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Supporting Loop Proofs in KeYby using BLAST1Mathias Krebs
AbstratIn ontrast to beta-testing, formal veri�ation an guarantee orret-ness of a program against a spei�ation. Two basi veri�ation tehniquesare theorem proving and model heking. Both have strengths and weak-nesses. Theorem proving is powerful, but di�ult to use for a softwareengineer. Model heking is fully automati, but less powerful and hard toextend. This paper shows a possibility, how to ombine both approahes,in order to surround the weaknesses. Conretely, we automatize the proofof while loops in the theorem prover KeY, by using the model hekerBLAST.

1This is a revised version of M.Krebs' diploma thesis, written at EPFL and �nished inFebruary 2006.
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1 Introdution1.1 MotivationDriven by the high number of bugs in industrial and onsumer software, om-puter sientists try to �nd better methods in quality assurane. The mainstreamapproah today is testing. Elaborated beta-testing proedures are known, butthere is a prinipal problem. As Djikstra said, testing an never show the ab-sene of errors, only that there are errors. It's not possible to tell if software isorret by testing, beause the fat not to have found errors does not guaranteean error free program.Software engineering is more than writing program ode nowadays. Doingseveral re�nement steps before writing the ode is standard. Interesting forour purpose is that developers often speify the ode. A usual spei�ationexpresses what we expet a funtion to do under whih onditions. It ouldbe a text written in a natural language suh as English. Unfortunately, thisleaves room to ambiguities and losses. A more sienti� approah onsists inusing a formal language suh as OCL [11℄. Another possibility is to use higherorder logi languages, whih are well known to mathematiians and omputersientists.If we have program ode and a formal spei�ation of what it should dounder whih onditions, we have set the base for formal veri�ation. Notiethat when doing veri�ation, we an not exlude all errors. If there is an errorin the spei�ation, we annot disover it using logi.Two groups of tools an be identi�ed today in the formal method ommunity.One group uses the theorem proving approah, the other the model hekingapproah. In one sentene we an say, that theorem proving is more powerful,but harder to use than model heking.A sophistiated theorem prover is the KeY System [10℄. It provides a om-fortable user interfae for proving. KeY fouses on the JAVA language, morepreisely on a subset alled JAVA CARD [6℄. Additionally, a version for C is indevelopment, but we fous on the JAVA version.A major soure of di�ulties for KeY users are loop onstruts. If thenumber of iterations is not predetermined in the ode, all available heuristisfail. The reason of failure is, that the program annot be entirely unrolled, giventhe number of iterations is unknown. Two ways to overome this problem exist,the indution method and the invariant method. We use the invariant methodin this paper. However, we believe that knowledge on invariants an also beused for indution.The basi idea of our approah is to use another tool, BLAST, to disoverthe invariants of a loop. This tool is often able to �nd automatially the solutionof a problem, even when the heuristis of KeY fail. We an bene�t of that by�nding the invariants, and apply the knowledge in KeY. The advantage of ourapproah in ontrast to diretly using BLAST is the fat, that we an showtotal orretness, and not just partial orretness (see setion 2.4, to learn moreabout orretness). 3



1.2 Related WorkIn summary, we have reated a new formal theory for an expressive temporallogi and used it to develop onrete tehnology to demonstrate that using atheorem prover as a tool programming platform provides us with several theo-retial advantages without too high a performane penalty. We thus hope thatthis work will be of interest to the researh ommunity and also be of use to in-dustrial pratitioners. The approah developed in [1℄ ombines model hekingand theorem proving for an expressive temporal logi. The projet fous is theintegration of model hekers and theorem provers in general, rather than thedevelopment of tehniques exploiting suh an integration. A formal theory ofthe modal µ-alulus was developed as theoretial support. The implementationwas done for the HOL theorem prover.Another ombination is outlined in [2℄. The tool prioni ombines a modelheker and a theorem prover in the following way. First, the spei�ation istested by model heking, eventual spei�ation errors an be eliminated. Af-terwards, a proof attempt on the re�ned spei�ation using the theorem proveran be started. If the attempt is not suessful, but a part of the problem issolved, it is possible to ontinue with model heking for the rest. The mainbene�t of prioni is, that it helps the user heking his spei�ation, before hedoes the proof. On the other hand, no support is provided for theorem provingby the model heker.1.3 OutlineOur paper is divided into four major parts. In hapter 2, we explain BLASTand KeY. Additionally we provide some fundamental knowledge on formal ver-i�ation. This setion does not over topis spei� to this paper, but gives ageneral introdution. The reader an skip the setion or parts of it, if he knowsthe basis of KeY and BLAST. In hapter 3, we explain how we ombine themodel heking with the theorem proving paradigm. We introdue our idea andgive the theoretial argumentation justifying our approah. No pratial ques-tions on implementation are mentioned here. For that purpose, the reader isreferred to hapter 4. Here, we give an overview of the arhiteture of our plu-gin, and disuss implementation features, related to the KeY framework. In theappendix in hapter 7, we summarize the most interesting program exampleswe reated, to develop and ontrol our ideas.
4



2 Bakground of Tools and Theories2.1 Basis of Formal Veri�ationFormal veri�ation an be applied, if a spei�ation and an implementation ofa program is given. It is then possible to hek, if the implementation obeys orviolates the spei�ation. We speify program ode by de�ning a preonditionand a postondition for eah funtion 2. This kind of spei�ation is known un-der the name ontrats in the literature [12℄. The preondition de�nes the validinitial states, the postondition de�nes a warranty on the expeted outome.The example of a division funtion (see �gure 1) illustrates this onept.preondition: b 6= 0double divide (double a, double b){ int  = a/b;return ;}postondition: c · b = aFigure 1: Division funtion and spei�ation.A division is only de�ned, if the divisor is not zero. More preisely, the be-havior of the implementation is spei�ed only for the ase the divisor is di�erentfrom zero. The division result an be heked by multiplying the result withthe divisor (notie, that in pratie, round-o� errors an our).If we have a spei�ation of this kind, there are no ambiguities left. Formaltehniques an be applied, to determine if the program satis�es the poston-dition, given the preondition is respeted. An overview on formal methods isgiven in [8℄.2.2 Theorem Proving2.2.1 IntrodutionTheorem provers use the same approah as mathematiians, when they provesomething. They rely on a set of rules, whih are given, and apply them in alever way. The set of rules one needs to prove orretness of software extendsthose used by mathematiians, beause the knowledge about the funtionalityof programs has to be enoded.Another point is that formal proofs found by a theorem prover are muh moredetailed than a orresponding proof given by a mathematiian. Experiments2A funtion is also alled proedure, routine or method in programming language theory.In our ontext, we use the term funtion in this sense.5



arried out with the ILF system have shown, that on proof step done by amathematiian orresponds to ten steps in a formal proof.Let's introdue here a sample problem, that will help to understand theideas and the di�erenes between the mathematial and the formal approah oftheorem proving. We want to prove the following statement for natural numbers.If we assume x = 0 or y = 0, we an onlude that x · y = 0, if xand y are natural numbers.There are two ases to distinguish, x = 0 and y = 0, beause we assume thatonly one of them has to be true.1. If we assume y = 0, we an replae y by zero in x · y = 0, and we obtain
x · 0 = 0. By de�nition of the multipliation of natural numbers, we knowthat a · 0 = 0 is true for every natural number a.2. If we assume x = 0, we an replae x by zero in x · y = 0, and we obtain
0 · y = 0. Beause we know, that a · b = b · a in the ontext of naturalnumbers, we are allowed to rewrite the problem as y · 0 = 0. In the sameway as we do in ase 1, we onlude this is true.Most mathematiians would aept suh a proof, beause we use a preise lan-guage and note things properly. However, we don't use any onvention thatwould help to guarantee orretness. We rely on the fat, that a person anunderstand and verify the proof.2.2.2 Formal ProvingAs mentioned before, mathematiians do not prove theorems formally. Thisdoes not mean, that their work is inorret. They just omit steps, beause it'seasier this way to onentrate on the problems of their domain.However, we want to exeute proofs mehanially. In onsequene, we don'tomit intermediate steps. In order to show the di�erene, we prove the samplefrom setion 2.2.1 again, this time in a mehanial way. First of all, we writethe proof goal in a preise way, using �rst order logi.
∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0)Let's deode this expression. Every notation we use is explained below.

∀x ∈ N ∀y ∈ N(...) The phrase ∀x ∈ N means, that x is an arbitrarynatural number. We an read it as � for all x, x beingan natural number �. This operator belongs to thegroup of the quanti�ers. We quantify y in the sameway, beause we want to say that both are arbitrarynatural numbers.6



Figure 2: Formal proof of ∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0).
...⇒ ... We have to deompose the expression x = 0 ∨ y =

0 ⇒ x · y = 0 in whih ⇒ is the operator with thehighest priority. On the left hand side of the arrowis premise, on the right hand side the onlusio. Innatural language, we might say �if x = 0 ∨ y = 0 istrue, we an onlude that x · y = 0 is also true�.
... ∨ ... x = 0 ∨ y = 0 means that at least one of the two,

x = 0 and y = 0 is true. It orresponds to term �or � in the English language.For proving a goal, we will use in this thesis the sequent alulus. Thesame alulus is also used by the KeY system. The proof goal and any otherintermediate results of proof steps have always the form of a sequent.
Γ, list of hypothesises ⊢ list of goalsThe symbol ⊢ is also known as the sequent symbol, the list of hypotheses asanteedent, the list of goals as suedent.For the investigated example, we an write the proof goal below.
Γ ⊢ ∀x ∈ N ∀y ∈ N(x = 0 ∨ y = 0 ⇒ x · y = 0)In our example, the list of hypothesis is empty. As we will see below, allaxioms on natural numbers 3 that are neessary to prove the goal are enodedby the proof rules we use.We an transform the proof goal by applying proof rules. In general, suha transformation should make the remaining goal simpler. Certain transforma-tions an split the proof by generating more than one sub-goal. Therefore, the3An example of suh an axiom is the fat, that multipliation of any number with zeroresults to zero. 7



�nal has the form of a tree, a proof goal on every leaf. The initial proof goalis proven, if every leaf of the orresponding tree is equal to true. The art offormal veri�ation onsists in applying the proof rules leading to suess. Figure2 shows a omplete proof tree for the example of this setion.Every rule an be expressed, using the following, formal notation. If we anmath the urrent goal with the expression below a separator line, it is possibleto transform it into the expression above the line.In order to keep the rules �exible we use the two wildard symbols. Γ denotesan arbitrary list of hypothesises, ∆ an arbitrary list of goals.In the following, we explain the meaning of every rule appliation on �gure2. Notie that there is a huge set of suh rules, that we don't introdue here. Asystemati introdution into the �eld an be found in [13℄. We give an informaland the formal desription of eah rule we apply.1, 2) all_right We an transform ∀x ∈ NA,by substituting x is with new term. Wedenote this term by sk, beause it is oftenalled Skolem term. 4 Γ⊢A[x/sk],∆
Γ⊢∀x∈N A,∆3) imp_right We get rid of the arrow, bymoving the expression on its left-hand side(premise) to the hypothesis list. The ex-pression on the right-hand side (onlusio)remains within the onlusions to prove.This step moves the assumptions about xand y expliitly into the list of hypothesis.
Γ,A⊢B,∆

Γ⊢A⇒B,∆

4) or_right Beause we have an expressionontaining an or-operator in the hypothe-ses, we must split the proof. Both ases,
x = 0 and y = 0, have to be treated sepa-rately. Γ,A⊢△ Γ,B⊢△

Γ,A∨B⊢△

5.1, 6.1) apply_equality x · y an be replaed by
0 · y, beause x = 0 is a hypothesis. Γ,a=b⊢B[a/b],∆

Γ,a=b⊢B,∆5.2) mul_omm 0 · y an be exhanged with
y · 0. We do this, beause the followingtalet is de�ned this way. Γ⊢A(b·a),△

Γ⊢A(a·b),△5.3, 6.2) times_zero y · 0 is equal to zero by de�-nition of the multipliation. y · 0 = 0 anbe replaed by 0 = 0. Γ⊢B[a·0/0],∆
Γ⊢B,∆5.4, 6.3) equal_literals A laim of the form a = ais always true. Γ⊢true,∆

Γ⊢a=a,∆4We use the notation B[a/A] to express, that all free ourrenes of the variable a in Bare replaed by A. An ourrenes is free, if the variable is not quanti�ed.8



The formal proedure auses more work, but has the advantage that it anbe done mehanially, sometimes even automatially by a omputer. We don'tuse hidden assumptions, at the ost of a detailed notation.2.2.3 Dynami LogiSo far, we did not touh the �eld of software veri�ation by theorem proving.The key to this tehnique is dynami logi[3℄. It allows to use the power of thelassial approah for proving program ode. For that purpose, we introdue anew symbol, the so alled diamond �< { } >�. Enlosed by that gem, we anwrite the program ode to prove, and behind it the postondition to satisfy. Werewrite the division funtion of setion 2.1 in the following way, using dynamilogi.
⊢ ∀aL : aL ∈ N ⇒ ∀bL : bL ∈ N, bL 6= 0
⇒
{a := aL}{b := bL} < {c = a/b; } >
(c · bL = aL ∨ c · bL = aL − 1)Beause program variables are integers by de�nition, we allow in the post-ondition the ase of a round-o� error expliitly. A very important point isthe distintion between logial and program variables. Using logial variables(denoted by an L-index here), we an de�ne the preondition. By the meanof the so alled updates, the program variables are initialized using the logi-al variables. Updates are enlosed by brakets. It is possible, to apply proofrules on a program enlosed by the diamond. Changes on program variables aretraked by the updates, whih represent the urrent state of a variable. Whenthe program has been rolled out ompletely, we assign the atual values of theprogram variables to the variables in the postondition. The remaining proofgoal is a �rst order logi expression without a diamond operator. Given theprogram satis�es the ontrats, it is possible to show orretness using Logi asintrodued in setion 2.2.2.2.2.4 KeYKeY is a theorem prover suite, supporting a subset of the JAVA language. Theexat spei�ation of the subset is given in [6℄. Three groups at the universitiesof Karlsruhe, Koblenz-Landau and Chalmers are developing the system. Itprovides an integration in Borland's Together CASE tool. KeY has a graphialuser interfae, that helps the user to exeute a proof (see �gure 3).Proof rules are enoded as talets in KeY. New talets an be introdued bydevelopers, as well as by the user. The asset of the talet system is its �exibility.Basially, there are two possibilities on how to apply proof rules. The user anapply talets by hand, using the interfae. An automati mode is available, too.The mode does not provide entire proof strategies, but it relies on heuristis.9



Figure 3: Interfae of the KeY System.The heuristis are powerful, but they show weaknesses, if quanti�ers are inuse. This is not amazing, beause theoretial problems exist related to auto-mati solution-�nding of quanti�ed proof goals. Another problem for the heuris-tis are loop onstruts in programs. The automati mode is only suessful, ifthe number of loop-iterations is predetermined in the program. However, in asethe heuristis fail, the user an still try to solve the problem using the interfae.The theorem prover Simplify is integrated in KeY. Simplify is speialized onarithmeti problems and �rst-order logi. It's fully automati and may help theuser to lose a goal, even if the heuristis fail.The interfae of KeY is omposed of multiple panes. It shows the atualgoal to prove, as well as an overview of the whole tree. Very often, proofs andthe orresponding trees get ompliated. Therefore, the interfae provides thepossibility to expand and hide subtrees.In �gure 4, we ompare the proof tree of KeY with the lassi tree we elab-orated at setion 2.2.2. For detailed information on KeY, we reommend [10℄.2.2.5 Talets in KeYThe goal of this setion is to give an overview to the reader on the oneptand the usage of talets. To illustrate this, we revisit the example we alreadyproved twie in this hapter. We don't give the entire solution, but we presentthe most interesting steps. First, we have to reate a KeY problem �le. Here isits ontent.
10



Figure 4: Classi proof tree vs. overview tree in KeY. The numbers orrespond.\problem{ \forall int x;\forall int y;( x=0 | y=0 -> x*y = 0)}The all_right Talet The aim of the talet is to eliminate the ∀-quanti�er.The basi idea onsists in replaing an all-quanti�ed variable x by an x0, rep-resenting a new onstant symbol having the same domain as x. The talet isenoded in the following way in KeY talet syntax.all_right{ \find ( ==> \forall u; b )\replaewith { ==> {\subst u; sk}b }}The ==> symbol is equivalent to ⊢, introdued in setion 2.2.2. The �nd -keyword spei�es the situation in whih the talet an be applied. all_rightlooks for an expression b in the suedent, quanti�ed by a variable u. If themathing engine �nds suh an expression, it an be replaed by the expression
b[u/sk]. In other words, the subst-keyword indiates a possible replaement ofu by sk.If user input is demanded in a talet, the interfae provides a pop up windowto speify the input. In �gure 5, we show the impat on the goal and the situation11



Figure 5: Appliation of the all_right talet.
Figure 6: Appliation of the imp_right talet.in the overview tree. Notie, that we instantiate x by x_0 in our example.The imp_right Talet The aim of this talet is to move the premise ofan impliation expliitly to the list of hypotheses. Its representation in taletsyntax isimp_right{ \find ( ==> b ->  )\replaewith {b ==>  }}The lookup pattern is ==> b− > c, the replaement option b ==> c. Theimpat of the rule appliation on the goal and on the tree is given in �gure 6.The or_left Talet The talet an be applied, if a term in the hypothesesontains an or-operator as top-level operator 5. In suh a situation, the proofan be split into two sub-goals, one for eah sub-term of the term ontainingthe or-operator. The orresponding talet is enoded in the following way.5A top-level operator is the operator, that has to be evaluated �rst in a term, given theoperator priorities. In usual arithmetis for example, the top-level operator of the expression

a + b · c is the addition-symbol. 12



Figure 7: Appliation of the or_left talet.or_left{ \find ( b |  ==> )# { \replaewith { ==> } };#b { \replaewith {b ==> } }}The new property of this talet is, that a rule appliation may reate two ormore subgoals. The #-symbol allows to speify a name for the sub-goal. Herethe name is simply the ontent of b and . Figure 7 shows the impat of thetalet appliation.2.3 Model Cheking2.3.1 IntrodutionFor eah program, we an de�ne a state spae. A state desribes the statusof the program exeution at one moment. The status an be expressed by theatual loation in the ode, and by a set of assertions on the program variables.Suh an assertion is an abstration of the onrete system status. All possiblestates together form the state spae. The exeution of a program an be seen asa trae in the state spae. If ontrol strutures suh as loops are in the program,there may be an in�nite number of traes. However, tehniques based on thestate assertions allow to keep the state graph �nite.Model hekers assemble all possible traes of the program in a graph. Givensuh a graph, it's possible to hek if a trae leads to a dangerous state, or ifthe program is safe in the sense, that the error state is not reahable (see �gure8). Let's onsider as an illustration a dangerous state in a UNIX system.
• The urrent ode loation is the beginning of the routine, granting rootaess to the user.
• The assertions on the program variables indiate, that the root passwordhas not been spei�ed. 13



dangerous state unreahable dangerous state reahableFigure 8: Two state spae diagrams. The dangerous state is represented by theskull.If the reahability analysis does not �nd suh a state on one of the possible traes,we an guarantee the program is safe in the sense, that the root password isalways spei�ed when root aess is granted.2.3.2 The BLAST ProjetBLAST (Berkeley Lazy Abstration Software Veri�ation Tool) is a modelheker engine written in Oaml. The target programming language of thesystem is C. The simplest possible use of BLAST is the hek of reahability ofa spei� error label in the soure ode. Additionally, a spei�ation languageexists. The goal of that language is to allow separation of spei�ation from thesoure ode. The interested reader is referred to [5℄ for detailed information.2.3.3 How BLAST worksControl Flow Automaton (CFA) BLAST doesn't work diretly on theode, it transforms the soure �rst into the CFA. A CFA is an automaton,representing the ontrol �ow of the program. The ontrol �ow shows in whihorder the program loations are exeuted. A program loation is basially aline number, but it's important to notie the instrution on that line has notbeen exeuted so far. It refers to that moment in the exeution, just before theorresponding statement is exeuted. The CFA relates the program loationsby arrows. An outgoing arrow means that from the urrent state we an go tothe state the arrow points to. Arrows are annotated by the exeuted ation atthe orresponding ode line. If the program loation represents a ondition test,for example an if-onstrut, the ontrol �ow is split. Arrows are annotated byprediates, indiating if the ondition evaluates to true or to false. If the ondi-tion is not atomi6, we have more than just one state in the automaton for thatondition evaluation, beause BLAST treats the atomi onditions individually.On the other hand, BLAST resumes a sequene of basi instrutions7 by onearrow. We give an example of a CFA onstrution in �gure 9.6In our ontext, atomi means that the expression does not ontain the or-operator andthe and-operator.7A basi instrution is always an assignment in our ontext, for example i = i − 1.14



soure ode CFAFigure 9: Soure ode and CFA of a simple derement C program.Abstrat Reahability Tree (ART) The basi onept of the reahabil-ity analysis is the ART. Contrary to the CFA, the ART is a tree and not anautomaton. It ontains all possible exeution traes of the CFA.Every node of the ART an be annotated by an assertion on the programvariables, representing the environment at this moment.A leaf of a omplete ART satis�es one of the following onditions.1. It orresponds to a �nal state in the CFA. (suh as exit in �gure 9)2. Its assertions on the program variables are ontraditory.3. It has the same status like an internal node (same CFA state, same orweaker assertions).The seond ondition re�ets the fat, that we never go in a ontraditory stateif we exeute a program on a omputer.ARTs may remain �nite. If a node represents the same program loationas an internal node, and has the same or a weaker environment, the remainingtrae is the same as for the internal node and an be ommited. In this paper,we use dashed lines on our �gures to represent this.Beause of the third ondition, an ART may remain �nite, even if an in�nitenumber of traes exist. If we unroll the CFA without that rule and the programontains a loop, the length of some traes would grow towards the in�nite.However, the rule exists. BLAST noties, if the leaf's status is equal to thestatus of an internal state. In suh a situation, the ontinuation of the traemay already be overed by an internal state.The �nal ART is onstruted iteratively. The CFA is unrolled until an errorstate is reahable, or until the ART is omplete. If an error state is reahable inthe ART, an abstration re�nement based on Craig Interpolation is launhed.Two outomes are possible. The error may represent a real error, or it has15



Figure 10: First ART of the simple derement problem.ourred beause of an insu�ient abstration. In the later ase, the Craiginterpolation allows to enhane the abstration by delivering better environmentassertions.Craig Interpolation If the error state is reahable in the ART, a re�nementproedure tests by ounterexample guided abstration re�nement, if the trae isfeasible. It is possible, that a real error has been found, or the trae may exist,beause the abstration 8 is not good enough. The re�nement states that theerror is real, or it �nds a better abstration that exludes the atual error trae.After the re�nement proedure, the tree is reonstruted, beause hanges ofassertions may also hange the shape of the tree. Given the new tree, BLASTstarts a new iteration of the proedure we desribed in this paragraph so far.The heart of the re�nement routine is its ability to make the urrent abstra-tion more preise. It is implemented in BLAST by Craig's interpolation [7℄. ψis a Craig interpolant of two formulas ϕ−and of ϕ+, if the following onditionsare satis�ed.1. ϕ− ∧ ϕ+ is unsatis�able2. ϕ− ⇒ ψ3. ψ ∧ ϕ+ is unsatis�able4. ψ only ontains symbols ommon to ϕ− and ϕ+Given an appropriate logi theory, suh interpolants always exist. BLAST fol-lows the error trae step by step, by adding the prediates found on the arrows8In this ontext, abstration denotes all assertion on program variables. The term isappropriate, beause it expresses the fat that the urrent assertion might not be as preiseas possible. 16



to ϕ−, the so alled path formula. ϕ+ denotes the prediates on the rest of thepath to the error label. In order to respet the e�et of assignments, BLASTuses the single assignment form9 . At every state, BLAST applies Craig inter-polation, if ϕ− ∧ ϕ+ is unsatis�able. The result of the Craig interpolation ψ isadded as new assertion on the state, where ontradition was found.Example Figure 10 ontains the ART, when a �rst path to the error statewas disovered. Two state annotations an be found by Craig interpolation.Annotation for the loop-ondition State If we follow the error trae(bold arrows) in �gure 10, we �nd at the �rst state that ϕ− is i ≥ 0 and ϕ+ is
i ≤ 0 ∧ i 6= 0. The Craig interpolant ψ is i ≥ 0, beause1. i ≥ 0 ⇒ i ≥ 02. i ≥ 0 ∧ i ≤ 0 ∧ i 6= 0 is unsatis�able3. ψ only ontains symbols ommon to ϕ− and ϕ+Annotation for the Postond State We follow the error trae, by tak-ing the step from the loop-ondition state towards the postond state. We �ndthat ϕ− is i ≥ 0 ∧ i ≤ 0 and ϕ+ is i 6= 0. The Craig interpolant ψ is i = 0,beause1. i ≥ 0 ∧ i ≤ 0 ⇒ i = 02. i = 0 ∧ i 6= 0 is unsatis�able3. ψ only ontains symbols ommon to ϕ− and ϕ+The urrent ART is modi�ed by inserting the two assertion ψ found. Theerror trae ontains a ontradition, whih means that the this path is notfeasible. A new, re�ned ART (�gure 11) is the result.The error state is still reahable, by rossing the loop one. Again, byapplying Craig interpolation, we �nd a prediate, allowing us to say that thesituation after the loop is equivalent to the situation before the loop. Thisobservation leads to the �nal ART in �gure 12.BLAST re�nes iteratively the ART. Two 10 events may stop that proess.Either a reahability of the error state an be exluded, or a feasible trae tothe error state is found.9An assignment an hange the value of a variable x, and prediates onerning x beforeand beyond the assignment don't refer to the same x. Therefore, we give an index to x, whihis hanged everytime something is assigned to x. A path formula like x > 0∧x = x−1∧x = 0,would be written as x1 > 0 ∧ x2 = x1 − 1 ∧ x2 = 0, in single assignment form.10Tehnially, there exist a third option. BLAST may also terminate beause it does not�nd new prediates. 17



Figure 11: Seond ART of the simple derement problem.

Figure 12: Final ART of the simple derement problem.18



2.4 Partial and total orretnessTwo levels of orretness are usually distinguished in formal veri�ation, partialand total orretness. Partial orretness onsists in demanding, that the post-ondition is never violated. Total orretness additionally imposes the programto terminate. If BLAST shows that an error state is not reahable, this doesn'ttell anything why this is the ase. It is possible that just before the error statean in�nite loop bloks the program exeution. Therefore, the postondition isjust a safety ondition in the ontext of model hekers. That's why we speak ofpartial orretness, meanwhile we denote by omplete orretness, if terminationis shown by theorem proving.Dynami logi enodes total orretness by the diamond operator (see setion2.2.3), partial orretness by the box operator � [{ }]�.
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3 Disovering&Exploiting Invariants3.1 OverviewThe advantage of the model heker BLAST is the fat, that no user intera-tion is neessary when proving. KeY, an interative theorem prover, providesautomated heuristis, but they usually fail when working with loops.We start BLAST �rst, if suessful we look for invariants and feed the KeYprover with them. This approah an also be applied to subgoals in a proof.Invariants an be applied in the KeY system, using a speial proof rule. Inontrast to BLAST, we an prove total orretness in KeY. In this way, weombine the power of KeY with the omfort of BLAST.Please note that in the following, we will sometimes use the abbreviationonventions in �gure 13. Symbol Meaning
φ preondition
ψ postondition
γ loop-ondition
ω invariant
χ variantFigure 13: Abbreviation symbol table.3.2 Loop InvariantsA loop invariant is basially an assertion on the program variables, being truewhen the ondition of the loop is evaluated. During the exeution of the body,the invariant is not supposed to be true. The invariant assertion is an importantinformation for the formal proof of a program ontaining a loop. In fat, we sayit is strong enough, if it is possible to show orretness of the postondition byombining the invariant with the negation of the loop-ondition. The simplestinvariant is the assertion true, but in almost all ases, this is not enough to showthe postondition. Hene, the hallenge is to disover invariants being strongenough.3.3 Problem BlueprintTo keep the ideas simple, we de�ne the problem to solve. We onsider problemsontaining one loop. Nested loops or sequenes of loops are not allowed so far.A problem blueprint for KeY and BLAST an be found at �gure 14.3.4 Disovering Invariants in ARTsThis hapter is dediated to the art of �nding invariants in ARTs. We foushere on problems respeting the de�ned blueprint. A preondition is imposed,20



if(preondition){ while(loopondition){ body}if (!(postondition)){ ERROR:}}
preondition->{updates}\<{while(loopondition){ body}}\>postonditionBLAST style KeY styleFigure 14: Problem blueprint in BLAST and in KeY style. No other loop isontained in the body.and after the exeution of the loop, a postondition is demanded. Using anexample (see �gure 15), we present our idea on how we �nd the invariant. Theorresponding ART an be found at �gure 16. We simpli�ed the ART diagram,suh that there are only states important for the ontrol �ow.In order to be sure that no path leads to the error, BLAST generates allpossible traes through the body of the loop. If we look at the ART, we ansee that �rst the preonditions are proessed. If they are violated, we do notsay anything on the program and its postondition. In the ontrary ase, weenter the loop a �rst time. It is not possible that we don't even enter one,beause by the preondition we know that z1 > 0, initially. Then, z1 and z2are deremented until one of them is zero. If z1 is zero, we exit the loop andBLAST guarantees, that the postondition is satis�ed. If z2 is zero, we go onand derement z3 to zero. Afterwards, z1 is �nally deremented to zero, andthe program terminates. An interesting point is, that BLAST does not enodein the ART that z3 is deremented �rst, and z1 afterwards. Although this isthe ase in the real program, BLAST is too lazy to hek that out. In fat, itguarantees already at this abstration level, the postondition is never violated.We stated earlier, that an invariant should1. always be true before the loop-ondition is heked.2. be strong enough to prove the postondition.If we look at the sample ART, we an see that a andidate for the invariant mustbe the expression α0∨α1∨α2∨α3. It satis�es the �rst invariant riterion, beauseBLAST generates all possible traes at a ertain level of abstration. Further,we know that the αi are true at the orresponding state on the trae. Beause21



Preondition: z1 > 0 ∧ z2 ≥ 0 ∧ z3 > 0while (z1 > 0){ if (z2 > 0){ z1--;z2--;}else if (z3 > 0){ z3--;}else{ z1--;}}Postondition: z1 = 0 ∧ (z3 > 0 ∨ z3 = 0)Figure 15: Example problem for invariant disovery.we onnet the αi by an or operator, we an onlude that every time before theloop-ondition is evaluated, one of the αi is true. The seond invariant riterionis satis�ed under the assumption, the annotation of a state resumes all importantinformation so far. We disuss this in detail in setion 3.7.1, here we assume itis true. A good way to understand is to go bakwards on the trae of the ART.Let's start at the postondition evaluation. Here, BLAST an guarantee thatthe postondition is true, otherwise the re�nement would not have stopped oran error had been found. By going a step bakwards, we see that the negationof the loop-ondition ¬γ has been added to the path, before the postonditionhek. Now we are for sure at a state before the loop-ondition step, beauseour problem blueprint does not allow to have other program statements behindthe loop. We an see, that the state is annotated by αi, hene αi ∧¬γ is strongenough to show the postondition is true (remember the assumption, that allimportant information is resumed in an annotation). We should also have alook at the ase of α0, at the beginning of the trae. The postondition is outof reah. This is not a problem, α0 ∧ ¬γ is strong enough too, beause it isontraditory and does imply anything by de�nition.In general, we state the invariant is α0∨ ... ∨αn, if we have n loop-onditionstates and if we denote their assertion by αi. Loop-ondition states that are leafsan be ignored, beause their assertions are ontained by de�nition in internalnodes. In setion 3.7, we disuss why this invariant is strong enough and ful�llsall neessary formal riteria. 22



Figure 16: This is the simpli�ed ART of the example problem. φ is the pre-ondition, γ the loop-ondition and ψ the postondition. The αi denote theonditions true before the loop-ondition is evaluated. We use shorthand forthe postondition part of the ART, detailed in the left legend.23



φ(n0, .. , nL)
⇒
{m0 := f0(n0, .. , nL)} .. {mP := fP (n0, .. , nL)}
< {while(γ(m0, .. ,mP )){body}} >
ψ(m0, .. ,mP , n0, .. , nL)Figure 17: Problem blueprint in formal dynami logi. We assume, that noother while loop is situated in the body.3.5 VariantThe variant is a funtion of the program variables, having the following proper-ties.1. At eah iteration step of the loop, the variant gets smaller.2. If the variant is smaller or equal to a �xed n ∈ Z, the loop-onditionevaluates to false.The �rst property ensures, that the exeution of the loop does never freeze.The seond property ensures the existene of an interval I = (−∞, n]; n ∈ Z,where the loop-ondition is false, if the variant is in I. Both properties togetherguarantee termination, beause a stritly dereasing funtion reahes suh aninterval I neessarily.For the moment, we leave the disovery of the variant as an unsolved problemto the user. Note that the BLAST proof does not ontain information that ouldyield the variant. This is beause BLAST an ensure, that the postonditionis never violated, but it does not tell something about termination expliitly.We onlude, that an invariant always an be found in the ART, beause thisonept is related to the orretness of the postondition. Further, we onludethat the variant is not neessarily in the ART, beause the model hekingapproah of BLAST does not over termination.3.6 The Invariant TaletKeY ontains a talet that allows to prove while loop programs by using theinvariant [4℄. It's our interfae to use the information from the BLAST proof,within KeY.The invariant talet is well appropriated for our approah. The tasks ofproving termination and orretness of the postondition are separated, by theonepts of the variant and invariant.The problem blueprint from �gure 14 would look like the statement shownin �gure 17 when reformulating it in dynami logi. We assume the problemhas L logial variables, denoted by n0 up to nL. Additionally, we assume thereare P program variables, denoted by m0 up to mP . The program variables areinitialized by funtions of the logial variables, denoted by f0 upto fP .24



invariant initially valid ⊢ φ⇒ ωbody preserves invariant ⊢ ω ⇒ (γ ⇒ [body]ω)variant dereasing ⊢ ω ∧ χ > 0 ⇒ γ ⇒< body > (χ < χ@pre)termination ⊢ ω ∧ χ ≤ 0 ⇒ ¬γuse ase ⊢ ω ∧ ¬γ ⇒ ψFigure 18: The �ve sub-goals of the while invariant talet in KeY.A problem of the form as de�ned in �gure 17 an be solved by the invarianttalet of KeY (see �gure 18). Basially, the user of KeY must deliver twoinformations for that proof rule. First, there is the invariant, we disussedalready in the previous setions. As the seond formula, the talet needs is thevariant, denoted by χ in this ontext.In the next �ve setions, we explain the sub-goals of the invariant talet,introdued in �gure 18.3.6.1 Invariant Initially Valid
⊢ φ⇒ ωThe goal demands, that a given invariant ω is valid, when the loop is enteredthe �rst time. Logially this means, that the invariant is a onsequene of thepreondition φ.3.6.2 Body Preserves Invariant
⊢ ω ⇒ (γ ⇒ [body]ω)This goal exists, beause it guarantees that ω is a real invariant. We assumethe invariant ω and the loop-ondition γ are true. The goal demands, given theassumptions, that if the body is exeuted, ω remains true.3.6.3 Variant Dereasing
⊢ ω ∧ χ > 0 ⇒ γ ⇒< body > (χ < χ@pre)The goal here is to ensure, the variant dereases at eah iteration. In otherwords we prove, that by every possible exeution of the loop body, we do a steptowards the termination of the loop.3.6.4 Termination
⊢ ω ∧ χ ≤ 0 ⇒ ¬γTo show termination we are supposed to prove, given the invariant is true andthe variant smaller or equal to zero, the loop-ondition is false. We stated insetion 3.5, that χ must be smaller or equal than an arbitrary n ∈ Z, but25



here the talet imposes n to be zero. This is not a prinipal problem, beausewe an transform a variant χn suitable for n to a variant χ0 suitable for 0 by
χ0 = χn − n.3.6.5 Use Case

⊢ ω ∧ ¬γ ⇒ ψThis laim goal ensures the invariant to be strong enough to show the poston-dition. As already mentioned at setion 3.2, an invariant is strong enough, if inombination with the negation of the loop-ondition, it an be used to show thepostondition.3.7 BLAST's Invariant in KeYWe show in this setion, why an invariant of the form of setion 3.4 an beapplied suessfully using the talet of setion 3.6. The appliation of the taletreates �ve new sub-goals. For the simple examples we investigated, the goalsare simple enough, suh that the heuristis of the KeY system an solve themautomatially.3.7.1 Relation between State Annotations in ARTsWe introdue here an important property of state annotations in an ART, be-ause it helps to understand the orretness of the BLAST invariant.We start with an observation at an arbitrary ART state, annotated by αi.From here, we walk along one spei� path, by adding the prediates and up-dates pi to the path formula. The formula is onstruted using the single as-signment form (see setion 2.3.3). After n steps, we arrive at a state annotatedby αj (see �gure 19). BLAST implements Craig interpolation in a way, suhthe following statement is true.
αpath

i ∧ p0 ∧ .. ∧ pn ⇒ αpath
jThe path-index means, that the α-statements are written by variables indexedby the single assignment proedure. In BLAST, the Craig interpolation pro-dues results with indexed variables suh as x1 < 4 ∧ y2 = 4, but the �nalstate annotation is x < 4 ∧ y = 4. We distinguish this two notations by the

path-index, suh that we an write the property properly.3.7.2 Equivalene of Symboli Program Exeution and the Path For-mulaWe an ombine the model heker and the theorem prover paradigm, beause ofthe equivalene between path formula and symboli exeution. The impliation
ϕ− ⇒ ψ of the Craig interpolation an be used by the theorem prover. If thetheorem prover exeutes symbolially the path represented by ϕ−, we know26



Figure 19: The annotation of a state resumes all important information so far.preondition: trueif (z != 5){ z = 5;}z = z -1;postondition: z = 4Figure 20: Toy problem and its ART.that ψ an be onluded. An assignment in symboli exeution hanges theupdate values of the variable on the left hand side of the assignment. Thisallows the prover to keep trak of the atual value of the program variable inthe logi ontext. The same e�et has the single assignment poliy. For everyassignment, a new instane of the variable is introdued, representing the atualvalue. A prediate on the path is introdued diretly with the atual instanesof the variables in BLAST. In KeY, the prediate is added to the hypothesesusing the atual update values.The following example may help to �x the idea. Let's have a look at the toyproblem and its ART in �gure 20. We are interested in the bold trae of theART. The trae formula up to the postondition state is
z0 6= 5 ∧ z1 = 5 ∧ z2 = z1 − 1 ⇒ z2 = 4The annotation z = 4 is su�ient to onlude the program is safe. We demon-strate now, how BLASTs trae formula an be found in the equivalent KeYproof. Initially, we assume that z is equal to an arbitrary z0.==>{z := z0} <{ if (z != 5) {z = 5;} z = z - 1; }> z = 427



The �rst rule appliation onerns the if-statement. We split the proof into twosub-goals, orresponding to the possibilities that z 6= 5 and z = 5. The samefat is represented by the two outgoing arrows from the start-state in �gure 20.We onsider here the ase z 6= 5, beause it orresponds to trae we have hosenfor the path formula.
z0 6= 5==>{z := z0} <{ z = 5; z = z - 1; }> z = 4The seond step treats the assignment z = 5. KeY would by default hange theupdate diretly to {z := 5}. We use a less diret proedure for our demonstra-tion. We introdue an intermediate logial variable z1.
z0 6= 5, z1 = 5==>{z := z1} <{ z = z - 1; }> z = 4Instead of assigning the value 5 diretly to z, we use the new variable z1. Inthe hypotheses, we speify z1 = 5. This ensures that we do exatly the same asKeY does originally. We proeed in the same way with the next assignment.
z0 6= 5, z1 = 5, z2 = z1 − 1==>{z := z2} <{ }> z = 4The diamond is empty, beause the program has been exeuted ompletely.Therefore, we an remove the diamond and assign the atual update values tothe program variables to the postondition.
z0 6= 5, z1 = 5, z2 = z1 − 1==>
z2 = 4At this stage, the remaining goal is equivalent to the path formula, beausewe introdued variables to �x the update values. We onlude that a stateannotation somewhere on a trae is also true at the orresponding moment atsymboli program exeution.3.7.3 Invariant DisussionWe laimed in setion 3.4, that α0 ∨ ... ∨ αn is a valid invariant for a problemrespeting the blueprint in �gure 17. In this setion, we show that the invariantdoes ful�ll the formal requirements of the while invariant talet. We disuss forthat reason the three sub-goals, onerning the invariant. Formally, we replae

ω, representing a general invariant in the talet, by our invariant α0 ∨ ... ∨ αn.We an show by using the properties introdued in setions 3.7.1 and 3.7.2, thatour invariant ful�lls the talet's requirements.28



Invariant Initially Valid
Γ, φ ⊢ α0 ∨ ... ∨ αnThe invariant is supposed to be true, given the preonditions as hypothesis.Let's denote the assertions of the ART nodes, orresponding to the moment weenter the loop the �rst time, by αinit. From Craig interpolation we know, that
ϕ− ⇒ ψ,given ϕ− is the path up to a state and ψ is the assertion on the state. Fromthis observation, we an onlude that
φ⇒ αinit.This re�ets the fat, that a path aross the preonditions leading to one of the

αinit exists, for every initial loop-ondition state.Body Preserves Invariant
Γ, α0 ∨ ... ∨ αn, γ ⊢ [body]α0 ∨ ... ∨ αnBy onstrution of the invariant, we are supposed to show preservation, for eah

αi given as hypothesis. More formal, the proof of the goal above is equivalentto the proof of n sub-goals, of the form
Γ, αi, γ ⊢ [body]α0 ∨ ... ∨ αn.In order to be more preise, we have to mention the updates preeding the

[body]-statement. We denote in the following the variables modi�ed in [body] by
mmodi

j , the others by mconst
j . In order to represent an arbitrary situation of loopexeution, the talet introdues a new logial variable nnew

j for eah modi�edvariable. The sub-goal above an be written as the following statement, byintroduing that notation (remember also, that fj is the original initializationof the program variable mj).
Γ, αi[m

modi
j /nnew

j ], γ[mmodi
j /nnew

j ] ⊢

{mmodi
j := nnew

j } .. {mconst
j := fj(n0, .. , nL)}[body]α0 ∨ ... ∨ αnAll variables modi�ed in [body] have to be initialized by a new logial variable.Beause the invariant and the loop-ondition γ is spei�ed in terms of programvariables, we also replae the ourrenes of the program variables by the or-responding logial variables in these terms. The aim of the replaements andthe update modi�ations is to guarantee, that we are in an arbitrary iterationof the loop's exeution.We explain in the following, why a sub-goal of this form is true. Let's revisitfor that purpose the example of setion 3.4. We show again the same ARThere, but we use another layout to point out the idea (see �gure 21). The states29



are grouped in three zones. One zone represents the body of the loop, one theloop-onditions and one the postondition heks. The loopbody zone may bevery ompliated, and there may be muh more loop-ondition states, but thezones still an be identi�ed. Figure 22 resumes the three possibilities on whatmay happen to a trae entering the loop-ondition body.Trae rosses Body The ART trae outgoing from the loopond-zonetowards the loopbody-zone omes bak to the loopond-zone (left and rightdiagram on �gure 22). Let's start an observation on state annotated by αi.We follow a trae through the loop body, by building the path formula pi→j
11.Finally, we arrive at αj . By the property introdued in setion 3.7.1, we knowthat αpath

i ∧ pi→j ⇒ αpath
j . This impliation is important, beause we knowthat we an make a link between the path formula and the symboli exeution(setion 3.7.2). αpath

i orresponds to the hypothesis αi in the goal. The pathformula pi→j is equivalent to what happens when the orresponding trae in
[body] is unrolled. The Craig interpolation guarantees by the impliated αpath

j ,that one of the invariant's α0, ... , αn is a valid postondition for the sub-goal.Trae is Contraditory in Body Further, we disuss the possibilityshown in the entral diagram of �gure 22. The trae doesn't ross the body,beause it's ontraditory. Beause of the equivalene between path formulaand the symboli exeution, we an onlude that unrolling this trae leads to aontradition in the hypotheses. A proof goal having ontraditory hypothesesis true by de�nition.Use Case
Γ ⊢ (α0 ∨ ... ∨ αn) ∧ ¬γ ⇒ ψBeause the invariant onsists of several sub-terms onneted by ∨-operators,we have to prove in fat n sub-goals of the form
Γ ⊢ αi ∧ ¬γ ⇒ ψ.In other words, we are supposed to show that eah αi is strong enough for thepostondition. The property, we introdued in setion 3.7.1 helps us here. On�gure 23 at the left hand side, the situation is outlined. If we quit the loop, wefollow a trae annotated by ¬γ 12. Beause we know that αpath

i ∧ p¬γ ⇒ ψi
13istrue, we onlude the sub-goal is true by the equivalene of the paradigms(setion 3.7.2). ψi is by de�nition ontraditory to ¬ψ and does therefore notallow a violation of the postondition.11By pi→j , we denote the sequene of steps p0 ∧ .. ∧ pn, leading from the loop-onditionstate annotated by αi to the one annotated by αj .12If the loop-ondition is not atomi, the path formula from αi to the state before the errorstate implies ¬γ by de�nition.13We denote the subsequene of the path-formula from αi upto the state before the errorlabel by p¬γ . 30



Figure 21: ART of �gure 16, using another layout. We use the same onventionshere as for the mentioned �gure. 31



Figure 22: A trae into the loopbody zone mathes to one of these three ases.

Figure 23: The invariant is strong enough, beause eah αi is strong enough.The onlusion remains true, if the postondition isn't annotated by ψi, butby false. αpath
i ∧p¬γ ⇒ false orresponds to a ontradition in the hypothesesof the sub-goal (see �gure 23, righthand side).3.7.4 Extension of the BlueprintUp to here, we onstrained ourselves to the given problem blueprint. In theurrent setion, we disuss possible extensions.Code before the Loop We assume here a problem, where some loop-freeprogram ode is exeuted, before we enter the loop. Figure 24 gives an exampleof suh a program. An approah leading to suess in suh a ase is symboliexeution of the piee of ode before the loop. Beause of the ase distintion,we get two laims in the example ase (see �gure 25) . The ode exeuted so fardoes in�uene the preonditions virtually. Beause we assign n1 or n2 to z1, weenrih the preonditions by z1 = n1 for one ase, and by z1 = n2 for the otherase. Having done so, the problems to solve are of the known form, and we anapply the knowledge of the previous setions.
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preondition: n1 ≥ 0 ∧ n2 ≥ 0if (n1>n2){ z1 = n1;}else{ z1 = n2;}while (z1 > 0){ z1 = z1 - 1;}postondition: z1 = 0Figure 24: Loop-free program ode before the while loop.pre: n1 ≥ 0 ∧ n2 ≥ 0 ∧ z1 = n1while (z1 > 0){ z1 = z1 - 1;}post: z1 = 0

pre: n1 ≥ 0 ∧ n2 ≥ 0 ∧ z1 = n2while (z1 > 0){ z1 = z1 - 1;}post: z1 = 0Figure 25: After symboli exeution, two laims in a simple form remain.Code after the Loop The seond extension onerns loop-free ode afterthe while onstrut. First of all, we know that the invariant disovered remainsa valid invariant, the ode behind the loop does not in�uene it. Therefore,we don't have problems for the sub-laims of the invariant talet, onerningtermination and orretness of the invariant. More interesting is the use ase,beause the appliation of the talet does result in a more di�ult expressionhere. If we formalize the blueprint as in �gure 26 on the left, the appliation ofthe while invariant talet delivers a use ase laim as shown on the same �gureon the right. Suh an expression does not impose any speial problem.
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preondition: φwhile (loopond){ body}postodepostondition: ψ Γ ⊢ ω ∧ ¬γ ⇒< postcode > ψ

Extended Blueprint, ontainingode after the loop. New use ase laim. The poston-dition must be true, after the post-ode exeution.Figure 26: Extended blueprint and use ase laim.Loop Sequenes At �rst step towards the solution of loop sequenes is al-ready given in the previous paragraph. Γ ⊢ ω ∧ ¬γ ⇒< postcode > ψ is theuse ase of suh a problem, if we denote the instrutions after loop by postcode.We an apply the talet a seond time, using the same approah on �ndingthe invariant for the seond loop. We do not need to apply BLAST again, allneessary information is already ontained on the �rst ART. This is granted,beause the invariant of the seond loop must also ontain the information ofthe �rst loop. We know that for sure, otherwise BLAST ouldn't exlude thetraes to the error state.Nested Loops The nested loop problem is more di�ult, beause of theinner loop. The invariant we �nd is strong enough for the use ase, by the samearguments we used for the lassi ase.The heuristis of the problem prover fail, when proving invariant preservationof the body. The body ontains itself a loop, so it annot be unrolled simply.The problem ours again when we prove the dereasing nature of the variant.An approah to solve the sub-goals is to get the invariant of the inside loop bythe same mean as for the outside loop and to apply the while invariant talet.However, BLAST proofs of nested loops get ompliated. Therefore we didnot study this problem detailed.
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4 Software DoumentationThe plugin for KeY we implemented, using the ideas of the previous hapters,is doumented here. First, we present the arhiteture of the system, in orderto give an overview. We try to show all important steps, suh that a ompletepiture of the software work-�ow gets visible. Seond, we will point out someinteresting features of the implementation. The goal is to doument how weused the lasses that KeY already provides.4.1 Arhiteture4.1.1 ClassesWe introdue and resume all lasses of the plugin in this setion. A struturaldiagram of the situation is given in �gure 27. We show all publi methods of thelass, in most ases. Notie that this diagram is part of a bigger piture, beausethe software is embedded in the KeY system. We only show lasses onerningour plugin. With one exeption, all lasses are part of the blastappliationpakage.ARTNode This lass extends DefaultMutableTreeNode, an element of theJAVA standard library. All operations we expet of a tree node are alreadyimplemented in DefaultMutableTreeNode. We add only ART spei� attributesand methods. The tree itself is rooted in the lass DotFileInterpreter. Ev-ery node an have an arbitrary number of hildren. The list of suessors anbe extended by the add method. The funtion getConnetorLabelAt gives theannotation of the ART transition toward a hild.BlastAppliationRule This is the main lass of the plugin. It implementsthe interfae BuiltInRule, that allows the programmer to reate a super-rule.Another example of a BuiltInRule is UpdateSimpli�ation, dealing with the up-dates of the program variables. Beause of the interfae spei�ation, an isAp-pliable and an apply method must be provided. isAppliable has the task todeide if the rule is visible in the ontext menu (see �gure 28) of the user. applyis alled, when the user selets the menu entry of the rule.The lass ontains an instane of itself. We add this instane to a LinkedListin the ProblemInitializer. We follows this proedure to subsribe the new rulein the system.BlastSyntaxer The aim of the syntaxer is simple. BLAST prints out predi-ates in a ertain form, using pre�xed notation. Beause we want to use themin KeY, this lass implements a parser and translator for suh expressions.The onvertCondition method has a string parameter for the BLAST expres-sion, and returns a string, ontaining the translation for KeY. As an example,the expression And[, i == 0, Or[, j == 9, j == 0]] would be translated into
i = 0&(j = 9|j = 0). 35



Figure 27: Class diagram of the plugin. We show the publi methods of thelasses, but we omit getters and setters.36



Figure 28: Context menu, extended by our rule BLAST analysis.CProgramCodeWizard The aim of the wizard is to enapsulate funtionsworking on C ode. Basially, we want to annotate states of the ART by theirloation in the soure ode. This is not an easy task, beause this implies odeparsing, and the evaluation of onditions for C.We explain the use of this lass by the mean of pseudo ode in �gure 29.Remember the goal is to go through an ART and annotate the states.We walk along the tree, by keeping trak in the ode. First of all, we set theroot annotation to the result of the method �ndFirstCodeLo. At eah step, wetest �rst if we are on a ode loation where the ontrol �ow is split.
• Split Control Flow. This is the ase for if and while statements. A splitontrol �ow means, that the orresponding ART state has a hild for thesplit-ondition being true , and another for the split-ondition being false.Beause onditions of while and if statements an be omposed by morethan one atomi ondition, the ondition hek may build a subtree withinthe ART. To keep trak of the progress, we use the ondEvalProgressonstrut, that stores the results of the atomi ondition evaluations. Ifthe progress is su�ient to show that the ondition evaluates to true orto false, we look for the next ode loation. Otherwise, we remain on thesame loation, but with an extended ondEvalProgress.
• Diret Control Flow. This ase is simpler than the splitted ontrol �ow.We are in a situation, where the atual ode loation points on a seriesof simple statements. Beause BLAST does handle them as a blok in anART, we jump behind that series here to �nd the new ode loation.DotFileInterpreter If BLAST an solve a given problem, it generates a �lealled reahtree.dot ontaining the ART. The �le is written using a standardnotation, allowing to draw the tree automatially by the dot tool (whih ispart of the Graphviz toolset [9℄). The interpreter lass does only provide the37



funtion start(ARTRoot,wizard){ setLineNumbers(ARTRoot,wizard.findFirstCodeLo,wizard,emptyProgress)}funtion setLineNumbers(node,odeLo,wizard,ondEvalProgress){ node.setCodeLo(CodeLo);if (wizard.isSplittingCodeLo(odeLo)){ foreah hild of node{ p = extend ondEvalProgress by true or false,depending on the hildondEval = wizard.evaluateCondition(odeLo,p)if (ondEval is true or false){ newCodeLo =wizard.findSplittingCodeLoContinuation(odeLo,newCondEval)setLineNumbers(node.hild,newCodeLo,wizard,emptyProgress)}else{ setLineNumbers(node.hild,odeLo,wizard,p)}}}else if (wizard.isDiretCodeLo(odeLo)){ newCodeLo = wizard.findDiretCodeLoContinuation(odeLo)setLineNumbers(node.hild,newCodeLo,wizard,emptyProgress)}}Figure 29: Pseudo ode illustrating how to use the CProgramCodeWizard, toannotate an ART. 38



�ndInvariant method. If it is alled, the ART is builded (using ARTNodes),on the base of the reahtree.dot �le. By applying the CProgramCodeWizard asdesribed in �gure 29, the states of the ART are annotated. The reason of thisstep is, that we want to identify the states ontaining interesting annotations.The invariant is then piked of the tree, by implementing the idea explained insetion 3.4.IOTools This lass is a toolbox for the dialog with the operating system. Thegoal is to simplify the program ode, by adding a new level of abstration.
• terminal takes a string, and exeutes it on the terminal. It interrupts theprogram �ow, until the order has been proessed.
• deleteFiles takes a list of �les and deletes them, if they exist.
• �leExists returns true, if a given �le exist, false otherwise.
• loadFile takes a �lename as parameter, and returns a string ontainingthe ontent.
• saveFile stores a given ontent to a given loation.JavaToCPrettyPrinter Key uses a pretty printer to display a JAVA pro-gram in a nie form. A program is stored as a tree internally. An instaneof the printer lass does visit eah node of that tree. Depending on the typeof the node, the orresponding method of the printer is alled. JAVA and Chave very similar syntax at the base. Beause we treat basi programs so far,we did not hange any syntax, but we forbade JAVA spei� strutures suhas exeptions. For that purpose, we extended the dangerous methods of thePrettyPrinter, and throw an exeption if alled. We don't show the methods onthe diagram, beause there are too many.KeYServieProvider The servie provider enapsulates the exhange withthe KeY system. It simpli�es the internal appliation of talet for the program-mer. An instane of the lass an be reated, by passing the goal to resolve inthe onstrutor.The method setTaletAppByDisplayName prepares the appliation of a talet.It has one parameter of type string, that should ontain the name of the taletthe programmer wants to apply. If suh a talet annot be applied on the goal,the method returns false.After setting up the talet, applyTalet an be alled. Instantiations valuesfor the talet are transmitted via parameters of the method. We use a simplepattern mathing, to onnet the available input �elds of the talet with theinstantiation. The method may throw an exeption, when problems onerningthe instantiation are enountered.The printTerm and printJavaBlok method form a seond group of methods.They make use of KeYs LogiPrinter lass. We modify the logi printer in twoways. 39



Figure 30: Idea of KeY (box above) to BLAST (box below) translation. Weassume to have L logi variables ni, B preondition terms, P program variables
mi with a orresponding initialization funtion fi.1. Terms, formerly written in KeY syntax (ex. a = 4|b >= 3), an be printedusing C syntax (ex. a == 4 || b >= 3).2. JAVA programs an be translated to C, beause of the JavaToCPret-tyPrinter, our extension to the standard PrettyPrinter.The methods allow to translate a given problem in KeY to a C program. Thisis not entirely implemented in this lass, but we deided to provide the printmethods in this lass, beause they make use of internal funtion of the KeYsoure ode.The hekTermForOps method �nally heks if a term does only ontainoperators we allow. We �lter the preonditions using this funtion, beauseBLAST annot treat every sort of preondition possible in KeY.KeYToCTranslator The purpose of the translator is to onvert a KeY prob-lem into a BLAST problem. The method onvertProgramTermToC gets a KeY-ServieProvider as parameter, in order to be able to print terms by using thelasses of KeY. The main task of the translator is, to extrat ertain importantpiees of the term and assemble them to a C program. Figure 30 shows themain steps. 40



Figure 31: User input panels spei�ed in the PluginUI lass.PluginUI We enapsulate the user interfae in this spei� lass. The methodvariantsViaDialog takes a LinkedList ontaining the invariants disovered so far.It gives the user the possibility to modify the invariant and to speify a vari-ant. If apply is pushed, the method returns the invariant and variant spei�ed.The messageWindow method has two strings as parameter. This allows theprogrammer to ommuniate with the user, by speifying an image and a text.The programmer an lose this window in the ode by the loseMessageWindowmethod. Two samples of suh windows are shown in �gure 31.4.1.2 Collaboration DiagramsWe present in this setion the most interesting ollaboration diagrams. Wedoument by using them the work-�ow of the most important ations. Toinrease the readability, we omitted funtion parameters on the diagram.Launh the Plugin by apply The method apply in the lass BlastApplia-tionRule is alled by the interfae, if the user starts our plugin. Most of thework to do is outsoured to other lasses. Our goal of this dispathing is toinrease ode readability in the BlastAppliationRule lass. The ollaborationdiagram of apply is in �gure 32.
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Figure 32: Collaboration diagram of the method apply in lass BlastApplia-tionRule.1. reate (goal, servies) A servie provider objet is re-ated. It stores all informationonerning the proof.2. setTaletAppByDisplayName( �while_invariant_...�) This method all prepares thetalet appliation. The name ofthe talet is passed by parame-ter. If the talet annot be ap-plied, the method returns false.We assume the talet an be ap-plied.3. applyBlast (aProvider) This funtion groups the ne-essary operations to invokeBLAST.3.1 aRV =onvertProgramTermToC(aProvider) The method returns a string,ontaining a C program. The pa-rameter aProvider ontains theurrent goal, whih is the basefor onstruting the C soureode.3.2 saveFile (aRV, �blast.�) The method saveFile of theIOTools lass saves the ontentin the �rst parameter into a �lenamed by the seond parameter.3.3 terminal(�pblast.opt blast. ...�) The method exeutes BLASTin the terminal. We assumepblast.opt is in the path. Thetarget �le blast. was written byoperation 3.2.42



3.4 invariants = �ndInvariant(�reahtree.dot�,�blast.�) The �ndInvariant method re-turns the invariant as a string.The parameters ontain thenames of the dot and the C �le.The �les have been generated atoperation 3.2 and 3.3.4. variants = variantsViaDialog(invariants) The method pops up a windowto the user. The user an spe-ify the variant and ontrol the in-variant.5. applyTalet(patterns, instants) Beause we have the informa-tion on variant and invariant, thetalet set at operation 2. an beapplied.6. applyAutomatedStrategy This funtion releases the auto-mated heuristis of KeY.Transform the Problem by onvertProgramTermToC This is the onlypubli method of the KeYToCTranslator. It takes a KeyServieProvider ob-jet as parameter, and returns a string with the orresponding C program forBLAST. Figure 33 ontains the ollaboration diagram of the method.

Figure 33: Collaboration diagram of method onvertProgramTermToC fromlass KeYToTranslator.1. getTATerm() This getter returns the programterm ontained in the instane ofthe KeYServieProvider.2. printTerm(updateTerm, CStyle) Print the updates in form of Cinteger variable delarations.3. printJavaBlok(programTerm) Print the JAVA program asC, using the extended prettyprinter.43



4. printTerm(postTerm,CStyle) Print the postondition of theprogram in C style.5. addPreonditions(aProvider, progString) The funtions adds the preondi-tion tests to the progString re-ated so far.6. getAnteedent() Get the anteedent, to �nd even-tual preonditions.7. getSuedent() Get the suedent, to �nd even-tual preonditions.8. hekTermForOps(anteedentFormula, validOps) Chek for eah statement in theanteedent, if it ontains justvalid operators (and, or, ..).9. a) addShemaVariables(anteedentFormula) If the formula ontained onlyvalid operators at 8., we add itto the shema variables.10. a) printTerm(anteedentFormula, CStyle) If the formula ontained onlyvalid operators at 8., we print itas a preondition into the C pro-gram.9. b) printTerm(anteedentFormula,KeYStyle) If the formula ontained unsup-ported operators at 8., we print amessage for the user in KeY syn-tax.11. hekTermForOps(suedentFormula, validOps) Chek for eah statement in thesuedent, if it ontains just validoperators (and, or, ..).12. addShemaVariables(suedentFormula) If the formula ontained onlyvalid operators at 11., we add itto the shema variables.13. printTerm(suedentFormula, CStyle) If the formula ontained onlyvalid operators at 11., we printits negation as a preonditioninto the C program.Invariant Disovery by �ndInvariant This is an important method, be-ause it enapsulates the disovery of the invariant in an ART. The ART is givenunder the form of a dot-�le. This �le format makes automated graph drawingpossible by the Graphviz tool. The lass DotFileInterpreter is able to read suha �le into an internal tree, and to �nd the invariant. We implement here thetheory developed above. The method alulates the ode position of eah ARTstate for that purpose, by using an instane of CProgramCodeWizard. In thisway, we an loate the loop-ondition states in the ART. The ollaborationdiagram of �ndInvariant is in �gure 34.
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Figure 34: Collaboration diagram of method �ndInvariant in lass DotFileIn-terpreter.1. reate(�leName) We reate an instane of the wiz-ard, by speifying the name ofthe C �le.2. buildTree(�rstNodeID, DotFileContent) This method gets the ontent ofthe dot-�le, and returns the rootto the tree it builds, representingthe ART.45



2.1 reate(nodeID) A node is reated, for the nodeID given by the dot-�le.2.2 buildTree(hildID, DotFileContent) For eah hild of the node in theART, a hild is reated by a re-ursive all to buildTree.2.3 add(hildNode, arrowAnnoation,hildID) All hildren of the node are on-neted with the urrent node.3. setLineNumbers(ARTRoot, �rstCodeLo,aWizard, emptyWay) We start to alulate line num-bers at the root. The wayonstrut keeps trak of theprogress, when a ompliatedondition leads to several ARTstates. It stores somehow theway through the ondition.3.1 setCodeLo(odeLo) The urrent ART state is anno-tated by the urrent ode loa-tion. Depending on the type ofthe ode loation, we hoose sev-eral times path a) or one pathb).3.2 a) hekTruthValue(arrowAnnotation) The wizard heks, if the arrowto the urrent hild-node repre-sents the ase the sub-onditionsevaluates to true or to false.3.3 a) evaluateCondition(odeLo, aWay) The wizard heks, if the urrentway through a ondition is om-plete in the sense, that it evalu-ates to true or false.3.4 a) �ndSplittingCodeLoContinuation(odeLo, onditionEval) If the ondition has evaluated totrue or to false in 3.3 a), we goahead in the ode.3.5 a) setLineNumbers(hildNode, odeLo,aWizard, aWay) We all the funtion setLi-neNumbers reursively for theART suessor states. EitherodeLo or aWay has been mod-i�ed by the urrent all.3.2 b) �ndDiretCodeLoContinuation(odeLo) The urrent ART state has onlyone suessor. This means,the outgoing arrow representsa blok of basi instrutions inthe program. The method �ndsthe next position after the basiblok in the program.46



3.3 b) setLineNumbers(hildNode, odeLo,aWizard, aWay) We all the funtion setLi-neNumbers reursively for thesuessor state.4. assembleInvariants(ARTRoot, whileCodeLo) The method walks through thetree and adds the annotation ofloop-ondition states to the in-variant.4.2 Implementation FeaturesWe resume in this hapter the most interesting points of the implementation.Someone who wants to extend KeY or our plugin, �nds here the most interestingaspets we disovered or elaborated when implementing our plugin.4.2.1 Integrate a Plugin into KeYWe integrated the plugin, by implementing BuiltInRule, an interfae alreadygiven in the KeY soure ode. In this way, we reated the lass BlastApplia-tionRule. We oriented ourselves at the lass UpdateSimpli�ationRule. BlastAp-pliationRule has two publi methods, apply and isAppliable. The aim of is-Appliable is to test whether the method an be applied on the urrent goalor not. If it returns false, the ontext menu does not ontain the menu entry,allowing to apply the rule. The aim of apply is to start the exeution of therule, if hosen by the user in the ontext menu.Finally, we have to register the new lass to the KeY system. For thatpurpose, we add an instane of our lass to a linked list in the ProblemInitializerlass.4.2.2 Talet Appliation in the Soure CodeFirst we have to reate an instane of the lass TaletApp, representing a taletappliation. First, we reate an iterator of the formulas in the suedent. Weuse the instrutionIteratorOfConstrainedFormula aItOfCF =goal.node().sequent().suedent().iterator()By a loop, we treat all elements of that iterator. Beause an element is aformula, we want to know what talets an be applied on that formula. Wereate another iterator of all possible TaletApp, by the following ode.bCF = (ConstrainedFormula)(aItOfCF.next());aPosIC = new PosInOurrene(bCF, PosInTerm.TOP_LEVEL,goal.sequent());aItOfTA = goal.ruleAppIndex().getTaletAppAt(TaletFilter.TRUE,aPosIC,servies,bCF.onstraint()).iterator(); 47



We an identify the TaletApps by their names. In our ase, we are looking fora TaletApp for the talet alled while_invariant_with_variant_de. We testsearh by the instrutionif (taletApp.rule().displayName().equals(�while_invariant_with_variant_de�)){ myTaletApp = taletApp;}The easiest way to instantiate the talet, is to use the lass TaletInstantiation-sTableModel. The following lines of ode demonstrate, how an instane of thelass an be reated.NamespaeSet aNSPSet = goal.node().proof().getNamespaes();AbbrevMap aMapOfAbr = goal.node().proof().abbreviations();TaletInstantiationsTableModel aTableModel =new TaletInstantiationsTableModel(myTaletApp, servies, aNSPSet, aMapOfAbr, goal);The goal of this objet reation is beeing able to instantiate the talet as theuser does, by simply writing a string into the orret �eld (see �gure 35). If wewant for example to instantiate a �eld alled variant by the string myVariant,we an do it in the following way.for (int i=0;i<aTableModel.getRowCount();i++){ if (((ShemaVariable)(aTableModel.getValueAt(i,0))).toString().equals(�variant�)){ aTableModel.setValueAt(myVariant,i,1);break;}}We go through the rows of the internal table in the TaletInstantiationsTable-Model by heking if a �eld of the �rst olumn ontains the string �variant�. Ifwe �nd suh a row, we set the value of its seond olumn to myVariant. Bydoing so for suh �eld of the talet, we an omplete the instantiation. Thefollowing ode lines an be used to apply the talet.
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Figure 35: Talet appliation window of the interfae, for the while_invarianttalet.aTA = aTableModel.reateTaletAppFromVarInsts();ListOfGoal result = goal.apply(aTA);4.2.3 Heuristis and Simpli�ation in the Soure CodeIt is possible to launh the heuristis and the simpli�er in the soure ode.Additionally, the heuristis an be on�gured. In our ode example, we setthe number of steps to numOfSteps and the strategy on �Simple JAVACardDLwithout unwinding loops and method bodies�. The name of the strategy is storedin KeY as an instane of the JAVA default lass Name. Instead of reating anew Name objet, we use a getter of the SimpleJavaCardDLOptions lass.Main.getInstane(true).mediator().setMaxAutomatiSteps(numOfSteps);Main.getInstane(true).mediator().setStrategy(SimpleJavaCardDLOptions.NOTHING.name());The lass Main is de�ned in the gui folder. After de�ning the parameters, wean launh the heuristis. We de�ne also an listener, in order to be able toapture the event, when the heuristis terminate.49



Figure 36: The attributes of the logi printer, and the inheritane of the Pro-gramPrinter.private lass NotifiationListenerimplements AutoModeListener{ publi void autoModeStarted(ProofEvent e){ .. }publi void autoModeStopped(ProofEvent e){ .. }}NotifiationListener aListener = new NotifiationListener();Main.getInstane(true).mediator().addAutoModeListener(aListener);Main.getInstane(true).mediator().startAutoMode();If the heuristis exeution terminates, we apply the simpli�er to eventually losesome more goals.Main.getInstane(true).applySimplifiationOnGoals();4.2.4 Extending the LogiPrinterAn important task of our plugin is the transformation of the problem in KeYto a BLAST problem. The oneptual approah is outlined in �gure 30. Here,we explain some tehnial aspets of the problem transformation.The tools to print objets of type Term in the KeY framework are enapsu-lated in the LogiPrinter lass. In order to represent terms in C notation, wereate our own LogiPrinter.First, we have to translate JAVA program into a C program. We extend theProgramPrinter, speialized on JAVA soure ode, by our own JavaToCPret-tyPrinter. For every JAVA ode onstrut that we an't translate, an exeptionis thrown in the JavaToCPrettyPrinter. The user is informed of the problem bythe interfae.Seond, we also translate terms in use as preonditions and postonditions.A term like a = 5&b >= 3 in KeY syntax should be translated into a ==50



5&&b >= 3, in order to respet C syntax. The simplest way here is to use theNotationInfo objet, given by the framework. It provides methods to de�ne thesyntax. We present here a sample of our de�nitions.NotationInfo aNI = NotationInfo.reateInstane();aNI.reatePrefixNotation(Op.NOT, "!");aNI.reateInfixNotation(Op.AND, "&&");aNI.reateInfixNotation((Funtion) aNS.lookup(new Name("leq")), "<=");The NotationInfo and the JavaToCPrettyPrinter objet an be given to theLogiPrinter by the onstrutor.
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5 Future Work5.1 Programming Language Related5.1.1 Swith Case Statementsswith ase is not supported in our plugin so far. The problem is its in�ueneon the ontrol �ow of a program. The lass CProgramCodeWizard annot keeptrak of the program loations orretly, if this statement is in use. It is possibleto extend the lass for that purpose, but we gave more attention to the if thenelse onstrut. A diret translation of a swith ase statement into an if then elsestatement is not a good solution, beause the break keyword provides additionalfreedom to the swith ase statement.5.1.2 Reonstrution of JAVA Features in CSome features of the JAVA language annot be translated diretly to C. Anexample is the exeption handling. However, it is possible to apture the impatof suh statements on theorem proving. The statement in question ould thenbe translated into C, suh that the logi e�et on the proof remains the same.5.2 BLAST Related5.2.1 BLAST TuningBLAST is a sophistiated and omplex tool. It ontains soure-ode and byte-ode of other theorem provers, suh as Foi. The mode of operation an bein�uened by many parameters. We use in our plugin the option -fm, to indi-ate that we want to use the Foi model heker. Further, we use the options-raig 1 -sope for the Craig interpolation. However, a better understanding ofthe BLAST tool and its possibilities and limits is desirable, beause this mightenhane the power of our plugin.5.2.2 Invariant OptimizationInvariant optimization an aelerate the time of exeution of the heuristisin KeY. This gets important for bigger problems. The only optimization ofour invariant algorithm is the fat that we ignore loop-ondition states beingleafs. We know that their annotations an already be found on internal nodes.We believe that for omplex loop-onditions, other optimization exist. Anotheroptimization potential lies in the annotations of BLAST. Logially, they arealways orret. However, it happens that the annotation enodes a fat in aompliated way. For example, x ≥ 0 ∧ x ≤ 0 an be written diretly as x = 0.5.2.3 Error TraesIf BLAST �nds a feasible path to an error loation in the ART, it generates aso alled ounter example. The ounter example represents an exeution of the52



program, leading to an error. This information ould help the user to redesignhis program or the spei�ation. Unfortunately, the ounter examples are hardto understand. However, the e�ort to translate them into a human-readableformat would be a great asset for the KeY system.5.3 User Interfae Related5.3.1 StyleThe look of the user interfae was not a priority of this projet. In order not toonfuse the users, it should be adapted to the general style of KeY. The windowmanagement is not very good at the moment. A better strategy here wouldimprove the experiene of the user.5.3.2 InputWe don't ontrol the input diretly. We wait until the user tries to apply thevalues. We rely on the fat, that the appliation of a talet fails and throws anexeption, if bad values have been spei�ed. The talet parameter input windowof KeY uses an approah, that is more user friendly. It ontrols the values whenthe user is writing. This is a lear advantage, beause eventual errors show upimmediately. It would be good to provide the same servie in the plugin.5.4 Theory Extensions5.4.1 Variant DisoveryThe user has to speify the variant himself so far. We ould argue, that this is nota real problem beause it's not too di�ult to �nd the variant of a problem. Thisis ertainly true for simple problems, but the variant gets easily ompliated.The importane of variant disovery is also given, beause the �nal goal is toahieve a full automatization. The ommon user doesn't want to learn theories,he just wants to solve his problem as fast as possible.5.4.2 Multiple LoopsOur plugin supports only simple loops so far. However, it is possible to extratinvariants for nested loops and loop sequenes from an ART. A good way tooverome this limitation might be a analysis of the problem struture. Theanalysis should provide information on how the loops are nested and asaded.Given that information, the invariants ould be searhed �rst. Afterwards, theymight also guide the plugin on how to apply talets to resolve the problem.5.4.3 Loops in ContextWe assume, that the loop is isolated and not in a ontext of other statements.An enhanement of the plugin would be to allow other statements before andafter the loop. 53



6 ConlusionTwo basi veri�ation tehniques are theorem proving and model heking. The-orem proving is powerful, but di�ult to use. Model heking is fully automati,but less powerful and hard to extend. We found a possibility to ombine advan-tages of both approahes.We propose a method to inrease the degree of automation in loop proving.Using the model heker BLAST, we an �nd loop invariants for problems of agiven form. This allows the user, to show partial orretness automatially inthe theorem prover KeY. In ontrast to model heking, the user an go furtherand show omplete orretness, by speifying the variant.In order to support our method, we identify the equivalene between a pathformula in model heking and symboli exeution of soure ode in theoremproving. Further, we present an important property of state annotations inBLAST reahability trees. These theoretial basis allow us to explain, why theinvariant disovery method we propose is orret.We implemented the invariant disovery algorithm as a plugin for the KeYsystem. We fous on single loop problems. Beause KeY is a tool for JAVAand BLAST is a tool for C, we had to onvert the proof goals. This led to somerestritions on what JAVA statements the plugin is able to treat.We applied the algorithm suessfully on di�erent sample problems. At theurrent state, we don't �nd the best invariant in every ase. Nevertheless, if theproblem is ompliated, automated invariant disovery is a real asset, espeiallyfor unexperiened users.
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7 Appendix, Example DatabaseWe present in this hapter a seletion of six problem examples. The examplesare seleted in a way, to illustrate di�erent properties a loop problem an have.We present for eah example a desription and the ART.7.1 Single DereaseDesription z1 is initially greater than n. A while loop dere-ments it down to n, using steps of one. Thepostondition demands z1 to be n, after the loopexeution. The ART of this problem is in �gure37.Classi�ation - simple loop- one variable modi�edKeY Proof Goal n_pre_0 < z1_pre_0==>{n:=n_pre_0, z1:=z1_pre_0}\<{ while ( z1>n ) { z1--; } }\> z1 = nOptimal Invariant z1 ≥ nInvariant Found z1 > n ∨ (n = z1 ∨ (z1 > n ∧ n 6= z1)))Degree of Automation Variant z1 − n has to be spei�ed.

Figure 37: ART of a program dereasing a variable to n.55



7.2 Triple InreaseDesription z1 is initially smaller than n. A while loop in-rements it up to n, using steps of three. Thepostondition demands z1 to be bigger or equalto n and smaller than n+ 3. The BLAST ARTis given in �gure 38.Classi�ation - simple loop- one variable modi�ed- inrement step is threeKeY Proof Goal z0_0 < n0_0==>{n:=n0_0, z1:=z0_0}\<{ while ( z1<n ) { z1=z1+3; } }\>(!z1 < n & z1 < n + 3)Optimal Invariant z1 ≤ n+ 2Invariant Found z1 ≤ n+ 2 ∨ z ≤ n− 1Degree of Automation Variant n− z1 has to be spei�ed.

Figure 38: ART of a program inreasing a variable to n by steps of three.
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7.3 AdditionDesription z2 is added to z1 in this program. z2 is dere-mented to 0 in the loop. Meanwhile, z1 is in-remented. Finally, z1 is equal to the sum, wealulate in the beginning. The orrespondingART is given in �gure 39.Classi�ation - simple loop- two variables modi�edKeY Proof Goal z1_pre_0 >= 0, z2_pre_0 >= 0,==>{res:=z1_pre_0+z2_pre_0, z1:=z1_pre_0,z2:=z2_pre_0}\<{ while ( z2>0 ) { z2--; z1++; } }\>z1 = resOptimal Invariant res = z1 + z2 ∧ z2 ≥ 0Invariant Found ((res = z2 + z1 ∧ res = z1 ∧ z2 ≤ 0) ∨ (res =
z2 + z1 ∧ z2 > 0)) ∨ ((res = z2 + z1 ∧ res =
z1) ∨ (1 ≤ z2 ∧ res = z2 + z1 ∧ res 6= z1)))Degree of Automation Variant z2 has to be spei�ed.

Figure 39: ART of a program adding two variables.57



7.4 Nested LoopDesription Two variables z1 and z2 are deremented. z1 isderemented in the outer loop. For eah itera-tion in the outer loop, z2 is deremented from
z1 to zero in the inner loop. The ART is givenin �gure 40.Classi�ation - nested loop- two variables modi�edKeY Proof Goal z2_pre_0 = 0, z1_pre_0 >= 0==>{z1:=z1_pre_0, z2:=0}\<{while ( z1>0 ){ z1--;z2=z1;while ( z2>0 ) { z2--; }}}\> (z1 = 0 & z2 = 0)Optimal Invariant z1 ≥ 0 ∧ z2 = 0Invariant Found (z1 ≥ 0 ∧ z2 = 0) ∨ ((z2 = 0 ∧ z1 = 0 ∧ z1 ≤
0) ∨ z1 > 0)Degree of Automation Variant z1 has to be spei�ed. Inner loop doesblok the automati proof of two sub-goals.7.5 Deimal Number SimulatorDesription Two variables z1 and z2 are deremented, suhthey behave like a deimal number together.Every-time if z2, the seond digit of the num-ber, is zero, we set it to 9 and derease z1. TheART is given in �gure 41.Classi�ation - simple loop- two variables modi�ed- ase distintion
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KeY Proof Goal z2_pre >= 0, z1_pre_0 >= 0==>{z1:=z1_pre_0, z2:=z2_pre}\<{while ( z1>0||z2>0 ){ if (z2==0) { z1--; z2=9;}else { z2--; }}}\> (z1 = 0 & z2 = 0)Optimal Invariant z1 ≥ 0 ∧ z2 ≥ 0Invariant Found (0 ≤ z2 ∧ 0 ≤ z1) ∨ (0 ≤ z2 ∧ 0 ≤ z1 ∧ z1 ≤ 0)Degree of Automation Variant z1 · 10 + z2 has to be spei�ed.

Figure 40: ART of a program ontaining a nested loop.
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Figure 41: ART of a program simulating a deimal number.60



7.6 Complex DereaseDesription Two variables z1 and z2 are deremented. z2is the ontrol variable. It triggers the behaviorof z1, the variable tested in the postondition.The ART for this example is given in �gure 42.Classi�ation - simple loop- two variables modi�ed- triple ase distintion- omplex postonditionKeY Proof Goal 0 < n_pre_0, z1_pre_0 >= 0, z2_pre_0 =>0,m_pre_0 >= 0, n_pre_0 >= m_pre_0==>{m:=m_pre_0, n:=n_pre_0,z1:=z1_pre_0, z2:=z2_pre_0}\<{while ( z1>0 ){ if (z2>0){ z2=z2-1; z1=z1-1; }else if (z2==m){ z1=-40; }else { z2=n; z1=z1-5; }}}\> (!0 < z1 & -5 < z1 | z1 = -40)Optimal Invariant z1 = −40 ∨ −4 ≤ z1Invariant Found 0 ≤ z1 ∨ z1 = −40 ∨ −4 ≤ z1Degree of Automation Variant z1 has to be spei�ed.
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Figure 42: ART of a program having a triple ase distintion in the loop body.
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