
Consistent Main-Memory Database Federations under

Deferred Disk Writes∗

Rodrigo Schmidt�,† Fernando Pedone†
�École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

†Università della Svizzera Italiana (USI), CH-6904 Lugano, Switzerland
E-mails: rodrigo.schmidt@epfl.ch, fernando.pedone@unisi.ch

Abstract

Current cluster architectures provide the ideal environ-

ment to run federations of main-memory database sys-

tems (FMMDBs). In FMMDBs, data resides in the main

memory of the federation servers, significantly improv-

ing performance by avoiding I/O during the execution of

read operations. To maximize the performance of update

transactions as well, some applications recur to deferred

disk writes. This means that update transactions com-

mit before their modifications are written on stable stor-

age and durability must be ensured outside the database.

While deferred disk writes in centralized MMDBs relax

the durability property of transactions only, in FMMDBs

transaction atomicity may be also violated in case of

failures. We address this issue from the perspective of

log-based rollback-recovery in distributed systems and

provide an efficient solution to the problem.

Keywords : dependency tracking, consistency, rollback-

recovery, distributed transactions, MMDBs.

1. Introduction

Continuous technology improvements have reduced
the cost and boosted the performance and memory ca-
pacity of commodity computers. As a consequence,
powerful computer clusters are becoming increasingly
affordable and common. These architectures provide
the ideal environment for mechanisms targeting high-
performance computing such as main-memory database

systems (MMDBs [11]). Although originally designed
for specific classes of applications (e.g., telecommuni-
cation) running in single servers, recent work has sug-
gested that MMDBs can be also used in broader con-
texts (e.g., web servers [18]) and environments (e.g.,
clustered architectures [24]). Shortly, MMDBs over-
come the latency limitations of traditional disk-based
databases by storing the data items in the main mem-
ory of the servers [12]. By avoiding disk I/O, both

∗The work presented in this paper has been partially supported by
the Hasler Foundation, Switzerland (project #1899).

transaction throughput and response time can be im-
proved. Moreover, as transactions do not have to wait
for data to be fetched from disk, concurrency becomes
less important for performance and some approaches
have considered lowering the overhead of transaction
synchronization by reducing concurrency (e.g., locking
tables instead of rows, executing transactions sequen-
tially [11, 15]).

For recovery reasons, MMDBs also keep a copy of
the database in disk. Queries execute entirely using data
in main memory, but update transactions have to mod-
ify the state in disk. In fact, accessing the disk is the
main overhead incurred by update transactions execut-
ing in an MMDB. To maximize the performance in such
cases, some applications recur to deferred disk writes.
This means that update transactions commit before their
modifications are written on stable storage. Since disk
access is deferred until after transactions commit, vari-
ous transaction logs can be grouped and asynchronously
written at once on disk. This approach alone harms
the durability property of transactions, but some ap-
plications may prefer to ensure durability outside the
database for performance reasons. As an example of
such applications, database replication schemes based
on atomic broadcast primitives (e.g., the database state
machine approach [19]) in the crash-recovery model will
have durability ensured by the group communication
primitive (see the work in [22]) and, therefore, it is re-
dundant to also have it in each database replica.

This paper considers a federation of main-memory
database systems (FMMDB) where data is partitioned
among different servers running local MMDBs. Global
transaction termination is implemented by atomically
grouping the commit decision of various local sub-
transactions. As in a centralized database, applications
can choose to use deferred disk writes in order to im-
prove system’s performance. Deferred disk writes, how-
ever, introduce additional complexities in an FMMDB.
In a single-server system, only the durability property

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

may be violated in case of database crash—this happens
as long as log writes respect the commit order of their
respective transactions. By contrast, in a federation a
crash may render a server inconsistent with respect to
the others, compromising atomicity as well. Consider
a simple federation composed of two database servers.
If a transaction t updates data in both servers, commits,
and one of the servers crashes before making the updates
locally persistent, when the failed server recovers from
the failure, it will have forgotten t’s local execution. In
this case, atomicity is violated by the fact that only part
of t persists: the one in the server that did not crash.

We address the problem of deferred disk writes in a
federation of MMDBs using a novel approach that bor-
rows from the theory of rollback-recovery in distributed
systems [9]. The basis of this theory is the identification
of dependencies between process states. This allows the
recognition of consistent global states (i.e., those com-
posed of local states such that no one depends on the
other) to which the application should be rolled back in
case of failure. Efficiently applying these results in the
context of transaction processing systems, however, is
not straightforward and requires revisiting the original
theory. Transaction processing systems create depen-
dencies between database states differently from usual
message-passing distributed systems. In the latter, de-
pendencies are based on causality 1; in the former, de-
pendencies are created by read and write operations on
database objects during the execution of transactions.

Consider, for example, a simple distributed transac-
tion execution composed of two servers and one client.
Two transactions execute sequentially: t1 and t2. Fig-
ure 1 depicts the execution where read requests are de-
noted by R, write requests by W, and commit requests
by C; α, β, and γ represent the database states at the
servers. Database server Si changes its state after an
update transaction commits at Si; the state remains
the same if the transaction only reads the local state
or aborts. In a usual message-passing system, state β

would precede γ since there is a causal path between the
two states (depicted in bold in Figure 1). However, since
t1 only reads β, it turns out that β and γ are in fact con-
current. This example shows that causality is actually
too strong to capture database state dependencies, and a
more appropriate formalism is needed.

We revisit the original dependency definitions, devel-
oped for message-passing systems, and propose a new
one based on database states, minimal for distributed

1Event e causally precedes e′ iff (i) they execute in the same pro-
cess, e before e′, or (ii) e refers to the sending of a message and e′

refers to its receipt, or (iii) e and e′ are related by the transitive closure
of the two previous conditions [17].

S1

S2

C1

R R W CC

α γ

β

t1 t2

Figure 1. False (causal) dependency

transaction environments and allowing efficient tracking
implementation. Moreover, this paper illustrates the ap-
plicability of our approach in the context of an FMMDB
with deferred disk writes. Our solution is optimistic in
the sense that we do not force servers to synchronize
their accesses to disk (e.g., using a two-phase commit-
like protocol), but track dependencies between database
states during normal execution and, in case of failure,
bring the system to a consistent state during recovery.

This paper is structured as follows. Section 2 intro-
duces our computational and execution models. Sec-
tion 3 explores consistency and dependencies in a trans-
actional system. Section 4 presents our algorithms to
ensure correctness of execution in a federation of main-
memory databases with deferred disk writes. We com-
pare our approach with existent works in the field in Sec-
tion 5 and conclude the paper in Section 6.

Due to space limitations, theorems and correctness
proofs are presented in the full paper [25].

2. System model

We assume a system composed of two disjoint sets of
processes: the set of servers S = {S1, S2, . . . , Sn} and
the set of clients C = {C1, C2, . . . , Cm}. Servers are
stateful—their state is given by the data values stored
on them, and clients are stateless—their state can be
recreated by the servers’ state in case of crash. We as-
sume that clients interact only with servers by submit-
ting transaction requests and waiting for their response.
All communication between clients and servers is done
through message exchanging.

The system is asynchronous: we make no assump-
tions about the time needed for processes to execute and
messages to be transmitted.2 Communication links may
lose messages but if both sender and receiver remain up
“long enough,” lost messages can be retransmitted and
are eventually received. A process can fail by crashing,
stopping its execution and losing its volatile state, but

2The implementation of a distributed transactional environment
may require stronger assumptions (e.g., failure suspicion). The ideas
described in this paper, however, are oblivious to such assumptions.

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

it eventually recovers. Servers are equipped with sta-
ble storage whose contents survive crashes. The system
execution alternates between normal execution periods
and recovery sessions. A recovery session starts when a
failure is noticed and ends after the servers are ensured
to be in a globally-consistent state.

2.1. Database servers and transactions

Servers store disjoint subsets of the entire database
accessible to the clients and run local main-memory
databases. We call the complete set of servers S a main-

memory database federation. Each server executes local
transactions, where a transaction is a (most likely short)
sequence of read and write operations on data items, fol-
lowed by a commit or an abort operation, but not both. A
transaction is called read-only if it does not contain any
write operations, and update otherwise. Transactions are
abstracted by the following traditional properties [13]:
Atomicity: A transaction’s changes to the database

state are atomic: either all happen or none happen.
Consistency: A transaction is a correct transformation

of the database state.
Isolation: Any execution of a set of transactions is

equivalent to a serial execution of the same trans-
actions.

Durability is relaxed as a result of deferred disk writes.
If there is a failure before a transaction is made durable,
but after its commit, such a transaction is lost. In that
case, after recovery the execution has to proceed as if the
transaction had never executed. Lost transactions differ
from aborted ones because they commit and their results
may have been seen by other transactions. A transaction
that is not lost throughout the execution is called persis-

tent. We redefine transaction durability under deferred
disk writes through the two properties below:
Weak Durability: If an update transaction commits

and the system does not crash for “long enough,”
the transaction is persistent.

Consistent Persistence: A persistent transaction is pre-

ceded only by other persistent transactions.
In order to make the previous definitions sound, two

things still have to be defined: equivalence between ex-
ecutions of sets of transactions and precedence between
transactions. Let a transaction history H be a partial
order on all the operations executed by a set of trans-
actions, necessarily defined for all conflicting opera-

tions—two operations are said to conflict if they both
operate on the same data item and one of them is a
write [4]. H represents a real execution (not necessar-
ily serial) of the transactions in the system. Two histo-
ries over the same set of transactions are equivalent if

they order conflicting operations of non-aborted persis-
tent transactions in the same way. We say that a trans-
action t1 directly precedes a transaction t2 in H if there
is a pair of conflicting operations, (o1 ∈ t1, o2 ∈ t2),
such that o1 precedes o2 in H . The precedence relation
between transactions is given by the transitive closure of
the direct precedence relation. Having clarified our defi-
nitions, we would like to reinforce that our concern is to
extend Weak Durability and Consistent Persistence from
the local database servers to the federation, and ensure
that none of the other transaction properties are violated
in the presence of failures.

We assume the concurrency control in each server is
based on shared read locks and exclusive write locks in
the whole local database, characterizing the multiple-
read single-write behavior found in some MMDBs
(e.g., [15]). This allows us to abstract client operations
as Reads and Writes performed over an entire database
state. We show how our approach can be extended
to more complicated concurrency control mechanisms
such as two-phase-locking in Section 4.5.

A server Si updates its state to a new one after com-
mitting a transaction that wrote some value on the server.
This creates a sequence of states σ0

i , σ1
i , . . ., where σ

j
i

represents Si’s state after committing the j-th local up-
date transaction.

2.2. Clients’ execution model

Clients execute a sequence of steps. In each step, a
client (a) performs some local computation, (b) submits
a request to a database in the federation, and (c) waits for
its response. We abstract the set of possible database re-
quests by the following primitives, where op represents
an operation to be submitted to the database. Details
about their implementation are given in Section 4.2.
Read(tid ,Si,op): Operation op reads some data item

stored in Si on behalf of transaction tid .
Write(tid ,Si,op): Operation op updates some data item

stored in Si or creates it on behalf of tid .
Commit(tid): Requests the global commit of transac-

tion tid in the federation.
Abort(tid): Requests the global abort of transaction tid

in the federation.
To start a new transaction, a client generates a new

unique transaction identification number (tid), to be
used in all servers. When a server receives the first oper-
ation on behalf of tid (either a Read or a Write), it cre-
ates a new transaction abstraction in the local database
and relates it to tid in order to submit future operations
to the database in the same local transaction abstraction.
When all the operations in all servers referent to a certain

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

transaction have been executed, the client executes the
Commit request to ensure global commit. After a Com-
mit or Abort request, no more requests with the same tid

are executed by the client.
At any point during a transaction’s execution, a server

that is participating in it can unilaterally abort its local
sub-transaction. This is done, for example, if the local
sub-transaction is involved in a deadlock or the server
suspects that the client responsible for this transaction
has crashed. To ensure transactions’ atomic commit in
the absence of failures we use a simple blocking pro-
tocol: the client sends a message to all involved servers
asking them to prepare to commit. Every involved server
sends its committing/aborting vote to the client and the
other servers. A server commits the transaction iff it
receives a “commit” vote from every involved server.
Moreover, if the client receives the “commit” vote from
every server, it knows the transaction has been commit-
ted. To abort a transaction, a client simply sends an
“abort” message to all involved servers. If the client fails
and some server does not receive such a message, even-
tually this server will unilaterally abort the transaction.
It is clear that this algorithm (derived from two-phase-
commit [4, 13]) works in the absence of failures. Sec-
tion 4.2 shows how Atomicity is preserved in the pres-
ence of failures albeit no disk write is executed during
transaction commit.

3. Consistent global database states

When a failure occurs, we must make sure that the
system will restart from a previous consistent global
state. In this section we precisely define the notion of
consistency, analyze the conditions that make a global
database state consistent, and show what must be done
by our algorithm to have it recoverable.

3.1. Database-state dependencies

When it comes to the creation of database-state de-
pendencies, we are only interested in committed trans-
actions. Therefore, we consider only committed trans-
actions in definitions and theorems presented in this
section and, for simplicity, omit this condition in their
statement. Additionally, some extra notation is nec-
essary. We use RW (t) to represent the set of server
states accessed by transaction t throughout its execution.
W (t) ⊆ RW (t) is the set of server states updated by t.
This means that if σα

i ∈ W (t) and t commits, a new
database state σα+1

i is created by t at server Si. Fur-
thermore, we define R(t) = RW (t)\W (t) to be the set
of server states read by t.

State dependencies in the transactional model are due
to the three well-known types of transaction dependen-
cies: write-read, write-write and read-write [4, 13]. Def-
inition 1 below captures the notion of transaction de-
pendency using our terminology in a simplified manner,
where write-read and write-write dependencies are rep-
resented by condition (a), read-write dependencies by
condition (b), and transitive dependencies by condition
(c). In this context, a database state precedes another
one if the former is overwritten by a transaction that
either creates the latter or precedes the transaction that
does it. This means that the first state will have already
been overwritten by the time the second one is created
and, therefore, no transaction (or external viewer) can
see both of them together in the same global database
state. Definition 2 presents this idea more formally.

Definition 1 Transaction t precedes t′ (t → t′) iff

(a) ∃σγ
c | σγ−1

c ∈ W (t) ∧ σγ
c ∈ RW (t′); or

(b) ∃σγ
c | σγ

c ∈ R(t) ∧ σγ
c ∈ W (t′); or

(c) ∃t′′ | t → t′′ ∧ t′′ → t′.

Definition 2 State σα
a precedes σ

β
b (σα

a → σ
β
b) iff

(a) ∃t | σα
a ∈ W (t); and

(b) ∃t′ | σβ−1

b ∈ W (t′); and
(c) t = t′ ∨ t → t′.

3.2. Consistent and recoverable database states

A global state of the federation is a set composed of
a local state for each database server in the system. We
base our consistency criterion on the notion of serializ-

abilty [4] and formalize it in Definition 3.

Definition 3 A global database state {σα1

1 , . . . , σαn
n }

in a given history H is consistent iff it represents the

database state after the serial execution of an ordered

set of transactions T = (t1, t2, .., tl) such that:

(a) all transactions in T are non-aborted persistent

transactions in H;

(b) ∀t∈ T : t′ → t in H ⇒ t′ ∈ T ; and

(c) ∀ta, tb ∈ T : ta → tb in H ⇒ a < b.

From Definition 3, a global state is consistent if it is
created by the execution, in a correct order, of a subset
of the executed transactions left-closed under the trans-
action dependency relation. Theorem 1 shows a sim-
pler characterization of a consistent global state based
on the database-state dependency relation we introduced
in Definition 2.

Theorem 1 A global state G = {σα1

1 , . . . , σαn
n } is con-

sistent iff ∀ σαi

i , σ
αj

j ∈ G : σαi

i
→ σ
αj

j .

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

As an example, consider Figure 2(a), where we show
a possible execution scenario in which five transactions
are applied to a federation of two database servers. We
omit message exchanges between clients and servers
and depict only the operations performed against the
databases grouped by transaction, where W means a
database write and R means a database read. Figure 2(b)
shows the dependencies between the database states cre-
ated by the executed transactions. We depict only the
direct dependencies and omit the transitive ones. Based
on these dependencies, it is possible to identify a total of
seven consistent global states according to Theorem 1,
all of them depicted in Figure 2(b). Global state number
4 is reached after the serial execution of (t1, t2, t3) and
global state number 6 is achieved by T = (t1, t2, t3, t4).

By the Weak Durability property described in Sec-
tion 2.1, if one server crashes, it might not recover in
the same state it was just before the crash. According to
Consistent Persistence, locally ensured by the MMDB
running in the server, an entire suffix of the local execu-
tion may be lost after a failure. As this new local state
may be inconsistent with the state of the other servers,
to ensure Consistent Persistence globally the entire sys-
tem may have to roll back to a previous consistent global
state. Clearly, we want this state to be as recent as pos-
sible to roll back the least number of committed transac-
tions. In order to satisfy this condition we have to dis-
tinguish between stable database states, already written
on the server’s disk, and volatile database states, whose
local durability has not been ensured yet. A consistent
global state is recoverable if it is composed of stable
database states. When some database servers crash, the
recovery algorithm must make the system roll back to
its most recent recoverable consistent global state, or re-

covery line. A non-faulty server that wants to make its
volatile states part of the recovery line should make them
stable before executing the recovery algorithm.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���S1

S2

R

R

WW W

WW W

t1 t2 t3 t4

t5

σ0
1 σ1

1 σ2
1 σ3

1

σ0
2 σ1

2 σ2
2 σ3

2

(a)

S1

S2

σ0
1 σ1

1 σ2
1 σ3

1

1 2 3 4 5
6

7

σ0
2 σ1

2 σ2
2 σ3

2
(b)

Figure 2. Consistent global states

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��S1

S2

σ0
1

σ0
2 [σ3

2]

σ1
1 = σlast

1 [σ2
1] [σ3

1]

σ1
2

σ2
2 = σlast

2

R

Figure 3. Recovery-line determination

The main determiner of the recovery line in some his-
tory H is the last stable state of each server Si, which we
denote by σlast

i . As Theorem 2 shows, the recovery line
for a given execution scenario is composed of the last
persistent state not preceded by any state σlast

i .

Theorem 2 The recovery line R for a given history is

determined by

R =

n⋃

i=1

{σk
i | k = max (γ | ∀Sj : σlast

j
→ σ
γ
i)}

Figure 3 depicts an example of recovery line determina-
tion based on the scenario presented in Figure 2 (volatile
states are depicted between square brackets, e.g., [σj

i]).
The figure shows a dependency graph with all the states
dependent on some state σlast

i as empty circles. There-
fore, the recovery line is formed by the state represented
by the last filled circle in each database server.

4. Database-oriented rollback-recovery

4.1. Thrifty dependency tracking

Definition 2 relates database-state dependencies with
transaction dependencies. Theorem 3 below shows that
it is also possible to keep track of database-state de-
pendencies without having to gather information about
transaction dependencies.

Theorem 3 Server state σα
a precedes σ

β
b (σα

a → σ
β
b) iff

(a) ∃t | σα
a ∈W (t) ∧ σ

β−1
b ∈ RW (t); or

(b) ∃t, σγ
c | σ

α
a → σγ

c ∧ σ
β−1
b , σγ

c ∈ RW (t); or

(c) ∃t, σγ
c | σ

α
a → σγ

c ∧ σ
β−1
b ∈ RW (t) ∧ σγ−1

c ∈W (t).

Theorem 3 comes from the fact that a transaction t ac-
cesses a consistent partial state of the federation and
generates, after its execution, another consistent partial
state. These states work like partial snapshots of the ex-
ecution and, therefore, incur constraints in the ordering
of events. As in the real world, if an event is captured in
a snapshot and another one is not (i.e., it took place after
the snapshot was taken), then the snapshot is a “proof”
that the first event happened before the second.

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

We exemplify conditions (a), (b) and (c) of Theo-
rem 3 in Figure 4, where SBefore refers to the (partial)
federation state accessed by transaction t, either a read-
only or update transaction, and SAfter refers to the fed-
eration state generated after t’s execution. In the figure,
scenarios (a1) and (a2) correspond to condition (a) of
Theorem 3, and scenarios (b) and (c) correspond to con-
ditions (b) and (c), respectively. Figure 4(a1) depicts the
situation where σα

a ∈ W (t) and σ
β−1

b ∈ R(t). When
t commits, the new state it creates contains σα+1

a and
σ

β−1

b . Therefore, as σα
a necessarily precedes this state

and σ
β
b succeeds it, it is clear that σα

a → σ
β
b . Fig-

ure 4(a2) represents the case where σα
a , σ

β−1

b ∈ W (t).
As σ

β
b is created by t, it did not exist before t’s commit;

whilst σα
a existed only until before t commits, since it is

updated by t. This means that, as no other transaction
can see a state between SBefore and SAfter , σα

a → σ
β
b .

In Figure 4(b), σα
a → σγ

c and σ
β−1

b , σγ
c ∈ RW (t). This

means that σ
β−1

b and σγ
c belong to the federation state

accessed by t. Similarly to the situation depicted in Fig-
ure 4(a1), σα

a must precede σ
β
b . Lastly, let us consider

the case where σα
a → σγ

c and σ
β−1

b , σγ−1
c ∈ W (t),

shown in Figure 4(c). The state generated after t’s com-
mit contains σ

β
b and σγ

c . Since σα
a precedes σγ

c , σα
a has

been already updated before σγ
c is created. As σγ

c and
σ

β
b are created together, surely σα

a → σ
β
b . The scenario

of condition (c) where σα
a → σγ

c , σ
β−1

b ∈ R(t) and
σγ−1

c ∈ W (t) resembles the situation depicted in Fig-
ure 4(b), just exchanging SBefore for SAfter .

4.2. Dependency tracking algorithm

Theorem 3 leads to a simple way to gather database-
state dependencies on-the-fly during the system’s exe-

σα
a σα+1

a

σ
β−1
b σ

β
b

SAfter

σα
a σα+1

a

σ
β−1
b σ

β
b

SAfterSBefore

(a1) (a2)

σα
a

σ
β−1
b σ

β
b

σγ
c

SBefore

σα
a

σ
β−1
b σ

β
b

SAfterSBefore

σγ
c

(b) (c)

Figure 4. Dependencies based on the
server states accessed by a transaction

cution. Assume each state σα
i has associated with it a

data structure D(σα
i) representing the set of states it de-

pends on (we show later how this structure can be im-
plemented efficiently). To update D(σα

i), upon commit-
ting, every transaction t executes the steps described in
Algorithm 1, where D(Si) is an auxiliary data structure
local to Si, initially empty. D(Si) represents the depen-
dencies that must be attributed to the next state to be
created at server Si. Lines 1–3 are directly associated
with the three possible database-state precedences pre-
sented in Theorem 3. Line 4 associates a dependency
data structure with every new database state created by
the transaction.

Algorithm 1 Dependency tracking

During commit of transaction t at Si

1: ∀σβ−1
b ∈ RW (t) : D(Sb)← D(Sb) ∪W (t)

2: ∀σβ−1
b , σγ

c ∈ RW (t) : D(Sb)← D(Sb) ∪D(σγ
c)

3: ∀σβ−1
b ∈ RW (t) :D(Sb)← D(Sb)∪

S
σ

γ
c ∈W (t) D(Sc)

4: ∀σι
j ∈W (t) : D(σι+1

j)← D(Sj)

We now explain how Algorithm 1 can be imple-
mented in practice. We start analyzing how MMDBs
write database state changes on stable storage. In
MMDBs, data changes are stored on disk only after an
update transaction has issued a commit request. This
means that no action must be undone in case of failures
and the transaction log is typically redo-only, and can
be implemented by simply storing the set of operations
performed by each transaction [8]. Regardless its par-
ticular implementation details, each entry in a redo-only
log represents the new state created by the respective up-
date transaction executed. We can therefore associate
the database state σγ

c with the γth entry in the log of
Server Sc. To keep track of σγ

c ’s dependencies, the only
thing we have to do is to write the structure D(σγ

c) with
its respective transaction’s entry on Sc’s transaction log.

For a practical implementation, we must provide a
way to implement the data structure D(σγ

c) efficiently
with respect to space complexity. As dependencies are
transitive and continuous in the sequence of states of a
database server, it is not difficult to see that to keep track
of the complete set of dependencies of a given state σγ

c ,
we need to store only the last state of each server on
which σγ

c depends. If σγ
c depends on σα

a (α > 0),
clearly it also depends on σ0

a, . . . , σα−1
a . Therefore, a

complete set of state dependencies can be represented
by a dependency vector DV with n entries, in which
DV [i] stores the index of the most recent state depen-
dency from server Si. This idea and nomenclature is

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

inspired by dependency tracking for rollback-recovery
in the message-passing model [28].

We divide our dependency tracking algorithm into
two parts: the client stub and the server wrapper, both
shown in Algorithm 2. Only one when clause executes
at a time, and only after its condition holds. If more than
one when-clause’s condition hold at the same time, any
one is chosen to execute. We assume however that the
execution is fair, that is, unless the server crashes, every
when clause with a condition that holds will be executed.
To submit transaction operations to the local MMDB, a
server makes use of the submit interface. Moreover, to
make it clear that our approach does not introduce any
extra disk operations, all log operations are dealt by our
algorithm, that is, all submit calls access only data in the
server’s main memory.

At the client side it is only necessary to keep track
of the set of servers accessed during the execution of a
transaction (line 2).3 Basically, all operations performed
by the client stub are straightforward and have little
to do with dependency tracking. Dependency tracking
takes place at commit making use of the synchroniza-
tion messages exchanged by the servers to ensure trans-
actions’ atomicity. While analyzing the algorithm, re-
member that we assume Isolation is ensured by a sim-
ple database-locking mechanism and global Atomicity
during normal execution is given by a variation of two-
phase-commit, described in Sections 2.1 and 2.2, respec-
tively. Although we make no explicit use of these two
properties, they ensure the dependencies captured by our
algorithm are consistent with the dependencies indeed
created in the distributed database.

Briefly, each server keeps two dependency vectors
during execution, DV and DV last . DV implements
D(Si) (the dependencies to be attributed to the next state
created) and DV last stores the dependencies of the cur-
rent database state. A server sends, together with the an-
swer to the PREPARE request issued by the client, a de-
pendency vector containing the dependencies the trans-
action should forward to all accessed servers based on
the operations performed in the local database (lines 35-
41). This information is sent not only to the client but
also to the other involved servers. Finally, when a server
Si receives the messages from all servers involved in the
transaction, it updates its DV (line 45-46) and, if the
transaction wrote some data in the database, the server
performs a local state transition (lines 48-49).

A correct implementation of Algorithm 1 is ensured
by the dependencies propagated by the servers in the

3For code simplicity, let us assume a single client does not execute
two transactions concurrently.

VOTE messages. Dependencies referent to line 1 of Al-
gorithm 1 are gathered in line 38 of Algorithm 2. De-
pendencies given by line 2 of Algorithm 1 are gathered
in line 39 of Algorithm 2 if the server was only read by
the transaction, or in line 37 if the server was updated.
Line 37 also captures dependencies referent to line 3 of
Algorithm 1. Correctness proofs of Algorithms 1 and 2
appear in [25].

As mentioned before, the atomic commit mechanism
we assumed can block processes in case of failure, forc-
ing them to wait for a message from a process that
has crashed. A blocked process is unblocked when the
crashed server upon which it depends recovers and starts
the global recovery procedure explained in the next sec-
tion. During the recovery phase, all running transactions
are aborted and global state consistency is ensured by
the rollback-recovery mechanism. When execution re-
sumes, no server is blocked any more. A blocked client
has to wait for a recovery notification to unblock and
check with the database servers whether some transac-
tion was lost. Unblocked clients may also start some
recovery procedure after receiving such a notification if
they rely on something outside the database to ensure
transaction durability.

4.3. Rollback-recovery

Once we have managed to perform dependency
tracking efficiently during the execution, we can make
use of one of the numerous existent approaches to
orchestrate rollback-recovery in the message-passing
model [14, 26, 28]. We illustrate the idea by extend-
ing the algorithm presented in [26], adapted to our exe-
cution model. The system runs as a sequence of incar-
nations, started after recovery from some failure. Each
server keeps track of the current incarnation. In order
to start a new one, an agreement among servers must be
reached to determine the recovery line used for the fed-
eration restart. Therefore, processes exchange messages
containing information about their last stable database
state. When all information is received by a server Si,
it computes its local state that takes part in the recovery
line based on Theorem 2 and rolls back to it by erasing
inconsistent log entries. Due to the possibility of fail-
ures, information about the current incarnation and the
last recovery line used for recovery must be kept in the
stable storage of each server. A detailed description of
this algorithm is presented in [25].

4.4. Algorithm analysis

Algorithm 2 incurs no extra cost during transaction
execution with respect to the number of messages and

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

Algorithm 2 Complete algorithm for dependency tracking

CLIENT STUB

1: Data Structures

2: Λ : set of servers

3: Begin_Transaction ()

4: Λ← ∅
5: return unique tid

6: Read/Write (tid, Si, op)

7: Λ← Λ ∪ {Si}
8: send 〈READ/WRITE, tid, op〉 to Si

9: wait for 〈result〉 from Si

10: return result

11: Commit (tid)

12: send 〈PREPARE, tid, Λ 〉 to all Si ∈ Λ
13: wait for 〈VOTE, tid, vi, DV i〉 from all Si ∈ Λ
14: return (∀Si ∈ Λ : vi = YES)

15: Abort (tid)

16: send 〈ABORT, tid〉 to all Si ∈ Λ

SERVER WRAPPER AT Spid

17: Data Structures

18: opSettid : ordered set of operations
19: DV ,DV last : array[1..n] of integer
20: Λtid : set of servers

21: Initialization

22: ∀ tid : opSettid ← ∅, Λtid ← S
23: ∀ 1 ≤ j ≤ n : DV [j]← −1
24: DV last ← DV

25: The server continuously waits for an event:

26: when receive 〈READ, tid, op〉 from Ci

27: result← submit(tid,op)
28: send 〈result〉 to Ci

29: when receive 〈WRITE, tid, op〉 from Ci

30: result← submit(tid,op)
31: append op to opSettid

32: send 〈result〉 to Ci

33: when receive 〈PREPARE, tid, Λi〉 from Ci

34: Λtid ← Λi

35: if willing to commit then

36: if opSettid 	= ∅ then

37: DV aux ← DV

38: DV aux [pid]← DV last [pid] + 1
39: else DV aux ← DV last

40: send 〈VOTE, tid, YES, DV aux 〉 to Ci ∪ Λtid

41: else send 〈VOTE, tid, NO, ⊥〉 to Ci ∪ Λtid

42: when ∃ tid such that ∀Si ∈ Λtid : received
〈VOTE, tid, vtid

i , DV tid
i 〉 from Si

43: if ∀Si ∈ Λtid : vtid
i = YES then

44: submit(tid,COMMIT)
45: for all Si ∈ Λtid do

46: ∀j : DV [j]← max(DV [j],DV tid
i [j])

47: if opSettid 	= ∅ then

48: DV last ← DV

49: asynchronously write entry 〈opSettid,DV 〉
in the transaction log

50: when receive 〈ABORT, tid〉 from Ci

51: submit(tid,ABORT)

communication steps. The algorithm just piggybacks
a vector timestamp in messages related to the transac-
tion commit and updates local variables according to the
timestamps received. Our approach ensures the min-
imum possible “window of vulnerability” for transac-
tions, since it depends only on the time each server takes
to physically write on stable storage the transaction’s log
entry. Every server does that at its own pace without
synchronizing with the others; as soon as all of them
complete their writes the transaction is durable.

It is possible to come up with alternative solutions
to the problem of ensuring consistency in a federation
of main-memory databases under deferred disk writes.
For instance, non-blocking synchronous checkpointing
approaches for the message-passing model, like [6]
and [16] can be adapted to the transactional model
considering database-state dependencies in the way we
have defined. These algorithms, however, incur O(n2)
control messages during disk-write synchronization and
may force the propagation of timestamps in the appli-
cation messages to overcome the absence of FIFO com-
munication channels [9] or two disk writes per synchro-

nization to record the fact that the current instance has
finished and new ones are allowed [16]. Although some
difficulties can be avoided by stronger system assump-
tions as in [24], the problem of increasing the window
of vulnerability and making it as large as the one of the
slowest server for all servers will always be present in
synchronous algorithms.

Table 1 summarizes the comparison between the
approaches we have mentioned. We aggregate syn-
chronous checkpointing protocols (e.g., [6] and [16])
since they present a similar behavior with respect to the
variables analyzed in the table. Moreover, “MySQL
Cluster” refers to the synchronous approach adopted
in [24]. We represent the disk latency (i.e., the time
it takes for a disk write request to be completed) of
server Si by dlat(Si); and use MAX to refer to
max ({dlat(Si) | Si ∈ S}). The network latency,
used to quantify a communication step, is represented
by δ. Besides requiring FIFO channels, synchronous
checkpointing protocols include the clients in their syn-
chronization, since they are involved in the creation of
database-state dependencies. MySQL Cluster assumes

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

Communication Client Si’s window of Extra messages
Algorithm channels synchronization vulnerability per execution

Sync. Checkpointing FIFO Clients participate MAX + 2δ Ω(n2)
MySQL Cluster Partially Sync. Clients coordinate MAX + 3δ Ω(n)
Our approach Any None dlat(Si) 0

Table 1. Comparison of the different approaches

partially synchronous channels (i.e., with bounded mes-
sage delivery) and have clients coordinate the task in or-
der to simplify the algorithm. Differently, our approach
makes no assumptions about communication channels
and only propagates timestamps on some of the mes-
sages already exchanged by the system. As the role of
the client in participating of synchronous approaches is
not very clear, possibly forcing more messages to be ex-
changed, for such approaches we only show the lower
bound on extra messages required for servers’ synchro-
nization.

4.5. Dealing with complex concurrency control

So far, we have assumed a very simple concurrency
control mechanism inside every single database server,
with concurrent access for read-only transactions and
exclusive access for update transactions. However our
results can be easily extended to more general cases.
For example, the well-known two-phase-locking (2PL)
algorithm can be seen as an extension of our simple con-
currency control where each piece of data plays the role
of a "virtual database": multiple transactions can read
the data concurrently but only one can update it at a
time. As a consequence, though, vector timestamps will
have as many entries as the number of virtual databases.4

Clearly the implementation of such a system can be sim-
plified since all virtual databases inside the same phys-
ical one will be always synchronized with each other.
Reducing the size of the timestamps will involve either
the use of direct instead of transitive dependency track-
ing (and a more complex recovery algorithm [9, 26]),
or the identification of false dependencies as it happens
when logical clocks are used instead of vector clocks to
gather causal dependencies between events [17]. Study-
ing such alternatives is out of the scope of this paper, and
subject to further work.

5 Related work

Although MMDBs do not represent a new concept in
database design, only recently they have been applied to

4Although in practice this might not incur in large overheads since
in most MMDBs concurrency control is usually performed at a coarse
granularity [11].

more general scenarios. Specifically, to our knowledge,
the only work that makes use of MMDBs in a cluster of
servers is [24] (derived from [23]), where performance
and availability are enhanced by replicating and frag-
menting the database among the database servers in the
system. To ensure good performance for update trans-
actions as well, the approach makes use of deferred disk
writes, even for transactions that access multiple servers.
In this case, consistency is ensured by synchronizing the
servers’ disk writes as mentioned in the previous section.

Rollback-recovery has been extensively studied in
the message-passing model [1, 6, 9, 14, 16, 26, 28]. Nev-
ertheless, very few of these works have been exploited
in different environments. The work in [2] presents a
framework to analyze consistency in different shared-
memory and message-passing systems. In [3], their
results are extended to the transactional model, moti-
vated by the problem of building a consistent snapshot
of a centralized database without stopping the execu-
tion of transactions. Actually, the problem of build-
ing a consistent database snapshot has triggered a lot
of research on the analysis of database-state dependen-
cies [3, 10, 20, 21, 27]. Different approaches have con-
sidered dependencies created between transactions due
to concurrency control [5] or between data accessed
within a single process which should be consistently
transfered to stable storage [7]. Some of the ideas pre-
sented in these works, specially in [3] and [10], resemble
our transaction and state dependencies definitions. How-
ever, none of them present a practical characterization of
database-state dependencies (e.g., Theorem 3). Our ap-
proach differs from these works by (a) assuming a dis-
tributed scenario where synchronization between differ-
ent processes must be minimized, and (b) aiming at ap-
plying rollback-recovery techniques to bring the appli-
cation back to a consistent state in case of failure. [7, 5]

6. Concluding remarks

In this paper we tackled the problem of deferred disk
writes in federations of main-memory database systems.
Our approach was motivated by previous research on
rollback-recovery for message-passing distributed sys-
tems. We described how database-state dependencies
are created in the transactional model and how they can

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

be tracked efficiently during execution. A possible ex-
tension to our algorithms is to use direct instead of tran-
sitive dependency tracking [9, 26], as this can possibly
lead to smaller timestamps if transactions do not tend to
access many servers. Moreover, our algorithms borrow
from optimistic message logging. It is also possible to
exploit other rollback-recovery techniques, like causal
message logging and quasi-synchronous checkpointing,
and compare their performance and advantages under
different transaction scenarios. Research domains that
may take advantage of this theory include optimistic
concurrency control mechanisms and management of
nested transactions. Investigating such issues is the sub-
ject of future work.

Acknowledgments

We thank Márcio Bystronski and the anonymous review-
ers for their comments that helped us improve the paper.

References

[1] L. Alvisi and K. Marzullo. Message Logging: Pes-
simistic, Optimistic, Causal and Optimal. IEEE Trans.

on Software Engineering, 24(2):149–159, Feb. 1998.
[2] R. Baldoni, J.-M. Helari, and M. Raynal. Consistent

records in asynchronous computations. Acta Informat-

ica, 35(6):441–455, June 1998.
[3] R. Baldoni, F. Quaglia, and M. Raynal. Consistent check-

pointing for transaction systems. The Computer Journal,
44(2):92–100, 2001.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Con-

currency Control and Recovery in Databases Systems.
Addison-Wesley, 1987.

[5] B. Bhargava. Concurrency control in database systems.
IEEE Transactions on Knowledge and Data Engineer-

ing, 11(1):3–16, 1999.
[6] M. Chandy and L. Lamport. Distributed Snapshots: De-

termining Global States of Distributed Systems. ACM

Trans. on Computer Systems, 3(1):63–75, Feb. 1985.
[7] F. Cristian, S. Mishra, and Y. S. Hyun. Implementation

and performance of a stable-storage service in Unix. In
Proceedings of the 15th IEEE Symposium on Reliable

Distributed Systems, 1996.
[8] D. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,

M. Stonebraker, and D. A. Wood. Implementation tech-
niques for main memory database systems. In SIG-

MOD’84, Proceedings of Annual Meeting, Boston, Mas-

sachusetts, June 18-21, pages 1–8. ACM Press, 1984.
[9] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B.

Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys,
34(3):375–408, Sept. 2002.

[10] I. C. Garcia and L. E. Buzato. Asynchronous construc-
tion of consistent global snapshots in the object and ac-

tion model. In Proc. of the 4th IEEE Int. Conference on

Configurable Distributed Systems, 1998.
[11] H. Garcia-Molina and K. Salem. Main memory database

systems: An overview. IEEE Transactions on Knowledge

and Data Engineering, 4(6):509–516, Dec. 1992.
[12] J. Gray. The revolution in database architecture. Techni-

cal Report MSR-TR-2004-31, Microsoft Research, 2004.
[13] J. N. Gray and A. Reuter. Transaction Processing: Con-

cepts and Techniques. Morgan Kaufmann, 1993.
[14] D. B. Johnson and W. Zwaenepoel. Recovery in dis-

tributed systems using optimistic message logging and
checkpointing. Journal of Algorithms, 11(3):462–491,
1990.

[15] K. Knizhnik. Fastdb: Main-memory relational database
management system. http://www.garret.ru/ knizh-
nik/fastdb.html.

[16] R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IEEE Trans. on Soft-

ware Engineering, 13:23–31, Jan. 1987.
[17] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, July
1978.

[18] D. Morse. In-memory database web server. Dedicated

Systems Magazine, 4:12–14, 2000.
[19] F. Pedone, R. Guerraoui, and A. Schiper. The database

state machine approach. Journal of Distributed and Par-

allel Databases and Technology, 14(1):71–98, 2003.
[20] S. Pilarski and T. Kameda. Checkpointing for distributed

databases: Starting from the basics. IEEE Trans. on Par-

allel and Distributed Systems, 3(5):602–610, 1992.
[21] C. Pu. On-the-fly, incremental, consistent reading of en-

tire databases. Algorithmica, 1(3):271–287, 1986.
[22] L. Rodrigues and M. Raynal. Atomic broadcast in

asynchronous crash-recovery distributed systems and its
use in quorum-based replication. IEEE Transactions

on Knowledge and Data Engineering, 15(5):1206–1217,
2003.

[23] M. Ronström. The NDB cluster – A parallel data server
for telecommunications applications. Ericsson Review
no. 4, 1997.

[24] M. Ronström and L. Thalmann. Mysql cluster architec-
ture overview. MySQL Technical White Paper, 2004.

[25] R. Schmidt and F. Pedone. Consistent main-memory
database federations under deferred disk writes. Tech-
nical Report IC/2005/17, School of Computer and Com-
municaiton Sciences, EPFL, 2005.

[26] A. P. Sistla and J. L. Welch. Efficient distributed recovery
using message logging. In Proceedings of the 8th ACM

Symposium on the Principles of Distributed Computing,
pages 233–238, 1989.

[27] S. H. Son and A. K. Agrawala. Distributed checkpointing
for globally consistent states of databases. IEEE Trans.

on Software Engineering, 15(19):1157–1166, 1989.
[28] R. Strom and S. Yemini. Optimistic Recovery in Dis-

tributed Systems. ACM Trans. on Computing Systems,
3(3):204–226, Aug. 1985.

Proceedings of the 2005 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05)
0-7695-2463-X/05 $20.00 © 2005 IEEE

