
Copyright © 2006 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 2, 56–69, 2006

Analysis and Optimization of MPSoC Reliability

Ayse Kivilcim Coskun,1 Tajana Simunic Rosing,1�∗ Kresimir Mihic,2

Giovanni De Micheli,3 and Yusuf Leblebici3
1CSE Department, University of California San Diego, La Jolla, CA 92093, USA

2Magma Design Automation, Santa Clara, CA 95054, USA
3Ecole Polythecnique Federale de Lausanne, Lausanne 1015, CH, Switzerland

(Received: 16 December 2005; Accepted: 23 January 2006)

Advancements in technology enable integration of multiple devices on a single core, resulting in
increased on chip power and temperature densities. Higher temperatures, in turn, present a sig-
nificant challenge for reliability. In this work we propose a comprehensive framework for analyzing
reliability of multi-core systems, considering permanent faults. We show that aggressive power
management can have an impact on reliability due to temperature cycling. Our cycle-accurate sim-
ulation methodology shows fine-grained variations of device failure rates over short time scales,
thus enabling workload analysis and scheduling to control the reliability impact. On the other hand,
the statistical reliability simulator and optimizer give a view into the long time horizon reliability
analysis—over system lifetime, and help us optimize a power management policy under reliabil-
ity and performance constraints. We show that our optimization strategy can achieve large power
savings while still meeting the reliability and performance constraints.
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1. INTRODUCTION

Systems on a chip have an increasingly larger number of
cores, communication, and storage elements integrated.
Such a large density of transistors integrated on a single
chip leads to high power and temperature, and therefore
raises significant issues for both power management and
reliability.

Several techniques have been proposed to manage power
consumption, such as dynamic voltage scaling (DVS) and
dynamic power management (DPM). DVS reduces the
power consumption by scaling down voltage and fre-
quency of processor(s) during active periods.25 DPM, on
the other hand, saves power by shutting down system com-
ponents when they are idle.27

Reducing the overall power dissipation by DPM or DVS
lowers the average device temperature, and therefore also
decreases the rate of temperature-driven hard failures.14

On the other hand, aggressive power management policies
can decrease the overall component reliability because
of the degradation effect that temperature cycles have
on IC materials.6�14 Figure 1 shows a tradeoff between
mean-time-to-failure (MTTF) and power savings for three
common failure mechanisms: Electromigration (EM),
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time dependent dielectric breakdown (TDDB), and thermal
cycling (TC). In our work we use measured values of these
failure rates on a test core obtained from a silicon manu-
facturer for 95 nm technology. This particular test core has
a single sleep state and no DVS capability. As shown in the
figure, when power management becomes more aggres-
sive, it helps to improve MTTF due to electromigration
(EM) and time dependent dielectric breakdown (TDDB).
Nevertheless, it results in a significant cost in terms of the
reliability impact of thermal cycles, due to the large tem-
perature differentials and frequent shutdowns caused by
the policy. TC effect dominates the overall MTTF as power
savings increase.

In this work we provide a comprehensive modeling and
optimization methodology for analyzing reliability of sys-
tems on a chip. We propose two levels of reliability mod-
eling: statistical and cycle accurate. Analyzing reliability
with both approaches enables us to observe long-term
trade-offs between power management and reliability, as
well as short-term changes on the system failure rate when
power management or scheduling policies vary.

In the statistical model, we evaluate long term reliabil-
ity, performance, and power consumption of cores in SoCs
by computing system reliability as a function of failure
rates, system configuration, and management policies. With
our statistical model we define and solve a joint dynamic

56 J. Low Power Electronics 2006, Vol. 2, No. 1 1546-1998/2006/2/056/014 doi:10.1166/jolpe.2006.007



Coskun et al. Analysis and Optimization of MPSoC Reliability

10

30

50

70

90

110

130

0.0 10.0 20.0 30.0 40.0 50.0

Power Savings [%]

M
T

T
F 

[y
r]

s

EM
TDDB
TC
System

Fig. 1. Failure mechanisms in 95 nm technology for a single core.

power management (DPM) and reliability (DRM) opti-
mization problem. Experimental results show that with our
joint optimization method we can save energy by 40%
while meeting both reliability and performance constraints.
While statistical modeling can provide analysis on long-
term reliability of systems, in order to model effects of pol-
icy changes, and workload scheduling precisely, workload
simulation at cycle accurate level is needed. We integrate
cycle-accurate workload modeling with power manage-
ment, temperature modeling, and failure rate modeling to
obtain fine-grained analysis of system reliability. Our sim-
ulator analyzes failure rate variations of multi-core systems
considering several power management policies, workload
distribution schemes, and system topologies.

The rest of the paper begins with an overview of related
work. Temperature and reliability models are explained in
Section 3. Section 4 provides details on the statistical and
cycle-accurate simulators. Optimization methodologies are
described in Section 5. We present the experimental results
in Section 6 and Section 7 concludes.

2. RELATED WORK

Power management in systems on chips has been exten-
sively discussed in literature. Two commonly referred
techniques are dynamic power management (DPM) and
dynamic voltage scaling (DVS). The capability of these
techniques to perform accurate estimations determines the
efficiency of the policy, especially in the case of non-
stationary workloads where the frequency of workload
arrivals varies over time. Chung et al. introduced online
workload learning techniques based on sliding observation
windows in order to estimate future workload accurately
and apply DPM.27 A workload decomposition technique
is proposed in Ref. [28] to predict the on-chip activity
for performing DVS with higher power savings. For large
SoCs, a stochastic optimization methodology based on a
closed-loop control model for a unified dynamic voltage
and power management at core-level has been presented
in Ref. [9]. This optimization includes both node and
network-centric views of systems. Benini et al. provides
a detailed summary of system-level power management
techniques in Ref. [26].

Although power management typically reduces the core
temperature, it is not always capable of eliminating
high temperature spikes. Thus, thermal modeling and
dynamic thermal management (DTM) have become impor-
tant. HotSpot2 is a well-known example of a dynamic
architecture-level thermal simulator. Recent approaches for
dynamic thermal management (DTM) target architecture
level with the goal of reducing power density in thermal
hot spots by employing a number of different techniques
such as global clock gating,1 migrating computation to
spare units,2 traffic rerouting,3 predictive techniques for
multimedia applications,4 and DVS specifically for ther-
mal management.2–4 DTM’s goal is to eliminate thermal
hot spots at run time, but it does not directly consider
long-term reliability.

Reliability of SoCs has become of increasing concern
due to the high permanent and transient faults in deep sub-
micron and nanoscale technologies. In this work we focus
on temperature-induced hard failure mechanisms. Typical
examples of hard failures include open interconnect lines,
shortening between adjacent metal layers and crack for-
mations; a good overview can be found in Ref. [13]. For
example, electromigration failure mechanism caused by
temperature gradients is investigated in Ref. [14]. The
description of the connection between fast thermal cycling
and thin film cracking is presented in Ref. [15] and a failure
rate model is given in Ref. [14]. Time-Dependent Dielec-
tric Breakdown (TDDB) has also been studied extensively,
and a model for TDDB is discussed in Ref. [16].

Improving system reliability and increasing processor
lifetime by implementing redundancy at the architecture
level are discussed in Refs. [5, 8, 29]. The RAMP simulator
models microarchitecture MTTF as a function of temper-
ature related failure rates of individual structures on chip
due to intrinsic hard failure mechanisms.11 RAMP gets
activity estimates from performance simulation with an
instruction level simulator and uses them to obtain power
consumption and temperature of microarchitecture com-
ponents. Reliability computation is performed using the
temperature values. Exploiting the architecture’s knowl-
edge of the runtime workload distribution, the DTM
methodology proposed keeps processor temperature under
a given threshold by architectural adaptation and applying
dynamic voltage scaling.

In our work we study both the long-term system relia-
bility as a function of power management policies as well
as the short-term variations in system and core reliability.
Our simulation is targeted at evaluating behavior of large,
multi-processor SoCs, with workloads normally experi-
enced during their useful life. We consider electromi-
gration, time dependent dielectric breakdown, and fast
thermal cycling as the sources of hard failure mechanisms.
Our statistical methodology presents for the first time a
unified approach for the joint optimization of reliability,
power consumption, and performance in SoCs. In addition
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to long time horizon statistical modeling and simulation of
SoC reliability, we also correlate the real workload on chip
and power management policy changes with the short-term
reliability effect. Our fine-grained model shows a clear
need for careful dynamic workload scheduling in order to
improve the overall system reliability. In order to be able to
study these effects, we next discuss how we have enhanced
the traditional statistical and cycle accurate power and per-
formance simulators with thermal and reliability models.

3. TEMPERATURE AND RELIABILITY
MODELING

3.1. Thermal Modeling

Detailed thermal modeling has received significant atten-
tion recently due to skyrocketing temperatures of current
systems. The well-known analogy between thermal phe-
nomena and an RC circuit models temperature gradient at
each node and heat flow among structures using thermal
capacitance and resistances respectively. We use Hotspot
version 2 (Ref. [2]) to provide temperature samples based
on the cycle-accurate power and performance simula-
tions. HotSpot computes the vertical and horizontal ther-
mal resistances and capacitances, given the dimensions and
material properties of units and chip. It includes a very
detailed thermal package model for a typical package set-
up for today’s chips. The simulator takes into account the
lateral thermal diffusion on chip as well, which increases
its accuracy. In our simulations, we set the convection
resistance and capacitance values from the chip to air as
those of a medium expensive package, and assume typical
core sizes available in deep submicron process technology.

Our statistical simulation platform uses a simplified
model because of very long simulation time horizons. The
temperature in a state is estimated using the base active
state temperature, the time spent in a state (e.g., active,
idle, sleep) due to an action and the state’s steady state
temperature. The active state temperature is defined using
the thermal resistances of die and package, Rthdie and
Rthpackage, for a reference frequency and voltage of opera-
tion in the active state. Thermal RC constant, � ≈ c�a2,
has c = 106 J/m3 K for silicon thermal capacitance and
�= 10−2 mK/W for thermal resistivity.12

3.2. Failure Rate Modeling

We use the temperature estimates obtained from thermal
models to calculate the reliability of components during
their useful life. In the statistical model, the failure rates
are considered constant within any given operational state
(i.e., active, idle, and sleep). In the cycle-accurate model,
our goal is to observe the variations in the failure rate,
so we compute the failure rate at each sampling interval.
We consider three failure mechanisms commonly referred
in the literature: Electromigration (EM), Time Dependant
Dielectric Breakdown (TDDB), and Thermal Cycles (TC).

Electromigration is the transfer of material resulting
from the gradual movement of ions in the conducting path
due to the momentum transfer between conducting elec-
trons and metal atoms. It leads to permanent faults such as
opening of metal lines/contacts, shortening between adja-
cent metal lines, etc. The MTTF due EM process is com-
monly described by Black’s model:

MTTFEM = Ao�J − Jcrit

−ne�Ea/kT 
 (1)

where Ao is an empirically determined constant, J is the
current density in the interconnect, Jcrit is the threshold cur-
rent density, and k is the Boltzmann’s constant, 8�62 ·10−5.
For aluminum alloys Ea and n are 0.7 and 2 respectively.
EM failure rate is modeled for idle and active states only,
because leakage current present in the sleep state is not
large enough to cause the migration. We formulate the
EM failure rate as a product between an average measured
value in a given power state s, �EM

m�s , and a factor that is a
function of temperature.

�EM
core� s = A′

o�Js− Jcrit

ne�−Ea/kTs
 = �EM

m�se
�−Ea/kTs
�

∀ s = active� idle (2)

Time Dependent Dielectric Breakdown is a wear out
mechanism of dielectric due to electric field and temper-
ature. The mechanism causes the formation of conductive
paths through dielectrics shortening the anode and cathode.
MTTF due to TDDB can be defined with the field-driven
model:

MTTFTDDB = Aoe
−�Eoxe�Ea/kT 
 (3)

where Ao is an empirically determined constant, � is the
field acceleration parameter, and Eox is the electric field
across the dielectric. The activation energy, Ea, for intrinsic
failures in SiO2 is found to be 0.6–0.9 and for extrinsic
failures about 0.3.13 The failure rate due to TDDB mecha-
nism for active, idle, and sleep state is defined as a product
between an average measured value in a given power state
s, �TDDB

m�s , and a factor that is a function of temperature we
obtain from the thermal models.

�TDDB
core� s = A′

oe
�Eox�s e�−Ea/kT 
 = �TDDB

m�s e
�−Ea/kT 
�

∀ s = active� idle� sleep (4)

Temperature Cycling effect is caused by the large dif-
ference in thermal expansion coefficients between metallic
and dielectric materials, the silicon substrate and the pack-
age. It can cause plastic deformations that eventually
create cracks, fractures, short circuits, and other related
failures. The effect of low frequency thermal cycles (pro-
cessor on/off) has been well studied by packaging com-
munity and can be modeled by Coffin-Manson model.13

Thermal cycles that occur with higher frequencies are
gaining importance as features sizes get smaller and low-k
dialectic is introduced to the fabrication process. Recent
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work14 shows that such cycles play a major role in crack-
ing of thin film metallic interconnects and dielectrics.
Expected number of fast thermal cycles before core failure
is given in Eq. (5). It does not only depend on the temper-
ature range (Tmax −Tmin) but is also strongly influenced by
the average temperature, Tavg and the molding temperature
of the package process, Tmold. The exponent q ranges from
6–9, and C1�2 are fitting constants defined in Ref. [14] for
on chip structures.

Nf = Co�C1�Tmax −Tmin
−C2�Tavg� s−Tmold
�
−q (5)

For a power-managed core, two distinct thermal cycle
loops exist. The first one is between active and idle states
and has a relatively small temperature difference so is
unlikely to experience large thermal cycles. On the other
hand, the transitions in and out of sleep states can have
a large difference in power consumption, and occur infre-
quently enough to cause the temperature to vary signif-
icantly. Therefore, we can calculate the total failure rate
due to the thermal cycling effect as shown in Eq. (6). Tavg

and Tmold are the average temperature and the temperature
of package molding process, while Cs are fitting constants.
Tmin and Tmax are the minimum and maximum temperatures
observed and fs is the frequency of transitioning into the
sleep state.

�TC
core�s = C ′

o�C1�Tmax −Tmin
−C2�Tavg −Tmold
�
q

fs = ∀ s = sleep (6)

The temperature values are obtained differently for the
statistical and cycle-accurate model. In statistical model
Tmax and Tmin correspond to Tactive and Tsleep respectively
and Tavg and fs are calculated over the lifetime of
the system. In contrast to the life-time analysis, cycle-
accurate simulations model temperature, and failure rate at
each cycle. So, the Tmax, Tmin� Tavg, and fs values are cal-
culated by using a sliding window over a last (fixed) set of
temperatures and transitions. Utilizing the sliding window
enables to observe the varying frequency of sleeping and
to distinguish between consecutive phases of rather stable
temperature and phases with frequent state switching.

In order to calculate the overall component failure rate,
we assume that the individual failure rates are statistically
independent and thus we can use a sum-of-failure-rates
(SOFR) model. A core’s failure rate is represented as the
sum of the failure rates of individual failure mechanisms.

3.3. System Reliability

In statistical modeling and simulations, since we are inter-
ested in assessing the reliability over the typical operation
time, we assume that the failure rates are constant in time.
Cycle-accurate modeling tracks the variations in failure
rate over time. During the useful life of devices the failure
rate is usually modeled with the exponential distribution.

Thus we can represent the component reliability with a
failure rate, �f as follows: R�t
= e−�f t , with mean time to
failure MTTF = 1/�f . Since a large SoC system has multi-
ple cores that can act as “back-up” elements to each other,
we take the system topology into account for our relia-
bility calculations. In a system, components are in series
(parallel) if the overall correct operation hinges upon the
conjunction (disjunction) of the correct operation of com-
ponents. The overall system reliability can be calculated
by applying the rules for series and parallel composition,
under the assumption that failure rates are statistically
independent.

Rsystem�t
=
n∏
i−0

Ri�t
⇒ Rsystem�t
= e−
∑n
i=0 �fi t (7)

The system built with n series components fails if any of
its components fails. When failure rates are constant, the
failure rate of a series composition is the sum of the failure
rates of each component as shown in Eq. (7). Alternatively,
the parallel combination fails only if all n components
those are in parallel fail:

Rsystem�t
= 1−
n∏
i−0

�1−Ri�t

 (8)

Systems with parallel structures have built-in redun-
dancy. Such systems can either have all components con-
currently operating (active parallel) or only one component
active while the rest are in low power mode (standby par-
allel). Active parallel combination has higher power con-
sumption and lower reliability than standby parallel, but
also faster response time to failure of any one component.
The combined failure rate of M active components, �fap,
is defined using binomial coefficient, CMi , and active reli-
ability rate, �f as shown in equation below.

�fap =
M∑
i=1

�−1
i−1C
M
i

i�f
(9)

Both power consumption and reliability can be
improved if only one core is active at a time and others
are in standby, with the cost of performance. The fail-
ure rate of M parallel components that are in standby is
�fsp = �fs/M .17 To get the overall failure rate we need to
combine M standby components with one active parallel
component.

4. SIMULATION

We introduce two simulation frameworks in this paper:
cycle-accurate and statistical. Cycle-accurate reliability
simulation provides fine grained analysis of the effect
power management and workload scheduling have on
the system reliability. The statistical simulation plat-
form is used for computing long-term system reliability
with a state-machine model. We next outline the both
methodologies.
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4.1. Cycle-Accurate Reliability Simulation

Our cycle-accurate simulation methodology is the first to
enable evaluation of fine grained changes in the reliabil-
ity of multi-core SoCs due to temperature induced fail-
ure mechanisms. The simulation framework consists of the
following major parts:

(1) Cycle accurate multi-core power simulator;
(2) Power Manager, responsible for applying power man-
agement and dynamic voltage scaling policies;
(3) Thermal modeling tool that calculates the instant tem-
perature at each simulation step;
(4) Failure rate modeling tool that outputs failure rates
with respect to temperature and SoC characteristics.
Figure 3 presents an overview of the simulator.

A cycle-accurate multi-core power simulator models
core interactions in order to obtain the workload traces for
each core. We use MP-ARM,32 a multi ARM core sim-
ulator, to obtain each core’s utilization trace. Since in a
multi-core scenario it takes a very long time to simulate
real traces; we chose computational kernels as representa-
tive samples. The benchmarks we simulate perform matrix
computations on a SoC model, which are typical opera-
tions in multimedia applications. The cores interact with
each other through the shared memory in a producer–
consumer relationship, implementing a pipeline of opera-
tions. This represents a typical set-up for communication
among cores on chip in the lack of OS support. Two com-
putation kernels are selected for simulations in this paper;
one with high utilization and other with lower utilization.
In many applications, for example multimedia, certain
parts of the workload either repeat frequently, or exhibit
similar statistics.31 Therefore, we replicate each sample
trace to analyze longer-term execution phases.

The second stage of the simulator is the Power
Manager, which applies the DPM and DVS strategies on
the core utilization trace it takes as input. For simplicity in
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Fig. 2. System model.

implementation, we used a Markov policy.10 The Markov
policy provides an average efficiency of the power man-
ager over all workloads.

DVS policies typically make a decision on the next
frequency/voltage setting based on the utilization ratio in
the observation window. Based on the given workload
trace, our power manager selects the best DVS policy that
could be applied for a given set of frequency/voltage pairs
available in the core. The power manager for DVS is con-
figured to behave as an oracle with perfect knowledge
of future workload in order to emphasize the differences
between DPM and DVS.

Thermal modeling is performed by HotSpot2 as dis-
cussed Section 3. The last stage of the cycle-accurate
simulator is failure rate modeling. The failure rates are
computed using the equations given in Section 3 and the
temperature trace obtained from thermal modeling tool.
A significant differentiation between the statistical and
cycle-accurate models is that the cycle accurate model cal-
culates temperature values and failure rates of each core at
every sampling interval, rather than estimating an average
over a long period of time. This way we can observe the
detailed failure rate variations resulting from workload and
policy changes. The modeling of the short-term changes
in these rates enables applying adaptive reliability policies
in real-life systems.

4.2. Statistical Simulation Methodology for
SoC Reliability

The statistical reliability simulator is the first one to
unify high level modeling of voltage scaling, power man-
agement, and reliability. Previous work has introduced
Microarchitecture-level11 or lower level models.3 The sta-
tistical simulator enables analysis of trade offs between
power performance and reliability for large multi-core sys-
tems over the system’s useful life, which is in terms of
years. Each core is modeled as a power and reliability
state machine (PRSM) as shown in Figure 2. Transitions
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Fig. 3. Cycle-accurate simulation flow.

0.4 0.7 1.1 1.5 1.9 2.3 2.6 3.0 3.4 3.8 4.1 4.5 4.9 5.3 5.6 6.0 6.4 6.8 7.1

Time (s)

F
ai

lu
re

 R
at

e

Core0 (INIT) Core1 (INIT) Core0 (OPT) Core1 (OPT)

Fig. 4. Workload scheduling to achieve a lower failure rate.

between states occur due to a DVS policy (between dif-
ferent active states), DPM policy (between idle and sleep
states) or because of natural core operation, such as arrival
of a workload request (arrival arcs) finishing processing on
data (departure arcs) or a failure of the core. Each core’s
failure rates are calculated from the data collected at run-
time (e.g. amount of time spent in a state, frequency of
state changes) and core’s specifications (e.g. power, volt-
age, transition times) using equations given in Section 3.
The simulator identifies and activates spares when one or
more cores fail based on the reliability network configura-
tion. Further details are provided in Ref. [30].

We next discuss how workload scheduling can help on
more fine-grained level, and optimization for longer time
horizons.

5. POWER AND RELIABILITY OPTIMIZATION

5.1. Workload Scheduling for Higher Reliability

Temperature related reliability problems on chip arise due
to two major thermal phenomena: high instantaneous tem-
peratures (hot spots) and thermal cycling. Heat flow among
structures is very influential in determining the overall sys-
tem temperature. If a hot core is able to share its heat with
a colder neighbor, temperature at the hot spot is reduced.
This heat sharing property can be exploited in order to
maintain a lower overall temperature. Many applications
finish execution much before their worst-case execution
times and thus hardware resources are under-utilized.25

Moreover, interacting units typically depend on each other
for data and stay idle when they are waiting for new
workload arrival from the producer. Such idle times can
be utilized for optimizing scheduling for higher reliability.

Figure 4 shows a sample scenario. Here we demon-
strate the failure rates of each core in a two-core system,
obtained from the cycle-accurate simulator. The initial core
(INIT) has 2 cores managed by DPM, and the two cores
have exactly the same workload distribution (e.g. Fig. 5),
thus the same temperature and failure rate. In this case
the cores are simultaneously active, which causes large
amount of increases in temperature. In the optimized case
(OPT), the workload distribution of one of the cores is
adjusted such that it is active whenever the other core
is idle (or at sleep). Figure 6 shows such a workload

Fig. 5. Cores with identical workload utilization.

Fig. 6. Cores with non-overlapping active times.
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utilization scheme. This workload schedule maximizes the
benefit of heat sharing among the cores and dramatically
reduces and stabilizes the failure rate.

5.2. Power Management with Reliability Constraints

In this section we define the optimization problem given
a system topology and a set of component states (active,
idle, etc.) characterized by failure rate, power consumption,
and performance. The result of optimization is a power and
reliability management policy to be implemented at a sys-
tem level over the useful life of a device. Policy manager
makes decisions at each event occurrence (e.g., arrival or
departure of a request). The interevent time set is defined
as T = "ti_s�t� i ∈ 0�1�2� � � � � imax# where each ti is the
time between two successive event arrivals and imax is the
index of the maximum time horizon. We denote by si ∈ Si
the system state at decision epoch i. Commands are issued
whenever the state changes. We denote by ai ∈Ai an action
(or command) that is issued at decision epoch i. Each core
in the reliability network is modeled with a power and
reliability state machine (PRSM) as shown in Figure 2.
PSRM is a state diagram relating service levels to the
allowable transitions among them. Multiple cores form a
reliability network of series and parallel combinations of
single core PRSM models. Single core PRSM character-
izes each state by its failure rate, �core, state, and power con-
sumption, Pstate. Thus, the active state i is characterized by
the failure rate �core�active i, frequency and voltage of oper-
ation, fi� Vi, which is equivalent to the core processing
rate 'fi, and power consumption Pai. In the active state
the workload and core’s data processing times follow the
exponential distribution with rates 'workload and 'core_fi. In
the idle state a core is active but not currently processing
data. Sleep state represents one or more low power states
a core can enter. TransitionToSleep and TransitionToActive
states model the time and power consumption required to
enter and exit each sleep state. Transition times to/from
low-power states follow uniform distribution with aver-
age transition times tts� tta.

26 In the active state, the power
manager decides the appropriate frequency and voltage
setting, where as in the idle state the primary decision is
which low-power state core should transition to and when
the transition should occur. The arcs represent transitions
between the states with the associated transition times and
rates. Table I summarizes all distributions used in mod-
eling performance, power consumption, and failure rates.
The choices of distributions have been validated by exper-
imental measurements.10

Failure rates change with each power state since dif-
ferent level of power consumption causes a different tem-
perature. We calculate the expected temperature for each
state (E�Tstate�) as a function of the expected time spent in
that state, y�s�a
, the steady state temperature for the state
and the technology parameters (� ≈ c�a2, defined earlier).

Table I. System model characteristics.

State Distribution Parameters Failure Rate

Active Exponential 'core� f−V �a = �EM
a +�TDDB

a

'workload

Idle General Collected Data �i = �EM
i +�TDDB

i

Transition Uniform tmin, tmax

Sleep General Collected Data �s = �TDDB
s +�TC

s

Queue = 0
Queue > 0 Exponential 'workload

Using the expected temperature we can calculate a station-
ary value for failure rates due to each mechanism and per
each power state.

We can formulate a linear program (LP) for the min-
imization of energy consumption under reliability con-
straint as shown in Eq. (10). The first constraint is known
as a balance equation since it requires that a number of
entries into a given state to equal the number of exists
out of that state. The second constraint limits the sum of
all probabilities to equal one. Each probability is repre-
sented by a product between the expected time spent in a
state s under a command a, y�s�a
, the unknowns of the
LP, f �s�a
. The A×S unknowns in the LP, f �s�a
, called
state-action frequencies, are the expected number of times
that the system is in state s and command a is issued. The
last three equations specify constraints on performance
and reliability. The result of optimization is a globally
optimal power management policy that is both stationary
and randomized. The policy can be compactly represented
by associating a probability of issuing command a when
the system is in state s, x�s�a
 = f �s�a
/∑ f �s�a′
 with
each state and action pair. We explain now in more detail
all variables used in LP formulation starting with the reli-
ability constraint. Both continuous and time indexed ver-
sions are presented, labeled with dt and +t respectively.

min
N∑
c=1

costenergy�c

s�t�
∑
a∈A
f �s�a
−∑

a∈A

∑
s′∈S
m�s′�s�a
f �s′�a
=0� ∀s�∀cs

∑
a∈A

∑
s∈S
y�s�a
f �s�a
=1� ∀cs

N∑
c=1

costperf �c<Perf const� ∀c

Tpl��c
≤Relconst� ∀cs
�c=

∑
i∈F

∑
a∈A

∑
s∈S
�icore�s�a
y�s�a
f �s�a


(10)

The reliability constraint, Tpl is a function of the sys-
tem topology, i.e., Tpl= f (series, parallel combinations).
For example, with series combinations Tpl = ∑

�core�s ,
and with parallel standby Tpl = �core, standby/Nstandby.
A reliability network may have a number of series and
parallel combinations of cores. Each core’s failure rate,
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�c, is a sum of failure mechanisms, i ∈ "EM�TDDB�TC#,
when the core is in the state s and the action a is given.
For example, the reliability constraint is given in Eq. (11)
for a core that has one active (A), idle (I), and sleep (S)
state and two actions: go to sleep (S) and continue (C).
Failure rate in each state, �core, state, is a sum of failure rates
due to failure mechanisms active for that state as described
in Section 3.

�Ay�A�C
f �A�C
+�Iy�I�C
f �I�C
+�Iy�I�S
f �I�S

+�Sy�S�C
f �S�C
≤Relconst (11)

Our model also defines two cost metrics, energy, and
performance. The average cost incurred between two suc-
cessive events as defined in Eq. (12) is a sum of the lump
sum cost k�si� ai
 incurred when action ai is chosen in
state si, in addition to the cost in state si+1 incurred at
rate c�si+1� si� ai
 after choosing action ai in state si. The
value of cost rate, c�si+1� si� ai
 is power consumption in a
state si for the calculation of energy cost, and performance
penalty for the performance constraint.

Cost�si�ai
=




k�si�ai
+
∫ �

0

[
F �du�si�ai


× ∑
si+1∈Si+1

∫ u
0
c�si+1�si�ai


×p�si+1�ti� si�ai
dt
] ∀dt

k�si�ai
+
∑

si+1∈Si+1

c�si+1�si�ai
y�si�ai
 ∀+t

(12)

When action ai is chosen in system state si, the proba-
bility that the next event will occur by time ti is defined
by the cumulative probability distribution F �ti� si� ai
. For
example, in the active state the cumulative distribution
of request departures is given by F �active�departure
 =
1 − e−t�core . The probability that the system transitions
to state si+1 at or before the next event ti is given by
p�si+1� ti� si� ai
. For example, in active state the probabil-
ity of departure is given by p�idle�t�active�departure
 =
�core/(�core+�workload). In time-indexed idle and sleep states
the probability of getting an arrival in time increment +t
can be calculated as follows:

p�si+1�ti� si� ai
=
F �ti++t
−F �ti


1−F �ti

(13)

The expected time spent in each state s when a com-
mand a is given, y�s�a
, is defined in Eq. (14). For exam-
ple, the expected time spent in the active state is equal
1/(�core +�workload).

y�si�ai
=




∫ �

0
t

∑
si+1∈Si+1

p�si+1�ti�si�ai
F �dt�si�ai
 ∀dt
∫ ti++t
ti

�1−F �t

dt
1−F �ti


∀+t
(14)

Finally, the probability of arriving into state si+1 given
that the action ai was taken in state si is defined by:

m�si+1�si� ai
=
∫ �

0
p�si+1�ti� si� ai
 F �dt�si� ai
 (15)

For the time indexed states the probability of arriving
to the next idle state is defined to be m�si+1�si� ai
 = 1−
p�si+1�ti� si� ai
 and of transition back into the active state
is m�si+1�si� ai
= p�si+1�ti� si� ai
. Equations (12)–(15) are
sufficient to calculate all variables needed for the LP shown
in Eq. (10). The LP can then be solved using any linear
program solver in a matter of less than a second. The final
output of optimization is a table that specifies probabilities
of transitioning cores into each of their low-power states.

6. RESULTS

In this section we discuss the advantages of both modeling
frameworks and the benefits of the optimization. We pro-
vide detailed analysis on the effects of power management,
system topology, and workload scheduling on reliability.

6.1. Cycle-Accurate Simulation Results

We performed cycle-accurate analysis of thermal impact
on failure rate considering various workload characteris-
tics, power management policies, and system topologies.
The two main traces we use in these simulations are
Trace 1 and Trace 2, which have 22% and 70% utilization
respectively when run on a single core. These traces rep-
resent multimedia kernels with short and long idle times
in order to clarify the workload effect on reliability. More
details can be found in Section 3. Failure rate variation
plots are drawn with respect to the baseline case where no
power management is applied. As in the statistical sim-
ulations, the parameters in the failure rate equations are
derived from measurements in 95 nm process technology.
Workload simulations are run on MP-ARM. We use Intel’s
XScale processor power and performance values for each
of the cores in SoC.7 The performance penalty for the
DPM and DVS policies for Traces 1 and 2 are given in
Table VI. The penalties are calculated based on the tran-
sition time specifications given in the datasheet of XScale
processor. The performance penalties given in Table VI
below are calculated as tdelay/ttotal; where tdelay is the cumu-
lative delay occurring due to the transition between states
or the time spent for changing the frequency settings, and

Table II. SoC parameters.

Pactive Pidle Psleep tts tta
IP block [W] [W] [W] [s] [s]

DSP (TMS6211)18 1�1 0�5 0.01 250 u 100 n
Video (SAF7113H)19 0�44 0�44 0.07 110 m 0.9
Audio (SST-Melody-DAA)20 0�11 0�003 3e−4 6 u 0.13
I/O (MSP43011×2)21 1e−3 N/A 6e−6 100 n 6 u
DRAM (Rambus 512M)22 1�58 0�37 1e−2 16 n 16 n
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Table III. XScale power state characteristics.

State Active (mW) Idle (mW) Freq (MHz)

P1 925 260 624
P2 747 222 520
P3 279 129 208
P4 116 64 104
Psleep 0.163 0.163 0

ttotal is the original total execution time of the core. For
all of the DPM simulations in this paper we use the same
DPM policy as discussed in Section 4.2, which provides
roughly 10 to 30 percent of power savings for a single
core in the workloads we used.

We assume a 1 mm2 core, which is a typical size for a
core in deep submicron process technologies. The HotSpot
input parameters used in our simulations are provided in
Table V. For the heat sink initial temperature, we use the
steady state values obtained in temperature simulations.
The sampling interval in the simulations is 6.2 ms, and the
whole simulation time varies between 2 to 8 seconds. This
sampling interval provided sufficient precision for observ-
ing the power state changes in the simulated benchmarks.
We assume each state has a fixed power value (power val-
ues given in Table III). This is a reasonable assumption
since the core power value does not exhibit significant
changes depending on the executed instruction, as it is
shown for the StrongArm core in Ref. [10]. We used the
same sampling rate of 6.2 ms for the thermal/reliability
simulations. HotSpot2 reported that temperature variations
can be observed during time intervals on the order of
milliseconds.

Figure 7 demonstrates the failure rate per core for a two-
core system with identical core sizes that are placed adja-
cent to each other. In this system, Core0 is managed with
DPM policy and DVS is applied to the other core. Both
cores execute a higher utilization trace (#2). The change
of failure rate is calculated with respect to the two-core
system running the same workload without power man-
agement. DVS is able to keep the failure rate more stable
than DPM, as DVS managed core is not prone to temper-
ature cycling. The average failure rate of the two cores is
very close due to heat sharing between them.

SoCs that are manufactured today contain a number
of cores, on-chip memories and other units specialized
for management and interfacing. In such large systems,

Table IV. Power savings and MTTF increase for XScale.

Policy Power MTTF

None 0% 0%
DVS 35% 42%
DPM (Rmax) 16% 6%
DPM (ave) 47% −12%
DPM (Pmax) 99% −34%
Both (Rmax) 46% 47%
Both (ave) 61% 45%
Both (Pmax) 99% 34%

Table V. HotSpot input parameters.

R convection 1.0 K/W
C convection 140.4 J/K
T ambient 45 C
Chip thickness 0.5 mm

horizontal heat flow among different structures can be very
influential on temperature and therefore on reliability. Such
systems can benefit from workload scheduling. We next
show examples of how scheduling can affect system relia-
bility. In Figure 4, initial core (INIT) consists of two cores
processing a lower utilization trace (#1), and both cores
are power managed simultaneously with DPM (Fig. 5).
The failure rate plots for both of the cores overlap com-
pletely. In the optimized system (OPT), Core0 runs Trace 1
whereas Core1 has the opposite utilization of Trace 1, such
as in Figure 6. DPM is applied to both cores. Even though
the optimized system’s utilization is higher than the initial
case, failure rate is much lower. The heat sharing among
the adjacent cores keeps the failure rate low and stable.

We compare the failure rates in series and parallel
topologies for the same two systems (INIT and OPT) in
Figure 8. While the failure rate per core in INIT is higher,
if the system is active parallel where one of the cores is
redundant, the system failure rate becomes much lower.
This can be observed in the trace “INIT_parallel” in the
figure. OPT has two cores with non-overlapping active
times. “OPT_series” demonstrates such a system of two
cores in a producer–consumer pipeline, where both cores
are essential for system execution. Even though the indi-
vidual core failure rates are higher for INIT, it ends up with
better system reliability due to its built-in redundancy. The
best reliability among these systems and topologies can be
reached with having the workload scheduling of OPT with
built-in redundancy in the system instead of a producer–
consumer pipeline, which is given in “OPT_parallel.” This
comparison of topologies emphasizes the positive effect of
redundancy on reliability.

Another interesting problem is determining the most
reliable system configuration given the following scenarios
with redundancy:

(1) Having one active and one sleeping component
(standby-parallel);
(2) Having the both cores processing (active-parallel) at a
lower core utilization rate than the single active core.

Figure 9 compares two systems (STBY and ACTV) to
highlight this discussion. The failure rate change of the
standby-parallel system, STBY, is calculated with respect
to having the both components active with identical

Table VI. Performance penalty.

Trace DPM penalty DVS penalty

Trace 1 0�2% 0.012%
Trace 2 0�67% 0.047%
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Fig. 7. 2-core system, Core0 with DPM, Core1 with DVS; both running
a higher utilization trace.

workload traces; which means it does half of the work
of the baseline system. ACTV has two cores with a non-
overlapping workload distribution scheme as in Figure 6.
While STBY has one power-managed active core and
the other core in sleep state, ACTV contains two power-
managed cores each running at lower utilization ratios than
the single active core. Even though standby system keeps
the sleeping component with very low failure rate, the
active core is prone to more peaks in failure rate, which
can cause a system failure in the long run.

The cycle-accurate simulations emphasize the balance
that needs to be maintained between power management
and temperature aware scheduling. Increasing the SoC reli-
ability requires avoidance of fast thermal cycles through
correct selection of policies while considering design
choices such as the system topology and floorplan as well.

6.2. Statistical Model Results

We illustrate the tradeoff between DVS and DPM on an
example of Intel’s XScale processor PXA270.7 Its power
state characteristics are given in Table III. The failure rates
are calculated using equations given in Section III and
based on values measured for 95 nm technology from our
industry partner (not Intel). We use one sleep state and
four frequency settings for active and idle states, for a
total of eight additional states. The workload is obtained
by collecting a data trace during one day (12 hrs) of typ-
ical usage. The trace consists of standard applications—
MPEG4 video, MP3 audio, WWW, email, telnet. In the
simulator we implemented the “ideal” DVS policy—the
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Fig. 8. System failure rates of two systems, INIT and OPT, assuming various system topologies.

policy sets the best voltage/frequency setting for each
application as determined by prior analysis. In this way we
compare as the best possible scenario with DVS relative
to a more realistic situation with DPM policies. DPM pol-
icy is obtained by minimizing system energy consumption
under the performance constraint (we solve the LP shown
in Eq. (10) with no reliability constraint).

Table IV shows the percent of power savings and the
percent increase in mean time to failure (MTTF) for four
categories cases: no power management, only DVS, only
DPM, and both. We also show results for DPM when reli-
ability improvement is maximized (Rmax), power savings
are maximized (Pmax) and the average case (Ave). DVS
gives reasonable power savings—35%, with 42% improve-
ment in MTTF. DPM has much larger power savings—
up to 99%, but also causes an average 12% decline in
MTTF due to on chip thermal cycles resulting from DPM.
The best power savings and improvement in reliability are
when DVS and DPM are combined (DVS, PM). Interest-
ingly, when no DVS is used the difference in improvement
in terms of MTTF is almost negligible between the two
cases of DPM—the one where active state frequency of
operation is set to maximum (P = max) and the one where
it is set to average (P = ave). Figure 11 shows that there
is a clear optimal point in terms of MTTF as a function
of DPM. Thus there is a need to optimize SoC reliability
along with power consumption and performance. We next
examine the results of optimization for a single core, fol-
lowed by optimization of an SoC.

6.3. Optimization

We use a multi-processor SoC shown in Figure 10 for most
of our experiments in this section. Each core’s power and
performance characteristics come from the datasheets18–22

and are summarized in Table II. The cores support multiple
power modes (active, idle, sleep, and off). Transition times
between active and sleep state are defined by tts and tta.
Reliability rates for each failure mechanism (EM, TDDB,
TC) are based on measurements obtained for 95 nm tech-
nology. The failure rates are scaled depending on the cur-
rent temperature of the core, which is directly affected by
the core’s power state and the workload. Details of failure
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Fig. 9. Comparison of standby-parallel (STBY) and active parallel (ACTV).

Fig. 10. System on a chip.

rate calculations have been discussed in Section 3. Each
of the cores in the system is designed to meet MTTF
of 10 years. Core’s workload and data consumption rates
('workload) and ('core_fi) are extracted from a data trace col-
lected during one day (12 hrs) of typical usage. Power and
performance characteristics of cores are shown in Table II.

6.3.1. Single Core Optimization

We optimize the power consumption of each core listed in
Table II while keeping the minimum lifetime requirement
at 10 years. The objective is to observe how cores built
using the same 95 nm technology and with comparable
area but different power consumption respond to DPM.
Optimization is performed at two internal chip tempera-
tures (50 and 90 �C) in order to set the die operating points
close to those defined in datasheets.18–22 The optimization
results for maximum power savings achievable at a spec-
ified temperature given MTTF constraint of 10 years are
shown in Figure 12. At 50 �C most of the cores react
positively to DPM and allow the maximum power savings

–40%

–30%

–20%

–10%

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

Power (%)

M
T

T
F

 (
%

)

DPM & DVS
DPM P=max
DPM P=ave

Fig. 11. Power and MTTF improvement due to DVS and DPM on
XScale.
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Fig. 12. Optimization of single cores.

to be achieved. When active core temperature increases
to 90 �C, Figure 12 shows that maximum power sav-
ings achievable under MTTF constraint decrease due to
thermal cycles for DSP, Video, and Audio cores. One way
to address the problem of reduced MTTF is by either using
spare cores at a large cost in area (HW spares), or migrat-
ing computation of a failed core onto one of the other
available cores with significant performance degradation
(SW spares).

6.3.2. SoC Optimization

Now we examine the influence of redundant components
to the overall system reliability. We use the SoC shown
in Figure 10 with the core parameters given in Table II.
Since all cores are essential to the correct SoC operation,
the initial reliability network is their series combination.
Unfortunately, although each core meets MTTF require-
ment of 10 years, the overall system does not. To mitigate
this problem we use two types of redundancy: standby
sleep configuration, where currently unused cores are in
a sleep state until needed, and standby off, with unused
cores turned off. Since typical embedded systems do not
use all of the computational resources available in SoC
at all times, it is likely that some resources are at least
part of the time in a low power state, and thus might be
available when a failure occurs. Figure 13 and Figure 14
show the maximum power savings achievable per each
core assuming system MTTF of 10 years. Clearly the
best power savings are with standby off model. However,
this model also has the largest wakeup delay for unused
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Fig. 14. Standby sleep redundancy model.

components. The standby sleep model shown in Figure 14
gives more moderate power savings but has faster activa-
tion time. Results for both models show that not all cores
can operate reliably at the highest temperature (e.g., no
power savings for AUDIO core at 90 �C show that the
system reliability constraint of 10 years is not met). When
we allow additional spares for DSP, AUDIO, and I/O in
standby off mode, then the overall system meets MTTF of
10 years while getting power savings of 40%.

7. CONCLUSION

In this work, we describe a comprehensive methodology
for analysis of multi-processor SoC reliability. We show
that aggressive power management can cause significant
impact on reliability, and we introduce two simulation/
optimization methodologies to analyze and overcome this
problem. The cycle-accurate model observes the changes
in failure rates due to short-time horizon workload and
policy changes. This way, adaptive strategies can be imple-
mented for controlling the adverse effects of power man-
agement on reliability. As an example, we show that
reliability aware workload scheduling can maintain a low
and stable temperature and failure rate.

We introduce statistical simulation that explores the
power reliability trade-offs over the lifetime of the device.
In addition, we present a first optimization methodology
for determining the best power management policy that
can meet both system reliability (MTTF) and performance
constraints. We show that with our optimization the system
can meet its performance and reliability constraints while
saving more than 40% in power consumption.
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