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Abstract

In this thesis, we introduce a new implementation of the LAIO api,
liblaiogen. LAIO stands for Lazy Asynchronous I/O. It is an api for
performing asynchronous I/O. Among several benefits, one of the most
important is that LAIO is lazy, in the sense that it creates a continuation
only when an operation actually blocks. LAIO was introduced along with
an implementation for FreeBSD using scheduler activations to provide this
lazy characteristic.

Our objective is to provide a cross-platform implementation. To achieve
this, liblaiogen uses threads eagerly instead of relying on scheduler ac-
tivations to save threads for non blocking operations. By doing this we
challenge the argument that kernel threads are inherently expensive, which
is the justification for the need of a mechanism such as scheduler activa-
tions.

We compare the performance of liblaiogen in the scope of event-
driven web servers, using the same web server and the same benchmark
that was used to benchmark the original FreeBSD implementation of LAIO.
We show that on recent versions of Linux with lightweight threading sup-
port, the web server using liblaiogen performs better than the one using
LAIO on FreeBSD. We highlight the different components of the operating
system that are responsible for the differences in performance.
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1 INTRODUCTION

1 Introduction
We introduce liblaiogen, a new implementation of the Lazy Asynchronous
I/O (LAIO) api[1]. The original implementation of LAIO was a user-level
library for FreeBSD. liblaiogen is a new implementation of the LAIO
api that is cross-platform.

In order to avoid confusion between the two LAIO implementations,
we will use the following convention for the rest of this thesis: LAIO will
always refer to the api, whereas liblaio and liblaiogen will refer re-
spectively to the original FreeBSD implementation and the generic portable
implementation.

Asynchronous I/O is the base mechanism used by event-driven servers
to perform concurrent processing of multiple requests. An event-driven
server performs one basic step associated with the serving of a request at
a time, interleaving the processing steps of many requests. For this rea-
son, an event-driven server has to avoid blocking on any type of operation
because it would block all the requests.

Most operating systems offer non-blocking I/O to perform network op-
erations in an asynchronous manner. Unfortunately, non-blocking I/O is
generally not avaiable for disk. So, in order to execute disk I/O asyn-
chronously, one has to use another API such as AIO. This leads to more
complicated programming in an event-driven server and limits its porta-
bility since AIO is not available on every operating systems. Moreover,
even AIO does not support simple I/O operations such as stat(), thus
forcing event-driven servers to accept that some operations can block.

LAIO, as introduced by [1] is an API to perform asynchronous I/O. This
api provides three main benefits. First, it is general, in the sense that the api
is suitable for all types of I/O operations (disk, network,...). Second, LAIO
notifies the application when an event completes, and never at some inter-
mediate stage. Those two benefits make programming asynchronous I/O
much easier and more concise. The third benefit is that LAIO is lazy, in the
sense that it creates a continuation only when an operation actually blocks.
This way, for non-blocking operations, LAIO acts as a simple wrapper and
no significant overhead is introduced. This particular characteristic relies
on specific support from the operating system and is for this reason not
always possible to implement.

liblaio is an implementation of the LAIO api as a user-level library
for FreeBSD. When an application uses liblaio to perform an I/O oper-
ation asynchronously, internally liblaio executes it using synchronous
(blocking) system calls. This way for operations that do not block, no over-
head is introduced. However for operations that do block, liblaio uses
scheduler activation [2, 3] to spawn a new thread and enable the applica-
tion to continue. The advantages are obvious. First, it simplifies the imple-
mentation by using a simple universal mechanism for everything. Second,
it does not waste thread because it creates a new one only for blocking
operations and in this way liblaio implements the lazy characteristic of
LAIO.

The kernel support for scheduler activations, on which liblaio relies,
is a mechanism present in many but not all operating systems. Linux is an
example of an operating system without scheduler activations (although
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1.1 Contribution 2 DESIGN AND IMPLEMENTATION

some patches exist, they are not officially supported). This limits the porta-
bility of liblaio. With liblaiogen, we provide a higly portable imple-
mentation of LAIO. To achieve this, we explicitly dismiss the lazy charac-
teristic of liblaio in favor of an implementation where each I/O opera-
tion (blocking or not) is run in a separate thread. Our results show that the
lazy characteristic is not always essential. Indeed, under operating system
with lightweight threading support we show that liblaiogen achieves
equivalent or even better performance than liblaio.

1.1 Contribution
The contribution of this thesis is two fold. First, we provide a new highly
portable implementation of the LAIO api that relies on Posix standards.
Second, we analyse the performance of this new implementation and high-
light the operating system components responsible for the improved per-
formance over the original lazy implementation in liblaio.

1.2 Outline
The rest of this thesis is organised as follow: Section 2 describes the LAIO
api and the two implementations, liblaio and liblaiogen. Section 3
presents the methodology used to benchmark both implementation, anal-
yses the performances and discusses the results. Section 4 presents the
related work. We make concluding remarks in section 5. Appendix A
presents a possible alternative for the implementation of liblaiogen.

2 Design and Implementation
In this section, we first describe the LAIO api. We then discuss liblaio,
the original implementation of the LAIO api for FreeBSD. Finally, we intro-
duce our own implementation, liblaiogen.

2.1 LAIO’s interface
LAIO’s interface is very simple and effective. It is made of three differ-
ent calls. The main call, laio_syscall() has the same signature as
syscall(). syscall() is used to perform indirect system call and can
therefore be used to perform I/O. If the system call is able to terminate
without blocking, the behavior of laio_syscall() is identical to syscall().
However, if the desired system call is unable to complete without block-
ing, laio_syscall() returns -1 and sets the global variable errno to
EINPROGRESS. We refer to this case as a background operation. A back-
ground operation is identified by a unique handle which is returned by
laio_gethandle(), the second call in the api.

Finally, laio_poll() is the call being used to collect completed back-
ground operations. This call takes three arguments. The first one is an ar-
ray of laio_completion structure. For each completed background op-
eration, an laio_completion structure is used to store the return value
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2.1 LAIO’s interface 2 DESIGN AND IMPLEMENTATION

and error code of the operation, along with the handle identifying the op-
eration. The second argument of laio_poll() is an integer indicating
the size of the array of laio_completion structures, this is, the maxi-
mum number of completed operations to collect. The third argument is a
timespec structure used to specify a timeout telling laio_poll() how
much time it will wait to collect terminating operations in the case where
none are available at the time laio_poll() is called.

Figure 1 and 2 show an example of using LAIO.

client_write(struct request *request)

{

    client_socket = request->client_socket;

    client_buffer = request->client_buffer;

    nb_bytes_to_write = request->nb_bytes_to_write;

    return_value = laio_syscall(SYS_write, client_socket, client_buffer, 

nb_bytes_to_write);

    

    if (return_value == -1) {

        if (errno == EINPROGRESS) {

            request_handle = laio_gethandle();

            request->event_handler = client_write_complete;

            register_request(request, request_handle);

            return;

        }   

        else {

            error_value = errno;

        }

    }

    else {

        client_write_complete(request, return_value, error_value);

    }

}

Figure 1: Event handler using LAIO
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for(;;) {

rv = laio_poll(completions, completions_size, timeout) ;

if (rv == -1) {

  handle_error();

    }

    for (i = 0; i < completions_size; i++) {

               

        errno = completions[i].laio_errno;

        return_value = completions[i].laio_return_value;

        request_handle = completions[i].laio_handle;

           

        request = find_coressponding_request(request_handle);   

        event_handler = request->event_handler;

               

        (*event_handler) (request, return_value, errno);    

        

} 

} 

Figure 2: Event loop using LAIO
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2.2 liblaio 2 DESIGN AND IMPLEMENTATION

2.2 liblaio
LAIO’s FreeBSD’s implementation relies on the kernel support for sched-
uler activation [2]. In essence, scheduler activation is a mechanism that al-
lows the kernel to directly notify the application of certain events by means
of delivering upcalls. Blocking a thread in the kernel, due to I/O, is an ex-
ample of such an event.

Using this feature, the laio_syscall() call operates as follows. Be-
fore making the system call, it saves the current thread’s context (i.e., the
stack). Then it enables kernel upcalls. The next step is to execute the de-
sired system call. If it does not block, then laio_syscall() simply dis-
able upcalls and return. However, if the system call blocks, then an upcall
is delivered to the application. The upcall handler uses the saved context
to change its stack to turn itself into the blocked laio_syscall().This
way, the upcall handler can now simply return with the return value set
to -1 and the errno set to EINPROGRESS in order for the application to
continue its normal execution.

Shortly after executing a laio_syscall() function that returned a
-1 and set errno to EINPROGRESS, the application is expected to call
laio_gethandle() in order to get the handle identifying the background
operation so that the application has a way to link a particular background
operation to a continuation function.

Whenever the background laio_syscall() unblocks, a second up-
call is generated. This upcall fills in an laio_completion structure with
the correct handle, return value, and errno value returned by the just com-
pleted system call, and adds the structure to a list. The application will be
able to retrieve the list of completed operations using the laio_poll()
function.

2.3 liblaiogen
2.3.1 Background

One of the motivation behind scheduler activation is the claim that kernel
threads are inherently expensive. However, using a pure user-level thread-
ing library is not suitable to handle operations that may be blocked in the
kernel. Indeed, one blocking operation would cause all the user threads to
be stalled. The in-between solution consists in having both kernel threads
and user-level threads in which user threads are distributed over kernel
threads. This is called a M:N threading model. The advantage of this model
is that for most non blocking operations lightweight user threads are avail-
able but for blocking operations we can still use kernel threads. Scheduler
activations allows the programmer to take advantage of this M:N thread-
ing model in delivering events to the application informing it of the state
of another user thread.

Scheduler activation is present in many modern operating systems, like
Solaris, NetBSD and Tru64. However, other operating systems have delib-
erately chosen to not implement scheduler activations. This is notably the
case of Linux. Indeed, the Linux community claims that it is possible, and
even preferable, to provide very lightweight kernel threads, in a one-to-
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one mapping from kernel threads to user threads. Lots of work has been
done in this area recently to improve Linux: NPTL [4], a new lightweight
threading library, and a new O(1) process scheduler.

The goal of liblaiogen is to provide a cross-platform implementa-
tion of the LAIO api. For this reason, we abandon the idea of using sched-
uler activations, in other words we abandon the idea of lazy spawning of
helper threads. Indeed, without scheduler activations is not possible to un-
block a thread that is blocked in the kernel. Instead, we provide an eager
counterpart to liblaio in which I/O operations are always spawned in
a separate thread, regardless of whether the operation would block or not.
This eager model can be implemented in a highly portable manner and we
show that under Linux the performance are good.

2.3.2 Implementation

liblaiogen’s basic concept is to use a different thread for each operation.
Those threads are called helper threads and are kept in a pool to avoid to
recreating threads unnecessarily. Each helper thread is represented by a
helper structure containing a reference to the thread and fields to pass
data to and from the main thread. Those structures are referenced in two
different lists, one for the free threads and one for the active threads. The
helper structure contains a field indicating which system call the thread
is going to execute, a pointer to an array containing the arguments of the
system call to execute, a laio_completion structure to store the results
of the system call, and some synchronizations primitives. The helper struc-
ture also contains a finish flag that indicates whether the helper has com-
pleted his job and is ready to be collected, or not.

The library also keeps a global counter which remembers the number
of completed background operations which have not yet been collected by
the application. This global counter must be protected against concurrent
accesses by the main thread and the helper threads, therefore, the library
maintains a global mutex. A global condition variable is used by the helper
threads to inform the main thread of the completion of a background oper-
ation. Condition variables have to be protected by a mutex, to prevent the
race where the condition variable is signaled before the thread is ready to
catch it. liblaiogen use the existing global mutex to protect the global
condition variable.

Figure 3 shows the implementation of laio_syscall() in liblaiogen
When laio_syscall() is executed it first looks for an entry in the free
helper thread list (i.e., an helper structure representing an available helper
thread). In the case where the free list is empty, it creates a new helper
structure and a new thread. The helper structure is then filled in with the
proper value corresponding to the system call to execute, and then added
to the list of active threads (the active list). Depending on the state of the
thread, it is either woken up by the mean of signaling a condition variable,
or simply launched normally.

Figure 4 shows the behavior of an helper thread. First, it executes the
desired system call. Then, it fills in the laio_completion structure with
the return value of the just finished system call, the current errno value.
The finish flag of the corresponding helper structure is set. After that, the
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laio_syscall(int number, ...)

Is there a free 
helper ?

- Create a free helper 
structure

- Create a new thread

NO

- Remove it from the free 
list

- Add it to the active list

YES

- Is the helper 
thread sleeping ?

- Launch the new thread
- Signal the condition 

variable to wake up the 
thread

YES NO

- Fill in the helper 
structure

- Add the structure to the 
active list.

Figure 3: laio syscall() implementation in liblaiogen

helpert thread locks the global mutex and increments the global counter.
Then, it signals the global condition variable to inform the main thread
that a system call has completed. Finally, it releases the global mutex, and
acquires a local mutex that will allow it to wait indefinitely on a condition
variable specific to the thread. This condition variable will be used by a
future call to laio_syscall to wake up the helper thread so that it can
perform another job.

laio_poll() is used to collect completed background operations. Fig-
ure 5 shows how it is implemented. On entrance, it checks the global
counter to determine whether there is already a completed background
operation or not. If there is no background operation, laio_poll() puts
the main thread to sleep by waiting on the global condition variable. It
might happen that no operations complete during the time laio_poll()
is allowed to wait. In this case, laio_poll() simply returns. However, if
some operations have completed and have to be collected, laio_poll()
simply browses the list of active helpers to find the helper threads which
have their finish flag set, indicating that the operation has completed. Those
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helper thread

syscall(int number, ...)

- fill in the laio_completion structure 
with the return value and current 

errno value

- increment global counter
- signal the global condition variable

Section protected 
by a global mutex

- wait indefinitely on a local condition 
variable

Section protected 
by a helper 

specific mutex

Figure 4: helper thread implementation in liblaiogen

helpers are moved back from the active list to the free list, and the global
counter is decremented appropriately. This linear scan might seem expen-
sive, however the list is scanned in the right direction so that older helpers
are checked first, this way preventing the scan of the whole list each time
laio_poll() is called.

Notice that this implementation requires many context switches to per-
form one I/O operation. The minimum number of context switches is two
in the best case. Indeed, the first context switch is required in order to
switch from the main thread to the helper thread that will perform the
I/O operation. In the best case, where the operation does not block, an-
other context switch is required to switch back to the main thread so that it
can continue its execution. However, if the operation does block, then the
helper thread will be scheduled out until the operation unblocks, inducing
two more context switches.

3 Performance analysis
In this section we present the performance analysis of liblaiogen. We
first use micro-benchmarks to validate the correctness of liblaiogen and
to take a look at the overhead that liblaiogen introduces. We then anal-
yse the performance of liblaiogen in the scope of event-driven web
servers using two different web servers. We also compare the performance
of the web server using both liblaiogen and liblaio on Linux and
FreeBSD.
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check the number of 
completed helper ?

- wait for an helper thread to 
complete

= 0

an helper thread
has completed

Section protected 
by the global 

mutex

- return n, the number of collected 
background operations

laio_poll()

Section protected by 
the global mutex

> 0

timeout expired

finish flag 
on ?

while n < 
ncompletion, take h 
as the next helper 
thread in the active 

list

true

- set the values of 
completions[n]
- increment n

- move h from the active 
list to the free list

n = ncompletion
or we reeched 
the end of the

active list

- decrement the global 
counter

Section protected by the 
global mutex

Figure 5: laio poll() implementation in liblaiogen

3.1 Environment
Our benchmark machines are 2.4 Ghz Pentium IV XEON machines with
1GB of memory, ultra ata hard drives, and gigabit network cards. The op-
erating systems are Linux 2.6.10 and FreeBSD 5.3.
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On Linux, we run the benchmarks with two different I/O scheduler,
the anticipatory I/O scheduler and the CFQ I/O scheduler. We will refer
to those configurations respectively as linux-as and linux-cfq. Both
Linux versions run with the Native Posix Thread Library [4], a lightweight
threading library for Linux that provides a 1:1 threading model, this is,
each user thread is mapped to a kernel thread.

On FreeBSD, we use the libthr [5] library to run with liblaiogen.
libthr is a threading library that also provides a 1:1 threading model with
a Posix compliant interface. To benchmark liblaio on FreeBSD, we use
kse for the threading system as this is required.

3.2 Background
As described in section 2.3, liblaiogen uses threads eagerly for each I/O
operations. As we will see in the results, the performance impact of using
liblaiogen varies greatly between the different operating systems and
architectures.

Under Linux, we do the benchmarks with two different I/O schedulers.
The I/O scheduler is the part of the kernel that tries to optimize disk I/O
throughput by reducing the disk head moves. Disk head moves are re-
sponsible for large delays between disk accesses, this is why reordering the
disk access in order to minimize the moves generally improves the disk
performance significantly. Concurrent disk accesses provide an opportu-
nity for the I/O scheduler to optimize disk I/O even more, because there
are more requests over which to optimize the disk head moves. By using
asynchronous I/O we will generate a large number of concurrent disk I/O.

The Linux community has been working on completely rewriting the
I/O subsystem prior to releasing Linux 2.6. Several new I/O schedulers
have been implemented. Eventhough the 2.6 version has now reached is
tenth stable version (2.6.10), developers are still improving the I/O subsys-
tem. The anticipatory scheduler [7] is now the default I/O scheduler for
most Linux distribution, this is why we started our benchmarks with this
one (i.e. with linux-as). The idea behind the anticipatory scheduler is
to introduce a small delay between the scheduling of subsequent requests.
This avoids scheduling of a request from another process before the current
process has had a chance to issue its next request. Thus, it allows a better
optimization of the disk head moves by preserving locality. Indeed subse-
quent I/O requests from one process are more likely to be located close to
each other on the disk than subsequent requests belonging to two different
processes.

Since the results under linux-as did not met our expectations we de-
cided to also run the expermint with another I/O scheduler, the time-sliced
CFQ scheduler (i.e. linux-cfq). The big idea behind this scheduler is to
allocate time-slice to each process in order to distribute disk access fairly in
a similar way the kernel distribute CPU time among processes.

Linux does has some other advantages over FreeBSD to handle threads
efficiently. The new threading library NTPL [4] is very lightweight and
scales well to a large number of threads (several thousands). The pro-
cess scheduler of Linux 2.6 has a complexity of O(1) meaning that the time
needed to schedule a process is constant and independent of the number
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of processes present in the system. Since we are using kernel threads with
liblaiogen we benefit directly from the O(1) scheduler.

3.3 Workload
In order to benchmark our web servers, we use the same workload and
the same procedure that was used in the LAIO paper [1]. This workload
was obtained from real web servers at Rice University. Table 1 shows the
workload characteristics.

For the micro-benchmarks, we use the trace files as a sequence of re-
quests to perform different I/O operations.

To benchmark the web servers for our macro-benchmarks, we use the
trace files with a program simulating concurrent clients sending requests.
We vary the number of clients in order to vary the pressure that is put on
the server system. The sequence of requests is kept in order, this means
that each simulated client takes the next request in the trace file. The pro-
gram terminates when the trace file is exhausted and reports overall aver-
age throughput and response times.

Workload Nb. of requests Dataset size Total data transfers
Rice 245’820 1.1. Gigabytes 8 Gigabytes

Table 1: Workload characteristics

3.4 Micro-benchmarks
We created several micro-benchmarks in order to validate the execution of
liblaiogen and to evaluate the overhead it creates under Linux.

3.4.1 The getpid() micro-benchmark

The first micro-benchmark is very simple. It consists of executing one mil-
lion getpid() through liblaiogen. The reason of choosing getpid()
is that this is a very simple system call which doesn’t execute any I/O, al-
lowing us to evaluate the cost of the context switches induced by the use
of liblaiogen. We limit the number of parallel operations that can be
executed simultaneously, thus limiting the number of helper threads in the
system.

Number of helper threads Time (s)
1 6.12
10 6.10
100 6.12
Single thread, no LAIO 0.80

Table 2: Results of the getpid() micro-benchark under linux-as
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Table 2 shows the results of this micro-benchmark. While it takes only
0.8 second to execute one million getpid() calls in a single threaded ap-
plication without using liblaiogen, it takes 6.2 seconds to execute them
through liblaiogen using one helper thread. This huge difference in
performance can be explained by the context switch overhead induced by
using liblaiogen. Indeed, as explained in section 2.3.2, liblaiogen
introduces at least two context switches per executed operation. This way,
while we may have as few as 0 context switches in the single threaded
application, we have 2 million context switches using liblaiogen. Com-
pared to getpid(), a context switch is much more expensive this is why
the difference of performance is not surprising. Also not surprising is the
fact that increasing the number of helper threads in this benchmark does
not improve the performance. However, it does not hurt the performances,
probably thanks to the new O(1) scheduler and the NPTL library of Linux.

3.4.2 The open-stat[-read] micro-benchmark

The aim of this micro-benchmark is to simulate a similar amount of disk
I/O that is performed by a web-server. The principle is simple, the work-
load’s trace file is read and on each request a sequence of I/O operations is
executed. For each request, the first variant of the workload opens the file
(open() system call) and fetches its size (stat() system call). The second
variant adds a third phase where the file is read into memory (read() sys-
tem call). As in the getpid() micro-benchmark, we limit the number of
helper threads in liblaiogen() by limiting the number of parallel op-
erations that can execute simultaneously. The results are compared with a
program that uses threads to execute the same sequence of operations for
each request. The requests are distributed equally among the threads so
that each thread proceeds the same number of requests. Each thread pro-
cesses a request in its entirety, processing the I/O operations sequentially.
This is similar to the way a thread-based web server works.

No liblaiogen liblaiogen
Nb. of threads Cold (s) Warm (s) Cold (s) Warm (s)
1 thread 6.12 2.09 12.47 8.41
10 threads 5.54 1.88 11.66 6
100 threads 5.06 1.92 11.03 7.94

Table 3: Results of the open-stat micro-benchmark under linux-as

Table 3 shows the results of the variant that do not read the files. This
table shows clearly that liblaiogen introduces overhead compared to
using only threads. This overhead can be explained by the context switches
that are much more frequent using liblaiogen. We see that the overhead
introduced is of the same order as with the getpid() micro-benchmarks
(a few seconds for hundreds of thousands requests). Even-tough we are
now performing I/O, increasing the number of threads to perform I/O
does not seem to help much for either versions.
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No liblaiogen liblaiogen
Nb. of threads Cold (s) Warm (s) Cold (s) Warm (s)
1 thread 117.5 49.41 126.9 62.83
10 threads 125.9 46.82 102.1 50.81
100 threads 111.9 54.08 82.21 38.88

Table 4: Results of the open-stat-read micro-benchmark under linux-as

Table 4 shows the results of the variant that read all the files of the
trace. Here again, we notice a small performance hit on the version that
uses 1 helper thread with liblaiogen over the version that does not
use liblaiogen with 1 thread. This performance hit is consistent with
our previous micro-benchmarks. Finally, we notice that the version using
liblaiogen provides a performance boost proportional to the number
of helper thread showing that liblaiogen is able to exploit concurrency
to improve I/O performances. Surprisingly, the version that does not use
liblaiogen fails to provide better performances with more threads. The
only difference between the two versions is the sequence of the operations.
While with the version using liblaiogen each request is treated in an
event-driven fashion, the version that does not use liblaiogen serves
each request in a different thread processing all the I/O operations sequen-
tially. This difference of behavior is actually similar to what we observe
between event-driven web servers and thread-based web servers and sug-
gests that the performance boost provided by the I/O scheduler is sensitive
to the order in which requests are processed.

3.5 Macro-benchmarks
This section presents the results of the macro-benchmark used to test and
compare the performances of liblaiogen and liblaio. Those macro-
benchmarks consist of two web servers, ohttpd and thttpd, described in
the following sections. The results are explained in the last section.

3.5.1 ohttpd web server

ohttpd is a tiny event-driven web-server that we developed for the purpose
of testing liblaiogen and understanding which I/O operations have a
major impact on the overall system performances. Indeed, with ohttpd
it is possible to select which operation will be executed through LAIO and
which will be executed synchronously. ohttpd is very simple, it only un-
derstands the subset of the HTTP protocol needed to process the request
of our benchmarks. ohttpd is small, less that one thousand lines of code.
ohttpd was useful to test and debug liblaiogen because even-though
it is small and simple it is functionally correct and provides relevant results
in the experiments.

The actual sequence of operations needed to handle a request is the
following: accept() to accept the connection, read() to read the re-
quest from the connection, open() to open the requested file, stat() to
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fetch the requested file’s size, write() to send back the HTTP headers,
and finally sendfile() to send the requested file. The write() is not
needed under FreeBSD because sendfile() takes an extra argument to
send the headers. However, under Linux, before executing the write()
we set the TCP CORK socket option in order to ask the kernel to send the
packet only when there is a minimum amount of data to send, this prevents
the kernel from sending tiny packets just for the headers. This option has
the same effect as using the extra sendfile() parameter under FreeBSD.
sendfile() is a system call present in many modern operating systems
such as FreeBSD and Linux. It reads from a file descriptor and writes the
contents to another one without the need for mapping the file in user-space.

3.5.2 thttpd web server

The thttpd [6] web server is a well known event-driven web server. It uses
non-blocking I/O for network and blocking I/O for disk. thttpd is a
good example of a server where the developer has chosen to tolerate the
performance penalty induced by the use of synchronous I/O in order to
improve the portability and decrease the complexity of the code.

The version we use is the 2.25b version that has been modified by the
authors of LAIO [1]. The first modification introduces the sendfile()
system call instead of the standard write() from a mapped file. The
second modification consists in introducing LAIO for every I/O operation
(including disk I/O). This way, we have two similar versions of thttpd.
The first one, that we will call thttpd-nb-b is the version that uses non
blocking I/O for network (including sendfile()) and blocking I/O for
disk. The other version, uses LAIO for every operations. We will call this
version thttpd-liblaio for the one runnning liblaio under FreeBSD,
and thttpd-liblaiogen for the one running liblaiogen under Linux
and FreeBSD.

3.5.3 Results

In this section we show the results obtained using liblaiogen and we
compare them to the results obtained using liblaio. We start by show-
ing our reference result, thttpd using liblaio and comparing it with
thttpd using liblaiogen, both running under FreeBSD. We then use
ohttpd to highlight the differences of the two versions of Linux we tested.
The reason of using ohttpd and not thttpd for this benchmark is that
ohttpd is more flexible. Finally we use thttpd to compare the perfor-
mances of liblaiogen under Linux and liblaio under FreeBSD. Our
objective is to determine if liblaiogen is able to compete with the lazy
implementation.

Figure 6 shows the throughput results of the benchmark for the three
variants of thttpd under FreeBSD. As expected, thttpd-liblaio per-
forms much better both for throughput and response time than thttpd-nb-b.
The overall results have smaller throughput and larger response time, com-
pared to the results obtained in the LAIO paper [1]. However, this is not
disturbing because the machines are different and the relative results of
thttpd-liblaio and thttpd-nb-b are consistent.
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We see here that thttpd-liblaiogen performs very badly. Not only
is its throughput smaller than thttpd-liblaio, it is actually smaller
than thttpd-nb-b for the cold run and approximatively equivalent for
the warm run. The difference between the cold run and the warm run can
be explained easily. During the cold run, most disk I/O operations are
blocking. For this reason, the threads created by liblaiogen stay active
longer in the system with the consequence that more threads need to be
created in order to queue all the requests that comes in. However, during
the warm run, the number of blocking disk I/O operations is much smaller
because a big part of the workload is already in the memory. This way, the
number of threads that stay active in the system is also much smaller (be-
cause I/O operations complete faster), thus, the overhead is smaller. What
is surprising, is that even-though we are avoiding stalling the server on
disk I/O, the results are worse. This means than the overhead introduced
by liblaiogen is quite high.

Figure 7 shows the response time for the same experiments. Usually, we
would expect to see the response time increase linearly with the number of
requests. This is not the case for the version that uses liblaiogen. We
have no direct explanation for this, however, as we will see later with the
Linux results, the poor results we get using liblaiogen might indicate
that there is a design or implementation flaw in the kernel leading to some
strange behavior under heavy load using lots of threads. Anyhow, these
results clearly confirm that liblaio, the lazy implementation of LAIO, is
a better design for FreeBSD.
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Figure 6: Throughput for the different versions of thttpd running under
FreeBSD
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Figure 7: Response time for the different versions of thttpd running under
FreeBSD
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We will now have a look on the Linux results. Figure 8 shows the
throughput results for two different versions of ohttpd with the Rice work-
load. The first version, that we call ohttpd-networkonly is a version
that uses liblaiogen for everything but disk-only operations . Those
operations, namely open() and stat() are executed using synchronous
I/O.1 The second version, which is called ohttpd-allliblaiogen ex-
ecutes all the I/O operations through liblaiogen. At first, we did all
the measures with ohttpd-allliblaiogen only, and because we obtain
such bizarre results, we tried to modify ohttpd in order to understand
which operations where the most expensive to execute through LAIO. The
results are quite interesting. Indeed, using ohttpd-allliblaiogen, start-
ing from 100 clients we get a smaller throughput than with ohttpd-networkonly.
This is true both for the cold and the warm run. Interestingly, for the warm
run the gap between the two versions decreases progressively with the in-
crease of the number of clients and the gap finally disappears with 1000
clients. The fact that the versions that uses liblaiogen for stat() and
open() perform worse is not totally surprising considering the results of
our open-stat micro-benchmark. Indeed, we could see that there is no ben-
efit to execute open() and stat() through liblaiogen, probably be-
cause those operations do not block long enough. Nevertheless, here we
do execute many other blocking operations through liblaiogen, so we
were disappointed to not get a performance improvement comparable to
the one of the open-stat-read micro-benchmark.

Figure 9 shows the response time for both versions. Here again, we
get very surprising results. The only linear curve is the one corresponding
to ohttpd-networkonly for the warm run. This is actually the version
that spends the least time executing disk I/O concurrently (since open()
and stat() are executed synchronously and it is the warm run so most
of the workload is already loaded in memory). This seems to indicate that
performing disk I/O concurrently is a key problem for the kernel and in-
troduce considerable overhead. The fact that the curve for the response
time of ohttpd-networkonly for the cold run is not linear is explained
similarly. Here also, we have an indication that the order in which we
process the requests influence greatly the performance. Indeed, the order
in which the I/O operations are processed is influenced by the number
of clients because it determine the number of concurrent operations that
will be executed through liblaiogen. Thus, with a different number of
concurrent operation the order in which the operations complete might
be different because the I/O scheduler might make different decisions. In
ohttpd-networkonly this phenomena is limited because the two syn-
chronous calls executed for each request reduce the possibility of having a
request overtaking another, thus limiting the variability of the order.

1Actually, the name ”networkonly” is a bit misleading since this version includes sendfile() and
sendfile() does perform disk I/O.
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Figure 8: Throughput for the different versions of ohttpd running under linux-
as
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Figure 9: Response time for the different versions of ohttpd running under
linux-as
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Figure 10 shows the results for the same versions of ohttpd and the
Rice workload but this time under linux-cfq. The results are much bet-
ter and consistent. The version that uses liblaiogen for everything per-
forms uniformly better for the cold run, and for the warm run, results for
both versions are more or less equivalent. This is actually the results we ex-
pected. linux-as and linux-cfq have different I/O schedulers, and so
the results may be largely influenced by the design of their respective I/O
scheduler. The two Linux I/O schedulers are works in progress. The linux
time sliced cfq scheduler has already seen 4 major revisions, and the an-
ticipatory scheduler has also been revised several times. Figure 11 shows
the corresponding response times. We see here almost linear results for
both cold and warm runs. The results are also better than those obtained
with linux-as. The comparison of the graphs under linux-as and
linux-cfq suggest that the implementation of the anticipatory sched-
uler [7] under Linux is not yet completely stable and that there might still
be some bugs that influence our results. This clearly shows that the I/O
scheduler can have a significant impact on the overall system performance
in such an environment.
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Figure 10: Throughput for the different versions of ohttpd running under
linux-cfq
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Figure 11: Response time for the different versions of ohttpd running under
linux-cfq
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We now compare the performances of thttpd using LAIO under Linux
and FreeBSD. We use linux-cfq for this benchmark because we already
know that it is more stable and better performing than linux-as. On
FreeBSD, we run thttpd using liblaio and not liblaiogen because it
performs the best.
Figure 12 shows the throughput results. It is clear that liblaiogen pro-
vides better performances under linux-cfq than liblaio under FreeBSD
in terms of throughput. Figure 13 shows the response time. We see that
liblaiogen provides a smaller response time than liblaio except when
the number of clients is greater than 1000. Overall, those results show that
with a proper kernel liblaiogen is able to perform comparably or even
better than liblaio.
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Figure 12: Throughput comparison of the best version under each OS
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Figure 13: Response time comparison of the best version under each OS
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4 Related work
This section present some prior work that exhibit similar characteristics
with liblaiogen

Flash [8] is a web server that uses the asymmetric multiprocess event
driven (AMPED) architecture. It uses non blocking I/O for networking,
and helper processes for operations that may block on disk I/O. liblaiogen
uses the same idea of separate threads2 for operations that may block, how-
ever, there are some important differences. First, AMPED is a server archi-
tecture, whereas liblaiogen is a library to perform asynchronous I/O.
Then, in the AMPED architecture, helper processes are used only for disk.
Moreover, the Flash web server tries to guess whether or not a disk oper-
ation will block. The result is the equivalent of the lazy characteristic of
liblaio, helper processes are saved. As already explained, liblaiogen
does not implement this behavior.

SEDA [9] is an example of another design for highly concurrent Internet
services. A SEDA application is constituted of different stages. Each stage
of the application is responsible for the processing of one operation (like for
instance a network read) and is constituted of a thread pool and a queue.
The different stages are interconnected using their respective queues. The
stages use their respective thread pool to process multiple requests con-
currently. If there is more requests than thread avaiable, the requests stay
in the queue until more threads are available. In SEDA, they implement a
mechanism in order to adapt dynamically the size of the different thread
pools associated which each stage. This mechanism is intended to adapt
resource usage to observed server performance in order to prevent the sys-
tem to fall under heavy load. Although much more simple, we can think of
ohttpd-networkonly3 as of something similar to a SEDA server which
would have a thread pool size of one for the open() and stat() opera-
tions, and a thread pool of unlimited size for all the other operations. Our
results show that this can effectively prevent the performance to drop sig-
nificantly under Linux with the anticipatory scheduler.

5 Conclusion
We have introduced liblaiogen, a new implementation of Lazy Asyn-
chronous I/O, an api to perform asynchronous I/O.

liblaiogen, by opposition to its cousin liblaio, is not lazy. liblaiogen
uses threads eagerly for each I/O operation without making any distinc-
tion between operations that actually block and operation that do not.

We measure with three different micro-benchmarks the overhead intro-
duced by liblaiogen under Linux. We show that this overhead is very
significant for operations that do not block at all, but that this overhead is

2Here we make no distinction between threads and processes because for our purpose we use
kernel threads which are conceptually very close from processes, even-though the implementation
is different.

3Reminder: ohttpdnetworkonly is the version of ohttpd that uses liblaiogen for every opera-
tions except open() and stat() which are executed synchronously
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quickly compensated by the performance speedup obtained for operations
that do block.

We then experiment with liblaiogen in the scope of event-driven
web servers. By using ohttpd, a web server developed to test and debug
liblaiogen, we show that the performance of the web server are directly
related to the performances of the I/O scheduler used. We also highlight
the very strange behavior of the Linux anticipatory scheduler which might
indicate that this scheduler suffers from an implementation flaw.

Finally, we show results using thttpd, a well known event driven web
server. The results show that under FreeBSD, liblaiogen underperforms
liblaio significantly, confirming the assumption that kernel threads are
expensive under FreeBSD. We then show that the same web server using
liblaiogen in Linux 2.6.10 (CFQ) performs much better than the one
using liblaio in FreeBSD. The lightweight threading package of Linux,
the O(1) scheduler and the high performance CFQ I/O scheduler are the
keys to the performance improvement. Thus, this give rises to the question:
Would it be possible to achieve even better performance with a kernel that
would provide those features and also scheduler activations ?
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A A liblaiogen implementation alternative
Another idea for a cross platform implementation of liblaiogen consist
in using as much as possible the asynchronous api provided by the oper-
ating system. In other words, instead of using a thread for each and every
operation, we wrap non-blocking I/O every-time it is possible, and we use
helper threads for the rest of the operations. We have implemented such a
variant.

The implementation of laio_syscall doesn’t change much. The only
difference is that before doing anything, it has to determine whether the
desired call to be executed is network related or not. getsockname()
can be used on file descriptors to check if the file descriptor is a socket or
not. If it is not the case, getsockname() will return an error. This way
laio_syscall() knows if it has to invoke non blocking I/O or if it has
to use helper threads.

The helper threads stay semantically identical, however there is an im-
portant difference. Indeed, we do not use condition variable any more to
signal the completion of an operation. This is because in laio_poll()we
will need to use the select() system call to check for completion of non
blocking I/O and that this call to pselect() will have to be interrupted
whenever an helper thread completes (this replace the wait on the condi-
tion variable in laio_poll()). For this purpose, the helper thread use a
signal instead of a condition variable. In laio_poll() we now have to
check the file descriptor returned by pselect in order to catch completed
operations in addition to browsing the list of helpers.

By using signals to inform the main thread of the completion of some
operation in an helper thread, we have to make sure that the main thread
won’t miss the signal. To do that pselect atomically changes the signal
mask so that the signals are blocked until the very moment where pselect
is able to handle them. Unfortunately, under Linux, pselect()’s speci-
fication, is not yet fully respected. Indeed, Linux doesn’t have a system
call for pselect so it is implemented in glibc and the signal mask is not
changed atomically. This way, the Linux version still contain the race con-
dition where a signal might be sent just after the signal mask has been
changed but just before it is ready to handle it. So, our current imple-
mentation of liblaiogen that wraps non blocking I/O contains this race
condition that leads to performance degradation. This is why this imple-
mentation is not yet complete and we do not present result with it.
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