42.Classi�
ation - simple loop- two variables modi�ed- triple 
ase distin
tion- 
omplex post
onditionKeY Proof Goal 0 < n_pre_0, z1_pre_0 >= 0, z2_pre_0 =>0,m_pre_0 >= 0, n_pre_0 >= m_pre_0==>{m:=m_pre_0, n:=n_pre_0,z1:=z1_pre_0, z2:=z2_pre_0}\<{while ( z1>0 ){ if (z2>0){ z2=z2-1; z1=z1-1; }else if (z2==m){ z1=-40; }else { z2=n; z1=z1-5; }}}\> (!0 < z1 & -5 < z1 | z1 = -40)Optimal Invariant z1 = −40 ∨ −4 ≤ z1Invariant Found 0 ≤ z1 ∨ z1 = −40 ∨ −4 ≤ z1Degree of Automation Variant z1 has to be spe
i�ed.
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Figure 42: ART of a program having a triple 
ase distin
tion in the loop body.
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