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Abstract & Acknowledgements 
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features, which may go beyond the traditional concurrency control associated with 
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operations in advance. 

This thesis proposes different models that allow looking-ahead in open 
multithreaded transactions, covering every concern, from typical read/write 
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complementary, depending on the system context. Every model proposed is discussed 
in terms of implement complexity, execution speed, and exception handling 
granularity. 
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Résumé & Remerciements 
Les systèmes orientés objet complexes ont besoin de mécanismes de contrôle 

de concurrence plus sophistiqués et plus évolués que ceux traditionnellement associés 
avec les appels de méthodes individuelles. Une transaction regroupe une séquence 
d’opérations et peut ainsi renfermer un comportement complexe et englober des 
groupes d’objets et d’appels aux méthodes. Les transactions permettent de cacher les 
problèmes liés à la concurrence et empêchent en même temps la propagation 
d’erreurs. Celles-ci forment ainsi des structures appropriées à l’élaboration de 
systèmes répartis fiables. Le modèle de transactions multitâches ouvertes (open 
multithreaded transactions), introduit par le Prof. J. Kienzle, dans sa thèse, en 2001, 
offre non seulement les mécanismes habituels qui permettent de contrôler et de 
structurer l’accès aux objets, mais aussi la possibilité de superviser les tâches qui 
participent à la transaction. Plusieurs tâches ont le droit de pénétrer dans une même 
transaction pour travailler en commun. Ce modèle autorise également la création de 
nouvelles tâches de même que leur destruction à l’intérieur ou à l’extérieur d’une 
transaction. Ce comportement est limité à certains endroits pour obtenir une 
imbrication correcte et pour garantir l’isolation entre les transactions. Le modèle 
intègre aussi un traitement d’exceptions structuré. 

Lors de la terminaison d’une transaction multitâche ouverte, les tâches 
participantes sont synchronisées pour assurer la consistance et l’isolation des 
transactions. Cette règle limite les performances générales du modèle et peut être 
modifiée en introduisant des tâches prédictives (look-ahead threads). Ces tâches 
supposent que la transaction dans laquelle elles travaillaient va arriver à terme sans 
problème et exécutent en avance les prochaines instructions disponibles. 

Ce projet de diplôme propose des modèles autorisant les tâches prédictives 
dans les transactions multitâches ouvertes, couvrant chaque sujet, allant des 
problèmes typiques de dépendances lecture/écriture au traitement d’exceptions. 
Certains de ces modèles peuvent être utilisés de façon complémentaire, 
dépendamment du système. Chaque modèle est analysé quant à la complexité de son 
implémentation, sa rapidité d’exécution et la granularité des exceptions traitées. 
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Chapter 1 :

1.1 

 Introduction 

 Context & Objectives 

Modern programming languages provide features that allow a programmer to 
express concurrency in an application by supporting active objects: objects with their 
own thread of control. Concurrent systems can be classified into cooperative systems, 
where individual components collaborate, share results and work for a joint goal, and 
competitive systems, where individual components are not aware of each other and 
compete for shared resources. Programming languages address collaboration and 
competition by providing means for communication and synchronization among 
active objects. 

Complex object-oriented systems often need more sophisticated concurrency 
features. Transactions are program structures, which encapsulate groups of objects 
and of method calls, representing the dynamic execution as opposed to the static 
declaration of objects inside objects. 

The Open Multithreaded Transaction model [Kie04], intended to be used in 
concurrent programming languages, provides features for controlling and structuring 
not only accesses to objects, as usual in transaction systems, but also threads taking 
part in transactions. The model allows several threads to enter the same transaction in 
order to perform a joint activity. It provides a flexible way of manipulating threads 
executions inside a transaction by allowing them to be forked and terminated, but it 
restricts their behavior when necessary in order to guarantee correctness of transaction 
nesting and isolation among transactions. 

The goal of this Diploma Thesis is to relax the synchronization rules of the 
initial model, in order to maximize the overall performance of the system. The 
proposed approach has not been implemented yet, but the proposed models respect the 
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design choices made in the OPTIMA Framework [Kie04]. Several models are 
proposed that improve the overall execution speed of the transactions allowing threads 
to look-ahead from a transaction and continue their execution instead of waiting for 
the other transaction participants. The entire theoretical basis to understand how 
transactions and particularly open multithreaded transactions work is explained in the 
following sections. The complete reference is [Kie04]. 

1.2 Thesis Organization 

The thesis is split in three main parts. Part I describes the open multithreaded 
transactions model. Chapter 2 introduces the main concepts while chapter 3 covers 
one of the model limitations (synchronization on exit) and gives the objectives of a 
possible solution to overcome it: looking-ahead. In chapter 4, potential issues 
introducing looking-ahead theory are described. Chapter 5 describes problems that 
occur in concurrency controls, when looking-ahead, and provides solutions for the 
potential issues. 

Part II exposes models introducing look-ahead threads in open multithreaded 
transactions. Chapters 6-9 describe each model, with their respective capabilities and 
limitations. 

Part III is a critical view of the initial model and the models proposed, giving 
new guidelines for future research, design and implementation. Chapter 10 gives a list 
of the future improvements that could be added to open multithreaded transactions 
and the look-ahead models. Finally, chapter 11 gives a conclusion, summarizing the 
main results of this work. 

Part IV contains the bibliography, with all references cited in this work, and an 
index. 

1.3 Transactions 

Some applications require concurrent access to distributed information shared 
amongst multiple components. Such applications must maintain consistency of data 
when trying to access multiple objects; or when multiple components try to access a 
single shared data. 

The concept of a transaction has been invented to simplify the design of such 
applications by adding a new level of abstraction: transactions assure the integrity of 
data, being an indivisible unit of work. 

A transaction groups several instructions together. The program structure 
relies on three standard statements: begin, commit and abort, defining the 
borders of a transaction. 

Before the transaction begins, the system is in an initial state that is stable and 
coherent. The begin and commit statements are encapsulating the operations we 
want to consider as atomic. A transaction can abort, which results in restoring the 
initial state of the system (this is also called rollback). If the transaction succeeds and 
commits, all changes in the system state due to the encapsulated operations become 
durable and persistent. The requirements that transactions must provide are called the 
ACID properties. 
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1.3.1 ACID properties 

Atomicity 
Atomicity requires that either all the operations of a transaction are executed 

or none of them. The operations inside the transaction usually form a logical group. If 
for some reason, the system stopped after only some of them, the overall intent of the 
transaction would be erroneous. 

Consistency 
A transaction must preserve the consistent states of data, meaning that from an 

initial consistent state, the transaction transforms it into another consistent state of 
data. If, for some reason, there is a failure during the execution of a transaction, it gets 
aborted and thanks to atomicity, the system remains at its initial consistent state. 

Isolation 
Transactions can be executed concurrently, and therefore compete for 

resources. The isolation property assures that a single transaction behaves as if it was 
the only one running at this time. Multiple transactions running at the same time 
cannot interfere with each other and the outcome of one cannot change the behavior 
of any other one. The changes the transaction is doing are visible to the outside only 
after its commit has been done. 

Durability 
This property assures that once the transaction has succeeded, whatever failure 

or crash could have happened, the outcome of the transaction is durable and visible to 
the outside. This property is also called persistence. 

Serializability 
The concurrency management that allows multiple transactions to run 

concurrently is called concurrency control. It must assure that the concurrent 
execution of the transactions results in the same outcome as a serial execution. This is 
a result of the atomicity and isolation rules. 
 

After having introduced the general idea behind transactions, the next chapter 
exposes the main concepts of the open multithreaded transactions. 
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Chapter 2 :

2.1 

 Main Concepts 

We expose the general concepts behind Open Multithreaded Transactions 
[Kie04] in the current chapter. Only considerations on rules that we could change or 
transgress are exposed. Particular features or rules related specifically to naming or 
closing an open multithreaded transaction are not described, please refer to [Kie04] 
for information on these subjects. 

Once an open multithreaded transaction is created (section 2.2), several 
threads can join it (section 2.3). The transaction then completes to its end (section 2.4) 
or abort in case of an exception (section 2.6). In order to collaborate, threads inside a 
transaction share access to transactional objects, which are also available from other 
transactions. In order to guarantee the isolation property, different concurrency 
control approaches can be applied (section 2.5). 

Open Multithreaded Transactions 

The open multithreaded transactions model allows tasks to be created, to run 
to completion, or to join an ongoing transaction at any time. There are only two 
elementary rules that restrict thread behavior: 

• A thread created outside of an open multithreaded transaction is not 
allowed to terminate inside the transaction. 

• A thread created inside an open multithreaded transaction must also 
terminate inside the transaction. 

Threads working on behalf of an open multithreaded transaction are referred to 
as participants. External threads that create or join a transaction are called joined 
participants; a thread created inside a transaction by some other participant is called a 
spawned participant. 
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2.2 Starting an Open Multithreaded Transaction 

• Any thread can start a transaction. This thread is the first joined 
participant of the transaction. 

• Transactions can be nested. A participant of a transaction that starts a 
new transaction creates a nested transaction. Sibling transactions 
created by different participants execute concurrently. 

2.3 Joining an Open Multithreaded Transaction 

• A thread can join an open transaction, thus becoming one of its joined 
participants. 

• A thread can join a top-level transaction if and only if it does not 
already participate in any other transaction. To join a nested 
transaction, a thread must be a participant of the parent transaction. A 
thread can participate in only one sibling transaction at a time. 

• A thread spawned by a participant automatically becomes a spawned 
participant of the innermost transaction in which the spawning thread 
participates. A spawned participant can join a nested transaction, in 
which case it becomes a joined participant of the nested transaction. 

2.4 Ending an Open Multithreaded Transaction 

• All participants finish their work inside a transaction by voting on the 
transaction outcome. Possible votes are commit or abort. Voting abort 
is done raising an external exception (see section 2.6, page 17). 

• The transaction commits if and only if all participants vote commit. In 
that case, the changes made to transactional objects on behalf of the 
transaction are made visible to the outside world. If any participant 
votes abort, the transaction aborts. In that case, all changes made to 
transactional objects on behalf of the transaction are undone. 

• Once a spawned participant has given its vote, it terminates 
immediately. 

• Joined participants are not allowed to leave a transaction, i.e. they are 
blocked, until the outcome of the transaction has been determined. 
This means in particular that all joined participants of a committing 
transaction exit synchronously. At the same time, but only then, the 
changes made to transactional objects on behalf of the transaction are 
made visible to the outside world. If a transaction is aborted, the joined 
participants may exit asynchronously, but changes made to 
transactional objects on behalf of the transaction are undone. 

• If a participating thread “disappears” from a transaction without voting 
on its outcome, the transaction is aborted, as this case is treated as an 
error. 
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Figure 2.1 : An Open Multithreaded Transaction1

Figure 2.1 shows two open multithreaded transactions2: T1 and T1.1. Thread 
C creates the transaction T1, threads A, B and D join it. Threads A, B, C and D are 
therefore joined participants of the transaction T1. Inside T1 thread C forks a new 
thread C’ (a spawned participant), which performs some work inside the transaction 
and then terminates. Thread B also forks a new thread, thread B’. B and B’ perform a 
nested transaction T1.1 inside of T1. B’ is a spawned participant of T1, but a joined 
participant of T1.1. In this example, all participants of T1 vote commit. The joined 
participants A, C, and D are therefore blocked until the last participant, here thread B, 
has finished its work and given its vote. It is only after thread B has voted commit that 
the changes made to transactional objects are made persistent and that new operations 
can be executed by the threads. 

2.5 Concurrency Control in Open Multithreaded Transactions 

Concurrency control is needed to enforce the isolation rule of the ACID 
properties, assuring both cooperative and competitive handling. Its main focus is to 
maintain transactions isolated from each other (competitive) while letting threads 
inside a transaction work together loosely (cooperative). The following rules apply to 
open multithreaded transactions. 

• Accesses to transactional objects by participants working on behalf of 
an open multithreaded transaction are isolated from accesses by other 
transactions. However, participants are allowed to make the identity of 
the transaction visible to the outside world. This identity can be used 
by threads willing to join the transaction. 

• Accesses to transactional objects by participants of a child transaction 
are isolated from accesses by participants of the parent transaction. 

• Inside a given transaction, classic consistency techniques, i.e. mutual 
exclusion, are used to guarantee consistency of transactional objects 
when accessed by several participants of the same open multithreaded 
transaction. 

                                                 
1 Sibling transactions always appear in the same grey tone, whereas nested transactions appear darker. 
A blocked thread appears on a white background with a dashed outline. 
2 The dot notation always describes nested transactions (i.e. T1.1.1 is nested in T1.1, which is nested in 
T1). 
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As we are not dealing with cooperative concurrency (accesses to transactional 
objects made by participants of the same transaction), we focus on competitive 
concurrency control, guaranteeing the isolation property for each transaction. 
Concurrency control is commonly divided into two broad categories: pessimistic 
(conservative) and optimistic (aggressive). These two categories are respectively 
explained in section 2.5.1 and section 2.5.2, while we state what we consider as 
conflicting operations in section 2.5.3. This overview of concurrency control is very 
useful when analyzing the complexity of look-ahead models later on. 

2.5.1 

                                                

Pessimistic Concurrency Control 
The fundamental concept of a pessimistic concurrency control is that, before 

attempting to perform an operation on any transactional object, a transaction has to 
get permission to do so. The manager verifies that execution of operations is correct 
before allowing them to occur. If an operation of a transaction on the calling thread 
conflicts with any uncommitted operation of a different transaction, then it is blocked, 
or the invoking transaction is aborted. 

Finding conflicts between operations can be adjusted by exploiting operation 
and objects semantics, which is discussed in section 2.5.3, page 15. 

Lock-Based Protocols 
Lock-based protocols use locks to implement permissions to perform 

operations. When trying to access a transactional object, the transaction must first get 
the associated lock from the concurrency manager of the transactional object. Before 
granting the lock, the concurrency manager must verify that this new lock does not 
conflict with any other lock held by other transactions in progress. If the concurrency 
manager determines that there would be a conflict, the thread requesting the lock is 
blocked1, waiting for the release of the conflicting lock. Otherwise, the lock is 
granted, and the thread may proceed and execute the operation. 

The order in which locks are granted to transactions imposes ordering on the 
transaction with respect to their conflicting operations. Two-phase locking [EGLT76] 
ensures serializability by not allowing transactions to acquire any lock after a lock has 
been released. This implies in practice that a transaction acquires locks during its 
execution phase (1st phase), and releases them at the end, once the outcome of the 
transaction has been determined (2nd phase). This mechanism is shown in Figure 2.2. 

 
1 In some situations, it is better to abort and restart the conflicting transaction rather than blocking it, as 
described in [BHG87]. 
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Figure 2.2 : Locked-Based Protocol in Open Multithreaded Transactions 

Transaction T2, when executing operation A acquires a lock on object O that 
prevents T1 to invoke operation B on O1. Operation B has to wait until T2 releases the 
lock, when it commits. 

When using blocking pessimistic concurrency control, deadlocks are possible. 
Two transactions T1 and T2 trying to acquire locks on two objects O and P can 
deadlock, if T2 first requests O and T1 first requests P. Now T1 is waiting for O, and 
T2 is waiting for P. This situation is shown in Figure 2.3. Such deadlocks can be 
detected and remedied by aborting one of the blocking transactions. A simple 
deadlock detection mechanism is waiting for a time-out, which aborts a transaction 
waiting for too long for a lock by guessing that it may be involved in a deadlock. 
Other deadlock detection mechanisms, like cycles in a wait-for graph or timestamp-
based deadlock prevention, can be found in [BHG87]. 

 
Figure 2.3 : Deadlock Situation in Open Multithreaded Transactions 

Timestamp Ordering 
Timestamp ordering is a pessimistic concurrency control that does not use 

locks. The basic idea is to generate a unique timestamp for each transaction, and 
associate it with all operations the transaction invokes. The concurrency control 
manager, also called timestamp ordering scheduler, ensures that conflicting 
operations are executed based on their timestamps. The concurrency control manager 
immediately schedules operations that arrive for execution unless some other 
                                                 
1 We assume that in every figure, operations are conflicting. 
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conflicting operation with an earlier timestamp has already been invoked. In the latter 
case, the transaction invoking the conflicting operation is aborted. The timestamp of a 
transaction T1 is noted ts(T1). This situation is shown in Figure 2.41. 

 
Figure 2.4 : Timestamp Ordering in Open Multithreaded Transactions 

When T1 invokes A on O, it is immediately scheduled. When T2 tries to 
invoke a conflicting operation on the same object, permission has already been given 
to T1, thus T2 is aborted. 

Additional Algorithms 
Modifications to two-phase locking and timestamp ordering algorithms, which 

support multiple versions of objects, are discussed in [Sil81, BGH87]. Multiversion 
Timestamping [Ree83, BG83, BGH87] can be transposed from atomic actions to 
transactions associating a timestamp to every transaction, and invoking operations. 
When the scheduler processes an observer2 operation with timestamp ts(T2), the 
version with the largest timestamp less or equal to ts(T2) is accessed. In case of a 
modifier3 operation, a new version of the object – associated with the invoking 
transaction timestamp – is created. A modifier operation in transaction T2 is rejected 
if the scheduler has already processed an observer operation in transaction T3 of a 
version created by T1, assuming ts(T1) < ts(T2) < ts(T3). The situation is shown in 
Figure 2.5. T1 executes a modifier operation on the transactional object O, thus 
creating a new version O1. Then T3 accesses the object O with an observer operation, 
the value read is the newest version less or equal to its own timestamp: O1, because 
ts(T1) < ts(T3). When T2 tries to modify the object O, its action is rejected, because it 
would invalidate the last observer operation made. 

In general, multi-versioning can be considered as an optimistic scheme in the 
pessimistic concurrency control: we are hoping that conflicting operations take place 
in the same order as the transaction were created – time stamped conflicting operation 
are not executed out of order. 

                                                 
1 We assume that the approach of handling messages between transactions is pre-emptive – the 
transaction gets interrupted when receiving the abort message. Pre-emption is explained in section 2.6, 
page 17. 
2 An observer is an operation that reads the state of an object without modifying it. 
3 A modifier operation is an operation that updates the state of an object depending on its previous state 
(i.e. incrementing a counter) or that simply overwrites it. 
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Figure 2.5 : Multiversion Timestamping 

If for any reason, T1 wants to modify again the value of O later on, it gets 
aborted because of the observer in T3. Aborting T1 results in aborting T3 – otherwise 
T3 would have read an intermediate inconsistent value of O. Such cascading aborts 
problems can be avoided using Time Warp Protocols such as proposed in [JM86], 
introducing a notion of virtual time based on the transactions timestamp. The principle 
is that every operation inside a transaction is undoable by executing its inverse and 
that in case of a conflict, operations are rolled back until a consistent virtual time is 
found, where every action can take place without conflict – the idea is to then to try 
executing every conflicting operation in the timestamp order. 

2.5.2 Optimistic Concurrency Control 
In optimistic concurrency control [KR81, Her90], transactions are allowed to 

execute concurrently without checks. Transactions are first in a working phase where 
they work as if they were isolated from the other ones. They can access and make 
changes to objects on private copies. When a transaction is about to commit, it enters 
the validation phase. If the validation phase detects no conflict, the changes made 
become durable. If conflicts are found, transactions are aborted. In case of restarting 
every aborted transaction, the model can lead to starvation: a transaction would never 
be able to complete because of conflicts and would always restart. 

 
Figure 2.6 : Optimistic Concurrency Control Situation 
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Figure 2.6 shows a typical situation where two transactions execute 
concurrently. Operation A and B are conflicting. Depending on the validation scheme 
used, the aborting choice are different as exposed in the following sections. 

Forward Validation 
When a transaction comes to its validation phase, forward validation schemes 

look onward to find conflicts with active transactions. If a conflict is found, the 
validating transaction rolls back. This validation scheme can lead to wasted aborts: a 
validating transaction might abort because of transactions that get aborted later on. In 
Figure 2.6, when T2 tries to validate, it sees the conflict with the active transaction 
T1. This results in aborting T2 and maybe restart it later on, as shown in Figure 2.71. 

 
Figure 2.7 : Forward Validation 

When T2 enters its validation phase, it finds a conflict with T1. It aborts and 
restarts. When T1 tries to validate, it finds no conflict with the active transaction T2 
(operation A has not yet been executed on the private copy) and commits normally. 
T2 therefore continues its execution until committing. 

Broadcast Commit 
The broadcast commit validation scheme is a modification to the forward 

validation one in that, in case of a conflict, it is not the current transaction that aborts 
but every active conflicting one. As soon as a transaction comes to its validation 
point, it is assured to commit. If a conflict is found with any active transaction, a 
message is sent to it, informing that the current transaction has committed (broadcast 
commit). When the transactions receive this message, they abort and maybe restart. 
The wasted aborts problem is solved, but this is done at the expense of aborting every 
active conflicting transaction. The scheme can be described in Figure 2.6. As soon as 
T2 gets to its validation phase, it broadcasts its commit message to T1 that must abort 
and maybe restart. 

                                                 
1 To be exact, when T2 tries to validate and fails in doing so, it has to rollback. This rolling back time is 
not shown in the figure, or we assume it is instantaneous. Another issue is that restarting T2 cannot be 
done synchronously by two threads: one has to start the transaction and then the second one can join it. 
An exception to this asynchronous joining rule is explained in [Kie04] with named transactions. 

14 



  Main Concepts 

Backward Validation 
In backward validation, when a transaction comes to its validation phase, it 

looks for conflicts with every “overlapping” already committed transaction. If the 
operations that the validating transaction has executed conflict with previously 
committed operations, then the transaction aborts. In Figure 2.6, when T2 comes to its 
validation phase, it commits normally. When T1 comes to its validation phase, it sees 
that the invoked operations in T2 conflict with its own operations and aborts. 

2.5.3 

A solution to this problem is to adjust the conflict detection approach. In 
locking protocols, it would mean not to attach locks with invoking objects but with its 
                                                

Semantic-Based Concurrency Control 
Assuming we have an Account class containing information on its owner, as 

shown in Figure 2.8, with respective getters and setters for every attribute, we define 
what conflicting operations are. 
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Class Account { Class User { 
   User owner;    String name; 
   float balance;    String lastName; 
   float Withdraw(float amount);    String phoneNumber; 

}    float Deposit(float amount); 
} 

Figure 2.8 : Account and User Classes 

Observers are methods that only read the object state without modifying it. 
Getters are typical observers like Account.GetBalance(), for instance. These 
operations are also called readers. 

Modifiers are methods that modify the objects state. There are two types of 
modifiers: updaters are methods that change the state of an object depending on its 
previous state whereas over-writers do not care of the objects previous state when 
updating. Updaters first read the object value to update it (increment a counter, double 
a value) whereas overwriters only write (setters). These operations are also called 
writers. 

Note: an updater can be decomposed in a read operation followed by a write 
operation. This means that when detecting a conflict, it can be either the read or the 
write operation that creates a conflict. 

In basic strict locking concurrency control, when reading information from an 
account object, a read-lock on the object is granted, and subsequently only read-
locks can be obtained by other operations – readers do not conflict with each other. As 
soon as a write-lock has been granted, no other lock can be obtained until the write-
lock is released. Concurrency, in this scheme, is not optimal at all, because money 
withdrawal from an account1 while updating its owner’s phone number2 are not 
allowed; two operations which do no conflict because they share different data 
structures. The same situation would also be considered conflicting in an optimistic 
concurrency control, as it would be considered as two modifiers on a same object. 

 
1 Withdraw money from an account is a typical updater that can be decomposed into read-balance 
followed by write-balance. 
2 Updating a phone number is a typical overwriter: the new number does not depend on the old number 
value. 
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es or nested objects, adjusting the granularity of the locks. In an optimistic 
point of view, it would be not only to remember what kind of operation was applied 
on an object (observer or modifier), but what attributes or nested objects the operation 
was accessing. This approach restrains the conflicting domain between operations. 

The idea can be described in the locking context as follows: the withdraw 
method would not acquire a write-lock on the account object, but on the balan

e, so that the owner attribute is not locked anymore. A 
setPhoneNumber() on the account.GetOwner() would therefore be 
allowed. In an optimistic context, during the validation phase, the same idea can be 
applied stating that two modifier operations on the same object can be not conflicting. 

We want to go further and state that two withdrawal operations can occur 
concurrently. If balance is greater than 1000, in example, 

nt.withdraw(200) and Account.withdraw(500) can occur at the 
same time without any conflict. We can even state that they can occur in any 
particular order. The result is still the same: in the end, balance is updated to 300. 

The property allowing interchanging operations and still getting the same 
result is named commutativity. A way to achieve this is to provide the concurrenc

 a commutativity table for operations on objects. An entry in this table would 
state that Account.withdraw(x) and Account.withdraw(y) commute if 
and only if Account.balance is greater or equal to x + y, and therefore do not 
conflict. For a simpler example on a Set Class, please refer to [Kie04]. 

In the locking environment, locks would be associated with methods, stating 
that a withdraw-lock does not interfere with a setPhoneNumber-lock

w-lock when one is already acquired would only be allowed if the object 
currently were in a specific state, i.e. when the balance attribute is greater than the 
withdrawal amount. 

There are two types of commutativity, in which recovery techniques differ, 
they are explained

tativity can be found in [BR92]. 

Forward Commutativity 
Forward commutativity

objects. Whenever executing 
ed copy of the object. In a basic scheme, the ordering of operations is not 

important, since both of them access the initial state of the object. In our accounting 
context, both withdrawal read a balance value of 1000 and therefore attempt to make 
their execution durable. If, in contrary, the balance is 1000 and we want to withdraw 
two times 800, then the execution of both operations are allowed, until validation of 
the second transaction, realizing that there is not enough money on the account. 

The “forward” naming comes from the recovery technique used in case of 
aborting. The idea is that every operation until the conflict is redone unt

ting operation, based on an initial consistent state of object. 
Multi-version concurrency controls can be viewed as specialized extents to 

forward commutativity giving rules for accessing private copies of
stamp. 
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Backward Commutativity 
Backward commutativity is used in combination with in-place update of 

objects. Whenever executing an operation, the changes are made on the object itself, 
changing its current state. In a basic scheme, the ordering of operations is important 
and can change the behavior of transactions in early stage. Imagine we have an 
account with an initial balance of 1000, then, the execution of two withdrawals of 800 
does not occur as in forward commutativity. The first withdrawal is allowed, changing 
the state of the object as soon as it is executed but the second one is aborted as soon as 
the new balance is read. 

Backward commutativity is named after the backward recovery technique, 
which undoes every operation that should not have been done until a consistent state 
of the object is found. This result in the simple assumption that every operation must 
have an inverse, thus resulting in not executing anything (i.e. withdraw is the inverse 
of deposit). 

Time Warp Protocols can be seen as a specific solution to in-place update of 
objects in an optimistic context. 

2.5.4 

2.6 

Additional Notes 
Semantics-Based Time Warp Protocols are discussed in [LA93], and 

information on real-time concurrency control, such as the Two-Shadow Speculative 
Concurrency Control can be found in [BBP93]. The latter one states that, as in 
branch prediction in processor architecture, whenever a critical operation is executed, 
two paths are followed: one as normal, when the execution is correct and another one, 
which is a copy of the actual one, speculating that the execution was wrong. Twice as 
much work is done, but we can state that one of the solutions is the correct one, in the 
end. 

Concurrency control is an area of interest that is wide enough to contain 
transaction managers, real-time schedulers, database query languages execution and 
even pipelining in processors architecture. Plenty of papers were written since the 
early ages of computer science, but there is a lack of complete recent reference on the 
subject. 

Exception Handling 

This section covers a part of the exception handling mechanism developed for 
open multithreaded transactions [Kie00, Kie04]. Two important design decisions are: 

• The model distinguishes internal and external exceptions; the latter 
ones are also called interface exceptions; 

• Any external exception propagated from a transaction context is 
interpreted as an abort vote passed by the participant. 

Each participant has a set of internal exceptions that must be handled inside 
the transaction, and a set of external exceptions, which are signaled to the outside of 
the transaction, when needed. If for any reason, the handler of the internal exception 
cannot deal with it, it can signal an external exception, resulting in aborting the 
transaction. The predefined external exception Transaction_Abort is always 
included in the set of external exceptions. 
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2.6.1 

2.6.2 

Internal Exceptions 
After an internal exception is raised in a participant, the corresponding handler 

is called to handle it and to complete the participant’s activity within the transaction. 
The handler can signal an external exception if it is not able to deal with the situation. 
In case an internal exception is not handled, the external exception 
Transaction_Abort is signaled. For a complete reference on internal exceptions, 
please refer to [Kie04]. What really interests us in our models is how external 
exceptions are handled. External exception handling in the initial model is described 
next. 

External Exceptions 
• External exceptions are signaled explicitly. Each participant can signal 

any of its external exceptions. 
• Each joined participant of a transaction has a containing exception 

context. 
• When an external exception is signaled by a joined participant, it is 

propagated to its containing context. If several joined participants 
signal an external exception, each of them propagates its own 
exception to its own context. 

• If any participant of a transaction signals an external exception, the 
transaction is aborted, and the exception Transaction_Abort is 
signaled to all joined participants that vote commit. 

• Because spawned participants do not outlive the transaction, they 
cannot signal any external exception except Transaction_Abort, 
which results in aborting the transaction. 

Because the open multithreaded transaction model provides transaction 
nesting, the exception handling rules have to be applied “recursively” by the 
programmer. All external exceptions of a joined participant are internal exceptions of 
the calling environment. 

 
Figure 2.9 : Exceptions in Open Multithreaded Transactions 

Figure 2.9 illustrates exception handling in open multithreaded transactions, 
especially when nesting occurs. Thread B that has started T1 also starts T1.1. Thread 
C joins it and then thread B spawns thread B’. Thread B’ performs some work, votes 
commit and terminates. Thread B generates an exception while performing its work, 
but the exception is handled locally. It therefore does not affect the outcome of the 
transaction; after successful handling, thread B also votes commit. Unfortunately, 



  Main Concepts 

  19 

thread C has generated an exception. It tries to handle it, but realizes that it cannot 
recover from this situation. It therefore raises an external exception, which causes T1 
to abort. The exception Z is propagated to the calling environment of thread C: 
transaction T1. In all other joined participants, here thread B, the exception 
Transaction_Abort is raised to notify them of the transaction T1.1 abort. Now 
that the scope of the exception is T1.1, the previous external exception Z becomes an 
internal exception to T1 and can be handled or again not. The exception handling is 
therefore recursive in a nesting point of view. 

If an interface or external exception has been raised, all participants should be 
informed about the abort of the transaction as soon as possible. There are two distinct 
approaches: non-preemptive and preemptive. 

In the non-preemptive approach, each participant completes the transaction 
by voting commit or by signaling an interface exception in order to vote abort. If a 
participant votes abort, the other participants get to know that the transaction has 
aborted only once they vote commit. Non-preemption can decrease performance in 
applications with long running transactions. If one of the participants of a long 
running transaction votes abort just after the transaction has been created, all other 
participants would continue their now useless work until they reach their commit 
statement.  

When using the pre-emptive approach, the transaction support does not wait 
for the participants to complete, but interrupts all participants as soon as one of them 
has signaled an external exception. This preemption often requires special run-time 
support. Its feasibility depends on the mechanisms provided by the programming 
language or on the underlying operating system. The model does not suffer from 
performance decrease for long transactions, but unfortunately introducing preemption 
mechanisms often results in some constant performance overhead even when these 
mechanisms are not used, i.e. for transactions that commit. Choosing the appropriate 
model, non-preemptive or preemptive, depends on the characteristics of the 
application. 





 

21 

Chapter 3 :

3.1 

 Limitation & Possible Improvement 

To preserve the isolation property, open multithreaded transactions do not 
allow participants to leave a transaction when they finished their work. The threads 
are blocked until the transaction outcome is known (synchronization on transaction 
exit as specified in section 2.4, page 8). Being blocked, these threads do not compute 
anything at all. On a single processor system, this might not really be an issue, since 
blocked threads do not take control of the processor anymore, but on a multiprocessor 
architecture or in a distributed context, this waste of computation time should be 
avoided as much as possible. The computational time could be used to speculatively 
execute the code that follows the transaction. 

Therefore, we want to hypothesize on the transaction outcome and allow 
threads to execute the next logical operations after the transaction they were involved 
in, as if the transaction had committed. Being optimistic, we assume that transactions 
commit more often than they abort. 

Look-Ahead in Atomic Actions 

In the first following subsection, a short introduction to atomic actions is 
exposed, giving main differences and similarities between atomic actions and open 
multithreaded transactions, whereas the second subsection describes the look-ahead 
theory in atomic actions, as introduced in [Rom01]. 

3.1.1 Introduction to Atomic Actions 
Atomic Actions [Lom77, Ree83] are program structures derived from 

Conversations [Ran75] introduced to build complex concurrent systems. A fixed 
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number of threads enter an atomic action asynchronously; a recovery point is 
established in each of them. They freely exchange information within the atomic 
action, but cannot communicate with any outside thread (violation of this rule is 
called information smuggling). When all threads participating in the conversation 
have come to the end of the action, their acceptance tests are to be checked. If all tests 
have been satisfied, the threads leave the action together. Otherwise, they restore their 
states from the recovery points. Figure 3.1 shows the structure of an atomic action. 

 
Figure 3.1 : An Atomic Action with Exception Handling 

A fixed number of threads enter the atomic action and set their recovery point, 
then they communicate with each other until thread D raises an exception X, which is 
handled. Concurrently, thread B raises another exception Y. X and Y are compared 
(also called exception resolution) and the most important one is propagated to all the 
participants, so that it is handled cooperatively. Whenever they are all done, 
acceptance tests are checked to decide whether the participants can quit the action 
altogether or retrieve the last consistent state they were in. 

 
The main similarities between atomic actions and open multithreaded 

transactions are the following: 
• Open multithreaded transactions and atomic actions may be nested. 
• Threads can enter atomic actions or open multithreaded transactions 

asynchronously. 
• Threads must leave atomic actions or open multithreaded transactions 

synchronously. 
 
The main differences between atomic actions and open multithreaded 

transactions are the following: 
• The number of participants of an atomic action is fixed in advance, and 

hence no dynamic creation of threads is allowed; though this is a key 
point in open multithreaded transactions. 

• Participants in open multithreaded transactions have their own 
separated local exception handling; whereas all participant threads 
recover together from an exception in atomic actions. 

• Participants in open multithreaded transactions work with, and store 
their results in external objects; while in atomic actions, every 
participant threads have local states and share their results. 
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Synchronous exit, being a serious limitation to the model performance has 
lead to an attempt in relaxing it, as exposed in the next subsection. 

3.1.2 Looking Ahead in Atomic Actions with Exception Handling 
In [Rom01], a new atomic action scheme is introduced that does not impose 

any participant synchronization on exit. It states that letting threads leaving an action 
without waiting for all participants at the action exit is called looking ahead. 

If a thread reaches the end of an action and is not aware of any exception 
inside it, it leaves the action and continues its execution. Such a thread is called a 
look-ahead thread. If a thread, in an action, raises an exception and this action has a 
participant that has looked ahead from it, then it is clearly not possible to handle this 
exception at the level of the action. To do this, all participant threads are needed to 
provide cooperative exception handling and to guarantee the absence of information 
smuggling. 

Therefore, a look-ahead thread cannot be involved into recovery at the level of 
the action that it left as it has maybe entered other actions since then. The action 
context for exception handling is lost. The approach is then to find a containing action 
that includes all look-ahead threads and to involve all of its participants into 
cooperative handling to guarantee the consistency of recovery. The situation is shown 
in Figure 3.2. As mentioned previously, in open multithreaded transaction, no 
cooperative handling at this level is provided, thus not needing a dedicated protocol 
for exception handling. 

 
Figure 3.2 : Looking-Ahead in Atomic Actions 

When thread C raises exception X, thread D has already looked ahead. 
Therefore, the exception resolution must find the containing action that includes all 
look-ahead threads (AA1) and makes the cooperative handling of the exception Y in 
this context. 

3.2 Objectives 

The objective of this diploma thesis is to apply the ideas of the atomic actions 
theory to the open multithreaded transactions context. 

The new models we propose do not impose any participant synchronization on 
transaction exit. Avoiding the synchronization on exit, letting a thread leave it before 
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its outcome is called looking ahead. Threads that leave a transaction without waiting 
for its outcome are called look-ahead threads and the transaction they were working 
in is called former transaction.  

The models we propose still guarantee the ACID properties, isolation being 
the critical one. Different look-ahead models lead to different problems, solutions, and 
distinct exception handling. 

The requirements are as follow: 
• Transparency: we want to keep the transactions programming as 

simple as possible, exactly as it was in the initial model1. 
• Compatibility: programs designed for and running with the initial 

model should have no problem with the introduction of looking-ahead 
capabilities. In the worst case, we want to give the programmer the 
possibility of using the new models as if the transactions were executed 
in the initial model. 

• Robustness: we want to provide models that enforce consistency, in 
any situation, providing complete and strong exception handling 
techniques. 

• Overall speed increase: models should overcome the initial model 
main limitation providing a considerable gain in execution speed. 

3.3 Requirements Notes 

Fulfilling every requirement is not really possible when proposing models, 
thus, we want to give relations between them, showing that increasing one decreases 
another one, for example. 

3.3.1 

3.3.2 

                                                

Transparency 
The transparency rule states that every model proposed must be as simple as 

possible for the programmer, not adding too much constraint on programming, as new 
statement or design choices, in example. When allowing look-ahead, the user must 
only see a performance increase, but the global behavior of the system must be the 
same as in the initial model. The user, for example, must not be aware of a problem in 
a look-ahead if the former transaction is not completed yet. The logical time must be 
respected so that the programmer has always a global and traceable view of the 
execution. 

Compatibility 
The compatibility rule states that the programmer could be able to run his 

application on the new system without applying any changes. Respecting this rule can 
be done in two possibilities: 

• A non-updated program runs in the initial model, thus not improved by 
allowing look-ahead, but respecting the transparency rule – a non-

 
1 By initial model, we consider the model exposed in [Kie04], which is summarized in Chapter 2 : 

, page 7. Main Concepts
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updated program behaves exactly as in the initial model, as looking-
ahead is not enabled. In order to allow look-ahead, a program must be 
updated using new statements. A simple example is in handling the 
commit statement: in this case, a simple commit statement would mean 
to use the initial model and a new speculative_commit statement 
would mean to use the new model. 

• A non-updated program is executed in a look-ahead context, thus 
resulting in a consistent execution (robustness requirement) but maybe 
not the exact same as in the initial model (see Chapter 4 : Potential 
Issues, page 29). In order to have the same execution, the programmer 
would need to update the program, with new statements (i.e. wait-
for-commit) to recover the same synchronization on exit as in the 
initial model. 

 
Following the first idea would mean that in order to allow looking-ahead, new 

statement must be added, at the expense of the transparency rule, but states that a non-
updated application would be executed exactly the same as in the initial model, 
fulfilling the compatibility rule. 

The second idea is that a complete compatibility is assured by adding new 
statements but the transparency is completely fulfilled when looking-ahead. 

We are optimist and choose the second idea in the model propositions, stating 
that always allowing look-ahead threads would result as an improvement to the initial 
model execution, and that different – although consistent – behavior would be rare. 

In every model proposed, both ideas can be applied, adjusting some 
statements. These variations, where applicable, are described in the concerned 
models. 

3.3.3 

3.3.4 

3.4 

Robustness 
The robustness requirement states that executing an application in a look-

ahead context must result in a consistent execution. This requirement is always 
completely fulfilled in the models proposed. 

Overall Speed Increase 
The overall speed increase requirement states that the execution of an 

application must provide significant performance speed increase. This requirement is 
very hard to quantify, as only an implementation can give results, but comparing the 
proposed models can give a good overview of which one is the best alternative. The 
overall speed increase is directly dependent on what information the programmer 
gives to the system. Thus, providing means to retrieve such information, new 
statement must be added, decreasing the transparency requirement wished. 

Look-Ahead Thread in Open Multithreaded Transactions 

We want now to give some definitions in a looking-ahead context. Look-ahead 
threads are threads that execute instructions after their commit vote, predicting the 
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commit of the transaction they were working in. There are two main possibilities that 
happen when the thread leaves the transaction and becomes a look-ahead: 

• The look-ahead creates or joins a transaction, called look-ahead 
transaction. 

• The look-ahead executes code that is not creation or joining of a 
transaction, called lone code. 

 
To denote a look-ahead transaction of a former transaction T1, we use the 

T’(T1) notation. In case of a second level look-ahead transaction, we can use T’(T’(T1)) 
or T’’(T1) to simplify writing. A look-ahead transaction of jth level would be written 
Tj(T1).The look-ahead number j is called look-ahead amount and characterizes the 
number of look-ahead that can occur while normally blocked waiting for the 
transaction outcome. If two threads create or join two different look-ahead 
transactions of T1, they are denoted T’1

(T1) and T’2
(T1). 

Figure 3.3 illustrates an execution of open multithreaded transactions in the 
initial model. A possible execution, allowing looking-ahead, of the same system is 
illustrated in Figure 3.4. 

 
Figure 3.3 : Execution of Open Multithreaded Transactions in the Initial Model 

Look-ahead transactions and lone code are shown in Figure 3.4. Thread C, as 
soon as it has voted commit in T1.1, looks-ahead and executes lone code until 
completion of T1.1 and then T1. Thread D, after voting, looks ahead and creates 
transaction T’(T1.1). Thread E looks ahead, executes some lone code and then joins the 
transaction created by thread D. 

 
Figure 3.4 : Looking-Ahead: Transactions & Lone Code 

The graphical comparison of Figure 3.3 and Figure 3.4 shows a good 
improvement in the overall execution speed, as essential in the requirements. 
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Section 3.4.1 covers the look-ahead transaction a thread may create or join 

whereas section 3.4.2 exposes the lone code analysis. 

3.4.1 

                                                

Look-Ahead: Transaction 
It the transaction creates or joins a new transaction after the former transaction 

outcome, it is called a look-ahead transaction. Operations in a look-ahead transaction 
can be independent or dependent on the outcome of the former transaction. We 
introduce this classification in order to clarify our design choices made in the 
proposed models supporting look-ahead transactions. Please note that the dependency 
is semantic, and not related to the transactional objects that are accessed. A dependent 
look-ahead transaction might not involve accesses to the same transactional objects 
than the former transaction; and an independent look-ahead could. The classification 
is explained in the following sub-sections. 

Semantic Dependency 
Two transactions are called semantically dependent when the execution of the 

second one depends on the first one’s outcome. In auctions, one might place a bid for 
a printer only after winning a bid for a computer (a printer is only useful if you also 
have the computer). In bank transactions, one might wait for a deposit to pay a bill. In 
other words, we only want to execute the semantically dependent transaction if the 
first one succeeds. 

The first example is semantically dependent but independent in terms of 
transactional objects: we want to bid for a computer and then for a printer, which are 
different objects – a printer without a computer does not interest the user, whereas a 
computer might still be useful without a printer1. 

Whereas the second example is, in contrary, also dependent in terms of 
transactional objects: the user is transferring money on the same account object. 

The idea behind dependent transactions is that if the former transaction T1 
fails to commit after its look-ahead T’(T1) has started, both transactions abort – we do 
not want to execute T’(T1) if T1 aborted, resulting in a valid and consistent state where 
none of the two transactions are executed. Therefore, a dependency link is introduced: 
as soon as the former transaction aborts, its dependent look-ahead transactions also 
abort. When dependent transactions must be distinguished from independent 
transactions, they are denoted TD’(T1). 

Semantic Independency 
Two transactions are called semantically independent if the result of the first 

one does not affect the second one’s execution. Actually, operations could even be 
executed out of order. If a transaction is used to convert a multimedia flux, nested 
transactions could handle different sound channels, or process the image and the 
sound independently. In the auction system, a sportsman could bid for a tennis racket 

 
1 Depending on the implementation, both transactions would be linked with a userID defining 
which bidder is bidding or balance, in order to check if the user has enough money to bid. These 
examples show there is a lot of chance, that when transactions are semantically dependent, they might 
use same objects, being also dependent in terms of transactional objects accesses. 
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and for a snowboard. If the bid for the tennis racket is aborted, the user still wants his 
bidding for the snowboard to be valid. Independent transactions are denoted TI’(T1). 

The idea behind independent look-ahead transactions is that if transaction T1 
fails to commit after its independent look-ahead TI’(T1) has started, we abort T1, and 
inform TI’(T1) of T1’s abnormal termination. TI’(T1) has different choices of behavior 
(exposed in the proposed models, whenever applicable). One of them is to abort itself, 
which results in the exact same behavior as if both transactions were dependent1. Note 
that this simple choice fulfills the transparency requirement, stating that the execution 
in a look-ahead model must be the same as an execution in the initial model. 

3.4.2 

                                                

Look-Ahead : Lone Code 
Instructions executed by the look-ahead threads immediately after leaving the 

former transaction that are not encapsulated by another transaction are called lone 
code. Just as before, the lone code can be dependent or independent, but in both cases, 
there is no trivial way to undo only the lone code. Therefore, we do not have to 
distinguish the two cases. 

 
1 This affirmation is very important; because it validates the fact that independent transactions can be 
managed as dependent transactions, in case the implementation of independent look-ahead transaction 
turns out to be too complex. 
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Chapter 4 :

4.1 

 Potential Issues 

This section introduces potential problems that can occur when allowing 
threads to look-ahead from open multithreaded transactions. 

Spawning Threads 

As mentioned in Chapter 2 : Main Concepts, threads can be forked and 
terminated in a transaction. Rules state that both creation and termination have to 
occur in the same transaction. We have then to assure this rule is not transgressed 
when introducing looking-ahead. 

4.2 Read/Write Dependencies 

Read/Write dependencies occur when the former transaction and one of its 
look-ahead threads tries to access the same transactional objects in a conflicting 
manner. As we have seen in section 2.5.3, page 15, every operation, as complex as it 
could be, can be decomposed in terms of conflicting operations, into single reader or 
writer operations. The following figures illustrate the cases with transactions, but the 
situation is the same for look-ahead threads executing lone code. The following issues 
all refer to the situation depicted in Figure 4.1. 



Read/Write Dependencies 

 
Figure 4.1 : General Read/Write Dependency Model 

The figure shows two transactions: T1, the former transaction, and the look-
ahead transaction T’(T1). Operation A, which is part of the look-ahead thread 
execution, takes place before operation B, executed from within T1. Operation A and 
B try to access an arbitrary attribute x of the transactional object O. 

It the operations were executed in the initial model without look-ahead, no 
dependency would ever occur, since transaction T’(T1) would only begin as soon as T1 
outcome is known. 

To clarify the figure and in order to save space, we use a condensed way of 
representation, as shown in Figure 4.2. 

 
Figure 4.2 : General Read/Write Dependency Model (Simple View) 

This situation results in the four separate cases that have to be analyzed. 
1) RAR (Read-after-Read): operation A is a read, and operation B is a read. 

This is not a real dependency, as nothing is modified at all, RAR is not bringing out 
any conflict. Reading an attribute of the transactional object O is shown in Figure 4.3. 

 
Figure 4.3 : Simple RAR (Read-After-Read) Dependency Model 

2) WAR (Write-after-Read): operation A is a read, and operation B is a 
write. T’(T1) reads a value, which has not been modified yet by T1. The respective 
accesses to the transactional object O are presented in Figure 4.4.  

 
Figure 4.4 : Simple WAR (Write-After-Read) Dependency Model 

3) RAW (Read-after-Write): operation A is a write, and operation B is a 
read. T1 tries to read a value which has already been accessed by T’(T1). The Read-
after-Write dependency is exposed in Figure 4.5. 
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Figure 4.5 : Simple RAW (Read-After-Write) Dependency Model 

4) WAW (Write-after-Write): operation A is a write, and operation B is a 
write. T1 tries to write in object O as T’(T1) has already accessed it. This case is 
summarized in Figure 4.6. 

 
Figure 4.6 : Simple WAW (Write-After-Write) Dependency Model 

In Chapter 5 : Look-Ahead & Concurrency Controls, these read/write 
dependencies are discussed in each concurrency controls previously exposed, and 
solutions are given to handle the conflicts. 

4.3 Multiple Objects Access - Deadlock Analysis 

Another problem, caused by accesses to transactional objects, can be deadlock 
presence or starvation issue (as described in section 2.5, page 9). This problem is 
again a result of look-ahead introduction. In the initial model, a former transaction T1 
would have completed before its look-ahead T’(T1) had begun, not yielding any 
conflicts. Figure 4.7 illustrates this situation with transactions, but the same problem 
is also present with lone code. 

 
Figure 4.7 : General Deadlock Dependency Model 

Operation A, which takes place in the look-ahead thread, accesses the 
transactional object O before T1 attempts in doing so. T1 accesses the transactional 
object P before T’(T1) tries to access it. It is obvious that in case of a lock-based 
protocol, deadlock occurs, if no modification is made to the current concurrency 
control scheme. 

In case of a timestamp algorithm, it could happen that T1 gets aborted because 
of its look-ahead, which we also want to prevent in order to respect the transparency 
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requirement. The same situation is also possible in case of an optimistic concurrency 
control (especially in forward validation). 

4.4 Nesting 

As exposed in Chapter 2 : Main Concepts, transactions can be nested. In 
atomic actions, a thread is allowed to look-ahead from any nested action until the top-
level one, which is the last minimum action containing all possible actions that could 
need being aborted. It can be done in open multithreaded transactions, but in some 
models, it might be useful to restrict look-ahead thread behavior not letting them leave 
the current level of nesting. 

4.5 Short Look-Aheads & Amount of Look-Aheads 

Short look-ahead threads are of two kinds: short look-ahead transactions and 
short look-ahead lone code. The following sections give definitions of short look-
ahead threads in both transactions and lone code. 

4.5.1 Short Look-Ahead Transactions 
A short look-ahead transaction is a look-ahead transaction that tries to commit 

before knowing its former transaction outcome. The situation is shown in Figure 4.8. 

 
Figure 4.8 : Model of a Short Look-Ahead Transaction 

If OpA and OpB conflict with each other, the problem is a read/write 
dependency, as exposed above, but in case they do not conflict, T’(T1) tries to commit 
or validate before its former transaction. We have now two different possibilities: 

• T’(T1) is an independent transaction T’I
(T1), therefore both transactions 

can be executed out of order. 
• T’(T1) is a dependent transaction T’D

(T1) and cannot be committed 
before T1 outcome is known. 

In order respect the compatibility requirement (section 3.2, page 23), the look-
ahead transactions must commit in the same order as if they had been executed in the 
initial model – in the logical time order. This means that the transactions are not 
dynamically rescheduled; even though this choice is not optimal in term of overall 
performance, i.e. independent transactions could be executed out of order. 

As soon as the former transaction commits, every pending look-ahead 
transactions must try to commit in the logical time order. 

In pessimistic concurrency control, as soon as a look-ahead transaction 
reaches its commit point, it is blocked until the former transaction is completed. 
Therefore, in locking protocol, the locks of the look-ahead transaction are not released 
at the moment. If an active transaction conflicts with the pending transaction, it is 
aborted and maybe restarted, as stated in section 5.1.2, page 41. In timestamp 
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ordering, as the pending transaction is still active, it can also be aborted and restarted 
because of the former transaction. When the former transaction is completed, every 
pending transaction that was not aborted can simply commit respecting the logical 
time order. 

In optimistic concurrency control, look-ahead transactions must also validate 
in respect with the logical time order. Every look-ahead must be prevented from 
validating before its former transaction. If they are blocked right before the validation 
phase, the former transaction still has the possibility of invalidating some operations, 
thus finding conflicts. As soon as the former transaction has validated, its look-ahead 
are allowed to validate, in the logical time order. In case of conflicts, the validating 
transaction must be aborted and maybe restarted, as explained in section 5.2.3, page 
43. In forward validation, the former transaction might abort and remove pending 
look-ahead transactions, whereas in backward validation, it is absolutely mandatory 
that look-ahead threads validate after their former transactions. 

4.5.2 Short Look-Ahead Lone Code 
A short look-ahead lone code is look-ahead lone code that executes a create, 

join or commit operation before knowing the former transaction outcome. Figure 4.9 
shows the different possibilities. 

 
Figure 4.9 : Short Look-Ahead Lone Code 

When leaving T1.1, thread C executes lone code and then joins a looking-
ahead transaction, before knowing T1.1 outcome. Thread D executes lone code and 
creates a looking-ahead transaction, whereas thread E votes commit for the containing 
T1 transaction. All of these executions include short look-ahead lone code as defined 
above. As opposed to the short transactions, lone code cannot be blocked until 
committing or validating, because there is now way of undoing it, in order to recover 
the initial consistent state. 

4.5.3 Amount of Look-Aheads 
When a look-ahead thread enters several transactions sequentially, from T’(T1) 

to Tj(T1), j is called amount of look-aheads. This number could be fixed to 0 (resulting 
in the initial model) or 1, for instance, or simply be unrestricted, so that look-ahead 
threads can freely look-ahead from any look-ahead transaction. 

In look-ahead transactions, having an unrestricted amount of look-ahead is 
particularly useful when the former transaction is long running and when many look-
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ahead threads can be executed and added to the queue before the former transaction 
outcome is known. 

As exposed previously, two design choices appear when committing a 
transaction. The commit statement can lead to blocking the voting thread as in the 
initial model, or to allowing looking-ahead. 

Considering the commit statement as blocking (as in the initial model), a new 
speculative_commit is added to allow looking-ahead. Figure 4.10 shows a 
typical example of consecutive speculative commit statements. 

 
Figure 4.10 : Speculative Commit Statements in Short Look-Aheads 

Thread E consecutively joins T1 and T1.1. When looking-ahead from T1.1, it 
executes lone code and joins a look-ahead transaction, T’’(T1.1). This transaction has 
two participants, threads D and E. Both threads vote for another speculative commit 
statement and therefore look-ahead before the former transaction T’(T1.1) or the root 
former transaction T1.1 outcome is known. 

If Thread D voted for a normal blocking commit, instead of the speculative 
one, the following design choices would appear: 

• Participant thread is blocked until the last former transaction it was 
involved in has committed, i.e. thread D is at least blocked until thread 
E has voted, as shown in Figure 4.11 and Figure 4.12. 

• Participant thread is blocked until the root former transaction has 
committed, i.e. thread D is blocked until thread B has voted, as shown 
in Figure 4.13. 

On the other hand, when considering the normal commit statement as allowing 
looking-ahead, a new statement, allowing synchronization between threads and 
transactions is added: wait-for-commit. 

Last Former Transaction Blocking 
The first design choice is a way to block a look-ahead until the current level of 

look-ahead is completed. Its implementation would be to wait until every participant 
vote. Rules can be proposed like defining the last participant as a decisive thread. 
When speculatively committing, the thread is always allowed to look-ahead. Then 
using a normal blocking commit, it is blocked until the decisive thread of the former 
transaction votes. If the decisive thread votes for a speculative commit, then the 
threads are allowed to look-ahead, if not, threads are blocked until the decisive thread 
in their former transaction has voted. 

In Figure 4.11, thread D votes for a normal blocking commit in T’’(T1.1), it is 
blocked until the decisive thread E votes for a speculative commit, thus allowing 
thread D to look-ahead. 
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Figure 4.11 : Last Former Transaction Non-Blocking 

If, in contrary, thread E also votes for a normal blocking thread, both threads E 
and D have to wait until the last former transaction T’(T1.1) is completed. If the 
decisive thread C votes for a speculative commit, every thread is allowed to look-
ahead, as exposed in Figure 4.12. In the other case, if thread C votes for a normal 
commit statement, the three threads C, D and E are blocked until T1.1 outcome is 
known. As T1.1 is the root former transaction, this particular case would result in the 
root former transaction blocking design choice described in the next subsection. 

 
Figure 4.12 : Last Former Transaction Blocking 

Root Former Transaction Blocking 
The second design choice is a way to completely block a thread from looking-

ahead, no matter in what level it is. 

 
Figure 4.13 : Root Former Transaction Blocking 

In Figure 4.13, when thread D and E vote for a normal commit in T’’(T1.1), they 
are blocked until the root former transaction T1.1 is completed, no matter what T’(T1.1) 
decides. 
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Wait For Committing 
If the normal commit statement is considered as allowing looking-ahead (from 

now on, it is the case), a means must be provided to the programmer for 
synchronizing threads and transactions. Adding a wait-for-commit statement is 
very convenient for the programmer, giving him means to ensure synchronization 
specifically. 

A serious limitation in the last two design options is the random choice of the 
decisive thread. The decisive thread is not chosen by the programmer, but during the 
execution phase, in selecting the last committing thread. The wait-for-commit 
statement would allow the programmer to handle synchronization specifically in any 
level of look-ahead or nesting. 

If the programmer does not want to allow look-ahead, a normal commit 
statement would be used and a wait-for-commit on the current transaction 
would be added. This would not allow any thread to look-ahead until the current 
transaction is completed: looking-ahead when the transaction outcome is known is 
equivalent to the initial model, without looking ahead. 

4.6 Exception Handling 

There are different problematic cases that must be solved in every proposed 
model: 

• An exception is raised in the former transaction while one or several 
threads are already looking-ahead, i.e. an internal exception that 
cannot be handled locally, thus propagating an external exception. 

• An exception is raised in the look-ahead context while the root former 
transaction is not completed. 

4.6.1 Exception Raised in Former Transaction 
When an internal exception is raised in the former transaction and as its 

handling does not involve every participant (non-cooperative), threads in the 
concerned former transaction do not need to be informed. Two options occur now: the 
exception is caught and handled – the concerned thread does not need to propagate it 
to the calling environment; or an external exception is raised in the containing scope 
and the participant threads of the concerned transaction must receive a new 
LA_Transaction_Abort exception. Doing so, they know the work they are now 
executing might be useless. The situation is shown in Figure 4.14. In case of pre-
emptive approach, the exceptions are immediately raised in the look-ahead threads. In 
non-preemption, the exception would be raised only when the threads are voting. 
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Figure 4.14 : Exception Raised in Root Former Transaction 

Thread B, which is the last working thread in T1.1 catches an internal 
exception X and tries to handle it. Unfortunately, an external exception Y has to be 
raised in T1 context, thus propagating T1.1 LA_Transaction_Abort exceptions 
in every T1.1 participants (C, D and E)1. In order to respect the transparency rule and 
the fact that look-ahead might depend on the T1.1 outcome, every look-ahead has to 
undo whatever it has done after leaving the former transaction. The only particular 
case, where this statement is modified, is when the look-ahead is independent and 
undoable, which is covered in the models propositions. 

4.6.2 Exception Raised in Look-Ahead Context 
If an exception is raised during the look-ahead execution, no information must 

be provided to the former transaction in case of an exception in the look-ahead: giving 
information of the “future events” in the “past”2 is of no use in the former transaction. 
The situation is shown in Figure 4.15. 

 
Figure 4.15 : Exception Raised in Look-Ahead Context 

Thread C, when finished with T1.1 and T’(T1.1) executes code that raises an 
exception X in T1. When handled, in the worst case, it propagates an exception Y in 
its context, thus raising a Transaction_Abort in every participant thread of T1. 
                                                 
1 Thread E, in the lone code preceding T’’(T1) joining, could have done changes to an external object O, 
depending on the transaction outcome. If Thread F executed code because of these changes, the 
exception must also be raised in thread F. 
2 The time notions reference the logical time: the former transaction executes before its look-ahead in 
the initial model. 
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If executed in the initial model, the exact same result would occur, in the end, T1 must 
abort. 
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Chapter 5 :

5.1 

 Look-Ahead 
& Concurrency Controls 

In this chapter, we analyze how the look-ahead introduction behaves in the 
concurrency controls introduced in Chapter 2 : Main Concepts, and propose solutions 
whenever the initial concurrency control can be adapted to suit our needs. Two cases 
are analyzed: look-ahead transactions and lone code, but our main analysis focuses on 
the look-ahead transactions, as lone code can be considered as a non-undoable 
transaction in case of conflicts. 

Being given the read/write dependencies (section 4.2, page 29), the possible 
solutions are analyzed in a look-ahead transaction context. The analysis is the same 
for semantically dependent and independent transactions. Whenever problems or 
solutions differ, it is clearly stated in the text. 

Solutions are given when the potentially erroneous work is undoable. If the 
conflicting operations are executed during lone code, it is not trivially undoable. Thus, 
approaches trying to overcome this problem are exposed in the proposed models (Part 
I). 

Pessimistic 

We analyze how the pessimistic concurrency controls behave with 
introduction of look-ahead threads, given the read/write dependencies issues 
previously stated. Solutions when dealing with look-ahead transactions are confined 
in a dedicated subsection, for both lock-based protocols and timestamp ordering 
schedulers. 
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5.1.1 Read/Write Dependencies 
In case of a WAR (Write-after-Read): operation A is a read, and operation B 

is a write, T’(T1) reads a value, which has not been modified yet by T1. 
Operation A, which acquires a read-lock on the transactional object O does not 

authorize a write before the lock is released, which would be T’(T1) ending. This is not 
acceptable in respect with the serializability rule, T1 has a logical time priority over 
T’(T1). What we would have to do here is that when the write-lock is asked in T1, it 
has to be granted (override the permission of T’(T1)). To do so, we have to abort T’(T1), 
which releases the read-lock, and restart it as soon as possible. T1 having the write-
lock, T’(T1) has to wait until it is released to get the read-lock and continue its normal 
behavior. As the write-lock in T1 is released in its commit phase, T’(T1) read 
permission is granted when T1 is finished, as shown in Figure 5.1. Note: If the first 
operation of T’(T1) was a read, introduction of look-ahead behaves exactly as in the 
initial model – so to say that T’(T1) has to wait for its read-lock until the end of T1. 

In case of timestamp ordering, the idea is similar to lock-based protocols and 
yields the same results: whenever the write operation tries to invalidate the read 
operation in T’(T1), it is not T1 that must be aborted but T’(T1). 

 
Figure 5.1 : Solution to WAR Dependency in Pessimistic Concurrency Control 

 
In case of a RAW (Read-after-Write): operation A is a write, and operation 

B is a read, T1 tries to read a value which has already been accessed by T’(T1). 
This is not acceptable in respect with the serializability rule, T1 occurs before 

its successor T’(T1). Any writing in T’(T1) should take place after T1’s last reading. In 
fact, as T’(T1) obtain its writing-lock, no reading-lock is granted to T1, which blocks it 
until T’(T1) is finished. The same idea as for WAR applies here: to override any lock 
obtained by T’(T1), abort it, and restart it as soon as possible. In timestamp ordering, 
the idea is still to abort the look-ahead and not the former transaction. The result is 
visible in Figure 5.2. 

 
Figure 5.2 : Solution to RAW Dependency in Pessimistic Concurrency Control 

 
In case of a WAW (Write-after-Write): operation A is a write, and operation 

B is a write, T1 tries to write in object O as T’(T1) has already accessed it. This is also 
not acceptable in respect with the serializability rule: T1 occurs before its successor 
and if a write-lock is granted to T’(T1), T1 waits until the outcome of its successor. The 
solution to this problem is the same as for a WAR or RAW dependency: always allow 
the former transaction to get lock, overriding T’(T1) permissions or to abort the look-
ahead instead of the former transaction in timestamp ordering. Figure 5.3 shows the 
result. 
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Figure 5.3 : Solution to WAW Dependency in Pessimistic Concurrency Control 

5.1.2 Solution to Read/Write Dependencies 
T1, preceding T’(T1) always has higher rights than its successor in order to 

fulfill the serializability rule, as shown in the following tables. 

T’(T1) T1 has read-
lock

T1 has write-
lock T1 T’(T1) has read-

lock
T’(T1) has 
write-lock

read(x) yes no read(x) yes
yes, restart 

T’(T1)

write(x) no no write(x)
yes, restart 

T’(T1)
yes, restart 

T’(T1)  
Figure 5.4 : Solution to Read/Write Dependencies in Locking Protocol 

In timestamp ordering or multiversion timestamping, the following rule must 
be followed: in case of a conflict between a transaction and its look-ahead, the former 
transaction always has the higher priority, thus always aborting the look-ahead. 

5.1.3 Multiple Objects Access – Deadlock Analysis 
One of the pessimistic concurrency control bottleneck, beside its decrease of 

performance implementing locks, is the deadlock presence, which is hard to detect. 
We prove that deadlocks cannot appear using the solution to read/write dependencies 
between former transaction and their look-ahead threads. Let us analyze what happens 
in Figure 4.7. 

When operation C tries to get object P’s lock, it gets blocked. Object P’s lock 
was granted to T1 when operation B was executed. But now, when T1 tries to get 
object O’s lock, it does not get blocked, it takes priority over object O’s lock and 
T’(T1) has to be restarted. Operation A and C, waiting for the locks are blocked until 
the outcome of T1, which releases the locks. By giving priority to T1 in accessing 
objects, we avoid deadlocks between former transactions and their look-ahead. This 
does not mean that deadlock does not exist anymore, it only states that the deadlock 
introduced in look-ahead theory can be handled easily. The result of applying our 
solution in a deadlock case is shown in Figure 5.5. 

 
Figure 5.5 : Solution to Deadlock in Pessimistic Concurrency Control 

5.2 Optimistic 

This section exposes how the optimistic concurrency control behaves when 
introducing look-ahead threads. Solutions when dealing with look-ahead transactions 
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are stated in dedicated subsections, for the different validation techniques. The figures 
are presented as if modifications to objects were done on private copies. Whenever an 
in-place update would result in a different behavior than with deferred update, 
comments are given. 

5.2.1 Read/Write Dependencies with Forward Validation 
In case of a WAR (Write-after-Read): operation A is a read, and operation B 

is a write, T’(T1) reads a value, which has not been modified yet by T1. This 
dependency is exposed in Figure 5.6. 

 
Figure 5.6 : WAR Dependency in Optimistic Concurrency Control 

As soon as T1 tries to validate, it detects a conflict with an active transaction 
(T’(T1)) about the transactional object O. T1 aborts, which also aborts T’(T1). As T’(T1) 
was the cause of the conflict we have a wasted abort. Introducing the transactional 
object dependency between T1 and T’(T1) results in a cyclic dependency. A solution to 
this problem is to force the former transaction to commit, thus aborting the look-
ahead. This solution can be considered as a broadcast commit between former 
transactions and their look-ahead transactions. Therefore the broadcast commit 
protocol does not need a specific solution is this case. 

 
In case of a RAW (Read-after-Write): operation A is a write, and operation 

B is a read, T1 reads a value which would already been accessed by T’(T1). 
As exposed in section 2.5.2, page 13, the write operation in T’(T1) is only 

visible to other transactions after being validated. This means that T1 accesses the 
initial unmodified value of x. Thus, the RAW dependency is not a problem; in this 
case, nothing has to be modified. 

 
Figure 5.7 : RAW Dependency in Optimistic Concurrency Control 

This situation has to be nuanced when working with in-place update of 
objects. The writer, taking place in the look-ahead transaction, would have an impact 
on the former transaction if not undone before the reader operation. Thus, when 
detecting the conflict (during T1 validation phase), T1 discovers a conflict with its 
active look-ahead, resulting in aborting itself. If both transactions can be executed out 
of order (i.e. semantically independent), then we are fine, but in the other case, T1 
aborting results in its look-ahead abortion, which was cause of the conflict. This is 
another example of cyclic dependency. The solution is to undo the conflicting 
operation of the look-ahead before attempting to execute the one in the former 
transaction. This approach is similar to Time Warp Protocols, but in our interests, we 
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want to state that in case of semantically independent transactions, this might not be a 
problem. 

 
In case of a WAW (Write-after-Write): operation A is a write, and operation 

B is a write, T1 writes in object A, so does T’(T1). 
As shown in Figure 5.8, both write operations occur during the commit phase. 

As there is no reading in this case, there is no conflict discovered during the validation 
process. WAW dependency does not introduce a cyclic aborting, because writing does 
not depend on the object’s initial state. 

 
Figure 5.8 : WAW Dependency in Optimistic Concurrency Control 

5.2.2 

5.2.3 

Read/Write Dependencies with Backward Validation 
In backward validation, the previously exposed figures always assume the 

look-ahead transaction tries to validate after the former transaction. In any of these 
cases, backward validation, as it looks backward with overlapping already committed 
transaction, never aborts the former transaction because of the look-ahead. 

The main problem with backward validation is in case of short look-ahead 
transactions as exposed in section 4.5, page 32. The solution proposed is to block the 
short look-ahead until the former transaction has validated. If conflicts are detected, 
then it is the look-ahead transaction that aborts and maybe restarts. 

Solution to Read/Write Dependencies 

Forward Validation 
The validation phase has to be adapted in order to avoid cyclic dependencies 

between former transactions and their look-ahead. When a transaction tries to validate 
and finds out conflicts with an active transaction. It has to differentiate between look-
ahead and normal transaction. If every conflicting transaction is of look-ahead type, 
then the validating transaction commits and abort-restarts every conflicting 
transaction. This can be considered as a broadcast commit when conflicting 
transactions are look-ahead threads. 

Broadcast Commit 
In terms of look-ahead, broadcast commit is analyzed exactly as in typical 

forward validation. Please note that in case of short look-ahead threads, they must 
validate after their former transactions. Doing so, they could be aborted because of 
active transactions. This is against the broadcast commit protocol idea but is necessary 
in order not to abort a former transaction because of any of its look-ahead threads. 
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Backward Validation 
In backward validation, no new solution has to be provided in case of look-

ahead introduction. Short look-ahead threads form the only issue in backward 
validation, and thus, the solutions in section 4.5, page 32, handles this situation 
completely. 

5.2.4 

5.3 

Multiple Objects Access – Deadlock Analysis 
Optimistic concurrency control ignores what a deadlock is, because it is a 

pessimistic specific problem. However, its dual problem is starvation, as mentioned in 
section 2.5.2, page 13, and as explained in the pessimistic multiple objects access, 
whenever a conflict is found priority is given to former transactions, thus always 
restarting look-ahead threads. This results in no new starvation between transactions 
when working with private copies of objects. 

The situation is different with in-place update of objects. In case of conflicts 
between a former transaction and its look-ahead, the concurrency control has to give 
priority to the former transaction. Nevertheless, the problem, with in-place update, is 
that the conflicting operations are interleaved and already executed. This means that 
aborting any of them would automatically result in aborting the other invoking 
transaction. If restarting aborted transactions, we have a typical starvation problem. 
To avoid this, whenever a conflict is detected, conflicting operations must be rolled 
back before finding a correct possible sequence of execution that does not implicate 
conflicts. This is the purpose of Time Warp Protocols. 

Discussion 

As shown in previous sections, it is possible to maintain both pessimistic and 
optimistic concurrency controls features when introducing look-aheads in open 
multithreaded transactions, thus respecting the compatibility requirement. 

In theory, the overall speed increase seems consequent showing that the look-
ahead introduction results in a faster execution than in the initial model. In the worst 
case, aborting a look-ahead to restart it is done when committing the former 
transaction, which is the exact same situation as in the initial model: the first 
transaction has to commit before the second one begins. Of course, this statement is 
nuanced as soon as models are proposed, taking in account exception handling and 
lone-code execution. 



 

Part II 
 
Proposed Models 
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The next chapters present different ways of introducing look-ahead in open 

multithreaded transactions. Each chapter describes a model with slightly different 
rules for letting a thread leave the former transaction in order to perform operations 
speculatively. 

Chapter 6 : “Leave”, page 49, presents the first model of look-ahead 
introduction. It is based on the model for atomic actions proposed in [Rom01]. It also 
is the most basic and most straightforward. 

Chapter 7 : “Stretch”, page 55, describes a model based on  “Leave”, trying to 
overcome one of its major limitations. 

Chapter 8 : “Create”, page 63, introduces a model specifically dedicated to 
immediate creation or joining of following transactions. 

 Chapter 9 : “Implicit”, page 73, describes a model based on “Create”, adding 
capability to handle lone code as robustly as transactions. 

Every model proposed contains the following sections, describing its features 
and limitations: 

Concept 
The concept section of the model proposals describes the general idea on how 

the model behaves. It provides information whether new statements are introduced 
and if any rule in the initial model is threatened. It also gives an overview on what 
main requirement the model targets. 

Concurrency Control Analysis 
The concurrency control analysis section discusses the ability of the model to 

manage the concurrence between the former transactions and its look-ahead threads. It 
states solutions on how to handle look-ahead threads whether they execute 
transactions or lone code. 

Exception Handling 
As exposed in section 4.6, page 36, the models must be able to handle 

exceptions in the former transaction when already executing a look-ahead. In this 
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section, discussion is exposed in case of looking ahead from several nested 
transactions, changing the exception scopes. 

Specific Limitations 
The specific limitations section describes the model weaknesses and strengths, 

stating its intrinsic limitations and how they can be addressed.  

Discussion 
The discussion section evaluates the conformance of the model to the initial 

requirements, its suitability to handle conflicts between the former transaction and its 
look-ahead thread, and the possible exceptions. The limitations of the model and the 
problems found in concurrency controls are summarized, giving a good overview of 
the model possible usefulness. 

Variations 
The final section gives a list of possible modifications to the model, whether it 

is in order to fulfill a specific requirement more than any other or to improve the 
model general performance. 
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Chapter 6 :

6.1 

 Leave 

Concept 

The “Leave” model is simple and straightforward. The idea is to let threads 
leave the transaction after their votes, and continue execution exactly as if the 
transaction had committed. The model is illustrated in Figure 6.1. Thread D starts T1, 
and then a nested transaction T1.1. Thread E joins T1, then T1.1, and finally commits 
instead of being blocked. Thread E can now look-ahead: it executes code outside of 
T1.1, but inside T1. An obvious restriction to a thread leaving a transaction is that it 
must be in a containing transaction – the former transaction must be nested in another 
one. This restriction is mandatory in term of consistence. If for any reason, the look-
ahead executes code that it should not be allowed to, the erroneous execution can still 
be undone by rolling back the containing transaction, in order to result in a consistent 
state. Therefore, in the “Leave” model, threads involved in top-level transactions 
cannot look-ahead, as illustrated in the figure. 



Concurrency Control Analysis 

 
Figure 6.1 : Illustration of the "Leave" Model 

6.1.1 

6.1.2 

6.2 

New Statements 
The commit statement is considered allowing look-ahead threads. Therefore, 

the system must provide a mean for synchronization of threads and transaction 
completion. This is done with the previously exposed wait-for-commit 
statement, page 36. 

Notes on Spawning Threads 
Whenever a thread is forked, it still terminates in the same transaction it was 

created in. Therefore, the rules defining the creation and termination of threads inside 
transactions, on page 7 are not bypassed. 

Concurrency Control Analysis 

We analyze now the concurrency control problems that can occur in the 
looking-ahead introduction, respecting the rules stated in section 2.5, page 17. 

In the current model, no distinction is made between look-ahead transactions 
or lone code. If a conflict is found during the execution of look-ahead transactions, 
solutions are provided in Chapter 5 : Look-Ahead & Concurrency Controls, but there 
is now way, in this model, of knowing if the look-ahead transaction followed 
undoable lone code or not. Moreover, no information is given whether the look-ahead 
transaction is semantically dependent or independent. Hence, the treatment in case of 
read/write dependencies must be independent of the kind of look-ahead we have. 

Logical time and semantic dependency state that the former transaction 
happens before its look-ahead. Therefore, if the look-ahead executes a conflicting 
operation, it has to be undone – we have no way of knowing if the lone code contains 
conflicting operations before they are executed. We have to wait until the former 
transaction executes an operation that reveals the conflict with the look-ahead 
(pessimistic) or during its validation phase (optimistic). 

In this model, the only way of undoing the look-ahead in order to recover the 
system to a consistent state is to abort the innermost containing transaction, which 
obviously aborts the former transaction itself. The phenomenon of aborting the parent 
transaction of the former one is named parent abortion, and is considered as the worst 
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case, because not only the work done in the former transaction is lost, but also the 
execution in the parent transaction, preceding the former transaction’s execution. 

Whenever a conflict occurs, the system has to abort and restart the innermost 
containing transaction, disabling looking-ahead for the involved transaction and all its 
children. 

6.3 Exception Handling 

We investigate now the exception handling in the former transaction while 
look-ahead threads are already executing. In case of an internal exception, the 
handling is done normally, as explained in section 2.6.1, page 18, and if it cannot be 
handled locally, an external exception is propagated. In that case, the look-ahead 
threads have to be informed, with a new LA_Transaction_Abort exception. 
Figure 6.2 illustrates the idea. 

 
Figure 6.2 : Exception Handling in the "Leave" Model 

Thread B when executing work in the former transaction raises an exception 
that it handles, and then propagates an exception Y to T1. Doing so, T1.1 
LA_Transaction_Abort exceptions are raised in every former participant 
thread1 of T1.1. 

Two choices appear in the look-ahead threads execution: 
• Transparency goal: The exception is not caught by the user and is 

automatically handled by the system. It results in aborting the 
innermost transaction containing all the concerned threads (see 2.6.1, 
page 18), which is T1 in Figure 6.2. 

• Overall performance goal: the programmer has anticipated this 
possibility, and wants to handle the exception in the look-ahead 
context. This assumption means the programmer knows about the 
exception possibility, thus going against the transparency rule. This 
approach might lead to problems of cooperative concurrency between 

                                                 
1 If thread E and F are cooperating after thread E has looked ahead, then the exception must also be 
raised in the context of thread F, even though it did not take part in the former transaction. This is why 
a new exception is raised, instead of the regular Transaction_Abort. 
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participants and outside former transaction threads and nesting issue, 
as exposed in the next sub-section. 

This second point is put aside, because of its complexity and is explained as a 
modification to the model in section 6.6, page 53. 

6.3.1 Nesting 
As decided above, in case of conflicts or exception, the parent transaction 

must be aborted. If a thread inside T1.1.1 is allowed to look-ahead, continuing its 
execution in T1.1, and then looks ahead again, it is now executing code inside T1. 
Thus, in case of an exception in the root former transaction T1.1.1 the innermost 
containing transaction is T1, and now T1 must be aborted. 

If a thread is allowed to look-ahead from its parent transaction, the granularity 
of the exception is decreased and in order to guarantee consistency, the grandparent 
must be aborted. This situation is shown in Figure 6.3. 

 
Figure 6.3 : Exception Handling in the “Leave” Model, with Nesting 

Thread B, when it propagates the exception Y to T1.1, raises T1.1.1 
LA_Transaction_Abort in thread C. As mentioned previously, if there was 
cooperative concurrency, introducing dependency between a former participant thread 
and any outside thread, an exception must be raised in every concerned thread, in case 
the programmer wants to handle it. Otherwise, the innermost containing transaction 
aborts, and results in the consistent state just before its beginning. 

In general, if a thread is allowed to look-ahead from n nested transactions, 
assuming m is the actual level of the nested transaction looked-ahead from, the 
innermost transaction to abort is of level (m-n). Stating that threads involved in top-
level transactions cannot look-ahead assures that m is always strictly greater than n, 
trivially resulting, in the worst case, in aborting the top-level transaction (level 1). 

6.4 Specific Limitations 

The limitations of the model are the following: 
• Looking-ahead cannot take place in top level-transactions. 
• The model is inefficient (parent abortion) if the blocking time in the 

initial model is long enough to execute a single conflicting operation 
with the former transaction: not only the work done in the former 
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transaction is lost, but also every operations that took place in the 
parent transaction before the beginning of the former transaction. 

• The model is inefficient (parent abortion) in case of an exception raised 
in the former transaction, for the same reasons. 

 
Using this model would only be worthwhile in systems using at least one level 

of nested transaction, and when the nested transaction contains a lot of threads, where 
the time difference between every blocking thread is not long enough to create 
conflicts but still significant enough to use look-ahead threads. Using this model is 
also possible when long-running threads, that postpone the outcome of the transaction, 
are executing operations that have practically no chance of creating a conflict. (i.e. 
waiting for a specific object state before committing, waiting for a specific event to 
commit: static time or network message). 

6.5 Discussion 

As expected, a simple model like “Leave” is not giving terrific results. The 
only case where the model is efficient is when no conflicting operations during look-
ahead take place before the former transaction outcome, and that the former 
transaction is contained in at least one parent – this only happens when the blocking 
time in the initial model is not long enough to execute any conflicting operation. This 
inefficiency can be explained in not being able to recover at the same level as the 
problem was found, always having to abort the containing transaction. 

6.6 Variations 

This section provides improvements in the current model, or exposes different 
design choices that can be made. 

6.6.1 

6.6.2 

New statements 
A slight modification to the model can be changing the system’s interpretation 

of the commit statement. So far, it was interpreted as allowing looking ahead, thus 
the synchronization between threads and their former transaction, if needed, would be 
done with the wait-for-commit statement. 

Instead of this, the system could consider the commit statement as the normal 
blocking commit statement – as in the initial model, and add a new 
speculate_commit that allows look-ahead execution of the voting thread. 

Exception Handling 
In the exception handling section, solutions that do not give the user the 

possibility of handling LA_Transaction_Abort are favored. This is done for two 
main reasons: 

• The model must be the most transparent possible for the user. 
• The exception can be raised in any level of nested transaction. 

Therefore, if the programmer wants to handle it, not only the handler 
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might be complicated, but the programmer must provide a handler for 
each different level of nested look-ahead transactions, which might 
become too cumbersome. 

• The exception can be raised in any thread, because of the possible 
cooperative concurrency between threads inside a transaction. 

 
If we want the model to provide these features to the user, whether the 

cooperative concurrency rules must be redefined, or the cooperation between threads 
must be traced by the system in order to raise the LA_Transaction_Abort 
exceptions in the concerned threads. 

6.6.3 Concurrency Control Issues 
When a read/write dependency occurs, the solution is to abort the transaction 

and restart the execution disabling look-ahead, as exposed in section 6.2, page 50. A 
more sophisticated solution would be to disable looking-ahead only when exactly 
needed, as one pass of the process is already done, we know exactly where the 
conflict occurred. The drawback to this solution is that it could run x times if there are 
x more possible conflicts, whereas the simple algorithm would only re-execute once. 

A better solution would then be to do a complete analysis of the executed code 
during the first try, so that the best synchronization, without conflict, would be found 
and executed during the second pass. This approach goes beyond the scope of the 
thesis and is not exposed anymore. 
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Chapter 7 :

7.1 

 Stretch 

Concept 

The “Stretch” model is based on the “Leave” model, trying to overcome one 
of its major problems: incapacity of handling exception at the same level they were 
raised. In the “Leave” model, we had to abort the containing transaction in order to 
undo the (potentially erroneous) operations that look-ahead participants have executed 
after the commit. The “Stretch” model tries to overcome this problem by extending 
the transaction beyond its usual border: if a participant commits, it can continue 
executing code, but this code is still executed from within the same transaction 
context, keeping the look-ahead threads isolated from the containing transaction. The 
model still does not distinguish between look-ahead transactions and lone code, 
therefore, conflicts still pose problems. The improvement is that instead of aborting 
the parent transaction, only the stretched transaction must abort. Figure 7.1 illustrates 
the model. 

 



Concept 

 
Figure 7.1 : Illustration of the "Stretch" Model 

The general idea is that whenever the transaction is aborted or an 
inconsistency is detected, we do not have to abort the parent but only the stretched 
transaction, thus retrieving the consistent state at the beginning of the former 
transaction. Stretching the former transaction is a way of setting a surely consistent 
recovery point at the beginning of the transaction. 

7.1.1 Notes on Spawning Threads 
Now that we are changing the transaction borders, we have to assure the rules 

defining thread creation and termination inside a transaction, page 7, are not bypassed. 
If ever T1.1 forks a thread, it has to terminate when committing, thus, it cannot look-
ahead. 

Thus, we only have to handle the following situations, commenting Figure 7.1: 
• T1 forks a thread that joins T1.1 and tries to terminate inside T1.1 

stretched context (T1). 
• T1 forks a thread inside T1.1 stretched context. 

 
In both cases, whenever we want to abort T1.1, resulting in aborting the 

stretched transaction T1.1, threads would have to be killed, which is undesirable. 
Therefore, creating or terminating thread must be blocked until the end of the 
stretched area. The termination of a thread is shown in Figure 7.2. 

 
Figure 7.2 : Terminating Thread is Postponed in "Stretch" Model 
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When the forked thread D’ tries to terminate, it should normally be able to 
terminate in T1 context, but as the borders of the former transaction T1.1 have 
changed, the termination cannot take place in T1.1 stretched area. Therefore, the 
termination of the thread is postponed after the outcome of the former transaction 
T1.1 is known. 

7.2 Concurrency Control Analysis 

The read/write dependencies, as described in the “Leave” model are still 
present in the “Stretch” model, but their handling can be now improved significantly.  

In case of conflicts, we do not want to abort the parent transaction but only the 
stretched former transaction, resulting in the consistent state just before the former 
transaction’s beginning. Doing so, we can use the same easy solution as in the 
previous model: restarting the former transaction with look-ahead disabled1. 

A behavior, which is specific to the “Stretch” model, is that execution of the 
look-ahead code, outside of the transaction is still done in the context of the former 
transaction. Thus, execution of operations in the stretched area is isolated from the 
outside world, in particular from the containing transaction. We want now to show 
that cooperative concurrency is not changed using the stretch model than if it was in 
the initial model. 

Figure 7.3 shows an example of cooperative concurrency between threads. 

 
Figure 7.3 : Cooperative Concurrency in the "Stretch" Model 

Thread F, which is outside of the former transaction executes code inside T1 
and is synchronized with thread D waiting for changes on the object O. Waiting is not 
causing conflict anyhow, therefore the thread is sleeping until the object state 
changes. When thread D updates O, the changes are not made visible to the outside 
threads until completion of the former transaction, thank to the isolation rule. At this 
moment, thread F recovers its execution. 

This is coherent with what would have happened in the initial model, as shown 
in Figure 7.4. 

                                                 
1 The improvements given in section 6.6, page 53, can be applied to this solution. 
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Figure 7.4 : Cooperative Concurrency in Initial Model 

Thread F, waits for an update on O, as in the previous case. Now that thread D 
is blocked until thread B has completed its work for T1.1, its update to object O is 
postponed after T1.1 outcome is known, thus slowing down thread F a little more. As 
soon as the update is made, thread F is synchronized and can use O, to continue its 
normal execution. 

What we can state, from this example it that isolating the lone code contained 
in the stretch area from the outside thread is, even in the worst case, equivalent or 
better than the initial model. 

On the other hand, competitive concurrency can be turned into cooperative 
concurrency: a thread executing in the stretch model should be isolated from the 
former transaction, but actually executes as in the former transaction – isolation rule is 
threatened. This is a result of executing speculative code before the outcome of the 
former transaction is known. Normally, the speculative code is synchronized thank to 
the blocked threads. The problem is a result of the absence of cooperative/competitive 
rules (which were not needed in the initial model). This case is addressed in section 
7.6.2, page 61.  

7.3 Exception Handling  

In case of an exception raised in the former transaction while other threads are 
looking-ahead, the thread involved first handles the internal exception locally and if 
needed, propagates an external exception to the containing transaction context, which 
triggers a Transaction_Abort in every participant thread1. Figure 7.5 shows this 
particular situation. 

                                                 
1 Thank to the absence of cooperative concurrency problems, no outside thread can be involved in a 
possible exception handling, thus only aborting the stretched transaction, in the worst case. 
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Figure 7.5 : Exception Handling in the "Stretch" Model 

Thread B, when executing operations in the former transaction T1.1 raises an 
internal exception X that it cannot handle correctly, thus propagating exception Y to 
T1. In this case, T1.1 Transaction_Abort is raised in every former participant 
thread. It is not necessary in this case to have a new LA_Transaction_Abort as 
in the “Leave” model. This is a direct consequence of the absence of cooperative 
concurrency problem in the “Stretch” model. As mentioned before, the exception is 
raised only in the former participant threads that could not interfere with outside 
thread, which would have made them also dependent of the former transaction 
outcome. 

7.3.1 Nesting 
Exactly as in the previous subsection, in the worst case, the stretched 

transaction must be aborted. If a thread inside T1.1.1 is allowed to look-ahead to T1.1 
(T1.1.1 stretched) and wants to look-ahead again, it is now executing code inside T1 
(but still in the stretched context of T1.1.1). Thus, in case of an exception in the root 
former transaction T1.1.1 the stretched transaction must be aborted. This results in 
recovering the involved threads to the exact same state as right before the former 
transaction. Now that a thread is allowed to look-ahead in different level of nested 
transaction, a new LA_Transaction_Abort must be introduced. 

Figure 7.6 shows the case where an exception is raised in a former transaction 
while one of its participants is already looking-ahead in another level of nesting. The 
stretched context is expanded until the former transaction’s end (commit or abort). 

 
Figure 7.6 : Exception Handling in the “Stretch” Model, with Nesting 
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When thread B tries to handle the internal exception X, it propagates an 
external exception Y to T1.1. However, if thread C is allowed to look-ahead from 
T1.1.1 and also from T1.1, then it receives a T1.1.1 LA_Transaction_Abort in 
T1 (T1.1.1 stretched) 1. In this case, it is very difficult for the programmer to handle 
the exception, as being in two higher levels than where the exception was raised – its 
handler must be declared in the scope of T1. If the programmer does not want to 
handle it, the system automatically aborts T1.1 stretched and restarts it disabling look-
ahead or with any of the variations exposed in section 6.6, page 53. Thank to 
cooperative/competitive concurrency, when look-ahead threads are allowed to look-
ahead from different nesting levels, the only – stretched – transaction to abort is still 
only the one that raised the exception. 

7.4 Specific Limitations 

As exposed in the previous sections, there are a couple of significant 
improvements over the “Leave” model, the main ones being: 

• The model allows looking-ahead in top-level transactions. 
• Abortion has been improved to recover the consistent state right before 

the start of the former transaction. 
• Cooperative concurrency between look-ahead threads and outside 

threads is not a problem anymore. 
 
Nevertheless, the model still does not take advantage of the solutions provided 

when dealing with look-ahead transactions, because it handles look-ahead transactions 
and lone code indifferently. 

An issue in this model is that outside operations execute in the stretched 
context, i.e. T1 operations in T1.1 stretched. As expected, both transactions should be 
isolated from each other. However, in the current model, the outside operations are 
allowed to execute inside the stretched context, which turns the competitive 
concurrency into cooperative concurrency. 

7.5 Discussion 

The “Stretch” model overcomes the biggest problem of the “Leave” model, 
parent abortion, in giving a practical and general solution without any drawback 
compared to the “Leave” model. In addition, the model can now be used in case of 
top-level transaction, which is an important improvement. 

The serious limitations that are kept are the inefficiency of aborting the former 
transaction in case of conflicting operations with the look-ahead. 

                                                 
1 If the regular Transaction_Abort were used, it would mean for T1 in thread C, that T1.1 had 
aborted, which is not the case. 
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7.6 Variations 

As summarized previously the “Stretch” model is a decent improvement over 
the “Leave” model. It could be simplified and one of its limitations could be 
overcome, as explained in the following sub-sections. 

7.6.1 

7.6.2 

One-Level Nested Looking-Ahead 
As exposed in section 7.3, page 58, the model does not need to add a new 

exception, in case of exception handling, when only allowing one level of nested 
look-ahead threads. This statement changes when unrestricted, and the exception 
handling can become very inconvenient to manage for the user. Therefore, a simple 
version of the “Stretch” model could only allow one level of nested looking-ahead, 
always providing the simplest exception handling situations for the user. 

Competitive/Cooperative Concurrency Issue 
As exposed in the limitations, the “Stretch” model has a conceptual problem in 

turning competitive concurrency into cooperative concurrency when threads in 
different transactions execute operations in the same context. A way to solve this 
particular case is to provide the concurrency control a way of differentiating between 
operations in the former transaction and operations in the stretched context. This 
could be done, in example by stamping the operations with their invoking transaction. 
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Chapter 8 :

8.1 

 Create 

Concept 

In the previous models, we had no information on whether the look-ahead 
threads are executing look-ahead transactions or lone code. Thus, the solutions 
exposed in Chapter 5 : Look-Ahead & Concurrency Controls could not be of any use 
so far. 

We know that in case of an abort in the former transaction, the code executed 
in look-ahead threads has to rollback, in order to fulfill the compatibility and 
transparency requirements, and because no information on the kind of code executed 
was provided. A dependency link between the former transaction and its look-ahead 
transactions is introduced: if the former transaction aborts, the look-ahead transactions 
must abort, or at least be informed of the situation. However, in the previous models, 
not only the potentially erroneous code was rolled back but also the former transaction 
itself, which this model tries to overcome. Thus, a model that is specifically dedicated 
to look-ahead transactions is introduced, as solutions for the read/write dependencies 
are provided for a proper handling. Therefore, look-ahead lone code is prohibited and 
a look-ahead thread is forced to create or join a look-ahead transaction. 

Rules for the creation (section 8.3), joining (section 8.4) and ending (section 
8.5) of a look-ahead transaction are described, giving several possibilities for an 
upcoming design. 
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8.2 New statements 

In order to enable the “Create” model, we have to add additional commit 
possibilities. Keeping the standard commit statement that blocks the thread, new 
speculative look-ahead commit statements are added, which allow the current thread 
to start or join another open multithreaded transaction. Given that the transparency 
rule is not strictly enforced introducing these statements, we want to go further and 
differentiate between dependent and independent look-ahead transactions. Therefore, 
in order to create or join a semantically dependent look-ahead transaction, the 
following statements must be used : 

• dependent_commit_create 
• dependent_commit_join 

In order to create or join a semantically independent look-ahead transaction, 
the following statements must be used : 

• independent_commit_create 
• independent_commit_join 

Semantic dependency between transactions is explained in section 3.4.1, page 
27. Differentiating independent transactions from dependent transaction results in 
more appropriate exception handling as exposed in section 8.8, page 69. 

8.3 Starting a Look-Ahead Transaction 

After its speculative commit vote, a thread can create a new transaction. This 
newly created transaction is bound to the initial one, because we speculate on the first 
one’s outcome. In the initial model, the new transaction would take place after the 
first one. Adding look-ahead capabilities introduce the fact that some operations may 
execute out of order (with respect to the initial model), and then can lead to read/write 
dependencies as exposed in section 4.2, page 29. 

If a thread does not vote for a creation, it must whether use a joining statement 
or is blocked until the former transaction outcome, as in the initial model. 

8.4 Joining an Open Multithreaded Transaction 

After a speculative commit vote, a thread can also join an already existing 
transaction. In order to avoid circular dependencies, a thread is not allowed to join a 
transaction it has looked-ahead from (re-join). The problem is illustrated in Figure 
8.1. 
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Figure 8.1 : Example of a Re-Joining Problem 

Figure 8.1 shows the inconsistency problem of the T’(T1.1) transaction, which 
being re-joined is becoming T’’’(T1.1). This means that it can only commit when 
T’’(T1.1) has committed, which is only possible when T’(T1.1) has committed. As both 
T’(T1.1) and T’’’(T1.1) are in fact the same transaction, we have a cyclic dependency that 
makes it impossible for either transaction to commit. 

In addition to the “no re-joining rule”, and depending on the situation and the 
probability of aborting the former transaction, we might want to restrict joining even 
further. We have several possibilities for the joining rules, as much for the look-ahead 
threads that for the regular thread. We introduce two sets of rules: restrictive and 
open. The restrictive set should be used in case of a relatively high aborting 
probability, whereas the open set should be used in a more optimistic environment. 
The classification is ordered by decreasing aborting probability of the former 
transaction. 

8.4.1 Restrictive Set 
The restrictive class allows look-ahead threads to only join look-ahead 

transactions. Regular threads are not allowed to join look-ahead transactions. 

Self-Restrictive-Join 
• Look-ahead threads of a transaction can only join look-ahead 

transactions that were created by a former participant thread of this 
particular transaction. 

• Regular threads are not allowed to join look-ahead transactions. 
Self-restrictive joining is illustrated in Figure 8.2. 
This model is optimal in case of a high former transaction aborting probability. 

As we introduce a link between the former transaction and its look-ahead transactions, 
if for any reason the initial one fails to commit, the dependent look-ahead transactions 
are aborted. Since these transactions only contained other look-ahead threads, the 
abort does not cause any other work to be undone. 
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Figure 8.2 : Self-Restrictive Join 

Figure 8.2 shows that thread E, which has finished first, votes for a dependent 
commit. It then creates a new transaction T’D

(T1), which depends on the outcome of 
T1. Participants threads, as soon as they have voted can join the newly created one 
(threads C and D). On the other hand, thread A has voted an independent commit. 
Instead of joining T1’, it can start a new independent transaction T’I

(T1). 
In the worst case, if T1 cannot commit, the dependent look-ahead transactions 

must be aborted. In case of independent look-ahead transactions, different solutions 
are proposed in section 8.8, page 69. This joining rule assures that only threads that 
were participating in the former transaction are affected. 

Restrictive Join 
• Former participant threads can join any active look-ahead transaction. 
• Regular threads are not allowed to join look-ahead transactions. 

The main difference here is that any look-ahead threads can join any look-
ahead transaction. 

The main reason why we differentiate between self-restrictive join and 
restrictive-join is that in this model, in case of abortion of the former transaction, not 
only former participant threads must be informed, but also every look-ahead thread 
that took part in any of the former transaction’s look-ahead transactions. 

8.4.2 Open Set 
The open set relaxes the joining rules as much as possible. Again, there are 

two slightly different models: one-way permissive and two-way permissive. 

One-Way Permissive 
• Any thread is allowed to join a look-ahead transaction. 
• Look-ahead threads are only allowed to join other look-ahead 

transactions. 
Figure 8.3 shows an example of execution, where one-way permissive joining 

rules are applied. 
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Figure 8.3 : One-Way Permissive Joining Situation 

One advantage of these rules is that look-ahead threads cannot join regular 
transactions that have started a long time ago, thus creating a dependency link. Of 
course, these rules can be adjusted in order to only allow look-ahead threads to join 
look-ahead transactions that were created by former participant threads, i.e. former 
participants threads of T1 cannot join any T’(T2), but only Ti(T1). 

Two-Way Permissive 
• Let any thread join any transaction (whether it was a look-ahead one or 

not). An outside thread can join a look-ahead transaction and a look-
ahead thread can join any regular transaction. 

Letting any thread join any transaction is very permissive. However, adding a 
link between transactions can be very inefficient, as shown in Figure 8.4. 

 
Figure 8.4 : Two-Way Permissive Situation 

Threads C, D and E decide to join a transaction created a long time ago (for 
instance). As joining it creates a dependency link between them, which means that if 
T1 aborts, we have to abort T’(T1) which might have started a long time ago. 
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This model can even lead to retroactive cascading abort as shown in Figure 
8.5. 

 
Figure 8.5 : Retroactive Cascading Aborts 

T1, which was created a long time after T’’’(T1) gets priority over it, and even 
worse, T’’’(T1) is not be able to commit before T1. 

A solution would be letting the threads only join look-ahead transactions 
(restrictive), or transactions created after a specific timestamp (T1’s creation, in 
example). 

8.5 Ending a Look-Ahead Transaction 

Ending a look-ahead transaction or a regular transaction is done in the same 
way, with the normal commit statement. Since dependent look-ahead transactions 
can never commit before their former transactions, the system’s response to this 
command must respect the rules given in section 4.5, page 32, about short look-ahead 
threads. In case of independent look-ahead transactions, the system should allow their 
commit vote to be executed out of order (section 8.8, page 69). 

When the former transaction commits later on, every pending look-ahead 
transaction can commit and all other active look-ahead transactions are, from this 
point, behaving as regular transactions. 

8.6 Notes on Spawning Threads 

In the “Create” model, nothing has to be changed when dealing with spawning 
threads. The initial rules defining thread creation and termination must be followed. 

8.7 Concurrency Control Analysis 

In contrary with the previous models, the “Create” model only deals with 
look-ahead transactions, being possibly aborted at any time during their execution. 
Thus, whenever a read/write dependency occurs, the solutions given for each type of 
concurrency control (Chapter 5 : Look-Ahead & Concurrency Controls, page 39) can 
be used and applied. When a read/write dependency happens, the former transaction is 
not aborted, but only the erroneous look-ahead transactions. This is a great 
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improvement over the previous models: the former transaction’s work, which is 
supposed to be correct, is never in danger because of look-ahead threads. 

8.8 Exception Handling 

In case of an exception raised in the former transaction while other threads are 
looking-ahead, the thread involved first tries to handle the internal exception, and 
propagates, if needed, an external exception to the containing context, raising a 
LA_Transaction_Abort in every former participant thread. The situation is 
shown in Figure 8.6. 

 
Figure 8.6 : Exception Handling in the "Create" Model 

Thread B, executing code in the former transaction T1.1 raises an exception X, 
which it tries to handle, and then propagates an exception Y to the context of T1. 
Thus, the system raises T1.1 LA_Transaction_Abort in every former look-
ahead thread. Thread C, having committed normally receives a regular T1.1 
Transaction_Abort, as it is not looking-ahead. Thread D and E, in contrary, 
have now different choices, depending on whether the look-ahead transactions are 
dependent or independent. 

If the former transaction aborts and has several look-ahead transactions, every 
dependent one must abort. In case of independent look-ahead transactions, the 
exception must not interrupt the independent look-ahead transaction until completion. 
When the exception is raised in the concerned threads context, the following 
possibilities are: 

• To handle the exception. 
• To forward the exception asynchronously to a specific handler in order 

to perform clean-up code,1 thus not aborting the current execution. 
 
In case the number of look-ahead transactions before the exception raised is 

greater than one (as in Figure 8.6), the system must assure the propagation of the 
exception from former transactions to their look-ahead takes place, assuring that 

                                                 
1 Asynchronous handling of exception is not supported in current concurrent programming languages, 
yet. See section 10.4, page 82 for more information. 
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T’’(T1.1) receives the information from T’(T1). In Figure 8.6, T’’(T1.1) is informed by 
T’(T1), and must abort, in case it is a dependent look-ahead transaction. 

8.9 Nesting 

Up to now, a programmer, when voting commit, must immediately start or 
join a transaction at the same level. It is not possible to commit a transaction and its 
parent, and then start or join a transaction at a higher level. In order to support this, 
new functionalities must be provided. 

There are two choices: 
• Add a new speculative_commit statement. Several statements 

would follow each other in order to retrieve a higher level of nesting. 
Then immediately use create or join statements. 

• A nesting level parameter is passed to the creation of a look-ahead 
transaction, i.e. independent_commit_create(2) would create 
a top-level independent transaction from a three level of nesting former 
transaction. 

 
In case of semantically dependent transactions, the dependency link is 

inherited: if a T1.1.1 transaction wants to create a top-level, respectively level 2 
dependent look-ahead transaction, the transaction is then T’D

(T1), respectively T’D
(T1.1). 

Finally, we say that nesting, if it is allowed in an implementation, does not 
introduce any new problems in the “Create” model. 

8.10 Specific Limitations 

The limitation of this model is that it can only handle look-ahead transactions, 
not lone code. The transparency requirement is therefore not fulfilled, even without 
the new statements needed to support nesting. Compared to the previous models, the 
overall performance of “Create” is good, in case of several transactions following 
each other, and particularly in case of conflicting ones. 

8.11 Discussion 

A great improvement in this model is the fact that the former transaction does 
not abort anymore in case of conflicts with look-ahead. However, it might be too 
specific to be used and should be combined with one of the previous ones for a 
complete solution. 

8.12 Variations 

Some modifications on the current model are possible, in order to improve its 
performance or to decrease its design complexity. 
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8.12.1 

8.12.2 

New statements 
In order to fulfill both the transparency and compatibility requirements strictly, 

dependent and independent statements could be regrouped, not distinguishing 
independent and dependent transactions: 

• commit_create 
• commit_join  

 
If the differentiation between independent and dependent transactions turns 

out to be too complex to design and implement, this simple solution can be used. This 
would also result in an easier exception handling technique, always handling 
independent look-ahead transactions as dependent ones. 

Complementary Use 
The “Create” model could be used in combination with the “Leave” model, so 

that both look-ahead transactions and lone code is allowed. In this case, no changes 
have to be made for spawning threads, as both models do not introduce transaction 
borders’ modifications. 

On the other hand, if the “Stretch” model handles lone code and the “Create” 
model the look-ahead transactions, attention must be paid with spawning threads, 
exactly as explained while introducing the “Stretch” model. 
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Chapter 9 :

9.1 

 Implicit 

Concept 

The “Implicit” model is based on the “Create” model, taking its great 
advantage of never aborting the former transaction in case of conflict with a look-
ahead transaction. We want to extend this feature in never aborting the former 
transaction in case of conflicts with lone code. 

The main idea is to encapsulate the lone code automatically within an implicit 
transaction. Doing so, the lone code becomes easily recoverable and therefore, 
whenever a conflict occurs, the solutions given in Chapter 5 : Look-Ahead & 
Concurrency Controls can be used. Therefore, the “Implicit” model can be viewed as 
a modification to the “Create” model, adding support for lone code. 

The implicit transactions are not visible to the user, in order to reach an 
optimal level of transparency. The end of an implicit transaction is defined by 
statements of creation or joining or by a commit of the former transaction or by 
committing the parent transaction. In the “Create” model, if the look-ahead 
transaction is still running when the former transaction completes, it becomes a 
regular transaction. The same applies here to lone code: if no transaction is created or 
joined before the former transaction outcome, the borders of the artificial implicit 
transactions simply disappear. 

The general concept of the model is illustrated in Figure 9.1. 



New Statements 

 
Figure 9.1 : Illustration of the "Implicit" Model 

An artificial transaction i(T1.1) is automatically created when thread E 
commits and looks ahead. 

Thread D, when looking-ahead from T1.1 immediately creates a look-ahead 
transaction T’(T1.1) – thus not needing an artificial transaction – which thread E joins. 

At this moment, both i(T1.1) and T’(T1.1), being short look-ahead transactions, 
are still pending, waiting for T1.1 outcome, to be committed. 

Thread C, when committing joins the implicit transaction i(T1.1). Doing so, 
both threads C and E are allowed to cooperate as if they were in T1 but still isolated 
from the outside threads A and F. This prevents any potentially erroneous execution 
in the containing transaction T1 until the former transaction T1.1 is completed. 

As soon as thread D looks ahead from T’(T1.1), it creates the artificial 
transaction i(T’(T1.1)). The reason for it not to join i(T1.1) is that the look-ahead 
depends on T’(T1.1) and not T1.1. At this point, if thread D was allowed to cooperate in 
i(T1.1), and T’(T1.1) aborts, i(T1.1) would also need to abort – possible erroneous 
cooperation. Another reason for thread E not to join transaction i(T1.1) is that it 
would transgress the no-rejoining rule: thread E creates i(T1.1), joins T’(T1.1) and re-
joins i(T1.1), there is a cyclic dependency, and none of the transactions would be able 
to commit. For more information about the re-joining problem, please refer to section 
8.4, page 64. 

9.2 New Statements 

In the “Implicit” model, no statements specific to the model are needed. If the 
user needs synchronization amongst threads and transactions, the wait-for-
commit must be used, but this is not specific to the model, but to allowing looking-
ahead. 

No statements are needed to define the borders of the implicit transactions, as 
we want the model to be as transparent as possible to the user. 

If a thread of a former transaction looks ahead, an artificial transaction is 
automatically created (or joined) to encapsulate every operation following the commit 
statement. There is one implicit transaction for every former transaction possible. 
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Therefore, if several threads look ahead and execute lone code, they are all able to 
cooperate with each other, inside the same implicit transaction. 

As soon as a thread creates or joins a look-ahead transaction, they are not 
allowed to re-join an implicit transaction. If they look-ahead from the look-ahead 
transaction, a new implicit transaction is created or joined. 

The borders of an implicit transaction are defined by the creation or joining of 
a look-ahead transaction or by committing the parent transaction. In any of these 
cases, the look-ahead is considered as short, and the solutions of section 4.5, page 32 
are applied. 

9.2.1 Notes on Spawning Threads 
We have to give simple rules for the model, in case of willing to create or 

terminate a thread inside an implicit transaction. 
• Creation of a thread is blocked until the implicit transaction is 

committed. 
• Termination of a thread is blocked until the implicit transaction is 

committed. 
 
These two rules avoid the semantic problems that arise when a thread creates 

or joins an implicit transaction and terminate inside it, respectively when a new thread 
is created inside an implicit transaction and leaves it. The issue here is what happens 
to these threads if the implicit transaction aborts (i.e. in case of conflicts with the 
former transaction). If the all-or-nothing semantics of transaction is applied to threads, 
such participants would have to be re-created, respectively killed. 

The only solution to this issue is to block the creation or termination of thread 
until the former transaction outcome is known. Doing so, in case of conflicting 
read/write dependency between an implicit transaction and one of its former 
transaction, the implicit transaction can be undone since it does not contain the 
creation or termination of threads. This is shown in Figure 9.2. 

 
Figure 9.2 : Terminating Threads is Postponed in "Implicit" Model 

Thread D’ is forked in T1. It then joins T1.1 and looks ahead from it. Its work 
is thus encapsulated in i(T1.1) and it finally joins T’(T1.1). At this moment, when it 
looks-ahead from T’(T1.1) it executes code inside T1 and wants to terminate. However, 
the thread is still in a look-ahead context. Even if its former transaction T’(T1) is ready 

  75 



Concurrency Control Analysis 

to commit, the root former transaction T1.1 is not. Therefore, the termination of the 
thread is postponed until the implicit transaction has committed. 

9.3 Concurrency Control Analysis 

The concurrency control of the “Implicit” model acts exactly as the “Create” 
model. Whenever a conflicting operation is found during the look-ahead execution, it 
is aborted, allowing the former transaction to continue normally. 

9.4 Exception Handling 

In case of an exception raised in the former transaction while threads are 
looking-ahead, the thread involved first tries to handle the internal exception, and 
propagates, if needed, an external exception to the containing context, raising a 
LA_Transaction_Abort in every former participant thread. The situation is 
shown in Figure 9.3. 

 
Figure 9.3 : Exception Handling in the "Implicit" Model 

Thread B, executing code in the former transaction T1.1 raises an exception X, 
which it tries to handle, and then propagates an exception Y to the context of T1. 
Thus, it raises T1.1 LA_Transaction_Abort in every look-ahead thread. Please 
note that there are no handlers inside the implicit transactions, being invisible to the 
users. The only ones that can handle the exceptions are declared in T1. 

Exactly as in the “Create” model in case of dependent transactions, if the 
former transaction T1.1 aborts, every look-ahead transaction, including the implicit 
ones, abort. 

9.5 Nesting 

If the programmer wants to allow a thread to look-ahead from a level three 
nested transaction (i.e. T1.1.1) to a top-level one (i.e. T2), it would commit twice, to 
be inside the context of T1, and at this moment, it would create or join a new 
transaction. As being totally transparent, nothing has to be done from a user point of 
view. Therefore, no problems due to allowing nested look-ahead possibilities appear. 
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9.6 Specific Limitations 

This model, taking the best from the “Create” and “Stretch” models does not 
have limitations from a user point of view, except that handling exceptions for the 
user can be difficult when threads look-ahead from former transactions of different 
nesting level. 

The described model does not differentiate between semantically dependent 
and independent ones, hence, modifications could be added, as exposed in section 9.8. 

9.7 Discussion 

The “Implicit” model can be enabled in any context, managing look-ahead 
transactions as well as lone code. Read/write dependencies between the former 
transaction and lone code are finally handled at its best, and exception handling is not 
more complicated as in the previous models. 

9.8 Variations 

This section contains modifications to the “Implicit” model described 
previously, adding new functionalities. 

9.8.1 Semantic Dependency Information Retrieval 
The “Implicit” model could be modified introducing new statements to 

retrieve information on the semantic dependency between look-ahead threads. This 
was exposed in section 8.2, page 64, and can be easily extended to lone code, with the 
following new independent_commit and dependent_commit statements. 
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Chapter 10 :

10.1 

 Future Improvements 

This chapter indicates several directions for future research, in both the open 
multithreaded transactions model and looking-ahead theory. 

Cooperative Concurrency 

When dealing with cooperative concurrency, programming guidelines must be 
provided to the user, helping him to find a not only correct, but also efficient way of 
executing operations. Programming approaches with nested transactions and 
cooperative concurrency are complementary, but rules on when to use nested 
transactions and when to only use cooperative concurrency would help the user doing 
efficient programs, thus preventing bad surprises when allowing look-ahead threads. 

10.2 Nested Transactions: Concurrency Control 

Section 2.5, page 9, states that nested transactions must be isolated from their 
parent transactions. In order to assure this isolation, plenty of different concurrency 
control can be chosen. As exposed in section 4.2, page 29, read/write dependencies 
between transactions can lead to abort at least one transaction. In the case of nested 
transaction as in the look-ahead ones, it is necessary never to abort the containing one 
instead of the nested one – if aborting the parent one, the nested one must also abort. 
Therefore, we propose to give priority to the parent transaction over its child, exactly 
as done in look-ahead transactions when giving priority to the former transaction over 
its look-ahead transactions. 
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10.3 Looking-Ahead Dedicated Concurrency Control 

As described in section 2.5, page 9, a lot of concurrency controls exist, even if 
only some of them are really used in practice. Having exposed every problem that can 
happen when looking-ahead, we want now to give hints on a dedicated concurrency 
control, specific to looking-ahead. 

We have stated that looking-ahead is only useful when being optimistic about 
the issue of the former transaction, and therefore, we want to continue in our 
optimism to expose rules on a new dedicated concurrency control. 

The concurrency control proposed is asymmetric: it gives priority to the 
former transaction, always aborting its look-ahead transactions (as exposed in the 
“Implicit” model, look-ahead lone code can be transformed in transactions). 

The idea is the following: 
• The former transaction is always completely isolated from its look-

ahead transactions. If the look-ahead causes a conflict, it is 
aborted/restarted. 

• A look-ahead transaction always reads the last version of the object. If 
it is a third level look-ahead, it reads the last version of the second 
level look-ahead, which reads the last version of the first level look-
ahead, which finally reads the last version of the former transaction. If 
in-between two read operations, the version of the object has changed, 
every look-ahead depending on this version is aborted/restarted. 

 
These rules define an optimistic concurrency control with asymmetric multi-

version timestamp ordering, similar to the one given as solution for read/write 
dependencies. 

What could be a real improvement is how to handle accesses between look-
ahead transactions that have different former transactions and root former 
transactions. Rules could state that any look-ahead transaction reads the very latest 
version of an object, no matter what root former transaction it is connected to, or reads 
the very last version its former transaction has access to. 

Research in this topic might be also very useful in case of nested transactions, 
as both conflicts resolutions are similar: always give priority to a specific transaction 
(parent or former). 

10.4 Asynchronous Handling 

As exposed while describing semantic dependency, an independent transaction 
or lone code can be very interesting when dealing with a model that manages out of 
order execution. Unfortunately, asynchronous handling of exception, that could allow 
an independent look-ahead thread to continue its execution as if nothing happened, is 
not yet implemented [KO02] in the concurrent programming language that is used in 
the OPTIMA Framework. 

It could be therefore possible to deal with asynchronous handling in the 
OPTIMA Framework itself, adding for every possible independent thread a listener 
thread that would be used to handle the forwarded exception. 
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Chapter 11 : Conclusion 

The classic open multithreaded transaction model prescribes synchronous 
participant exit, i.e. participants that have finished their work inside a transaction and 
vote commit are blocked until the outcome of the transaction is known. This leads to 
wasted time, especially in loosely coupled systems with long-running transactions. 

This diploma thesis gives a complete overview of how the classic open 
multithreaded transaction model can be extended to avoid synchronizing participants 
upon transaction exit. Following an idea that was proposed in the context of atomic 
actions, participant threads are allowed to look-ahead from a transaction, and continue 
executing the following operations. 

Four models have been laid out in detail: 
The “Leave” model, simple and straightforward, is an almost direct 

transposition of the model used in the atomic action context. It provides the same 
guarantees than the original model and is transparent for the programmer. Because of 
its simplicity, though, exceptional situations are handled in a very inefficient way. 

The “Stretch” model improves the “Leave” model by extending the transaction 
border until all participants have voted commit. 

Unfortunately, it cannot distinguish between look-ahead transactions and lone 
code. Therefore, it cannot take advantage of concurrency control specific handling of 
conflicts. 

The “Create” model forces the programmer to either immediately create or 
immediately join a new transaction after looking ahead. Hence, it is not transparent 
for the application programmer: it requires look-ahead specific application design. On 
the other hand, thanks to the absence of lone code, it can resolve conflicts in a flexible 
way. 
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Finally, the “Implicit” model takes the best from every other model. It 
transparently encapsulates lone code in transactions. It is the most powerful model, 
because it is completely transparent for the application programmer, and at the same 
time, it can use the most flexible conflict solving strategies. 
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