Supporting Loop Proofs in KeY
by using BLAST

Mathias Krebs

Technical Report No. LGL-REPORT-2006-004
May 2006
Software Engineering Laboratory

School of Computer and Communication Sciences

ECOLE POLYTECHNIQUE Ecole Polytechnique Fédérale de Lausanne (EPFL)
FEDERALE DE LAUSANNE CH-1015 Lausanne, Switzerland

Supporting Loop Proofs in KeY
by using BLAST!

Mathias Krebs

Abstract

In contrast to beta-testing, formal verification can guarantee correct-
ness of a program against a specification. Two basic verification techniques
are theorem proving and model checking. Both have strengths and weak-
nesses. Theorem proving is powerful, but difficult to use for a software
engineer. Model checking is fully automatic, but less powerful and hard to
extend. This paper shows a possibility, how to combine both approaches,
in order to surround the weaknesses. Concretely, we automatize the proof
of while loops in the theorem prover KeY, by using the model checker
BLAST.

IThis is a revised version of M.Krebs’ diploma thesis, written at EPFL and finished in
February 2006.

Contents

1 Introduction

1.1 Motivation e
1.2 Related Work
1.3 Outline e

Background of Tools and Theories

2.1 Basics of Formal Verification
2.2 Theorem Proving
2.2.1 Introduction
2.2.2 Formal Proving L.
2.2.3 Dynamic Logic L.
224 KeY . . .
225 Tacletsin KeY
2.3 Model Checking
2.3.1 Introduction
2.3.2 The BLAST Project
2.3.3 How BLAST works
2.4 Partial and total correctness

Discovering& Exploiting Invariants

3.1 Overview
3.2 Loop Invariants L L
3.3 Problem Blueprint 0 0 oL
3.4 Discovering Invariants in ARTs
3.5 Variant
3.6 The Invariant Taclet,
3.6.1 Invariant Initially Valid
3.6.2 Body Preserves Invariant,
3.6.3 Variant Decreasing
3.6.4 Termination Lo L
3.6.5 UseCase s
3.7 BLAST’s Invariant in KeY
3.7.1 Relation between State Annotations in ARTs
3.7.2 Equivalence of Symbolic Program Execution and the Path
Formula
3.7.3 Invariant Discussion
3.7.4 Extension of the Blueprint
Software Documentation
4.1 Architectureo
4.1.1 Classes . . . v v e e
4.1.2 Collaboration Diagrams
4.2 TImplementation Features
4.2.1 Integrate a Plugin into KeY

20
20
20
20
20
24
24
25
25
25
25
26
26
26

26
28
32

4.2.2 Taclet Application in the Source Code
4.2.3 Heuristics and Simplification in the Source Code
4.2.4 Extending the LogicPrinter

5 Future Work

5.1

5.2

5.3

5.4

Programming Language Related
5.1.1 Switch Case Statements
5.1.2 Reconstruction of JAVA Features in C

BLAST Related
5.2.1 BLAST Tuning
5.2.2 Invariant Optimization

5.2.3 Error Traces
User Interface Related
53.1 Style.
532 Imput
Theory Extensions
5.4.1 Variant Discovery
5.4.2 Multiple Loops
5.4.3 Loopsin Context

6 Conclusion

7 Appendix, Example Database

7.1
7.2
7.3
7.4
7.5
7.6

Single Decrease
Triple Increase
Additiono
Nested Loop
Decimal Number Simulator
Complex Decrease

8 Acknowledgments

52
52
52
52
52
52
52
52
53
53
593
593
53
53
53

54

55
95
56
57
o8
o8
61

63

1 Introduction

1.1 Motivation

Driven by the high number of bugs in industrial and consumer software, com-
puter scientists try to find better methods in quality assurance. The mainstream
approach today is testing. Elaborated beta-testing procedures are known, but
there is a principal problem. As Djikstra said, testing can never show the ab-
sence of errors, only that there are errors. It’s not possible to tell if software is
correct by testing, because the fact not to have found errors does not guarantee
an error free program.

Software engineering is more than writing program code nowadays. Doing
several refinement steps before writing the code is standard. Interesting for
our purpose is that developers often specify the code. A usual specification
expresses what we expect a function to do under which conditions. It could
be a text written in a natural language such as English. Unfortunately, this
leaves room to ambiguities and losses. A more scientific approach consists in
using a formal language such as OCL [11]. Another possibility is to use higher
order logic languages, which are well known to mathematicians and computer
scientists.

If we have program code and a formal specification of what it should do
under which conditions, we have set the base for formal verification. Notice
that when doing verification, we can not exclude all errors. If there is an error
in the specification, we cannot discover it using logic.

Two groups of tools can be identified today in the formal method community.
One group uses the theorem proving approach, the other the model checking
approach. In one sentence we can say, that theorem proving is more powerful,
but harder to use than model checking.

A sophisticated theorem prover is the KeY System [10]. It provides a com-
fortable user interface for proving. KeY focuses on the JAVA language, more
precisely on a subset called JAVA CARD [6]. Additionally, a version for C is in
development, but we focus on the JAVA version.

A major source of difficulties for KeY users are loop constructs. If the
number of iterations is not predetermined in the code, all available heuristics
fail. The reason of failure is, that the program cannot be entirely unrolled, given
the number of iterations is unknown. Two ways to overcome this problem exist,
the induction method and the invariant method. We use the invariant method
in this paper. However, we believe that knowledge on invariants can also be
used for induction.

The basic idea of our approach is to use another tool, BLAST, to discover
the invariants of a loop. This tool is often able to find automatically the solution
of a problem, even when the heuristics of KeY fail. We can benefit of that by
finding the invariants, and apply the knowledge in KeY. The advantage of our
approach in contrast to directly using BLAST is the fact, that we can show
total correctness, and not just partial correctness (see section 2.4, to learn more
about correctness).

1.2 Related Work

In summary, we have created a new formal theory for an expressive temporal
logic and used it to develop concrete technology to demonstrate that using a
theorem prover as a tool programming platform provides us with several theo-
retical advantages without too high a performance penalty. We thus hope that
this work will be of interest to the research community and also be of use to in-
dustrial practitioners. The approach developed in [1] combines model checking
and theorem proving for an expressive temporal logic. The project focus is the
integration of model checkers and theorem provers in general, rather than the
development of techniques exploiting such an integration. A formal theory of
the modal p-calculus was developed as theoretical support. The implementation
was done for the HOL theorem prover.

Another combination is outlined in [2]. The tool prioni combines a model
checker and a theorem prover in the following way. First, the specification is
tested by model checking, eventual specification errors can be eliminated. Af-
terwards, a proof attempt on the refined specification using the theorem prover
can be started. If the attempt is not successful, but a part of the problem is
solved, it is possible to continue with model checking for the rest. The main
benefit of prioni is, that it helps the user checking his specification, before he
does the proof. On the other hand, no support is provided for theorem proving
by the model checker.

1.3 Outline

Our paper is divided into four major parts. In chapter 2, we explain BLAST
and KeY. Additionally we provide some fundamental knowledge on formal ver-
ification. This section does not cover topics specific to this paper, but gives a
general introduction. The reader can skip the section or parts of it, if he knows
the basics of KeY and BLAST. In chapter 3, we explain how we combine the
model checking with the theorem proving paradigm. We introduce our idea and
give the theoretical argumentation justifying our approach. No practical ques-
tions on implementation are mentioned here. For that purpose, the reader is
referred to chapter 4. Here, we give an overview of the architecture of our plu-
gin, and discuss implementation features, related to the KeY framework. In the
appendix in chapter 7, we summarize the most interesting program examples
we created, to develop and control our ideas.

2 Background of Tools and Theories

2.1 Basics of Formal Verification

Formal verification can be applied, if a specification and an implementation of
a program is given. It is then possible to check, if the implementation obeys or
violates the specification. We specify program code by defining a precondition
and a postcondition for each function 2. This kind of specification is known un-
der the name contracts in the literature [12]. The precondition defines the valid
initial states, the postcondition defines a warranty on the expected outcome.
The example of a division function (see figure 1) illustrates this concept.

precondition: b # 0

double divide (double a, double b)
{

int ¢ = a/b;

return c;

}
postcondition: ¢-b=a

Figure 1: Division function and specification.

A division is only defined, if the divisor is not zero. More precisely, the be-
havior of the implementation is specified only for the case the divisor is different
from zero. The division result can be checked by multiplying the result with
the divisor (notice, that in practice, round-off errors can occur).

If we have a specification of this kind, there are no ambiguities left. Formal
techniques can be applied, to determine if the program satisfies the postcon-
dition, given the precondition is respected. An overview on formal methods is
given in [8].

2.2 Theorem Proving
2.2.1 Introduction

Theorem provers use the same approach as mathematicians, when they prove
something. They rely on a set of rules, which are given, and apply them in a
clever way. The set of rules one needs to prove correctness of software extends
those used by mathematicians, because the knowledge about the functionality
of programs has to be encoded.

Another point is that formal proofs found by a theorem prover are much more
detailed than a corresponding proof given by a mathematician. Experiments

2A function is also called procedure, routine or method in programming language theory.
In our context, we use the term function in this sense.

carried out with the ILF system have shown, that on proof step done by a
mathematician corresponds to ten steps in a formal proof.

Let’s introduce here a sample problem, that will help to understand the
ideas and the differences between the mathematical and the formal approach of
theorem proving. We want to prove the following statement for natural numbers.

If we assume x = 0 or y = 0, we can conclude that -y = 0, if «
and y are natural numbers.

There are two cases to distinguish, z = 0 and y = 0, because we assume that
only one of them has to be true.

1. If we assume y = 0, we can replace y by zero in x - y = 0, and we obtain
-0 = 0. By definition of the multiplication of natural numbers, we know
that a - 0 = 0 is true for every natural number a.

2. If we assume = = 0, we can replace x by zero in x - y = 0, and we obtain
0-y = 0. Because we know, that a-b = b - a in the context of natural
numbers, we are allowed to rewrite the problem as -0 = 0. In the same
way as we do in case 1, we conclude this is true.

Most mathematicians would accept such a proof, because we use a precise lan-
guage and note things properly. However, we don’t use any convention that
would help to guarantee correctness. We rely on the fact, that a person can
understand and verify the proof.

2.2.2 Formal Proving

As mentioned before, mathematicians do not prove theorems formally. This
does not mean, that their work is incorrect. They just omit steps, because it’s
easier this way to concentrate on the problems of their domain.

However, we want to execute proofs mechanically. In consequence, we don’t
omit, intermediate steps. In order to show the difference, we prove the sample
from section 2.2.1 again, this time in a mechanical way. First of all, we write
the proof goal in a precise way, using first order logic.

Ve e NVy e Nz =0Vy=0=2-y=0)
Let’s decode this expression. Every notation we use is explained below.

Vo € NVy € N(...) The phrase Vx € N means, that x is an arbitrary
natural number. We can read it as” for all z, x being
an natural number”. This operator belongs to the
group of the quantifiers. We quantify y in the same
way, because we want to say that both are arbitrary
natural numbers.

Xy =0k true

54) —
x,=0~0=0 Vo=0+ true
5.3) 6.3
x,=0F y,,0=0 =0~0=0
5.2) 0 Yo 6.2) Yo
x,=0~0-y,=0 =0+ x,-0=0
5.1) 0 Yo 6.1) Yo 0
4 X =0k x,°y,=0 Yo=0F x4 y,=0
3 Xo=0Vy,=0F x,-y,=0
2) Fx,=0Vy,=0=>x,y,=0
y FVyElN(xOZO\/y:O:xO.y:())

FVY xeNVY yelN(x=0V y=0=x-y=0)

Figure 2: Formal proof of Ve e NVy e Nx =0Vy=0=z -y =0).

.= We have to decompose the expression x = 0V y =
0 = z -y = 0 in which = is the operator with the
highest priority. On the left hand side of the arrow
is premise, on the right hand side the conclusio. In
natural language, we might say "if t = 0V y =0 is
true, we can conclude that x -y = 0 is also true”.

LV x = 0V y = 0 means that at least one of the two,
r =0 and y = 0 is true. It corresponds to term ”
or” in the English language.

For proving a goal, we will use in this thesis the sequent calculus. The
same calculus is also used by the KeY system. The proof goal and any other
intermediate results of proof steps have always the form of a sequent.

T, list of hypothesises I list of goals

The symbol F is also known as the sequent symbol, the list of hypotheses as
antecedent, the list of goals as succedent.
For the investigated example, we can write the proof goal below.

PEVYzeNVyeNz=0Vy=0=2-y=0)

In our example, the list of hypothesis is empty. As we will see below, all
axioms on natural numbers ? that are necessary to prove the goal are encoded
by the proof rules we use.

We can transform the proof goal by applying proof rules. In general, such
a transformation should make the remaining goal simpler. Certain transforma-
tions can split the proof by generating more than one sub-goal. Therefore, the

3An example of such an axiom is the fact, that multiplication of any number with zero
results to zero.

final has the form of a tree, a proof goal on every leaf. The initial proof goal
is proven, if every leaf of the corresponding tree is equal to true. The art of
formal verification consists in applying the proof rules leading to success. Figure
2 shows a complete proof tree for the example of this section.

Every rule can be expressed, using the following, formal notation. If we can
match the current goal with the expression below a separator line, it is possible
to transform it into the expression above the line.

In order to keep the rules flexible we use the two wildcard symbols. T" denotes
an arbitrary list of hypothesises, A an arbitrary list of goals.

In the following, we explain the meaning of every rule application on figure
2. Notice that there is a huge set of such rules, that we don’t introduce here. A
systematic introduction into the field can be found in [13]. We give an informal
and the formal description of each rule we apply.

THAlx/sk],A
1, 2) all right We can transform Vaz € NA, FFV@EZ—/I\?/}’A
by substituting x is with new term. We ’
denote this term by sk, because it is often
called Skolem term. *
3) imp right We get rid of the arrow, by %

moving the expression on its left-hand side
(premise) to the hypothesis list. The ex-
pression on the right-hand side (conclusio)
remains within the conclusions to prove.
This step moves the assumptions about z

and y explicitly into the list of hypothesis.

. . INAFA T BFA
4) or right Because we have an expression T.AVBFA

containing an or-operator in the hypothe-
ses, we must split the proof. Both cases,
x =0 and y = 0, have to be treated sepa-
rately.

I',a=bFBla/b],A
5.1,6.1) apply equality = -y can be replaced by 7%@:1)%

0 -y, because x = 0 is a hypothesis.

TFA(b-a),A
5.2) mul comm 0 -y can be exchanged with FFAET-Z;’A
y - 0. We do this, because the following ’
taclet is defined this way.
I'Bla-0/0],A
5.3, 6.2) times zero y -0 is equal to zero by defi- I‘I[—aT,/A]’

nition of the multiplication. -0 = 0 can

be replaced by 0 = 0.

. . T'Htrue,A
5.4, 6.3) equal literals A claim of the form a = a TFa=a.A

is always true.

4We use the notation Bla/A] to express, that all free occurrences of the variable a in B
are replaced by A. An occurrences is free, if the variable is not quantified.

The formal procedure causes more work, but has the advantage that it can
be done mechanically, sometimes even automatically by a computer. We don’t
use hidden assumptions, at the cost of a detailed notation.

2.2.3 Dynamic Logic

So far, we did not touch the field of software verification by theorem proving.
The key to this technique is dynamic logic[3]. It allows to use the power of the
classical approach for proving program code. For that purpose, we introduce a
new symbol, the so called diamond “< { } >”. Enclosed by that gem, we can
write the program code to prove, and behind it the postcondition to satisfy. We
rewrite the division function of section 2.1 in the following way, using dynamic
logic.

FVaL:aLEN:>VbL:bL€N,bL7§O
=

{a=ar}{b:=0br} <{c=a/b;}>
(c-bL:aL\/c-bL:aL—l)

Because program variables are integers by definition, we allow in the post-
condition the case of a round-off error explicitly. A very important point is
the distinction between logical and program variables. Using logical variables
(denoted by an L-index here), we can define the precondition. By the mean
of the so called updates, the program variables are initialized using the logi-
cal variables. Updates are enclosed by brackets. It is possible, to apply proof
rules on a program enclosed by the diamond. Changes on program variables are
tracked by the updates, which represent the current state of a variable. When
the program has been rolled out completely, we assign the actual values of the
program variables to the variables in the postcondition. The remaining proof
goal is a first order logic expression without a diamond operator. Given the
program satisfies the contracts, it is possible to show correctness using Logic as
introduced in section 2.2.2.

2.2.4 KeY

KeY is a theorem prover suite, supporting a subset of the JAVA language. The
exact specification of the subset is given in [6]. Three groups at the universities
of Karlsruhe, Koblenz-Landau and Chalmers are developing the system. It
provides an integration in Borland’s Together CASE tool. KeY has a graphical
user interface, that helps the user to execute a proof (see figure 3).

Proof rules are encoded as taclets in KeY. New taclets can be introduced by
developers, as well as by the user. The asset of the taclet system is its flexibility.
Basically, there are two possibilities on how to apply proof rules. The user can
apply taclets by hand, using the interface. An automatic mode is available, too.
The mode does not provide entire proof strategies, but it relies on heuristics.

File Yiew Proof Options Tools Help

: Simple JavaCardDL without Autoresume S
> cxp:nding loops and method bodies * & &, Run Simplify |5 Goal Back 0 ﬂﬂ@
rTasks : rCurrent Goal
Emv. with no model #1 | z1pre.o »= 0 & z2_pre_0 = 0,
R debug.key.proof || Wforall int z2@gre; =z2@8pre * 2 = 4
| ===
{zli=z1l pre 0,

T 22:m22 pre 0}

Proof : while ¢ z1=0) {

rProof : z1--;
3 Proof Tree : z2=zr1;
1:all_right : while { z2=0 3 {
2:Update Simplification : z2--;
3:all_right 1 T
4:irmp_right : 1
5:and_left : T (210 & 22 = O)

& G:0PEN COAL

Kﬁ)’ Integrated Deductive Software Design: Ready

Figure 3: Interface of the KeY System.

The heuristics are powerful, but they show weaknesses, if quantifiers are in
use. This is not amazing, because theoretical problems exist related to auto-
matic solution-finding of quantified proof goals. Another problem for the heuris-
tics are loop constructs in programs. The automatic mode is only successful, if
the number of loop-iterations is predetermined in the program. However, in case
the heuristics fail, the user can still try to solve the problem using the interface.

The theorem prover Simplify is integrated in KeY. Simplify is specialized on
arithmetic problems and first-order logic. It’s fully automatic and may help the
user to close a goal, even if the heuristics fail.

The interface of KeY is composed of multiple panes. It shows the actual
goal to prove, as well as an overview of the whole tree. Very often, proofs and
the corresponding trees get complicated. Therefore, the interface provides the
possibility to expand and hide subtrees.

In figure 4, we compare the proof tree of KeY with the classic tree we elab-
orated at section 2.2.2. For detailed information on KeY, we recommend [10].

2.2.5 Taclets in KeY

The goal of this section is to give an overview to the reader on the concept
and the usage of taclets. To illustrate this, we revisit the example we already
proved twice in this chapter. We don’t give the entire solution, but we present
the most interesting steps. First, we have to create a KeY problem file. Here is
its content.

10

Proof Tree

1:all_right
9 X, =0t rtrue 2:all_right
_ — _ imp_right
8 X,=0~0=0 13) Yo=0Ftrue 4-or |eft
x,=0F y,-0=0 =0~0=0 @ Ex0=0
7) 20 Yo 12) Yo S:apply eguality
5 x,=0F 0-y,=0 6 Yo=0F x,-0=0 Fimul_cormm
)) Bitimes_zero
4) Xy =0k x,-y,=0 Yo=0F x,-%,=0 @ equal_literals

10:close_byw_true

=0V y,=0F x4y,=0
3) o Yo X0 Yo §& 11 Ciosed goal

2) F x,=0Vy,=0=x,y,=0 G Ev0=0
& apply equality
j FVYyeN(x,=0Vy=0=x,y=0) 12:times_zero
13 equal_literals
FVYxeNVYyeN(x=0VvVy=0=x-y=0) 14:close_bwy_true

§& 15.Closed goal

Figure 4: Classic proof tree vs. overview tree in KeY. The numbers correspond.

\problem
{
\forall int x;
\forall int y;
(
x=0 | y=0 -> xxy = 0

The all_right Taclet The aim of the taclet is to eliminate the V-quantifier.
The basic idea consists in replacing an all-quantified variable x by an xg, rep-
resenting a new constant symbol having the same domain as x. The taclet is
encoded in the following way in KeY taclet syntax.

all_right
{
\find (==> \forall u; b)
\replacewith { ==> {\subst u; sk}b }
}

The ==> symbol is equivalent to F, introduced in section 2.2.2. The find-
keyword specifies the situation in which the taclet can be applied. all right
looks for an expression b in the succedent, quantified by a variable u. If the
matching engine finds such an expression, it can be replaced by the expression
blu/sk]. In other words, the subst-keyword indicates a possible replacement of
u by sk.

If user input is demanded in a taclet, the interface provides a pop up window
to specify the input. In figure 5, we show the impact on the goal and the situation

11

==>
\forall int x;
\forall int y;

Proof Trae
1.all_right
2:all_right
Zlimp_right ==>
or_left \forall int y;

(

(
x=0 | y=0 -> x*y =0
)

x_0=0 | y=0 —> x_0*y = 0
)

Figure 5: Application of the all_right taclet.

Proof Tree
L:all_right
2:all_right
2:imp_right

[Torter

==> x_0=0 | y_0=0 -> x_ 0*y_0 =0

x_0=0 | y_0=0 ==> x_0*y_0 =0

Figure 6: Application of the imp_ right taclet.

in the overview tree. Notice, that we instantiate z by = 0 in our example.

The imp right Taclet The aim of this taclet is to move the premise of
an implication explicitly to the list of hypotheses. Its representation in taclet
syntax is

imp_right
{
\find (==> b -> c)
\replacewith {b ==> c }
}

The lookup pattern is ==> b— > ¢, the replacement option b ==> c¢. The
impact of the rule application on the goal and on the tree is given in figure 6.

The or_left Taclet The taclet can be applied, if a term in the hypotheses
contains an or-operator as top-level operator ®. In such a situation, the proof
can be split into two sub-goals, one for each sub-term of the term containing
the or-operator. The corresponding taclet is encoded in the following way.

5A top-level operator is the operator, that has to be evaluated first in a term, given the
operator priorities. In usual arithmetics for example, the top-level operator of the expression
a+ b - cis the addition-symbol.

12

[_4orleft]

x_0=0 | y_0=0 ==> x_0*y_0 =0
[=:anply equality]
Fomul_comm
B:times_zern % 0=0 ==> x 0%y 0 = 0

S equal_literals -

10:close_ty true

& 11:Closed goal
@ Eyv.0=0
[&:annly equality]

y_0=0 ==> x_0*y_0 =0

Figure 7: Application of the or_left taclet.

or_left
{
\find (b | ¢ ==>)
#c { \replacewith {c ==> } };
#b { \replacewith {b ==> } }
}

The new property of this taclet is, that a rule application may create two or
more subgoals. The #-symbol allows to specify a name for the sub-goal. Here
the name is simply the content of b and c¢. Figure 7 shows the impact of the
taclet application.

2.3 Model Checking
2.3.1 Introduction

For each program, we can define a state space. A state describes the status
of the program execution at one moment. The status can be expressed by the
actual location in the code, and by a set of assertions on the program variables.
Such an assertion is an abstraction of the concrete system status. All possible
states together form the state space. The execution of a program can be seen as
a trace in the state space. If control structures such as loops are in the program,
there may be an infinite number of traces. However, techniques based on the
state assertions allow to keep the state graph finite.

Model checkers assemble all possible traces of the program in a graph. Given
such a graph, it’s possible to check if a trace leads to a dangerous state, or if
the program is safe in the sense, that the error state is not reachable (see figure
8).

Let’s consider as an illustration a dangerous state in a UNIX system.

e The current code location is the beginning of the routine, granting root
access to the user.

e The assertions on the program variables indicate, that the root password
has not been specified.

13

SEURN

dangerous state unreachable dangerous state reachable

Figure 8: Two state space diagrams. The dangerous state is represented by the
skull.

If the reachability analysis does not find such a state on one of the possible traces,
we can guarantee the program is safe in the sense, that the root password is
always specified when root access is granted.

2.3.2 The BLAST Project

BLAST (Berkeley Lazy Abstraction Software Verification Tool) is a model
checker engine written in Ocaml. The target programming language of the
system is C. The simplest possible use of BLAST is the check of reachability of
a specific error label in the source code. Additionally, a specification language
exists. The goal of that language is to allow separation of specification from the
source code. The interested reader is referred to [5] for detailed information.

2.3.3 How BLAST works

Control Flow Automaton (CFA) BLAST doesn’t work directly on the
code, it transforms the source first into the CFA. A CFA is an automaton,
representing the control flow of the program. The control flow shows in which
order the program locations are executed. A program location is basically a
line number, but it’s important to notice the instruction on that line has not
been executed so far. It refers to that moment in the execution, just before the
corresponding statement is executed. The CFA relates the program locations
by arrows. An outgoing arrow means that from the current state we can go to
the state the arrow points to. Arrows are annotated by the executed action at
the corresponding code line. If the program location represents a condition test,
for example an if-construct, the control flow is split. Arrows are annotated by
predicates, indicating if the condition evaluates to true or to false. If the condi-
tion is not atomic®, we have more than just one state in the automaton for that
condition evaluation, because BLAST treats the atomic conditions individually.
On the other hand, BLAST resumes a sequence of basic instructions’ by one
arrow. We give an example of a CFA construction in figure 9.

6In our context, atomic means that the expression does not contain the or-operator and
the and-operator.
7A basic instruction is always an assignment in our context, for example i =i — 1.

14

function decrement (int 1)

{

precond

postcond

source code CFA

Figure 9: Source code and CFA of a simple decrement C program.

Abstract Reachability Tree (ART) The basic concept of the reachabil-
ity analysis is the ART. Contrary to the CFA, the ART is a tree and not an
automaton. It contains all possible execution traces of the CFA.

Every node of the ART can be annotated by an assertion on the program
variables, representing the environment at this moment.

A leaf of a complete ART satisfies one of the following conditions.

1. It corresponds to a final state in the CFA. (such as exit in figure 9)
2. Its assertions on the program variables are contradictory.

3. It has the same status like an internal node (same CFA state, same or
weaker assertions).

The second condition reflects the fact, that we never go in a contradictory state
if we execute a program on a computer.

ARTs may remain finite. If a node represents the same program location
as an internal node, and has the same or a weaker environment, the remaining
trace is the same as for the internal node and can be ommited. In this paper,
we use dashed lines on our figures to represent this.

Because of the third condition, an ART may remain finite, even if an infinite
number of traces exist. If we unroll the CFA without that rule and the program
contains a loop, the length of some traces would grow towards the infinite.
However, the rule exists. BLAST notices, if the leaf’s status is equal to the
status of an internal state. In such a situation, the continuation of the trace
may already be covered by an internal state.

The final ART is constructed iteratively. The CFA is unrolled until an error
state is reachable, or until the ART is complete. If an error state is reachable in
the ART, an abstraction refinement based on Craig Interpolation is launched.
Two outcomes are possible. The error may represent a real error, or it has

15

precond

)/

Figure 10: First ART of the simple decrement problem.

occurred because of an insufficient abstraction. In the later case, the Craig
interpolation allows to enhance the abstraction by delivering better environment
assertions.

Craig Interpolation If the error state is reachable in the ART, a refinement
procedure tests by counterexample guided abstraction refinement, if the trace is
feasible. It is possible, that a real error has been found, or the trace may exist,
because the abstraction ® is not good enough. The refinement states that the
error is real, or it finds a better abstraction that excludes the actual error trace.
After the refinement procedure, the tree is reconstructed, because changes of
assertions may also change the shape of the tree. Given the new tree, BLAST
starts a new iteration of the procedure we described in this paragraph so far.

The heart of the refinement routine is its ability to make the current abstrac-
tion more precise. It is implemented in BLAST by Craig’s interpolation [7].
is a Craig interpolant of two formulas p~and of ¢, if the following conditions
are satisfied.

1. o~ AT is unsatisfiable

2. o7 =20

3. 1 AT is unsatisfiable

4. 1 only contains symbols common to ¢~ and T

Given an appropriate logic theory, such interpolants always exist. BLAST fol-
lows the error trace step by step, by adding the predicates found on the arrows

8In this context, abstraction denotes all assertion on program variables. The term is
appropriate, because it expresses the fact that the current assertion might not be as precise
as possible.

16

to ¢, the so called path formula. ™ denotes the predicates on the rest of the
path to the error label. In order to respect the effect of assignments, BLAST
uses the single assignment form® . At every state, BLAST applies Craig inter-
polation, if ¢~ A ¢ is unsatisfiable. The result of the Craig interpolation v is
added as new assertion on the state, where contradiction was found.

Example Figure 10 contains the ART, when a first path to the error state
was discovered. Two state annotations can be found by Craig interpolation.

Annotation for the loop-condition State If we follow the error trace
(bold arrows) in figure 10, we find at the first state that ¢~ is 4 > 0 and ¢7 is
1 <0 A #0. The Craig interpolant v is ¢ > 0, because

1.1>0=17>0
2. 1> 0Ai<0A7#0 is unsatisfiable

3. ¢ only contains symbols common to ¢~ and ¢t

Annotation for the Postcond State We follow the error trace, by tak-
ing the step from the loop-condition state towards the postcond state. We find
that ¢~ is i > 0A4 < 0 and @7 is 4 # 0. The Craig interpolant 1 is i = 0,
because

1.i>0ANi<0=1i=0
2. ¢ =0 A1 # 0 is unsatisfiable

3. % only contains symbols common to ¢~ and T

The current ART is modified by inserting the two assertion ¢ found. The
error trace contains a contradiction, which means that the this path is not
feasible. A new, refined ART (figure 11) is the result.

The error state is still reachable, by crossing the loop once. Again, by
applying Craig interpolation, we find a predicate, allowing us to say that the
situation after the loop is equivalent to the situation before the loop. This
observation leads to the final ART in figure 12.

BLAST refines iteratively the ART. Two '° events may stop that process.
Either a reachability of the error state can be excluded, or a feasible trace to
the error state is found.

9 An assignment can change the value of a variable z, and predicates concerning z before
and beyond the assignment don’t refer to the same x. Therefore, we give an index to z, which
is changed everytime something is assigned to x. A path formula like z > 0Az =z—1Ax =0,
would be written as 1 > 0 Axg =21 — 1 Az = 0, in single assignment form.

10Technically, there exist a third option. BLAST may also terminate because it does not
find new predicates.

17

precond

i=0

loopcond ——— | postcond

iz0 i=0

i=0 i#0

Figure 11: Second ART of the simple decrement problem.

precond

.

i=0

» loopcond —— | postcond

i=0 i=0
i>0 i=0 i#0
)/
o0y o)

\ /

— loopcond

iz0

Figure 12: Final ART of the simple decrement problem.

18

2.4 Partial and total correctness

Two levels of correctness are usually distinguished in formal verification, partial
and total correctness. Partial correctness consists in demanding, that the post-
condition is never violated. Total correctness additionally imposes the program
to terminate. If BLAST shows that an error state is not reachable, this doesn’t
tell anything why this is the case. It is possible that just before the error state
an infinite loop blocks the program execution. Therefore, the postcondition is
just a safety condition in the context of model checkers. That’s why we speak of
partial correctness, meanwhile we denote by complete correctness, if termination
is shown by theorem proving.

Dynamic logic encodes total correctness by the diamond operator (see section
2.2.3), partial correctness by the box operator “[{ }]”.

19

3 Discovering&Exploiting Invariants

3.1 Overview

The advantage of the model checker BLAST is the fact, that no user interac-
tion is necessary when proving. KeY, an interactive theorem prover, provides
automated heuristics, but they usually fail when working with loops.

We start BLAST first, if successful we look for invariants and feed the KeY
prover with them. This approach can also be applied to subgoals in a proof.
Invariants can be applied in the KeY system, using a special proof rule. In
contrast to BLAST, we can prove total correctness in KeY. In this way, we
combine the power of KeY with the comfort of BLAST.

Please note that in the following, we will sometimes use the abbreviation
conventions in figure 13.

Symbol Meaning
¢ precondition
P postcondition
~ loop-condition
w invariant
X variant

Figure 13: Abbreviation symbol table.

3.2 Loop Invariants

A loop invariant is basically an assertion on the program variables, being true
when the condition of the loop is evaluated. During the execution of the body,
the invariant is not supposed to be true. The invariant assertion is an important
information for the formal proof of a program containing a loop. In fact, we say
it is strong enough, if it is possible to show correctness of the postcondition by
combining the invariant with the negation of the loop-condition. The simplest
invariant is the assertion true, but in almost all cases, this is not enough to show
the postcondition. Hence, the challenge is to discover invariants being strong
enough.

3.3 Problem Blueprint

To keep the ideas simple, we define the problem to solve. We consider problems
containing one loop. Nested loops or sequences of loops are not allowed so far.
A problem blueprint for KeY and BLAST can be found at figure 14.

3.4 Discovering Invariants in ARTSs

This chapter is dedicated to the art of finding invariants in ARTs. We focus
here on problems respecting the defined blueprint. A precondition is imposed,

20

if (precondition) precondition

{ ->
while(loopcondition) {updates}
{ \<{
body while(loopcondition)
} {
if (!(postcondition)) body
{ }
ERROR: N>
3 postcondition
BLAST style KeY style

Figure 14: Problem blueprint in BLAST and in KeY style. No other loop is
contained in the body.

and after the execution of the loop, a postcondition is demanded. Using an
example (see figure 15), we present our idea on how we find the invariant. The
corresponding ART can be found at figure 16. We simplified the ART diagram,
such that there are only states important for the control flow.

In order to be sure that no path leads to the error, BLAST generates all
possible traces through the body of the loop. If we look at the ART, we can
see that first the preconditions are processed. If they are violated, we do not
say anything on the program and its postcondition. In the contrary case, we
enter the loop a first time. It is not possible that we don’t even enter once,
because by the precondition we know that z1 > 0, initially. Then, z1 and 22
are decremented until one of them is zero. If z1 is zero, we exit the loop and
BLAST guarantees, that the postcondition is satisfied. If z2 is zero, we go on
and decrement 23 to zero. Afterwards, z1 is finally decremented to zero, and
the program terminates. An interesting point is, that BLAST does not encode
in the ART that 23 is decremented first, and z1 afterwards. Although this is
the case in the real program, BLAST is too lazy to check that out. In fact, it
guarantees already at this abstraction level, the postcondition is never violated.
We stated earlier, that an invariant should

1. always be true before the loop-condition is checked.
2. be strong enough to prove the postcondition.

If we look at the sample ART, we can see that a candidate for the invariant must
be the expression apVay VasVas. It satisfies the first invariant criterion, because
BLAST generates all possible traces at a certain level of abstraction. Further,
we know that the a; are true at the corresponding state on the trace. Because

21

Precondition: 21 >0A22>0A 23>0

while (z1 > 0)

{
if (z2 > 0)
{
zl--;
z2--;
}
else if (z3 > 0)
{
z3--;
}
else
{
zl--;
}
}

Postcondition: 21 =0A (23 >0V 23=0)

Figure 15: Example problem for invariant discovery.

we connect the a; by an or operator, we can conclude that every time before the
loop-condition is evaluated, one of the «; is true. The second invariant criterion
is satisfied under the assumption, the annotation of a state resumes all important,
information so far. We discuss this in detail in section 3.7.1, here we assume it
is true. A good way to understand is to go backwards on the trace of the ART.
Let’s start at the postcondition evaluation. Here, BLAST can guarantee that
the postcondition is true, otherwise the refinement would not have stopped or
an error had been found. By going a step backwards, we see that the negation
of the loop-condition =y has been added to the path, before the postcondition
check. Now we are for sure at a state before the loop-condition step, because
our problem blueprint does not allow to have other program statements behind
the loop. We can see, that the state is annotated by «;, hence a; A = is strong
enough to show the postcondition is true (remember the assumption, that all
important information is resumed in an annotation). We should also have a
look at the case of «g, at the beginning of the trace. The postcondition is out
of reach. This is not a problem, ag A =y is strong enough too, because it is
contradictory and does imply anything by definition.

In general, we state the invariant is ag V ... V a,, if we have n loop-condition
states and if we denote their assertion by a;. Loop-condition states that are leafs
can be ignored, because their assertions are contained by definition in internal
nodes. In section 3.7, we discuss why this invariant is strong enough and fulfills
all necessary formal criteria.

22

precond ¢ | loopcond b P postcond
o false
Y
Y
22=0Az3>0 — 2>0,z1—-1,z22—-1
I
A
|
v I y o
[— - — — —>|::| | loopcond P postcond
| o v,
z3—1 |
| [Y
| oy Y | Y
| postcond & loopcond - - = — —‘
¥, x5
|
Y
|
| Y
—— - - -
|
| z22=0Az3>0 22=0Az3=<0 l
Y y I

L] [1] !

zI—1 |

.) J
postcond Y loopcond %

Wy v,
postcond Y,A~w= false ¢:=21>0A22>0A23>0
7, y:=z1>0
w:=z1=0A(z3>0V z3=0)
" w @,:=23>0AzI1=0
@,:=23>0AzI=0
A J Yy:=23=0Az1=0
error oy =z1>0Az3>0
Jalse o, :=(z1<0A23>0) V(21> 0Az3>0)
,:=(2/>0A22<0A2320)
0,:=(21=0A22<0Az3=0)V(2/>0Az2<0Az3=0)

Figure 16: This is the simplified ART of the example problem. ¢ is the pre-
condition, v the loop-condition and % the postcondition. The «; denote the
conditions true before the loop-condition is evaluated. We use shorthand for
the postcondition part of the ART, detailed in the left legend.

23

o(ng, ..,nr)

=

{mo = fo(no, ..,nr)} .. {mp = fp(ng, ..,nr)}
< {while(y(mo, .. ,mp)){body}} >

¢(m0, .,mp,Ng, .. ,nL)

Figure 17: Problem blueprint in formal dynamic logic. We assume, that no
other while loop is situated in the body.

3.5 Variant

The variant is a function of the program variables, having the following proper-
ties.

1. At each iteration step of the loop, the variant gets smaller.

2. If the variant is smaller or equal to a fixed n € Z, the loop-condition
evaluates to false.

The first property ensures, that the execution of the loop does never freeze.
The second property ensures the existence of an interval I = (—oco,n|; n € Z,
where the loop-condition is false, if the variant is in I. Both properties together
guarantee termination, because a strictly decreasing function reaches such an
interval I necessarily.

For the moment, we leave the discovery of the variant as an unsolved problem
to the user. Note that the BLAST proof does not contain information that could
yield the variant. This is because BLAST can ensure, that the postcondition
is never violated, but it does not tell something about termination explicitly.
We conclude, that an invariant always can be found in the ART, because this
concept is related to the correctness of the postcondition. Further, we conclude
that the variant is not necessarily in the ART, because the model checking
approach of BLAST does not cover termination.

3.6 The Invariant Taclet

KeY contains a taclet that allows to prove while loop programs by using the
invariant [4]. It’s our interface to use the information from the BLAST proof,
within KeY.

The invariant taclet is well appropriated for our approach. The tasks of
proving termination and correctness of the postcondition are separated, by the
concepts of the variant and invariant.

The problem blueprint from figure 14 would look like the statement shown
in figure 17 when reformulating it in dynamic logic. We assume the problem
has L logical variables, denoted by ng up to ny. Additionally, we assume there
are P program variables, denoted by mg up to mp. The program variables are
initialized by functions of the logical variables, denoted by fy upto fp.

24

invariant initially valid Fo=w
body preserves invariant + w = (v = [body|w)

variant decreasing FwAx>0=v=<body > (x < xQpre)
termination FoAx <0= -y
use case FwoA—-y=0

Figure 18: The five sub-goals of the while invariant taclet in KeY.

A problem of the form as defined in figure 17 can be solved by the invariant
taclet of KeY (see figure 18). Basically, the user of KeY must deliver two
informations for that proof rule. First, there is the invariant, we discussed
already in the previous sections. As the second formula, the taclet needs is the
variant, denoted by x in this context.

In the next five sections, we explain the sub-goals of the invariant taclet,
introduced in figure 18.

3.6.1 Invariant Initially Valid
Fo=w

The goal demands, that a given invariant w is valid, when the loop is entered
the first time. Logically this means, that the invariant is a consequence of the
precondition ¢.
3.6.2 Body Preserves Invariant

Fw= (v = [body|w)
This goal exists, because it guarantees that w is a real invariant. We assume
the invariant w and the loop-condition v are true. The goal demands, given the
assumptions, that if the body is executed, w remains true.
3.6.3 Variant Decreasing

FwAx>0=v=<body > (x < xQpre)
The goal here is to ensure, the variant decreases at each iteration. In other
words we prove, that by every possible execution of the loop body, we do a step
towards the termination of the loop.
3.6.4 Termination

FoAx<0= -y

To show termination we are supposed to prove, given the invariant is true and
the variant smaller or equal to zero, the loop-condition is false. We stated in
section 3.5, that x must be smaller or equal than an arbitrary n € Z, but

25

here the taclet imposes n to be zero. This is not a principal problem, because
we can transform a variant x, suitable for n to a variant yo suitable for 0 by

X0 = Xn — N.

3.6.5 Use Case

FwA—y=¢

This claim goal ensures the invariant to be strong enough to show the postcon-
dition. As already mentioned at section 3.2, an invariant is strong enough, if in
combination with the negation of the loop-condition, it can be used to show the
postcondition.

3.7 BLAST’s Invariant in KeY

We show in this section, why an invariant of the form of section 3.4 can be
applied successfully using the taclet of section 3.6. The application of the taclet
creates five new sub-goals. For the simple examples we investigated, the goals
are simple enough, such that the heuristics of the KeY system can solve them
automatically.

3.7.1 Relation between State Annotations in ARTs

We introduce here an important property of state annotations in an ART, be-
cause it helps to understand the correctness of the BLAST invariant.

We start with an observation at an arbitrary ART state, annotated by «;.
From here, we walk along one specific path, by adding the predicates and up-
dates p; to the path formula. The formula is constructed using the single as-
signment form (see section 2.3.3). After n steps, we arrive at a state annotated
by «; (see figure 19). BLAST implements Craig interpolation in a way, such
the following statement is true.

afath Apo A .. ANpn = ozfath

The path-index means, that the a-statements are written by variables indexed
by the single assignment procedure. In BLAST, the Craig interpolation pro-
duces results with indexed variables such as z; < 4 A yo = 4, but the final
state annotation is x < 4 Ay = 4. We distinguish this two notations by the
path-index, such that we can write the property properly.

3.7.2 Equivalence of Symbolic Program Execution and the Path For-
mula

We can combine the model checker and the theorem prover paradigm, because of
the equivalence between path formula and symbolic execution. The implication
©~ = 1 of the Craig interpolation can be used by the theorem prover. If the
theorem prover executes symbolically the path represented by ¢~, we know

26

""""I"B&*’<:>""l""%‘gl"‘ib'"'.'

XGAPON AP, =&

Figure 19: The annotation of a state resumes all important information so far.

z=5

Z#5

precondition: true |

if (z !'= b)

{ I
z = b; —

}

z =2z -1;

postcondition: z — 4

e‘xit

Figure 20: Toy problem and its ART.

that ¢ can be concluded. An assignment in symbolic execution changes the
update values of the variable on the left hand side of the assignment. This
allows the prover to keep track of the actual value of the program variable in
the logic context. The same effect has the single assignment policy. For every
assignment, a new instance of the variable is introduced, representing the actual
value. A predicate on the path is introduced directly with the actual instances
of the variables in BLAST. In KeY, the predicate is added to the hypotheses
using the actual update values.

The following example may help to fix the idea. Let’s have a look at the toy
problem and its ART in figure 20. We are interested in the bold trace of the
ART. The trace formula up to the postcondition state is

20£ZDNz1=0ANzo=2z1—1=20=4

The annotation z = 4 is sufficient to conclude the program is safe. We demon-
strate now, how BLASTs trace formula can be found in the equivalent KeY
proof. Initially, we assume that z is equal to an arbitrary z.

{z = 2y <{if (z'=5) {z=5;Yz=2z-1; }>z =4

27

The first rule application concerns the if-statement. We split the proof into two
sub-goals, corresponding to the possibilities that z £ 5 and z = 5. The same
fact is represented by the two outgoing arrows from the start-state in figure 20.
We consider here the case z # 5, because it corresponds to trace we have chosen
for the path formula.

2’0#5

==>
{z =20y <{z=5;z=2z-1; }>z =4

The second step treats the assignment z = 5. KeY would by default change the
update directly to {z := 5}. We use a less direct procedure for our demonstra-
tion. We introduce an intermediate logical variable z;.

2’0#5, 2’1:5

{z =21y <{z=2-1; }>=z=4

Instead of assigning the value 5 directly to z, we use the new variable z;. In
the hypotheses, we specify z; = 5. This ensures that we do exactly the same as
KeY does originally. We proceed in the same way with the next assignment.

20755, 2125, 2’222’1—1
==>
{z =2} <{}>z=4

The diamond is empty, because the program has been executed completely.
Therefore, we can remove the diamond and assign the actual update values to
the program variables to the postcondition.

At this stage, the remaining goal is equivalent to the path formula, because
we introduced variables to fix the update values. We conclude that a state
annotation somewhere on a trace is also true at the corresponding moment at
symbolic program execution.

3.7.3 Invariant Discussion

We claimed in section 3.4, that ag V ... V «, is a valid invariant for a problem
respecting the blueprint in figure 17. In this section, we show that the invariant
does fulfill the formal requirements of the while invariant taclet. We discuss for
that reason the three sub-goals, concerning the invariant. Formally, we replace
w, representing a general invariant in the taclet, by our invariant ag V ... V .
We can show by using the properties introduced in sections 3.7.1 and 3.7.2, that
our invariant fulfills the taclet’s requirements.

28

Invariant Initially Valid
I'oFagV ... Va,

The invariant is supposed to be true, given the preconditions as hypothesis.
Let’s denote the assertions of the ART nodes, corresponding to the moment we
enter the loop the first time, by a;,. From Craig interpolation we know, that

- =1,

given ¢~ is the path up to a state and @ is the assertion on the state. From
this observation, we can conclude that

D = Qinit-

This reflects the fact, that a path across the preconditions leading to one of the
Qinge exists, for every initial loop-condition state.

Body Preserves Invariant
T,apV ... Vag,vE [bodylagV ... Vay,

By construction of the invariant, we are supposed to show preservation, for each
«; given as hypothesis. More formal, the proof of the goal above is equivalent
to the proof of n sub-goals, of the form

T, o,y [bodylag V ... V a,.

In order to be more precise, we have to mention the updates preceding the
[body]-statement. We denote in the following the variables modified in [body] by
m}”"di, the others by mj"”“. In order to represent an arbitrary situation of loop
execution, the taclet introduces a new logical variable n7“* for each modified
variable. The sub-goal above can be written as the following statement, by
introducing that notation (remember also, that f; is the original initialization

of the program variable m;).

I‘, o [m;nodi/n}zew]’ ,y[m;nodi/n;}ew] [

{mrodt .= niew} {mSonst = fi(no, ..,nr)}bodylag V ... Vay

All variables modified in [body] have to be initialized by a new logical variable.
Because the invariant and the loop-condition + is specified in terms of program
variables, we also replace the occurrences of the program variables by the cor-
responding logical variables in these terms. The aim of the replacements and
the update modifications is to guarantee, that we are in an arbitrary iteration
of the loop’s execution.

We explain in the following, why a sub-goal of this form is true. Let’s revisit
for that purpose the example of section 3.4. We show again the same ART
here, but we use another layout to point out the idea (see figure 21). The states

29

are grouped in three zones. One zone represents the body of the loop, one the
loop-conditions and one the postcondition checks. The loopbody zone may be
very complicated, and there may be much more loop-condition states, but the
zones still can be identified. Figure 22 resumes the three possibilities on what
may happen to a trace entering the loop-condition body.

Trace crosses Body The ART trace outgoing from the loopcond-zone
towards the loopbody-zone comes back to the loopcond-zone (left and right
diagram on figure 22). Let’s start an observation on state annotated by «;.
We follow a trace through the loop body, by building the path formula p;_;'".
Finally, we arrive at «;. By the property introduced in section 3.7.1, we know
that afath A Dimj = afath. This implication is important, because we know
that we can make a link between the path formula and the symbolic execution
(section 3.7.2). afath corresponds to the hypothesis «; in the goal. The path
formula p;_.; is equivalent to what happens when the corresponding trace in

[body] is unrolled. The Craig interpolation guarantees by the implicated a?ath,
that one of the invariant’s «y, ..., a, is a valid postcondition for the sub-goal.

Trace is Contradictory in Body Further, we discuss the possibility
shown in the central diagram of figure 22. The trace doesn’t cross the body,
because it’s contradictory. Because of the equivalence between path formula
and the symbolic execution, we can conclude that unrolling this trace leads to a
contradiction in the hypotheses. A proof goal having contradictory hypotheses
is true by definition.

Use Case
FkE(agV ... Vag) A—y =1

Because the invariant consists of several sub-terms connected by V-operators,
we have to prove in fact n sub-goals of the form

I'kFoa; A=y =1

In other words, we are supposed to show that each «; is strong enough for the
postcondition. The property, we introduced in section 3.7.1 helps us here. On
figure 23 at the left hand side, the situation is outlined. If we quit the loop, we
follow a trace annotated by —y 2. Because we know that o™ A p_., = 1;'%is
true, we conclude the sub-goal is true by the equivalence of the paradigms
(section 3.7.2). 1); is by definition contradictory to =) and does therefore not

allow a violation of the postcondition.

1By pi_.;, we denote the sequence of steps po A .. A pn, leading from the loop-condition
state annotated by «; to the one annotated by a;.

L21f the loop-condition is not atomic, the path formula from oy to the state before the error
state implies —y by definition.

13We denote the subsequence of the path-formula from «; upto the state before the error
label by p—.

30

A

asipf
puoajsod
A
0
puoadoo|

N

B J S I
@ =< 8

€ |3 - R o - Q@

N K=} = o >

> > I IS

o o o

Vv

(=)

e
[—22'1—[2°0<C?

Yh
puogjsod

A
Ao

%)
puoadooj

A

1—£2

™ I
Q<
I
Bl L
Flg - B8 e - =
=] > ~ N [\
= = Ll — A Il
- (=] (=]
> >
S VAR I o8
v A
<& 2 1 °
8U0Z PU0}SOd au0z puoodoo auoz ApoqdooT

Figure 21: ART of figure 16, using another layout. We use the same conventions
here as for the mentioned figure.

31

|_ -

IJ—_l* ["] loopbody zone
loopcond zone
W W e

Figure 22: A trace into the loopbody zone matches to one of these three cases.

WY, A= false
GATY =P, o, ATy= false

Figure 23: The invariant is strong enough, because each «; is strong enough.

The conclusion remains true, if the postcondition isn’t annotated by ;, but
by false. afath Ap- = false corresponds to a contradiction in the hypotheses

of the sub-goal (see figure 23, righthand side).

3.7.4 Extension of the Blueprint

Up to here, we constrained ourselves to the given problem blueprint. In the
current section, we discuss possible extensions.

Code before the Loop We assume here a problem, where some loop-free
program code is executed, before we enter the loop. Figure 24 gives an example
of such a program. An approach leading to success in such a case is symbolic
execution of the piece of code before the loop. Because of the case distinction,
we get two claims in the example case (see figure 25) . The code executed so far
does influence the preconditions virtually. Because we assign nl or n2 to z1, we
enrich the preconditions by z1 = nl for one case, and by z1 = n2 for the other
case. Having done so, the problems to solve are of the known form, and we can
apply the knowledge of the previous sections.

32

precondition: n1 > 0ANn2 >0

if (n1>n2)
{
zl = nil;
}
else
{
z1l = n2;
}
while (z1 > 0)
{

zl =z1 - 1;
}

postcondition: z1 =0

Figure 24: Loop-free program code before the while loop.

pre: n1>0An2>0Az1=nl pre: n1 >0An2>0Az1=n2
while (z1 > 0) while (z1 > 0)
{ {
zl =z1 - 1; zl =z1 - 1;
} }
post: 21 =0 post: z1 =0

Figure 25: After symbolic execution, two claims in a simple form remain.

Code after the Loop The second extension concerns loop-free code after
the while construct. First of all, we know that the invariant discovered remains
a valid invariant, the code behind the loop does not influence it. Therefore,
we don’t have problems for the sub-claims of the invariant taclet, concerning
termination and correctness of the invariant. More interesting is the use case,
because the application of the taclet does result in a more difficult expression
here. If we formalize the blueprint as in figure 26 on the left, the application of
the while invariant taclet delivers a use case claim as shown on the same figure
on the right. Such an expression does not impose any special problem.

33

precondition: ¢

while (loopcond)

{

body ' wA =~y =< postcode > 1)
}
postcode

postcondition: 1

Extended Blueprint, containing New use case claim. The postcon-
code after the loop. dition must be true, after the post-
code execution.

Figure 26: Extended blueprint and use case claim.

Loop Sequences At first step towards the solution of loop sequences is al-
ready given in the previous paragraph. T' b w A =y =< postcode > 1) is the
use case of such a problem, if we denote the instructions after loop by postcode.
We can apply the taclet a second time, using the same approach on finding
the invariant for the second loop. We do not need to apply BLAST again, all
necessary information is already contained on the first ART. This is granted,
because the invariant of the second loop must also contain the information of
the first loop. We know that for sure, otherwise BLAST couldn’t exclude the
traces to the error state.

Nested Loops The nested loop problem is more difficult, because of the
inner loop. The invariant we find is strong enough for the use case, by the same
arguments we used for the classic case.

The heuristics of the problem prover fail, when proving invariant preservation
of the body. The body contains itself a loop, so it cannot be unrolled simply.
The problem occurs again when we prove the decreasing nature of the variant.
An approach to solve the sub-goals is to get the invariant of the inside loop by
the same mean as for the outside loop and to apply the while invariant taclet.

However, BLAST proofs of nested loops get complicated. Therefore we did
not study this problem detailed.

34

4 Software Documentation

The plugin for KeY we implemented, using the ideas of the previous chapters,
is documented here. First, we present the architecture of the system, in order
to give an overview. We try to show all important steps, such that a complete
picture of the software work-flow gets visible. Second, we will point out some
interesting features of the implementation. The goal is to document how we
used the classes that KeY already provides.

4.1 Architecture
4.1.1 Classes

We introduce and resume all classes of the plugin in this section. A structural
diagram of the situation is given in figure 27. We show all public methods of the
class, in most cases. Notice that this diagram is part of a bigger picture, because
the software is embedded in the KeY system. We only show classes concerning
our plugin. With one exception, all classes are part of the blastapplication
package.

ARTNode This class extends DefaultMutableTreeNode, an element of the
JAVA standard library. All operations we expect of a tree node are already
implemented in DefaultMutable TreeNode. We add only ART specific attributes
and methods. The tree itself is rooted in the class DotFileInterpreter. Ev-
ery node can have an arbitrary number of children. The list of successors can
be extended by the add method. The function getConnectorLabelAt gives the
annotation of the ART transition toward a child.

Blast ApplicationRule This is the main class of the plugin. It implements
the interface BuiltInRule, that allows the programmer to create a super-rule.
Another example of a BuiltInRule is UpdateSimplification, dealing with the up-
dates of the program variables. Because of the interface specification, an isAp-
plicable and an apply method must be provided. isApplicable has the task to
decide if the rule is visible in the context menu (see figure 28) of the user. apply
is called, when the user selects the menu entry of the rule.

The class contains an instance of itself. We add this instance to a LinkedList
in the ProblemlInitializer. We follows this procedure to subscribe the new rule
in the system.

BlastSyntaxer The aim of the syntaxer is simple. BLAST prints out predi-
cates in a certain form, using prefixed notation. Because we want to use them
in KeY, this class implements a parser and translator for such expressions.
The convertCondition method has a string parameter for the BLAST expres-
sion, and returns a string, containing the translation for KeY. As an example,
the expression And[,i == 0,0r[,j == 9,j == 0]] would be translated into
i=0&(j =9|j =0).

35

BuiltinRule

blastapplication

ProgramPrinter

DefaultMutableTreeNode

BlastSyntaxer '

JavaToCPrettyPrinter '

DotFileInterpreter '

ARTNode *

convertCondition

findInvariant

O — contributeTolnvariant

KeYServiceProvider '

BlastApplicationRule '

apply
isApplicable

printJavaBlock

printTerm

applyTaclet
setTacletAppByDisplayName
checkTermForOps

getConnectorLabelAt
add

KeYToCTranslator '

CProgramCodeWizard '

setProgram

getCodeloc

isDirectCodelLoc
isSplittingCodeLoc
findFirstCodelLoc
findDirectCodeLocContinuation
findSplittingCodeLocContinuation
evaluateCondition
checkTruthValue

convertProgramTermToC

PluginUl '

variantsViaDialog
messageWindow
closeMessageWindow

I0Tools

terminal
deleteFiles
fileExists
loadFile
saveFile

LogicPrinter

We show the public methods of the

igure 27: Class diagram of the plugin.
classes, but we omit getters and setters.

)

36

: Current Goal

del #1 | 0< n2preo,

key | n3_pre_0 < n2_pre_0,
4 0= nlopre0,

0 < n3_pre0

................. =| setfinite_induction

(113
int_induction

mod_2_is_0_or_1
less_is_alternative_1
‘nplification less_is_total_heu

Decision Procedure Simplify
BLAST analysis

Apply rules ically here ...

10 clipboard

if (z2==0) {
z2=n2;

if (z1<0) {
ile

Figure 28: Context menu, extended by our rule BLAST analysis.

CProgramCodeWizard The aim of the wizard is to encapsulate functions
working on C code. Basically, we want to annotate states of the ART by their
location in the source code. This is not an easy task, because this implies code
parsing, and the evaluation of conditions for C.

We explain the use of this class by the mean of pseudo code in figure 29.
Remember the goal is to go through an ART and annotate the states.

We walk along the tree, by keeping track in the code. First of all, we set the
root annotation to the result of the method findFirstCodeLoc. At each step, we
test first if we are on a code location where the control flow is split.

e Split Control Flow. This is the case for if and while statements. A split
control flow means, that the corresponding ART state has a child for the
split-condition being true , and another for the split-condition being false.
Because conditions of while and if statements can be composed by more
than one atomic condition, the condition check may build a subtree within
the ART. To keep track of the progress, we use the condEvalProgress
construct, that stores the results of the atomic condition evaluations. If
the progress is sufficient to show that the condition evaluates to true or
to false, we look for the next code location. Otherwise, we remain on the
same location, but with an extended condEvalProgress.

e Direct Control Flow. This case is simpler than the splitted control flow.
We are in a situation, where the actual code location points on a series
of simple statements. Because BLAST does handle them as a block in an
ART, we jump behind that series here to find the new code location.

DotFileInterpreter If BLAST can solve a given problem, it generates a file
called reachtree.dot containing the ART. The file is written using a standard
notation, allowing to draw the tree automatically by the dot tool (which is
part of the Graphviz toolset [9]). The interpreter class does only provide the

37

function start(ARTRoot,wizard)

{
setLineNumbers
(ARTRoot ,wizard.findFirstCodeLoc,wizard,emptyProgress)
}
function setLineNumbers
(node, codeLoc,wizard,condEvalProgress)

{
node.setCodeLoc(Codeloc) ;
if (wizard.isSplittingCodeLoc(codeLoc))
{
foreach child of node
{
p = extend condEvalProgress by true or false,
depending on the child
condEval = wizard.evaluateCondition(codeLoc,p)
if (condEval is true or false)
{
newCodeloc =
wizard.findSplittingCodeLocContinuation
(codelLoc,newCondEval)
setLineNumbers
(node.child,newCodeLloc,wizard,emptyProgress)
}
else
{
setLineNumbers (node.child, codelLoc,wizard,p)
}
}
}
else if (wizard.isDirectCodeLoc(codeLloc))
{
newCodeLoc = wizard.findDirectCodeLocContinuation
(codeLoc)
setLineNumbers
(node.child,newCodeloc,wizard,emptyProgress)
}
}

Figure 29: Pseudo code illustrating how to use the CProgramCodeWizard, to
annotate an ART.

38

findInvariant method. If it is called, the ART is builded (using ARTNodes),
on the base of the reachtree.dot file. By applying the CProgramCode Wizard as
described in figure 29, the states of the ART are annotated. The reason of this
step is, that we want to identify the states containing interesting annotations.
The invariant is then picked of the tree, by implementing the idea explained in
section 3.4.

I0Tools This class is a toolbox for the dialog with the operating system. The
goal is to simplify the program code, by adding a new level of abstraction.

e terminal takes a string, and executes it on the terminal. It interrupts the
program flow, until the order has been processed.

o deleteFiles takes a list of files and deletes them, if they exist.
e fileExists returns true, if a given file exist, false otherwise.

e loadFile takes a filename as parameter, and returns a string containing
the content.

e saveFile stores a given content to a given location.

JavaToCPrettyPrinter Key uses a pretty printer to display a JAVA pro-
gram in a nice form. A program is stored as a tree internally. An instance
of the printer class does visit each node of that tree. Depending on the type
of the node, the corresponding method of the printer is called. JAVA and C
have very similar syntax at the base. Because we treat basic programs so far,
we did not change any syntax, but we forbade JAVA specific structures such
as exceptions. For that purpose, we extended the dangerous methods of the
PrettyPrinter, and throw an exception if called. We don’t show the methods on
the diagram, because there are too many.

KeYServiceProvider The service provider encapsulates the exchange with
the KeY system. It simplifies the internal application of taclet for the program-
mer. An instance of the class can be created, by passing the goal to resolve in
the constructor.

The method set TacletAppByDisplayName prepares the application of a taclet.
It has one parameter of type string, that should contain the name of the taclet
the programmer wants to apply. If such a taclet cannot be applied on the goal,
the method returns false.

After setting up the taclet, applyTaclet can be called. Instantiations values
for the taclet are transmitted via parameters of the method. We use a simple
pattern matching, to connect the available input fields of the taclet with the
instantiation. The method may throw an exception, when problems concerning
the instantiation are encountered.

The printTerm and printJavaBlock method form a second group of methods.
They make use of KeYs LogicPrinter class. We modify the logic printer in two
ways.

39

precondo(nn, ..o, N,

| preconda(na, .., n)

==>

| [(m:=f(n, .., n)} .. (m:= £, .., n)H

| <{ source code }>
| [postcond]

| | function apply (int N, o.. int n[‘)
{
[y g —|if (precond && .. && precond)
l ! int m = f (n n);
0 A LA 1
int m, = £(n, .., n);

source code

if (! (postcond))
{

ERROR:
}

Figure 30: Idea of KeY (box above) to BLAST (box below) translation. We
assume to have L logic variables n;, B precondition terms, P program variables
m; with a corresponding initialization function f;.

1. Terms, formerly written in KeY syntax (ex. a = 4|b >= 3), can be printed
using C syntax (ex. a ==4|| b >=3).

2. JAVA programs can be translated to C, because of the JavaToCPret-
tyPrinter, our extension to the standard PrettyPrinter.

The methods allow to translate a given problem in KeY to a C program. This
is not entirely implemented in this class, but we decided to provide the print
methods in this class, because they make use of internal function of the KeY
source code.

The checkTermForOps method finally checks if a term does only contain
operators we allow. We filter the preconditions using this function, because
BLAST cannot treat every sort of precondition possible in KeY.

KeYToCTranslator The purpose of the translator is to convert a KeY prob-
lem into a BLAST problem. The method convertProgramTermToC gets a KeY-
ServiceProvider as parameter, in order to be able to print terms by using the
classes of KeY. The main task of the translator is, to extract certain important
pieces of the term and assemble them to a C program. Figure 30 shows the
main steps.

40

- BLAST analysis

~Invariants Found

Lloop |0<=zllzl=-40]-4<=21| |

~¥ariant Input

1. loop | |

x|

ELAST analysis

LApphing heuristics, please wait ...

Figure 31: User input panels specified in the PluginUI class.

PluginUI We encapsulate the user interface in this specific class. The method
variants ViaDialog takes a LinkedList containing the invariants discovered so far.
It gives the user the possibility to modify the invariant and to specify a vari-
ant. If apply is pushed, the method returns the invariant and variant specified.
The message Window method has two strings as parameter. This allows the
programmer to communicate with the user, by specifying an image and a text.
The programmer can close this window in the code by the closeMessage Window
method. Two samples of such windows are shown in figure 31.

4.1.2 Collaboration Diagrams

We present, in this section the most interesting collaboration diagrams. We
document by using them the work-flow of the most important actions. To
increase the readability, we omitted function parameters on the diagram.

Launch the Plugin by apply The method apply in the class BlastApplica-
tionRule is called by the interface, if the user starts our plugin. Most of the
work to do is outsourced to other classes. Our goal of this dispatching is to
increase code readability in the BlastApplicationRule class. The collaboration
diagram of apply is in figure 32.

41

I 1. A
appy : BI ionRule I create =H aProvider : KeYServiceProvider {new} |
2. sefTacletAppByDisplayName aProvider : KeYServiceProvider |

3. invariants = applyBlast

:B Rule

| 3.1 aRV = convertProgramTermToC »| KevToCTranslator
3.2 saveFile ‘:l
3.3. terminal » :10Tools

-
Lt |

3.4. invariants = findInvariant) . Ny
Lol : DotF P
4. variants = variantsViaDialo - Plugi
9 | Pluginul
5. applyTaclet =I aProvider: KeYServiceProvider |

6. applyAl

\

:B ionRule

Figure 32: Collaboration diagram of the method apply in class BlastApplica-
tionRule.

1. create (goal, services) A service provider object is cre-
ated. It stores all information
concerning the proof.

2. setTacletAppByDisplayName This method call prepares the

("while invariant ...”) taclet application. The name of
the taclet is passed by parame-
ter. If the taclet cannot be ap-
plied, the method returns false.
We assume the taclet can be ap-

plied.
3. applyBlast (aProvider) This function groups the nec-
essary operations to invoke
BLAST.
3.1 aRV = The method returns a string,
convertProgramTermToC containing a C program. The pa-
(aProvider) rameter aProvider contains the

current goal, which is the base
for constructing the C source
code.

3.2 saveFile (aRV, "blast.c”) The method saveFile of the
10Tools class saves the content
in the first parameter into a file
named by the second parameter.

3.3 terminal The method executes BLAST

("pblast.opt blast.c ...”) in the terminal. We assume
pblast.opt is in the path. The
target file blast.c was written by
operation 3.2.

42

3.4 invariants — findInvariant
("reachtree.dot”,”’blast.c”)

4. variants = variantsViaDialog

(invariants)

5. applyTaclet
(patterns, instants)

6. applyAutomatedStrategy

The findInvariant method re-
turns the invariant as a string.
The parameters contain the
names of the dot and the C file.
The files have been generated at
operation 3.2 and 3.3.

The method pops up a window
to the user. The user can spec-
ify the variant and control the in-
variant.

Because we have the informa-
tion on variant and invariant, the
taclet set at operation 2. can be
applied.

This function releases the auto-
mated heuristics of KeY.

Transform the Problem by convertProgramTermToC This is the only
public method of the KeYToCTranslator. It takes a KeyServiceProvider ob-
ject as parameter, and returns a string with the corresponding C program for
BLAST. Figure 33 contains the collaboration diagram of the method.

convertProgramTermToC 1. getTATerm
vertProgr: : KeYToCTranslator ‘g - aProvider : KeYServiceProvider
2. printTerm

3. printJavaBlock
4. printTerm

5 "
B :KeYToCTranslator

6. gethntecedent aProvider : KeYServiceProvider
7. getSuccedent

8.* checkTermForOps

9. a)* addSchemaVariables » _ KeYToCTranslator

10.a)" printTemn - ——
— aProvider : KeYSenviceProvider
9. b)* printTerm

11.* checkTermForOps.

12.* addSchemaVariables KeYToCTranslator
13. printTerm aProvider : KeYServiceProvider

Figure 33: Collaboration diagram of method convertProgramTermToC from

class KeYToTranslator.

1. getTATerm)()

2. printTerm
(updateTerm, CStyle)

3. printJavaBlock(programTerm)

43

This getter returns the program
term contained in the instance of
the KeYServiceProvider.

Print the updates in form of C
integer variable declarations.
Print the JAVA program as
C, using the extended pretty
printer.

4. printTerm(postTerm,CStyle) Print the postcondition of the
program in C style.
5. addPreconditions The functions adds the precondi-
(aProvider, progString) tion tests to the progString cre-
ated so far.
6. get Antecedent() Get the antecedent, to find even-
tual preconditions.
7. getSuccedent/() Get the succedent, to find even-
tual preconditions.
8. checkTermForOps Check for each statement in the
(antecedentFormula, validOps) antecedent, if it contains just
valid operators (and, or, ..).
9. a) addSchemaVariables If the formula contained only
(antecedentFormula) valid operators at 8., we add it
to the schema variables.
10. a) printTerm If the formula contained only
(antecedentFormula, CStyle) valid operators at 8., we print it
as a precondition into the C pro-
gram.
9. b) printTerm If the formula contained unsup-
(antecedentFormula,KeYStyle) ported operators at 8., we print a
message for the user in KeY syn-
tax.
11. checkTermForOps Check for each statement in the
(succedentFormula, validOps) succedent, if it contains just valid
operators (and, or, ..).
12. addSchemaVariables If the formula contained only
(succedentFormula) valid operators at 11., we add it
to the schema variables.
13. print Term If the formula contained only

(succedentFormula, CStyle)

valid operators at 11., we print
its negation as a precondition
into the C program.

Invariant Discovery by findInvariant This is an important method, be-
cause it encapsulates the discovery of the invariant in an ART. The ART is given
under the form of a dot-file. This file format makes automated graph drawing
possible by the Graphviz tool. The class DotFileInterpreter is able to read such
a file into an internal tree, and to find the invariant. We implement here the
theory developed above. The method calculates the code position of each ART
state for that purpose, by using an instance of CProgramCodeWizard. In this
way, we can locate the loop-condition states in the ART. The collaboration
diagram of findInvariant is in figure 34.

44

findInvariant

: DotFilelnterpreter

1. create

2. root = buildTree

aWizard : CProgramCodeWizard {new}

3. setLineNumbers

2.1. create

2.2" bNode = buildTree

2.3" add

4. assemt

Y

: DotFilelnterpreter

3.1 setCodeLoc

3.2 a)* checkTruthValue

aNode : ARTNode {new}

: DotFilelnterpreter

P aNode: ARTNode

P aNode : ARTNode

3.3 a)* evaluateCondition
3.4 a)* findSplittingCodeLocContinuation

3.5 a)* setLineNumbers

V“ aWizard : CProgramCodeWizard

3.2 b) findDirectCodeLocContinuation

A

: DotFilelnterpreter

3.3 b) setLineNumbers

A

aWizard : CProgramCodeWizard

: DotFilelnterpreter

Y

: DotFilelnterpreter

Figure 34: Collaboration diagram of method findInvariant in class DotFileln-

terpreter.

We create an instance of the wiz-

create(fileName)

y specifying the name of

the C file.

ard, b

This method gets the content of

buildTree

2.

the dot-file, and returns the root,
to the tree it builds, re

tent)

firstNodelD, DotFileCon

(

presenting

the ART.

45

2.1

2.2

2.3

3.1

3.2 a)

3.3 a)

3.4 a)

3.5 a)

3.2 b)

create(nodelD)

buildTree
(childID, DotFileContent)

add

(childNode, arrowAnnoation,
childID)

setLineNumbers

(ARTRoot, firstCodeLoc,
aWizard, empty Way)

setCodeLoc(codeloc)

checkTruthValue
(arrowAnnotation)

evaluateCondition
(codeLoc, aWay)

findSplittingCodeLoc
Continuation

(codeLoc, conditionEval)
setLineNumbers
(childNode, codeLoc,
aWizard, aWay)

findDirectCodeLoc
Continuation
(codeLoc)

46

A node is created, for the node
ID given by the dot-file.

For each child of the node in the
ART, a child is created by a re-
cursive call to buildTree.

All children of the node are con-
nected with the current node.

We start to calculate line num-
bers at the root. The way
construct keeps track of the
progress, when a complicated
condition leads to several ART
states. It stores somehow the
way through the condition.

The current ART state is anno-
tated by the current code loca-
tion. Depending on the type of
the code location, we choose sev-
eral times path a) or once path
b).

The wizard checks, if the arrow
to the current child-node repre-
sents the case the sub-conditions
evaluates to true or to false.
The wizard checks, if the current
way through a condition is com-
plete in the sense, that it evalu-
ates to true or false.

If the condition has evaluated to
true or to false in 3.3 a), we go
ahead in the code.

We call the function setLi-
neNumbers recursively for the
ART successor states. Either
codeLoc or aWay has been mod-
ified by the current call.

The current ART state has only
one Successor. This means,
the outgoing arrow represents
a block of basic instructions in
the program. The method finds
the next position after the basic
block in the program.

3.3b) setLineNumbers We call the function setLi-

(childNode, codeLoc, neNumbers recursively for the
aWizard, aWay) successor state.
4. assemblelnvariants The method walks through the
(ARTRoot, whileCodeLoc) tree and adds the annotation of
loop-condition states to the in-
variant.

4.2 Implementation Features

We resume in this chapter the most interesting points of the implementation.
Someone who wants to extend KeY or our plugin, finds here the most interesting
aspects we discovered or elaborated when implementing our plugin.

4.2.1 Integrate a Plugin into KeY

We integrated the plugin, by implementing BuiltInRule, an interface already
given in the KeY source code. In this way, we created the class BlastApplica-
tionRule. We oriented ourselves at the class UpdateSimplificationRule. BlastAp-
plicationRule has two public methods, apply and isApplicable. The aim of is-
Applicable is to test whether the method can be applied on the current goal
or not. If it returns false, the context menu does not contain the menu entry,
allowing to apply the rule. The aim of apply is to start the execution of the
rule, if chosen by the user in the context menu.

Finally, we have to register the new class to the KeY system. For that
purpose, we add an instance of our class to a linked list in the ProblemlInitializer
class.

4.2.2 Taclet Application in the Source Code

First we have to create an instance of the class TacletApp, representing a taclet
application. First, we create an iterator of the formulas in the succedent. We
use the instruction

Iterator0fConstrainedFormula aIt0fCF =
goal.node() .sequent () .succedent () .iterator ()

By a loop, we treat all elements of that iterator. Because an element is a
formula, we want to know what taclets can be applied on that formula. We
create another iterator of all possible TacletApp, by the following code.

bCF = (ConstrainedFormula) (aIt0fCF.next());

aPosIC = new PosInOccurrence

(bCF, PosInTerm.TOP_LEVEL,goal.sequent());

alt0fTA = goal.ruleAppIndex().getTacletAppAt
(TacletFilter.TRUE,aPosIC,services,bCF.constraint())
.iterator();

47

We can identify the TacletApps by their names. In our case, we are looking for
a TacletApp for the taclet called while_invariant_with _variant_ dec. We test
search by the instruction

if (tacletApp.rule().displayName() .equals
(*’while_invariant_with_variant_dec’’))
{
myTacletApp = tacletApp;
}

The easiest way to instantiate the taclet, is to use the class TacletInstantiation-
sTableModel. The following lines of code demonstrate, how an instance of the
class can be created.

NamespaceSet aNSPSet = goal.node() .proof () .getNamespaces();
AbbrevMap aMapOfAbr = goal.node() .proof () .abbreviations();
TacletInstantiationsTableModel aTableModel =

new TacletInstantiationsTableModel

(myTacletApp, services, aNSPSet, aMapOfAbr, goal);

The goal of this object creation is beeing able to instantiate the taclet as the
user does, by simply writing a string into the correct field (see figure 35). If we
want for example to instantiate a field called variant by the string myVariant,
we can do it in the following way.

for (int i=0;i<aTableModel.getRowCount () ;i++)

{
if (((SchemaVariable) (aTableModel.getValueAt(i,0))).
toString() .equals(’’variant”’))
{
aTableModel.setValueAt (myVariant,i,1);
break;
}
}

We go through the rows of the internal table in the TacletInstantiationsTable-
Model by checking if a field of the first column contains the string "wariant”. If
we find such a row, we set the value of its second column to myVariant. By
doing so for such field of the taclet, we can complete the instantiation. The
following code lines can be used to apply the taclet.

48

peariant (G term)

k2 (program Yariable)

fmodifies

Fwl (program wWariable)

tald

e (Formula)

Figure 35: Taclet application window of the interface, for the while invariant
taclet.

aTA = aTableModel.createTacletAppFromVarInsts() ;
List0fGoal result = goal.apply(aTA);

4.2.3 Heuristics and Simplification in the Source Code

It is possible to launch the heuristics and the simplifier in the source code.
Additionally, the heuristics can be configured. In our code example, we set
the number of steps to numOfSteps and the strategy on “Simple JAVACardDL
without unwinding loops and method bodies”. The name of the strategy is stored
in KeY as an instance of the JAVA default class Name. Instead of creating a
new Name object, we use a getter of the SimpleJavaCardDLOptions class.

Main.getInstance(true) .mediator().
setMaxAutomaticSteps (num0fSteps) ;
Main.getInstance(true) .mediator().

setStrategy (SimpleJavaCardDLOptions.NOTHING.name());

The class Main is defined in the gui folder. After defining the parameters, we
can launch the heuristics. We define also an listener, in order to be able to
capture the event, when the heuristics terminate.

49

LogicPrinter ProgramPrinter

ProgramPrinter NotationInfo JavaToCPrettyPrinter

Figure 36: The attributes of the logic printer, and the inheritance of the Pro-
gramPrinter.

private class NotificationListener
implements AutoModelListener

{
public void autoModeStarted(ProofEvent e)
{ ..}
public void autoModeStopped(ProofEvent e)
{ ..}

}

NotificationListener alistener = new NotificationListener();
Main.getInstance(true) .mediator()

.addAutoModeListener (alListener);
Main.getInstance(true) .mediator () .startAutoMode() ;

If the heuristics execution terminates, we apply the simplifier to eventually close
some more goals.

Main.getInstance(true) .applySimplificationOnGoals();

4.2.4 Extending the LogicPrinter

An important task of our plugin is the transformation of the problem in KeY
to a BLAST problem. The conceptual approach is outlined in figure 30. Here,
we explain some technical aspects of the problem transformation.

The tools to print objects of type Term in the KeY framework are encapsu-
lated in the LogicPrinter class. In order to represent terms in C notation, we
create our own LogicPrinter.

First, we have to translate JAVA program into a C program. We extend the
ProgramPrinter, specialized on JAVA source code, by our own JavaToCPret-
tyPrinter. For every JAVA code construct that we can’t translate, an exception
is thrown in the JavaToCPrettyPrinter. The user is informed of the problem by
the interface.

Second, we also translate terms in use as preconditions and postconditions.
A term like a = 5&b >= 3 in KeY syntax should be translated into a ==

50

5&&0b >= 3, in order to respect C syntax. The simplest way here is to use the
NotationInfo object, given by the framework. It provides methods to define the
syntax. We present here a sample of our definitions.

NotationInfo aNI = NotationInfo.createlnstance();
aNI.createPrefixNotation(Op.NOT, "!");
aNI.createInfixNotation(Op.AND, "&&");
aNI.createInfixNotation((Function) aNS.lookup
(new Name("leqg")), "<=");

The NotationInfo and the JavaToCPrettyPrinter object can be given to the
LogicPrinter by the constructor.

o1

5 Future Work

5.1 Programming Language Related
5.1.1 Switch Case Statements

switch case is not supported in our plugin so far. The problem is its influence
on the control flow of a program. The class CProgramCode Wizard cannot keep
track of the program locations correctly, if this statement is in use. It is possible
to extend the class for that purpose, but we gave more attention to the if then
else construct. A direct translation of a switch case statement into an if then else
statement is not a good solution, because the break keyword provides additional
freedom to the switch case statement.

5.1.2 Reconstruction of JAVA Features in C

Some features of the JAVA language cannot be translated directly to C. An
example is the exception handling. However, it is possible to capture the impact
of such statements on theorem proving. The statement in question could then
be translated into C, such that the logic effect on the proof remains the same.

5.2 BLAST Related
5.2.1 BLAST Tuning

BLAST is a sophisticated and complex tool. It contains source-code and byte-
code of other theorem provers, such as Foci. The mode of operation can be
influenced by many parameters. We use in our plugin the option -fme, to indi-
cate that we want to use the Foci model checker. Further, we use the options
-craig 1 -scope for the Craig interpolation. However, a better understanding of
the BLAST tool and its possibilities and limits is desirable, because this might
enhance the power of our plugin.

5.2.2 Invariant Optimization

Invariant optimization can accelerate the time of execution of the heuristics
in KeY. This gets important for bigger problems. The only optimization of
our invariant algorithm is the fact that we ignore loop-condition states being
leafs. We know that their annotations can already be found on internal nodes.
We believe that for complex loop-conditions, other optimization exist. Another
optimization potential lies in the annotations of BLAST. Logically, they are
always correct. However, it happens that the annotation encodes a fact in a
complicated way. For example, x > 0 A x < 0 can be written directly as x = 0.

5.2.3 Error Traces

If BLAST finds a feasible path to an error location in the ART, it generates a
so called counter example. The counter example represents an execution of the

52

program, leading to an error. This information could help the user to redesign
his program or the specification. Unfortunately, the counter examples are hard
to understand. However, the effort to translate them into a human-readable
format would be a great asset for the KeY system.

5.3 User Interface Related
5.3.1 Style

The look of the user interface was not a priority of this project. In order not to
confuse the users, it should be adapted to the general style of KeY. The window
management is not very good at the moment. A better strategy here would
improve the experience of the user.

5.3.2 Input

We don’t control the input directly. We wait until the user tries to apply the
values. We rely on the fact, that the application of a taclet fails and throws an
exception, if bad values have been specified. The taclet parameter input window
of KeY uses an approach, that is more user friendly. It controls the values when
the user is writing. This is a clear advantage, because eventual errors show up
immediately. It would be good to provide the same service in the plugin.

5.4 Theory Extensions
5.4.1 Variant Discovery

The user has to specify the variant himself so far. We could argue, that this is not
a real problem because it’s not too difficult to find the variant of a problem. This
is certainly true for simple problems, but the variant gets easily complicated.
The importance of variant discovery is also given, because the final goal is to
achieve a full automatization. The common user doesn’t want to learn theories,
he just wants to solve his problem as fast as possible.

5.4.2 Multiple Loops

Our plugin supports only simple loops so far. However, it is possible to extract
invariants for nested loops and loop sequences from an ART. A good way to
overcome this limitation might be a analysis of the problem structure. The
analysis should provide information on how the loops are nested and cascaded.
Given that information, the invariants could be searched first. Afterwards, they
might also guide the plugin on how to apply taclets to resolve the problem.

5.4.3 Loops in Context

We assume, that the loop is isolated and not in a context of other statements.
An enhancement of the plugin would be to allow other statements before and
after the loop.

53

6 Conclusion

Two basic verification techniques are theorem proving and model checking. The-
orem proving is powerful, but difficult to use. Model checking is fully automatic,
but less powerful and hard to extend. We found a possibility to combine advan-
tages of both approaches.

We propose a method to increase the degree of automation in loop proving.
Using the model checker BLAST, we can find loop invariants for problems of a
given form. This allows the user, to show partial correctness automatically in
the theorem prover KeY. In contrast to model checking, the user can go further
and show complete correctness, by specifying the variant.

In order to support our method, we identify the equivalence between a path
formula in model checking and symbolic execution of source code in theorem
proving. Further, we present an important property of state annotations in
BLAST reachability trees. These theoretical basics allow us to explain, why the
invariant discovery method we propose is correct.

We implemented the invariant discovery algorithm as a plugin for the KeY
system. We focus on single loop problems. Because KeY is a tool for JAVA
and BLAST is a tool for C, we had to convert the proof goals. This led to some
restrictions on what JAVA statements the plugin is able to treat.

We applied the algorithm successfully on different sample problems. At the
current state, we don’t find the best invariant in every case. Nevertheless, if the
problem is complicated, automated invariant discovery is a real asset, especially
for unexperienced users.

54

7 Appendix, Example Database
We present in this chapter a selection of six problem examples. The examples

are selected in a way, to illustrate different properties a loop problem can have.
We present for each example a description and the ART.

7.1 Single Decrease

Description z1is initially greater than n. A while loop decre-
ments it down to n, using steps of one. The
postcondition demands z1 to be n, after the loop
execution. The ART of this problem is in figure

37.
Classification - simple loop

- one variable modified
KeY Proof Goal n_pre_0 < zl_pre_0

{n:=n_pre_0, zl:=z1_pre_0}
\<{ while (zi>n) { z1--; } }\> z1 = n

Optimal Invariant z1>n
Invariant Found zl>nV(n=2z21V(zl >nAn#zl)))
Degree of Automation Variant z1 — n has to be specified.

zl@dec <= n@dec z1@dec > n@dec

zl@dec > nldec zl@dec (= n@dec

1#6:z1>n

zl@dec = z1l@dec - 1; zl@dec != n@dec zl@dec == n@dec

((n=z1&z1<=n) 1z1>n)

zl@dec > nldec zl@dec <= nRdec

1#6:210n

Figure 37: ART of a program decreasing a variable to n.

35

7.2 'Triple Increase

Description

z1 is initially smaller than n. A while loop in-
crements it up to n, using steps of three. The
postcondition demands z1 to be bigger or equal
to n and smaller than n 4+ 3. The BLAST ART
is given in figure 38.

Classification

- simple loop
- one variable modified
- increment step is three

KeY Proof Goal

z0_0 < n0_0

{n:=n0_0, z1:=20_0}

\<{ while (zi1<n) { z1=z1+3; } }\>
('z1 <n & z1 < n + 3)

Optimal Invariant

z1<n+2

Invariant Found

z1<n+2Vz<n-1

Degree of Automation

Variant n — z1 has to be specified.

{21<{=n+28&n{=21)

zi@inc >= n@inc

n@inc <= z1@inc n@inc > z1@inc

z1Rinc ¢ n@inc ziRinc >= ninc

1#6:n>21

zlRinc = z1@inc + 3

zi@inc »>= n@inc ziRinc < nRinc

1#6:n>z1

zlRinc < n@inc

Figure 38: ART of a program increasing a variable to n by steps of three.

56

7.3 Addition

Description

22 is added to z1 in this program. 22 is decre-
mented to 0 in the loop. Meanwhile, z1 is in-
cremented. Finally, 21 is equal to the sum, we
calculate in the beginning. The corresponding
ART is given in figure 39.

Classification

- simple loop
- two variables modified

KeY Proof Goal

zl_pre_0 >= 0, z2_pre_0 >= 0,
{res:=zl_pre_0+22_pre_0, zl:=z1_pre_O,
z2:=z2_pre_0}

\<{ while (z2>0) { z2--; zl++; } }\>
zl = res

Optimal Invariant

res=z1+22AN22>0

Invariant Found

((res =224+ z1Ares =2z1AN22 <0)V (res =
224+ 21N 22> 0))V ((res = 224+ z1 Ares =
z1)V (1 < z22Ares =22+ z1 Ares # z1)))

Degree of Automation

Variant z2 has to be specified.

true

z1@add = z1_preRadd:z2?@add = z2_pre@add:res@add = z1_pre@add

‘ ((res=z1+z2&res=z1i 2) | (res=z1- 2) | (res=21+2280>22)) ‘
/@add 5= o z1@add < O
((res=z1+728res=z18z)1 (res=z)1 (res=z1+2280> 22)) ‘ true

/!add < O\QGadd >= o

true

‘ ((res=z1+z28&res=21822<=0) | (res=21+z2&22>0)) ‘

z1@add == reseadd

z1@add 1= res@add

22@add <= O \:2eadd > 0

4#9: (res=z1+22822>0)

22@add = z2@add — 1:z1@add = z1@add + 1:

(res=21+2280¢=22)

22@add > © z2@add <= ©
492 (res=21+22822>0)

z1@add == res@add 21@add 1= res@add

Figure 39: ART of a program adding two variables.

a7

7.4 Nested Loop

Description

Two variables z1 and 22 are decremented. z1 is
decremented in the outer loop. For each itera-
tion in the outer loop, 22 is decremented from
z1 to zero in the inner loop. The ART is given
in figure 40.

Classification

- nested loop
- two variables modified

KeY Proof Goal

z2_pre_0 = 0, zl_pre_ 0 >= 0
==>
{z1:=z1_pre_0, z2:=0}
\<{
while (z1>0)
{
zl--;
z2=z1;
while (z2>0) { z2--; }
}
N> (z1 =0 & z2 = 0)

Optimal Invariant

21>0A22=0

Invariant Found

(21 >0A22=0)V((:22=0A21=0A21<
0)V 21 > 0)

Degree of Automation

Variant z1 has to be specified. Inner loop does
block the automatic proof of two sub-goals.

7.5 Decimal Number Simulator

Description Two variables z1 and 22 are decremented, such
they behave like a decimal number together.
Every-time if 22, the second digit of the num-
ber, is zero, we set it to 9 and decrease z1. The
ART is given in figure 41.

Classification - simple loop
- two variables modified
- case distinction

58

KeY Proof Goal z2_pre >= 0, zl_pre_0 >= 0

{z1:=z1_pre_0, z2:=z2_pre}
\<{
while (z1>0]|[z2>0)
{
if (z2==0) { z1--; z2=9;}
else { z2--; }
}
I\> (z1 =0 & z2 = 0)

Optimal Invariant 21 >0AN22>0

Invariant Found (0<22N0<21)V(0<22AN0<21A21<0)

Degree of Automation Variant z1-10 + 22 has to be specified.

true

22@dec = 0

zl@dec »>= 0 zl@dec < ©

(22=080¢=21)
zi@dec <= ©

zl@dec > ©

08 : (22=0821{=080<=21) O7:z1>0

z1@dec = © zledec 1= © zledec = zl@dec — 1:z2@dec = zl@dec:

22@dec 1= 0 z2@dec <= © z2@dec > © |

z2@dec = ©

‘ ((22=0821£=080<=21) | (21>0&0¢=21)} (21> 080¢=21) ‘

ﬁdec > 0 lzl@dec <= o \zz@dec: 22@dec - 1: |

onZ:z1>0 OB : (z2=0821{=080<=21) O#9: ({22=08&21{=080<=71) | {z1>0&0<=21}) |— J

Figure 40: ART of a program containing a nested loop.

59

zl@dec < © zl@dec >= ©

z2@dec >= © z2@dec < ©

1#6: (0<=2280<=21)

zl@dec > © zl@dec <= ©

(0<=22821>0&0<=21) {0(=22821{=080<{=21)

z2@dec == © z2@dec 1= © z2@dec > © z2@dec <= ©
1#10:21>0 1#11:(22>080<=z1) (z2>080<=21} (22¢=080<=22821<=080<=21)
zl@dec = zl@dec| - 1:z2@dec = 9: z2@dec = z2@dec - 1: z2@dec == © z2@dec 1= © zl@dec I= zl@dec == ©
1#6: (0<=22&0¢=21) 186: (0¢=228&0¢=21) 1#10:2150 1811: (22> 080<=21) e (z22¢{=080<¢=22)

z2@dec == O z2@dec

al number.

im

g a dec

11

60

ART of a program simulat

ure 41

1g

7.6 Complex Decrease

Description Two variables z1 and 22 are decremented. 22
is the control variable. It triggers the behavior
of z1, the variable tested in the postcondition.
The ART for this example is given in figure 42.

Classification - simple loop

- two variables modified
- triple case distinction
- complex postcondition

KeY Proof Goal 0 < n_pre_0, zl_pre_0 >= 0, z2_pre_0 =>
0,
m_pre_0 >= 0, n_pre_0 >= m_pre_0
==>

{m:=m_pre_0, n:=n_pre_0,
zl:=z1_pre_0, z2:=z2_pre_0}
\<{
while (z1>0)
{
if (z2>0){ z2=z2-1; zl1=z1-1; }
else if (z2==m){ z1=-40; }
else { z2=n; zl1=z1-5; }
}
I\> (10 < z1 & -5 < z1 | z1 = -40)

Optimal Invariant zl=—-40V -4 <21

Invariant Found 0<zlVzl=-40V—-4<z1

Degree of Automation Variant z1 has to be specified.

61

22@apply = z2@apply - 1:z1@apply = zi@apply - 1:

O#13: (0¢=211(-4¢=2180>21) | (21=-408-4>2180>21)) _

z1@apply > ©

0#15:21>0

z1@apply <= O

-5

(-4¢=21821¢=0)

0#15:21>0

22@apply > ©

22@apply 1= m@apply

22@apply = n@applyzzi@apply = z1€apply - 5:

z1@apply <= O

z1@apply > ©

z2@apply == m@apply

z1@apply = —40:

z1@apply <= ©

(21=-40821¢=0)

z1@apply <= ©

z1@apply <= ©

(0¢=21821¢=0)

z1@apply <= ©

z1@apply > -5

z1@apply > ©

o#15:21>0

z1@apply > ©

z1@apply <= -5

z1@apply I=

z1@apply > O

~

false)

—40

Figure 42: ART of a program having a triple case distinction in the loop body.

62

8 Acknowledgments

This thesis would not be possible without the two excellent projects on KeY
and BLAST. Particularly, we would like to mention here Richard Bubel and
Steffen Schlager of the KeY team, Dirk Beyer and Thomas Henzinger of the
BLAST team. The most important, contribution however is due to the project
supervisor, Thomas Baar. We appreciate his effort very much.

63

References

1

2]

13]

[4]

5]

6]

7]

18]
9]
[10]

[11]

[12]

[13]

Hasan Amjad. Combining model checking and theorem proving. PhD thesis,
University of Cambridge, 2004.

Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Ri-
nard. Integrating model checking and theorem proving for relational rea-
soning. In Seventh International Seminar on Relational Methods in Com-
puter Science (RelMiCS 2003), volume 3015 of Lecture Notes in Computer
Science (LNCS), pages 21-33, Malente, Germany, May 2003 2003.

Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, International
Workshop, Cannes, France, LNCS 2041, pages 6 24. Springer, 2001.

Bernhard Beckert, Steffen Schlager, and Peter H. Schmitt. An improved
rule for while loops in deductive program verification. In Kung-Kiu Lau, ed-
itor, Proceedings, Seventh International Conference on Formal Engineering
Methods (ICFEM), Manchester, UK, LNCS 3785, pages 315-329. Springer,
2005.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
Checking memory safety with Blast. In M. Cerioli, editor, Proceedings of
the 8th International Conference on Fundamental Approaches to Software
Engineering (FASE 2005, Edinburgh, April 2-10), LNCS 3442, pages 2-18.
Springer-Verlag, Berlin, 2005.

Zhiqun Chen. JAVA CARD Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison-Wesley, 2000.

W. Craig. Linear reasoning: A new form of the herbrand-gentzen theorem.
Journal of Symbolic Logic, 22:250 268, 1957.

Formal methods virtual library, http://vl.fmnet.info/.
Graphviz - graph visualization software, http://www.graphviz.org/.

Reiner Hahnle, Peter H. Schmitt, and Bernhard Beckert. The Key Book —
The Road to Verified Software. Springer, 2006. To appear.

Adaptive Ltd., Boldsoft, IBM, Iona Technologies, and Object Management
Group. UML 2.0 OCL Specification, 2003.

Bertrand Meyer. Applying “design by contract”. IEEE Computer,
25(10):40-51, October 1992.

Jacques Zahnd. Logique élémentaire. Presses polytechniques et universi-
taires romandes, 1998.

64

List of Figures

= W N =

o ~1 O Ot

10
11
12
13
14

15
16

17

18
19
20
21

22
23
24
25
26
27

28
29

30

Division function and specification.
Formal proof of Ve e NVy e Nz =0Vy=0=2-y=0).. ...
Interface of the KeY System.
Classic proof tree vs. overview tree in KeY. The numbers corre-
spond. ..o
Application of the all_right taclet.
Application of the imp_right taclet.
Application of the or left taclet.
Two state space diagrams. The dangerous state is represented by
the skull.
Source code and CFA of a simple decrement C program.
First ART of the simple decrement problem..
Second ART of the simple decrement problem.
Final ART of the simple decrement problem.
Abbreviation symbol table.
Problem blueprint in BLAST and in KeY style. No other loop is
contained in the body.o o000
Example problem for invariant discovery..
This is the simplified ART of the example problem. ¢ is the pre-
condition, v the loop-condition and v the postcondition. The «;
denote the conditions true before the loop-condition is evaluated.
We use shorthand for the postcondition part of the ART, detailed
in the left legend. o o
Problem blueprint in formal dynamic logic. We assume, that no
other while loop is situated in the body.
The five sub-goals of the while invariant taclet in KeY.

The annotation of a state resumes all important information so far.

Toy problem and its ART.
ART of figure 16, using another layout. We use the same con-
ventions here as for the mentioned figure.

A trace into the loopbody zone matches to one of these three cases.

The invariant is strong enough, because each «; is strong enough.
Loop-free program code before the while loop.
After symbolic execution, two claims in a simple form remain. . .
Extended blueprint and use case claim..
Class diagram of the plugin. We show the public methods of the
classes, but we omit getters and setters.
Context menu, extended by our rule BLAST analysis.
Pseudo code illustrating how to use the CProgramCodeWizard,
to annotate an ART. L.
Idea of KeY (box above) to BLAST (box below) translation. We
assume to have L logic variables n;, B precondition terms, P
program variables m; with a corresponding initialization function

Foe o

EN |

11
12
12
13

14
15
16
18
18
20

21
22

23

24
25
27
27

31
32
32
33
33
34

36
37

38

40

31
32

33
34
35
36
37
38
39
40

41
42

User input panels specified in the PluginUI class. 41
Collaboration diagram of the method apply in class BlastAppli-

cationRule. 42
Collaboration diagram of method conwvertProgramTermToC from

class KeYToTranslator. 43
Collaboration diagram of method findInvariant in class DotFileln-

terpreter. Lo 45
Taclet application window of the interface, for the while invariant

taclet.o 49
The attributes of the logic printer, and the inheritance of the

ProgramPrinter. oo 50
ART of a program decreasing a variable ton. 55
ART of a program increasing a variable to n by steps of three. . 56
ART of a program adding two variables. 57
ART of a program containing a nested loop. 59
ART of a program simulating a decimal number. 60

ART of a program having a triple case distinction in the loop body. 62

66

