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Abstract

The paper presents a primary-backup protocol to man-
age replicated in-memory database systems (IMDBs). The
protocol exploits two features of IMDBs: coarse-grain con-
currency control and deferred disk writes. Primary crashes
are quickly detected by backups and a new primary is
elected whenever the current one is suspected to have failed.
False failure suspicions are tolerated and never lead to in-
correct behavior. The protocol uses a consensus-like al-
gorithm tailor-made for our replication environment. Un-
der normal circumstances (i.e., no failures or false suspi-
cions), transactions can be committed after two communi-
cation steps, as seen by the applications. Performance ex-
periments have shown that the protocol has very low over-
head and scales linearly with the number of replicas.
Keywords: primary-backup replication, in-memory
databases, agreement protocols.

1. Introduction

Demand for high performance combined with plum-
meting hardware prices have led to the widespread emer-
gence of large computing clusters [25, 28]. Applications
in these environments often rely on shared storage systems,
accessible to the application processes running on remote
servers. Storage systems are used to keep shared infor-
mation, managed concurrently by different application pro-
cesses, as well as to provide fault tolerance by allowing pro-
cesses to save their state and later retrieve it for recovery
and migration. Whatever the use, high-availability, good
performance, and strong consistency are key requirements
of a storage service. In such environments, in-memory
databases (IMDBs) [11] have been successfully used to in-
crease the performance of short transactions [4]. This paper
shows how high-availability can be introduced in a repli-
cated IMDB setting with very small overhead—in our ex-
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perimental setup, as small as 3% for managing 3 replicas
and 14% for managing 8 replicas.

IMDBs provide high transaction throughput and low re-
sponse time by avoiding disk I/O. The key characteristic of
an IMDB is that the database resides in the server’s main
memory—virtual memory can also be used, but maximum
performance is achieved when data fits the server’s physical
memory. Since transactions do not have to wait for data to
be fetched from disk, concurrency becomes less important
for performance and some IMDBs rely on coarse-grain con-
currency control such as multiple-readers single-writer[4].
Read-only transactions can execute concurrently, but up-
date transactions are serialized. Executing update transac-
tions serially has several advantages: first, serializability is
trivially guaranteed; second, the gain in performance from
not having to deal with synchronization mechanisms (e.g.
locks, timestamps) usually overcomes the loss in concur-
rency; and third, deadlocks in an IMDB cannot happen.

Although IMDBs rely on main memory only for trans-
action execution, a transaction log must be kept on disk for
recovery. Read-only transactions execute in main memory
only; update transactions have to log information on disk
before committing. In fact, storing information on disk is
the main overhead of update transactions executing in an
IMDB. To improve performance, disk writes can be de-
ferred until after the transaction commits. This approach,
however, risks losing data in case of database crashes.

This paper presents a low-overhead primary-backup pro-
tocol to handle replicated IMDBs. Our solution con-
sists in orchestrating IMDBs without changing their inter-
nals. Transaction termination is implemented at the mid-
dleware level, by a distributed algorithm we call Strap.
Strap exploits two features of IMDBs: multiple-readers
single-writer concurrency control and deferred disk writes.
Assuming that a single update transaction modifies the
database at a time allowed us to reduce to only two com-
munication steps the latency needed to terminate update
transactions, as seen by the application. In our experimen-
tal setup, this represented a reduction of 8%–25% in the
response time of update transactions.



Deferred disk writes allowed us to reduce the overhead
of committing update transactions. Transaction durability
is ensured by Strap, which logs transaction information at
termination, and not by the database. Traditional middle-
ware solutions to strong-consistency database replication
normally rely on two disk accesses for transaction termi-
nation: one done by the middleware to ensure correctness
despite arbitrary crashes and recoveries, and another done
by the database. By concentrating durability at Strap, a sin-
gle disk access is needed. In our experimental setup, such
an improvement represented a reduction of 51%–64% in the
response time of update transactions.

Our protocol is based on the primary-backup strategy.
Read-only transactions can be processed at any replica. Up-
date transactions are executed first by the primary, and then
by the backups. From the application’s viewpoint, all repli-
cas behave as a single-copy database. Primary crashes are
detected by the backups and a new primary is elected when-
ever the current one fails. Fast reaction to primary failures
is implemented through aggressive timeouts. False failure
suspicion caused by aggressive failure detection is handled
by allowing more than one primary to coexist at the same
time without violating correctness. Provided that failures
and suspicions cease, the protocol ensures that the system
converges to a state in which only one primary exists.

This paper’s contribution is two-fold: First, it shows
how the replication and concurrency control models can be
combined to terminate transactions in two communication
steps, as seen by the clients. This is done without relying
on strong timing assumptions about process execution and
communication (e.g., no perfect failure detection). Second,
the paper shows how to exploit deferred disk writes, typi-
cal of IMDBs, to ensure transaction durability outside the
database. In doing so, we reduce to one the number of nec-
essary disk writes during transaction termination.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the system model and some definitions. Sec-
tions 3 and 4 describe, respectively, our replication proto-
col, and the synchronization algorithm it relies upon. Sec-
tion 5 discusses recovery issues. Section 6 contains an ana-
lytical evaluation and some experimental results. Section 7
reviews related work, and Section 8 concludes the paper.
Correctness proofs for both our protocols are given in [5].

2. System model and definitions

2.1. Processes, communication and failures

We assume a system composed of two disjoint sets of
processes, the servers, S = {S1, ..., Sn}, and the clients,
C = {C1, ..., Cm}. Processes (i.e., clients and servers)
communicate with each other by exchanging messages. The
system is asynchronous, that is, we make no assumptions

about the time it takes for processes to execute and for mes-
sages to be exchanged. Messages may be lost but if two pro-
cesses remain up “long enough” simultaneously, they can
exchange messages successfully (i.e., by retransmitting lost
messages).

Processes may crash and recover during the execution
but never behave maliciously. Regardless of how many pro-
cesses fail, the system is always safe (i.e., it does not pro-
duce “bad” results). In order to ensure that it is also live
(i.e., it does produce some “good” results), we assume that
eventually a subset of S is permanently up. Servers of this
kind are called stable.1 The number of stable servers needed
for termination is determined by Strap, the underlying syn-
chronization protocol. Our current implementation of Strap
requires d(2n + 1)/3e stable servers.

Our primary-backup protocol assumes the existence of
an unreliable failure detection oracle, which allows pro-
cesses to avoid waiting forever for events that will never
take place (e.g., receiving a message from a process that has
crashed). The oracle is unreliable in that it may make mis-
takes [6]. For example, processes may incorrectly suspect
that a process has crashed while in reality it is very slow,
albeit fully operational. In order to ensure that progress can
be made, we assume that (a) there is one stable server that is
eventually not suspected by the other processes, and (b) if
a process crashes, then after some time it is suspected by
every stable server.

2.2. Database and transactions

Each server runs a local in-memory database (IMDB)
with a copy of all data items. Transactions are short, com-
posed only by read operations, in the case of read-only
transactions, or read and write operations, in the case of up-
date transactions. The consistency criterion is serializabil-
ity, that is, any concurrent execution is equivalent to some
serial execution with the same transactions [3].

We assume the IMDB implements multiple-readers
single-writer concurrency control: read-only transactions
can execute concurrently but update transactions are seri-
alized with read-only and other update transactions.

For recovery reasons, IMDBs have to perform disk
writes when committing update transactions. To increase
performance, such writes can be deferred until after one
or more update transactions have committed. The perfor-
mance improvement comes with a high risk though: in case
of failures some committed transactions may be lost. In
the worst case, no writes are performed and should a fail-
ure occur the database loses all committed update trans-
actions. Our primary-backup protocol combines deferred

1In practice it suffices for stable servers to be up for a “reasonably long”
period of time, for example, enough to execute a few transactions to com-
pletion.



writes with the recovery properties of its underlying syn-
chronization primitive, Strap, to avoid lost transactions and
still provide good performance.

2.3. Strap’s specification

Strap is a consensus-like protocol tailor-made for
primary-backup database replication. Our protocol uses
several instances of Strap. In each instance k any pro-
cess can optimistically or conservatively propose a value v
(e.g., commit requests) using, respectively, the primitives
opt-proposek(v) and csv-proposek(v). Instance k’s decision
v is delivered through Strap primitive deliverk(v). Any pro-
cess (i.e., client or server) can participate in an instance of
Strap by opt-proposing or csv-proposing a value. Servers
participate in every instance, even if they do not propose
a value; clients only participate in instances in which they
propose some value.

Strap’s primitives satisfy the following properties:

Property 2.1 (Delivery) If two processes deliver values v
and v′ in instance k and at most one value is opt-proposed
in k (possibly multiple times), then v = v′.

Property 1 ensures safety as long as optimistic propos-
als are executed by one process only and this process does
not opt-propose different values. There are no restrictions
concerning the execution of conservative proposes.

Property 2.2 (Optimistic propose.) If only one process
keeps opt-proposing some value v in k and no process csv-
proposes a value in k, then every process that participates
in instance k and does not crash delivers v.

Property 2.3 (Conservative propose.) If one or more pro-
cesses keep csv-proposing some value in k, then every pro-
cess that participates in instance k and does not crash de-
livers a proposed value.

Properties 2.2 and 2.3 provide liveness. The optimistic
propose primitive is used to ensure termination in the most
common cases (i.e., in the absence of failures and failure
suspicions). It can be implemented more efficiently than
the conservative propose primitive, which is used to handle
less common cases such as the election of a new primary.

2.4. The client’s perspective

From the client’s perspective, our primary-backup pro-
tocol provides two properties, one ensuring consistency
(i.e., safety) and the other termination (i.e., liveness). The
safety property is one-copy serializability: every concur-
rent execution in the replicated system is equivalent to a
serial execution of the same transactions in a single-copy

database [3]. The liveness property is eventual comple-
tion: if a client submits a transaction “enough times” and
it is not suspected by the servers to have crashed, then the
transaction will be eventually executed and committed. The
liveness guarantee allows transactions to be aborted an un-
bounded number of times. This may happen for example in
case of failures. Intuitively it ensures that as long as failures
cease to occur for some reasonable period of time, clients
will manage to find a server that will execute and commit
their transactions.

3. The primary-backup protocol

To execute read-only transactions, clients can connect
and submit their requests to any server. To execute update
transactions, clients have first to find the current primary
and then submit their requests to it.

Servers execute a sequence of steps, each one corre-
sponding to a different instance of Strap. During “normal”
execution periods there are no failures and no suspicions,
which may happen in “abnormal” periods. In normal peri-
ods, steps are completed with clients requesting to commit
or abort their update transactions.

3.1. Starting an update transaction

In normal periods, clients discover the primary by con-
tacting any server. Since servers keep the identity of the
current primary, in its first attempt a client either contacts
the right server or finds out which one currently plays the
role of primary. The client can then send its transaction re-
quests to the primary, who will execute them as soon as it
has finished processing previously received transactions.

If a client submits an update transaction to a backup, this
will return an error message to the client with the identity
of the server it believes to be the current primary. During
abnormal execution periods, servers may store outdated in-
formation about the current primary, but if failures cease to
occur, clients willing to run an update transaction eventu-
ally find the primary server, connect to it, and submit their
requests.

After all transaction’s operations are executed, the client
may either abort or commit it. To abort a transaction, the
client simply sends an abort request to the primary. Commit
requests are handled by Strap, as explained next.

3.2. Committing update transactions

To commit an update transaction t in step k, a client gath-
ers all requests executed on behalf of t and propagates them
to all servers using Strap’s opt-propose primitive (see Fig-
ure 1). Since only clients execute the optimistic propose,
and at most one update transaction is active at a time as
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Figure 1. Normal execution period

a consequence of transaction requests being serialized by
the primary, only one client may execute opt-propose in k.
From Strap’s Property 2.2, all processes that participate in
instance k and do not crash deliver the commit request.

Upon delivering the commit request the primary sim-
ply submits t’s commit operation to the local database; the
backups submit all t’s operations to their local database and
then commit t. When the client delivers the commit request
it has the guarantee that t will be eventually committed.
This may happen before the transaction is stored in stable
storage by the servers (due to deferred disk writes).

To ensure one-copy serializability, all servers must exe-
cute update transactions in the same order. Thus, if transac-
tions t and t′ have been delivered on steps k and k′, k < k′,
respectively, each server should commit t before executing
t′. Since transactions are executed sequentially, this ensures
that local databases will not reverse the committing order
chosen by the primary for transactions t and t′.

3.3. Handling abnormal events

If the primary suspects that the client has crashed, it pro-
poses to terminate the current step and abort the client’s on-
going transaction. If a backup suspects the current primary
it tries to replace it by proposing to elect a new one in the
current step. Both requests are proposed using the conser-
vative propose primitive.

Therefore, three values can be proposed in any instance
k of Strap: a commit request, opt-proposed by the client, an
abort request, csv-proposed by the primary, and a primary
election request, proposed by backups. Due to wrong sus-
picions more than one value can be proposed in the same
instance. However, since there exists at most one primary
per step and transactions are executed sequentially, at most
one client uses the opt-propose primitive in the same step.

At the end of step k, three outcomes are possible:

1. The value delivered is a commit request. In this case,
unless it crashes, every server will execute and commit
the delivered transaction.

2. The value delivered is an abort request. The primary
aborts the transaction. All servers go to step k + 1.

3. The value delivered is a primary election request. All
servers that deliver in k will determine the identity
of the next primary using some deterministic function
nextPrimary(primary).2 If the primary election re-
quest was triggered by a false suspicion, the primary
will deliver the value, abort any update transaction in
execution, and notify the client, who can re-try with
the next primary.

Process crashes, message losses or anomalous commu-
nication delays may prevent a step from terminating in
the first attempt. To enforce termination, according to
Strap’s properties, clients must eventually give up opt-
proposing and start csv-proposing a commit request, and
csv-proposals (from clients or servers) must be continu-
ously repeated until a value is delivered.

4. The Strap protocol

Strap ensures safety regardless of the number of stable
servers. For termination, optimistic propose requires a ma-
jority of stable servers; the conservative propose requires
d(2n + 1)/3e stable servers. Our conservative propose al-
gorithm is inspired by Rabin’s consensus algorithm [26].

4.1. Weak-ordering oracles

A weak-ordering oracle is a communication abstraction
that allows servers to broadcast messages to other servers
without necessarily ensuring atomicity and order. Tradi-
tional atomic broadcast ensures that if a server delivers a
message, all servers do it as well (i.e., atomicity), and that
messages are delivered in the same order by all servers (i.e.,
total order). Weak-ordering oracles allow messages to be
delivered by a subset of the servers, and in different or-
ders. Weak-ordering oracles are intended to model link-
level broadcast (e.g., Ethernet broadcast), and thus can be
cheaply implemented in a cluster of computers.

Weak-ordering oracles are defined by the primitives w-
broadcast(−) and w-deliver(−). Servers w-broadcast and
w-deliver tuples of type (r, m) where r is an integer defin-
ing a round number and m is a broadcast message. The
oracle is not reliable, allowing messages to be lost or de-
livered out of order. However, it extends the asynchronous
model in that for an unknown but infinite sequence of round
numbers r1, r2, ..., if messages are w-broadcast in ri, all sta-
ble servers w-deliver the same first message for that round.

2Function nextPrimary(primary) should ensure that the primary
will rotate through all servers. One way to satisfy this constraint is to have
for example, nextPrimary(primary) = (primary mod n) + 1.



Readers may refer to [24] for a complete explanation and
examples on weak-ordering oracles.

4.2. Optimistic propose execution

The client executing an opt-propose simply sends a re-
quest to all servers and waits for a reply from a majority
of them. On receiving an opt-propose, a server logs its re-
sponse to make sure that it will not forget it in case of fail-
ures and then replies to the client executing the opt-propose
and to all other servers. If all replies accept the request,
client and servers deliver the value.

Algorithm 1 presents the optimistic execution. Only one
when clause executes at a time. If more than one when con-
dition holds at the same time, any one is executed; but the
execution is fair: unless the process crashes, every when
clause with a true condition is eventually executed. Mes-
sages are distinguished using tags (e.g., OPTROUND). Log
operations are denoted by “{...}log .” If a server executes
{optV al← v}log and fails, after it recovers, optV al = v.
In the algorithms, ⊥ and > are special values never pro-
posed by any process.

Algorithm 1 Optimistic execution (for any p)
1: Initialization:
2: optV alp ←⊥
3: To opt-propose value vp do as follows:
4: send (OPTROUND, vp) to u, ∀u ∈ S
5: Deciding a value is performed as follows:
6: when receive (OPTROUND, vq) from q
7: if optV alp =⊥ then {optV alp ← vq}log

8: send (OPTVOTE, optV alp) to u, ∀u ∈ {q} ∪ S
9: when [for d(n + 1)/2e processes q:

received (OPTVOTE, optV alq) from q]
10: if all optV alq = v 6= > then decide v

4.3. Conservative propose execution

The conservative part of Strap is inspired by the atomic
broadcast algorithm based on weak-ordering oracles pre-
sented in [24]. Differently from that, however, Strap as-
sumes that processes may crash and recover ([24] assumes
the crash-stop model of failures where failed processes do
not recover). The algorithm proceeds in rounds; a process
can only csv-propose some value in round r if it has com-
pleted round r − 1.

Algorithm 2 presents the conservative execution. To ex-
ecute a csv-propose, a process should first find out whether
some opt-proposed value has been delivered by sending a
CSVROUND request to all servers (B1) and waiting for a re-
ply from a majority of them (B2). If a server replies to a
CSVROUND request, it no longer accepts opt-propose re-
quests (B3). A process that has already executed a csv-

Algorithm 2 Conservative execution (for any p)
11: Initialization:
12: rp ← 0
13: ∀r : estimater

p ← ⊥
14: csvV alp ← ⊥
15: phase1 ← False
16: To csv-propose value vp do as follows:
17: if csvV alp = ⊥ then csvV alp ← vp

18: if ¬ phase1 then
19: send (CSVROUND) to u, ∀u ∈ S B1
20: else
21: w-broadcast (FIRST, rp, csvV alp) B4
22: Deciding a value is performed as follows:
23: when receive (CSVROUND) from q B3
24: if optV alp = ⊥ then {optV alp ← >}log

25: send (LASTVOTE, optV alp) to q
26: when [for d(n + 1)/2e processes q:

received (LASTVOTE, optV alq) from q] B2
27: if ∃q | optV alq 6∈ {⊥,>} then
28: csvV alp ← optV alq
29: phase1 ← True
30: w-broadcast (FIRST, rp, csvV alp)
31: when w-deliver (FIRST, rq , valueq) B5
32: if estimate

rq
p = ⊥ then {estimate

rq
p ← valueq}log

33: send (SECOND, rq , estimate
rq
p ) to u, ∀u ∈ {q} ∪ S

34: when [for d(2n + 1)/3e processes q:
received (SECOND,rq ,estimate

rq
q )from q]

35: if all estimate
rq
q = v 6= ⊥ then decide v

36: csvV alp ←


v majority of estimate
rq
q = v 6= ⊥

⊥ otherwise
37: rp ← rp + 1

propose and has phase1 = True starts directly executing
parts B4 and B5 of the algorithm.

Figure 2 depicts a conservative execution of Strap in the
absence of crashes and message losses. The csv-propose
is initiated by server S1. All servers deliver a value after
receiving a message tagged SECOND from more than two
thirds of the servers.

5. Recovering from failures

When a server recovers from a crash, it has to catch up
with the servers that were operational while it was down.
Some committed transactions may already be stable (i.e.,

S2

S3

S4

deliverycsv−propose
S1

CsvRound

LastVote

First

Second

per process
at most once

times
possibly many

Figure 2. Strap’s conservative execution



they were stored in the local disk by the IMDB), and there-
fore will be automatically recovered by the database upon
restart. The recovery procedure has to make sure that any
committed transactions lost due to the crash or committed
by other servers during downtime will be (re-)executed. In-
tuitively, this involves discovering the last update transac-
tion locally written to disk and learning the missing com-
mitted updated transactions. Once the missing transactions
are submitted to the IMDB, the server can resume normal
execution.

Finding out the last stable update transaction. In or-
der to do so, we extend the database with a special table of
a single record. This record stores the step corresponding to
the last update transaction committed by the IMDB. Thus,
besides its normal operations, each transaction also updates
the record with the step in which it executed. (This opera-
tion is transparent to the clients, and automatically executed
when the client requests the transaction’s commit.) So, to
learn the last update transaction safely stored by the IMDB
on disk, it suffices to read the special database record.3 We
use a similar technique to identity the primary when the
transaction committed. This information together with the
delivery values of the steps executed after the last stable
transaction allow to determine the current primary.

Learning missing committed update transactions.
This boils down to learning the values delivered by other
servers while the recovering server was down. Assume the
last stable transaction at the recovering server executed in
step k. To know what value was delivered in step k + 1, the
recovering server csv-proposes a null value in k + 1. The
propose executed by the recovering server has to be conser-
vative because a client may have executed an opt-propose,
in which case safety would not be ensured by Strap. If null
is delivered, the recovering server knows that it has all com-
mitted transactions; if not, the server takes the necessary
actions (i.e., according to Sections 3.2 and 3.3) and repeats
the procedure for k +2, k +3, ... until the delivered value is
null. Notice that batches of steps can be executed in parallel
to speed up recovery.

6. Performance analysis

The performance of our primary-backup protocol is in-
timately related to the performance of Strap’s primitives in
normal and abnormal execution periods. We analyze the
performance of opt-propose and csv-propose analytically
and experimentally under different circumstances, and com-
pare them to those of Paxos, a well-known efficient consen-
sus algorithm for the crash-recovery model [17].

3Notice that since update transactions execute serially, forcing update
transactions to modify the same record does not increase contention. The
only extra overhead is the space needed to store the new value, a few bytes,
and the additional update operation, a fraction of a millisecond.

Table 1 compares Strap’s and Paxos’ primitives. The la-
tency to terminate a transaction, which corresponds to the
time between the client executes a propose and learns the
delivered value, is 2δ and 4δ for Strap’s optimistic and con-
servative proposes, respectively, where δ is the network de-
lay. Since the minimum latency a client can observe for
the termination protocol is 2δ [18], the opt-propose primi-
tive is optimal. Paxos’ “pre-reserved” propose needs an ex-
tra message delay to send the proposed value to the leader.
Although Paxos’ classic propose primitive has the same ex-
pected latency as csv-propose, the first phase of Strap’s csv-
propose (two message delays) is omitted in consecutive in-
vocations whereas Paxos has to execute entirely to ensure
progress. Both algorithms are similar considering the num-
ber of messages, both point-to-point and broadcast. When
it comes to resilience, the csv-propose primitive requires
f < n/3, where f is the number of unstable processes.
The major difference between the two protocols relies on
the synchrony assumptions needed for liveness.

We have built a prototype of our primary-backup proto-
col to measure its performance experimentaly. The experi-
ments were conducted in a cluster of Intel 2.4 GHz Pentium
IV processor servers with 1GB of main memory, running
Fedora Linux, and connected through a Gigabit Ethernet.
We used FirstSQL/J [10], a pure java IMDB. FirstSQL/J im-
plements deferred disk writes by granting full control about
when and how data is made stable to the application layer.

To measure the performance during normal execution,
we had a client constantly submitting update transactions
to the primary. The results are shown in Figure 3(a). In
all the curves we consider only the transaction termination
time, i.e., the time it takes for the client to deliver a com-
mit request after its submission. Transactions are composed
of three update operations. Since we are concerned with
termination time only, our results depend solely on write
operations. All measured points represent the average of
1000 executions and have a negligible confidence interval of
95%, not appearing in the graph. Figure 3(a) shows that our
protocol combined with Strap (PBackup/Strap) has a termi-
nation delay slightly worse than a non-replicated approach,
even for a system with 8 replicas. In the client/server imple-
mentation we used FirstSQL/J with immediate disk writes
at commit time in order to ensure transaction durability.
Besides the small constant overhead of PBackup/Strap, the
graph also shows that response time increases linearly with
the number of replicas. An interesting question is whether
the major performance overhead comes from log writes or
CPU/memory contention by committing the transaction in
the IMDB. As Figure 3(a) shows, by disabling each of these
features it turns out that the log writes represent an overhead
much lower than the (in-memory) database commit.

We also show how performance would be if we run our
protocol with immediate disk writes at the databases. This



Protocol Expected Number of Messages Resilience Assumptions
Latency Point-to-Point Broadcast for Liveness

opt-propose 2 δ n2 − 1 n + 1 f < n/2 —
csv-propose 4 δ n(n + 2)− 3 2n + 1 f < n/3 Weak-ordering Oracle
Paxos (pre-reserved) 3 δ n2 n + 2 f < n/2 Unique Leader
Paxos (classic) 4 δ n(n + 2)− 3 2n + 1 f < n/2 Unique Leader

Table 1. Analytical comparison between Strap’s and Paxos’ primitives
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would be the expected performance of usual replication ap-
proaches that treat the group communication primitives and
the database as black boxes. For a transaction to commit,
the server first logs the pre-delivery of the commit decision
and, just after that, writes the database log. Furthermore,
one could think of using Paxos instead of Strap in our pro-
tocol. In that case, during normal execution periods the
“pre-reserved” optimization of Paxos could be used. From
Figure 3(a) the extra message delay makes a difference in
performance, favoring the use of Strap.

Finally, we analyze the cost of csv-propose, used to elect
a new primary if the current one is suspected to have failed.
That is shown in Figure 3(b), where each point represents
the average of 1000 executions with a negligible confidence
interval of 95%. We compare the execution time of an
opt-propose with that of a csv-propose when there is only
one proposer, three processes propose concurrently, and all
servers propose concurrently.

7. Related Work

It is shown in [13] that eagerly updating replicated data
can lead to high abort rates as a consequence of concurrent
accesses. This result motivated much research in group-
communication-based database replication as a way of syn-
chronizing concurrent updates and reducing the abort rate.
These works differ from ours either (a) by not considering
message losses or process recovery (e.g., [1, 14, 21, 22, 23,
27]), (b) by having bigger latency for update propagation

due to the view-synchrony protocols used [2, 15], or (c) by
requiring modifications to the database engine [15, 16]. An
approach that resembles ours with respect to optimism and
the way clients behave is [9]. However, besides the differ-
ences in the type of replication and adopted model, the work
in [9] requires servers to be able to roll back a suffix of their
local computation.

The Paxos [17] atomic broadcast protocol and related ap-
proaches [7, 8] could be used in the conservative part of
Strap. Conversely, some of the extensions of Paxos are in-
dependent of the basic consensus algorithm and could be
applied to algorithms like Strap (e.g., [19]). In [12], it was
shown an optimization that could give Paxos the same la-
tency as Strap during normal execution. However, by using
this version of Paxos instead of Strap, the leader used by
Paxos would have to be the same one used by our protocol,
which would not work with the deterministic election we
have. If the current leader and the next one in the list have
failed, Paxos would have to use a different leader to ensure
liveness. Bypassing this problem is possible, but it would
increase the design complexity of our protocol.

We are unaware of group-communication-based proto-
cols that explicitly take advantage of IMDBs’ properties to
implement replication. Replication for IMDBs (e.g. [10])
has been traditionally based on primary-backup techniques
in which the primary propagates “system-level” informa-
tion (e.g., database pages) to the backups. The backups
monitor the primary and in case they suspect the primary
to have crashed, some backup takes over. If the primary



is wrongly suspected, more than one primary may co-exist,
leading to data inconsistencies. As a consequence, failure
detection tends to be conservative to avoid mistakes, leading
to slow reaction to failures, which is inadequate for time-
critical applications. Mirroring has been proposed as an al-
ternative approach. In [29] virtual-memory-mapped com-
munication is used to achieve fast failover by mirroring the
primary’s memory on the backups. Perseas [20] is a trans-
action library that mirrors user space memory on remote
machines connected by a high-speed network. It may not
ensure strong consistency in certain failure scenarios or if
processes disagree on the primary.

8. Final Remarks

This paper introduces a new data management proto-
col for in-memory database clusters. IMDBs have been
known for quite some time now. Until recently, however,
their use was reserved to specific contexts (e.g., embedded
and real-time applications). Continuously increasing de-
mand for performance and decreasing semiconductor mem-
ory prices have broadened their scope. Should network
speeds continue to increase and memory prices continue to
fall, more and more performance-critical applications will
be able to benefit from IMDBs clusters. Although this pro-
tocol exploits some features of IMDBs, one could think of
applying a similar approach to disk-based databases. The
biggest challenges are to handle the non-determinism cre-
ated by concurrent execution transactions and the perfor-
mance overhead from non-sequential disk access. Investi-
gating such issues is theme of future work.
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