
Swiss Federal Institute of Technology

Master Project

Efficient Semi-structured Queries in Scala using
XQuery Shipping

Fatemeh Borran-Dejnabadi

Computer Science

Responsible: Gilles Dubochet
Supervisor: Prof. Martin Odersky

LAMP-I&C-EPFL

February 2006

 ii

 iii

Abstract

This project proposes a new approach to interact with database systems
through programming languages. A formal query language can be integrated
within modern programming languages and the semi-structured queries can be
evaluated using automatic transformation and query shipping. The focus of this
project is on XML queries and Scala programming language. Particularly, this
project optimizes the XML-based expressions of Scala using XQuery transforma-
tion and Shipping. In this work, Scala sequence comprehensions are extended to
cover appropriately the whole functionalities of XQuery FLWOR expressions and
XQuery sequence comparisons are introduced in Scala to facilitate query genera-
tion.

This report presents a formalization of transformation rules between Scala
and XQuery languages and describes an Scala implementation. Various use cases
are provided to facilitate understanding and employing this newest Scala library.

 iv

 1

Table of Contents

Introduction... 3

Query Shipping vs. Data Shipping.. 4
Scala Query Integration and Shipping .. 5

Scala Query Shipping Definition .. 7
Query Processing using XQuery... 8

Scala and XQuery Comparison... 11
XQuery and Scala Backgrounds ... 11
XQuery Expressions.. 13

Primary Expressions.. 14
FLWOR Expressions .. 16
Path Expressions ... 22
Sequence Expressions ... 24
Arithmetic Expressions ... 25
Logical Expressions .. 26
Comparison Expressions... 26
Constructors .. 30
Quantified Expressions ... 32
Conditional Expressions ... 32
Other Expressions ... 33

Scala to XQuery Transformer ... 35
Transformation Rules.. 35

NodeSeq Class .. 35
Node Class .. 41
Elem Class... 42
MetaData Class ... 42
Input Functions ... 43

Examples ... 43
Scala Query Shipping Implementation ... 47

XQuery AST and Pretty Printer .. 47
XQuery Transformer... 50
Abstract Syntax Transformation ... 53

Future Works... 57
Conclusion .. 59

Acknowledgements ... 60
References ... 61

 2

 3

Chapter 1

Introduction

This report represents the results of four months Master’s Project research
completed at the Programming Methods Laboratory (LAMP) of Swiss Federal
Institute of Technology (EPFL).

The report is composed of six chapters:

Chapter 1 presents the latest research papers and advanced technical topics
to explain the interest and motivation for realizing this project.

Chapter 2 defines the project and its goals, and then formulates the ques-
tions and problems that should be answered and resolved during this project. It
explains why the other solutions are not properly capable to resolve the problem.
In other words, why such a project is needed?

Chapter 3 compares Scala programming language with XQuery language
which is a native XML query processing language. The aim of this comparison is
not only introducing the functionalities of XML query languages, but also is dis-
cussing about the common and missing features in Scala and XQuery languages.
This chapter offers an excellent reflection to the Scala developer both to extend
the XML library, and to generalize the famous sequence comprehensions of Scala.

Chapter 4 represents the most important results of this project which are the
transformation rules from Scala programming language to XQuery language.
However this project is implemented based on the abstract syntax transformation,
the achieved rules are illustrated based on the core syntax transformation, only for
simplicity reasons.

Chapter 5 explains more implementation techniques to apply on the ob-
tained results form chapter 4. It describes the structure of the implemented project
and represents the modified and newly added libraries to the Scala programming
language.

Chapter 6 illustrates some future works and concludes.

In this report, I assume that the reader is familiar with Scala Programming
Language [1, 2] developed by LAMP laboratory at the EPFL, and understands the
fundamentals of XML [4] and relevant technologies such as XPath [5] and
XQuery [3, 6].

 4

Query Language Integration

One of the most recent challenges in evolution of object-oriented (OO) pro-
gramming technologies is to reduce the complexity of accessing and integrating
information that is not natively defined using OO technology. The two most
common sources of non-OO information are relational databases and XML. Add-
ing general purpose query facilities into the modern programming languages are
the next generation of technologies.

Integrating queries within programming languages (in a similar way as
LINQ project [7, 8] for .Net Frameworks) is an advanced topic in which the query
is an incorporated feature of the developer's primary programming language (e.g.,
Java, C#, Scala). This approach allows query expressions to benefit from a rich
class library, compile-time syntax checking, static typing that was previously
available only to imperative code.

Scala programming language currently contains a set of most common
query operators that allows selection, projection, traversal and filter operations.
The extensibility of the query architecture may provide implementations that work
over both XML and SQL data. More importantly, Scala can use additional ser-
vices such as remote evaluation, query translation, and optimization provided by
the database systems to process the queries.

Query Shipping vs. Data Shipping

Query processing in a client-server database system raises the question of
where to execute queries to minimize the communication costs and response time
of a query, and to load-balance the system. The two common query execution
strategies are: data shipping and query shipping. Data shipping means that queries
be executed at clients; query shipping means that queries be executed at servers.
The experiments with a client-server model confirm that the query execution pol-
icy is critical for the performance of a system. Neither data nor query shipping are
optimal in all situations, and the performance penalties can be substantial. The
best solution is a combination of both strategies which matches the best perform-
ance of data and query shipping [11].

Relational database systems are typically based on query shipping, in which
the majority of query processing is performed at servers. The benefits of query
shipping include: the reduction of communication costs for high selectivity que-
ries since only query results will be sent back to client, the ability to exploit server
resources when they are plentiful, and the ability to tolerate resource-poor client
machines.

 5

Object-Oriented database systems, on the other hand, are typically based on
data shipping, in which required data is transmitted into the client and query is
processed there. Data shipping has the advantages of exploiting the resources, in-
cluding CPU, memory and disk, of powerful client machines (imagine there are a
large number of client machines) and reducing communication in the presence of
locality or large query results. Data shipping can make use of more resources at
client side, however, it suffers when server resources are plentiful, or locality of
data access at clients is poor (suppose server send a vast amount of data but less
than 1% of them be used by clients).

Scala Query Integration and Shipping

Although the idea of shipping the nested comprehensions into a real SQL
query already exists in some special functional languages such as Kleisli [12] and
Slinks [13], this project proposes the same approach for processing the XML que-
ries in Scala programming language using XQuery shipping. Afterward, Scala
interpreter isn’t aware of query optimization techniques, and XQuery processor
evaluates them efficiently.

This project introduces the XML query characteristics of Scala by which
developers can implement and process their own queries on XML sources. As it
will be explained later in this project, evaluating queries using Scala interpreter
involves XML data transferring from host to the Scala application machine. Be-
cause data shipping is not suitable due to the huge quantity of information and the
reasons explained before, query shipping is applied in this project.

Hence, the aim of this project is; first, implementing a simple and efficient
translator that transforms a specified Scala code to an equivalent XQuery code.
Then, evaluating the transformed code using an XQuery processor (such as Galax
Implementation [14]) instead of Scala interpreter. Finally, extracting the query
processing results in a readable format for Scala. Although XQuery is a new lan-
guage, it benefits from many optimization techniques that exist for functional
programming languages and for other database query languages. This project uses
Scala programming language native syntax for XML queries and extends its capa-
bilities and performance by shipping queries toward an XQuery processor.

 6

 7

Chapter 2

Scala Query Shipping Definition

The basic idea in this project is that: currently Scala has a rich XML library
by which one can create, parse, and process the XML documents. This library also
supports some XML path expressions proposed by W3C recommendation. On the
other hand, the “Sequence Comprehensions” of Scala are the powerful tools for
querying, and XML library of Scala supports these comprehensions. Therefore,
one may conclude that an XML query can be implemented and evaluated using
Scala programming language.

The xml library of Scala supports the principal aspects of XML Query Lan-
guage, such as: projection, selection, join and construction. As illustrated in the
following example, a “for comprehension” can prepare a query in which the pro-
jection is supported by path expressions, the selection is implemented using yield
statement, the join is guaranteed by a set of generators (val x <- e; val y <-
e’), and finally results can be constructed using XML elements. Consequently, we
own an integrated query language in Scala, by which, we can write XML queries
in Scala syntax and process them using Scala interpreter.

for (val b <- load(“bib.xml”) \ “book”;
 val a <- b \ “author”;
 b \ “year” > 2000)
yield
 <result>
 {b \ “title”} {a}
 </result>;

Although xml library of Scala provides adequate techniques to query an
XML data, but processing the whole query with Scala interpreter is not very effi-
cient, because:

• Shipping the entire unprocessed data requires more transfer-time than
shipping query and processed data. For instance, if we consider a client-
server architecture in which XML data is not located on the same machine
as Scala application, query evaluation needs data shipping. The size of
data after query evaluation reduces importantly. And query size comparing
to data size is approximately negligible. So query size plus processed data
size is always less than unprocessed data. And transferring the first one is
preferable.

• Unprocessed data requires more memory than processed data. This is a di-
rect result from the last point.

 8

• Query optimization and performance criteria can not be totally supported
by a programming language like Scala. Because, evidently a programming
language is not a database system.

Query Processing using XQuery

Our objectives in this project are to reduce the transfer-time and memory-
consume of Scala application using “Query Shipping” instead of “Data Shipping”.
In fact, this project proposes a new technique that accumulates the advantages of
“Query Languages Integration” by “Query Shipping” strategy.

This method is described here using a scenario:

• The queries are implemented in Scala application using the same syntax.
• They are parsed and type checked using Scala parser and Scala type

checker.
• But, they are not processed by Scala compiler during compile-time.
• During execution-time, the queries are transformed into XQuery language.
• The transformed query is shipping toward an XQuery processor.
• XQuery processor evaluates and returns back the results.
• The results are loaded as a well-known format in Scala application.

The principal advantages of using this approach are listed below:

• The queries have the same syntax as programming language.
• The programming language (Scala in our case) performs query syntax

checking during compile-time.
• The complex queries could be implemented very easily using the pro-

gramming language facilities.
• The developer is not forced to manage several query languages for realiz-

ing its own application. In fact, it is enough to be a Scala programmer and
implement the queries on Scala syntax which will be interpreted by SQL
database system or XQuery processor.

• The query can be interpreted partially using database system and partially
using programming language interpreter.

• Since the queries are automatically transformed from a programming lan-
guage, they would be meaningful.

A global view of this project is represented in Figure 1. Suppose Scala ap-
plication is far from data center. The Scala code may contain a query part. This
query part is separated from other parts by assigning a special type, called Typed-
Code, and transformed to another TypedCode that contains equivalent XQuery
code. Then, XQuery code is shipped toward an XQuery processor and interpreted.
Finally, the results of XQuery code is loaded in Scala application and Scala appli-
cation interprets the final results. As you see, we don’t need to keep any

 9

information about the XML data on the Scala application. As you see, the sur-
rounded code by a TypedCode, from reflection library of Scala, is processed
differently even during compile-time as well as execution-time.

Scala Application Data Center

XML DB

XQuery
Processor

Transform

XQuery Shipping

Results

XQuery Results

Interpret

Scala TypedCode

Scala TypedCode
with XQuery Code

Scala Application Data Center

XML DB

XQuery
Processor

Transform

XQuery Shipping

Results

XQuery Results

Interpret

Scala TypedCode

Scala TypedCode
with XQuery Code

Figure 1: Global View

More detailed scenario is represented in Figure 2. Scala code is parsed by
Scala parser to generate Scala Abstract Syntax Tree (AST). Then, the generated
AST is type checked by Scala type system and a typed AST is created. Scala code
generator generates the byte-codes in compile-time. During execution, another
AST is generated for the query part (TypedCode) of Scala code. The constructed
tree here, is used to perform the transformation through execution-time. In fact,
the transformer generates another Scala AST that contains the transformed
XQuery code. This newly Scala AST, invokes an XQuery processor to interpret
the XQuery Code. Finally Scala interpreter evaluates the final results.

execution

Scala
Code

Scala
AST

Scala
ASTtyp

Byte
code

Scala
ASTref

Scala ASTref
with XQuery Code

scala
parser

type
checker

code
generator

transformer
Results

scala
interpreter

XQuery
AST

XQuery
Code

xquery
printer

xquery
processor

xquery
generator

execution

Scala
Code

Scala
AST

Scala
ASTtyp

Byte
code

Scala
ASTref

Scala ASTref
with XQuery Code

scala
parser

type
checker

code
generator

transformer
Results

scala
interpreter

XQuery
AST

XQuery
Code

xquery
printer

xquery
processor

xquery
generator

Figure 2: Detailed Scenario

 10

The transformation is a tree to tree transformation. It means that, we have an
abstract syntax tree and a pretty printer for XQuery and once we obtain the
XQuery source code we can interpret it using the XQuery processor.

One advantages of constructing an XQuery abstract syntax tree instead of
generating source code is that, one may transform the constructed tree to an ap-
propriate tree in one XQuery implementation (for example, eXist AST). In this
case, instead of transferring the source code inside a string, one could transfer the
root of abstract syntax tree and process the AST directly by XQuery processor.
Using this approach we can improve query processing even more.

As it was explained, the transformation is a Scala TypedCode transforma-
tion. It means that, Scala AST (TypedCode) is transformed to another Scala AST
(TypedCode) that contains XQuery Code. This method allows successive trans-
formations. For instance, Scala code can be transformed and processed once by an
XQuery processor and then by another database processor like JDBC.

The principal part of this project is extracting the transformation rules from
Scala code to XQuery code, and implementing an efficient transformer from Scala
AST to XQuery AST. This requires specifying a compact XQuery abstract syntax
tree from XQuery EBNF proposed by W3C recommendation. And, implementing
an XQuery pretty printer for its abstract tree.

The only inconvenient that we can imagine for this project is that, the trans-
formation and transferring source code may consume more Scala processing time
than interpreting. And, if no transformation rule is found, the transformer will be
interrupted on execution-time and not compile-time. In this case, Scala interpreter
can continue the query evaluation instead of XQuery processor.

 11

Chapter 3

Scala and XQuery Comparison

As it was mentioned before, Scala programming language has a rich API for
XML data processing, and the “Sequence Comprehensions” are powerful features
for formulating XML queries. Therefore, XML queries in Scala produces the
same results as an XML query implementation.

In this chapter, I compare Scala programming language with a native XML
query language: XQuery. The aim of this comparison is representing some com-
mon and missing features in Scala for querying an XML data. Consequently,
extracting the correspondence between Scala code and XQuery code, which re-
sults the transformation rules given in the next chapter. Also, illustrating how an
Scala developer can construct its proper queries on XML sources using Scala syn-
tax. Only the xml library of Scala is considered in this comparison.

XQuery and Scala Backgrounds

XQuery like Scala operates on the abstract, logical structure of an XML
document, rather than its surface syntax. This logical structure, known as the “data
model”. In XQuery data model, a value is always a “sequence”. A sequence is an
ordered collection of zero or more “items”. An item is either an “atomic value” or
a “node”. An atomic value is a value in the value space of an atomic type. Each
node has a unique “node identity”, a “typed value”, and a “string value”. The
typed value of a node is a sequence of zero or more atomic values. The string
value of a node is a value of type string (see Figure 3) [3, 14].

An XQuery ordering called “document order” is defined among all the
nodes accessible during processing of a given query, which may consist of one or
more trees. Document order is the order in which nodes appear in the XML seri-
alization of a document and it is stable, which means that the relative order of two
nodes will not change during the processing of a given query.

XQuery “atomization” is applied to a value when the value is used in a con-
text in which a sequence of atomic values is required. For example, atomization is
used in processing of the arithmetic expressions, comparisons, and function calls.
The result of atomization is either a sequence of atomic values or a type error.

An XQuery “type error” may be raised during the static analysis phase or
the dynamic evaluation phase. During the static analysis phase, a type error occurs

 12

when the static type of an expression does not match the expected type of the con-
text in which the expression occurs. During the dynamic evaluation phase, a type
error occurs when the dynamic type of a value does not match the expected type
of the context in which the value occurs.

Figure 3: XQuery Data Model

The xml library in Scala has a similar architecture. scala.xml.NodeSeq
class extends from scala.seq[Node] and represents any sequence of nodes or
documents (see Figure 4) [2]. There are two principal kinds of XML nodes in
Scala: An element (scala.xml.Elem class) represents an XML element including
its prefix, name, scope, attributes and children. The special nodes
(scala.xml.SpecialNode class) such as comments, processing instructions and
texts are the other kinds of XML nodes. There is not a node identity with the same
specification in XQuery; there is only a hashCode() method for each node. Each
node has a string value (can obtain by text method) and may contain an
xmlType() if there is an XML Schema for it. An XML node is automatically a
NodeSeq because it is a sequence of only one node. An empty sequence is repre-
sented by scala.xml. NodeSeq.Empty. XML documents and XML attributes are
defined differently in Scala. XQuery attributes are some special nodes while, in
Scala there is another class for them (scala.xml.MetaData).

 13

Figure 4: Scala XML Data Model

XQuery Expressions

The basic building blocks of XQuery is the expression, which is a string of
characters. The principal expressions of XQuery are: primary expressions,
FLWOR expressions, path expressions, comparison expressions, and so on.

This report uses bibliography data to illustrate the basic features of XQuery.
It is taken from the XML Query Use Cases [3] and appears in the following table:

 14

Table 1: bib.xml

Primary Expressions

Primary expressions are the basic primitives of XQuery language. They in-
clude literals, variable references, constructors, and function calls.

Literals

A literal is a direct syntax representation of an atomic value. XQuery sup-
ports two kinds of literals: numeric literals and string literals. The principal
XQuery numeric literals are: integers (like 12) of type xs:integer, decimals (like
12.5) of type xs:decimal, and doubles (125e2) of type xs:double. Some other
popular atomic types are xs:date, xdt:dayTimeDuration.

<bib>
 <book year="1994">
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>

 <book year="1992">
 <title>Advanced Programming in the Unix environment</title>
 <author><last>Stevens</last><first>V.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>

 <book year="2000">
 <title>Data on the Web</title>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <price>39.95</price>
 </book>

 <book year="1999">
 <title>The Economics of Technology and Content for Digital
TV</title>
 <editor>
 <last>Gerbarg</last><first>Darcy</first>
 <affiliation>CITI</affiliation>
 </editor>
 <publisher>Kluwer Academic Publishers</publisher>
 <price>129.95</price>
 </book>

</bib>

 15

All values in Scala are the objects. Scala Any class has two subclasses: Any-
Val and AnyRef representing value classes and reference classes. All value classes
are predefined and they correspond to the primitive types of Java-like languages
(Double, Float, Long, Int, Short, Byte, Boolean, String). All other
classes define reference types.

Variables

A variable reference in XQuery is a QName preceded by a $-sign. QName
stands for XML element names, attribute names and so on. Two variable refer-
ences are equivalent if their local names are the same and their namespace
prefixes are bound to the same address. An unprefixed variable reference is in no
namespace. XQuery uses a $-sign for the variables to distinguish between a
QName and a variable. For example in the expression $b/title, b is a variable
which is defined before (binds to some sequences), but title is a QName defined
in XML document.

Scala uses another technique to make difference between XML QNames
and variables. XML names in Scala are the strings enclosed by double quotes. So
the previous expression in Scala would be: b \ “title”. This notation may be is
not the best solution, but for the moment, it resolves many problems related to the
XML syntax. Other solution is importing a new type QName in Scala and defin-
ing title as a QName before using.

Function Calls

A function call in XQuery consist of a QName followed by a parenthesized
list of zero or more expressions, called arguments. If the QName has no name-
space prefix, it is considered to be in the default function namespace.

In Scala, a function can be called by its name and its arguments enclosed by
parentheses if any. A function without any arguments has no parentheses. If a
function is defined outside of the current scope, a full name is required. The full
name of a function contains the packages names followed by the class name sepa-
rated by dot notation.

Input Functions

The only input function supported by Galax implementation is doc() which
returns an entire document, identifying by a Universal Resource Identifier (URI).

doc(“bib.xml”)
or
doc(“http://www.w3schools.com/xml/note.xml”)

There are several methods in xml library of Scala to load an XML file. The
most common is load(fileName:String) from XML object which loads XML

 16

file from given file. The fileName can contain an address or URL to the specific
file.

load(“bib.xml”)
or
load(“http://www.w3schools.com/xml/note.xml”)

doc() function returns the root element inside a document node, while, load()
method returns the root element itself.

In both cases, a dynamic error is raised if the specified document or file is
not found or is not accessible.

Built-in Functions

XQuery has a set of built-in functions and operators, including aggregation
function such as min(), max(), count(), sum() and avg(); numeric functions
like round() and floor(); string functions like concat(), string-length(),
starts-with(), ends-with() and etc. The input functions and distinct-
values() are also some special built-in functions. Two other frequently used
functions are not() and empty(). The not() function is used to inverse the boo-
lean conditions and empty() function which is the opposite of exists() reports
whether a sequence is empty.

In this project, some useful built-in functions of XQuery (such as aggrega-
tions and distinct-values()) that are not present in Scala are added in an
auxiliary library (inside xquery library). Afterward, Scala developers have more
alternatives to implement their applications using the functions from this library.

FLWOR Expressions

FLWOR expressions, pronounced “flower expressions”, are the most pow-
erful and common expressions in XQuery. They are similar to the SELECT-FROM-
WHERE statements in SQL. However, a FLWOR expression is not defined in terms
of tables, rows, and columns, instead, it binds variables to values in for, let
clauses, and uses these variable bindings to create new results. A combination of
variable bindings created by the for and let clauses of a FLWOR expression is
called a tuple.

For instance, here is a simple FLWOR expression that returns the title of
each book that was published in the year 2000.

for $b in doc(“bib.xml”)//book
where $b/@year = “2000”
return $b/title

 17

This query binds the variable $b to each book, one at a time, to create a se-
ries of tuples. Each tuple contains one variable binding in which $b is bound to a
single book. The where clause tests each tuple to see if $b/@year is equal to
“2000”, and the return clause is evaluated for each tuple that satisfies the condi-
tion expressed in the where clause.

The name FLWOR is an acronym, standing for the first letter of clauses that
may occur in a FLWOR expression:

• for clauses: associate one or more variables to expressions, creating a tu-
ple stream in which each tuple binds a given variable to one of the items to
which its associated expression evaluated.

• let clauses: bind variables to the entire result of an expression, adding
these bindings to the tuples generated by a for clause, or creating a single
tuple to contain these bindings if there is no for clause.

• where clauses: filter tuples, retaining only those tuples that satisfy a con-
dition.

• order by clauses: sort the tuples in a tuple stream before the return clause
is evaluated in order to change the order of results.

• return clauses: build the result of the FLWOR expression for a given tu-
ple.

The acronym FLWOR roughly follows the order in which the clauses occur.
A FLWOR expression starts with one or more for or let clauses in any order, fol-
lowed by an optional where clause, an optional order by clause, and a required
return clause. The result of the FLWOR expression is an ordered sequence con-
taining the results of these evaluation, concatenated as if by the comma operator.

Sequence comprehensions in Scala programming language are very similar
to FLWOR expressions. They are also implemented for NodeSeq class in xml li-
brary of Scala. In fact, every data type that supports filter, map, and flatMap
methods can be used in sequence comprehensions. For example the above query
could be written in Scala as:

for (val b <- load(“bib.xml”) \\ “book”;
 b.attribute(“year”) == “2000”;
 val t <- b \ “title”)
yield t;

Scala equivalence core syntax is:

(load(“bib.xml”) \\ “book”).
filter(b => b.attribute(“year”) == “2000”).
flatMap(b => (b \ “title”).map(t => t))

Some differences between FLWOR expressions and Sequence comprehensions
are listed here:

 18

• Sequence comprehensions don’t support let and order by clauses.
• There are some differences between yield statement and return clause

that will be illustrated later at the end of this section.

Although sequence comprehension does not support let and order by
clauses in its sweet syntax, they can be implemented as some additional methods
in required classes. For instance, we can add let(), and orderBy() methods im-
plementation in NodeSeq class, which have the same effect as in FLWOR
expressions. The let() method binds this sequence to a given variable and re-
turns another sequence. The orderBy() method changes the order of this
sequence by a given sequence and returns the ordered sequence.

Here is the definition for these two lambda functions:

NodeSeq.let(f: NodeSeq => NodeSeq): NodeSeq

NodeSeq.orderBy(f: Node => NodeSeq, order: String): NodeSeq

For example, consider the following let clause in XQuery which returns first
name of all authors in our bibliography:

let $a := doc(“bib.xml”)//author
return $a/first

Using our recent functions, equivalent Scala code is:

(load(“bib.xml”) \ “author”).let(a => a \ “first”)

And suppose, a simple order by clause as:

for $b in doc(“bib.xml”)//book
order by $b/title ascending
return $b

which returns all books sorted by their titles. Similar code in Scala is:

(load(“bib.xml”) \ “book”).
orderBy(b => b \ “title”, “ascending”)

Note that, both order by clause in XQuery and orderBy() function in
Scala sort a sequence of nodes by comparing the text value of each node, and not
numeric value for instance. For example, if we want to sort the books by their
prices (price is a double value), the result will not be what we expected! (because
125 < 35 < 65 if we consider text values)

Now if we consider more complicated query like:

let $b := doc(“bib.xml”)//book
for $a in $b/author
order by $a/last descending
return $a/first

 19

Scala corresponding code will be:

(load(“bib.xml”) \ “book”).let(b => (b \ “author”).
orderBy(a => a \ “last”, “descending”).
flatMap(a => a \ “first”))

As it was mentioned before, the sequences in XQuery can not be nested,
while in Scala the nested sequences are allowed. For instance, List(1, List(2,
3)) is not equivalent to List(1, 2, 3), while in XQuery they are equal. This
difference becomes more serious when we compare for-comprehensions with
FLWOR expression. In fact return clause in XQuery can return different values
with different types in a same FLWOR expression. For instance, 1 and List(2,
3) results List(1, 2, 3). While in Scala a for-comprehension can not yield dif-
ferent types.

On the other hand, a Scala node in xml library is a sequence of one node. So
Node and NodeSeq can merged to generate a new NodeSeq within a for-
comprehension. For the same reason, there is no difference between flatMap and
map implementation in XQuery. In other words, map method becomes a flatMap
in XQuery.

For example, following for-comprehension:

for (val x <- e; val y <- e’) yield e’’

is equivalent to the following FLWOR expression:

for $x in e
for $y in e’
return e’’

also, it is equivalent to:

for $x in e
return
 for $y in e’
 return e’’

Since the first XQuery code will be transformed to the second one for proc-
essing, it would be very simple and efficient if our Scala to XQuery transformer
generates directly the second syntax. On the other hand, XQuery syntax will be
simplified if we consider only the second syntax. In summery, according our im-
plementation, a FLWOR expression is one for or let clause, followed by an
optional where clause, and followed by a required return clause.

Note that, these two Scala codes are not equivalent:

for (val x <- e; val y <- e’) yield e’’
and

 20

for (val x <- e) yield
 for (val y <- e’) yield
 return e’’

because the first one is a flatMap method, while the second one is a map method
in Scala core syntax:

e.flatMap(x => e’.map(y => e’’))
and
e.map(x => e’.map(y => e’’))

Moreover, the second code is not valid if e and e’ belong to the NodeSeq
class. But in XQuery these two codes are equal; the first one is just a sweet syntax
for the second one:

for $x in e
for $y in e’
return e’’

for $x in e
return
 for $y in e’
 return e’’

So, there is an obvious difference between Scala yield statement and
XQuery return clause. In fact, XQuery’s results are always “flatted”, it is exactly
what we try to do by yield in Scala.

The Positional Variable ‘at’ in FLWOR Expressions

The for clause supports positional variables, which identify the position of a
given item in the expression that generated it. For instance, the following query
returns the title of second book in the bibliography:

for $b at $i in doc(“bib.xml”)//book
where $i = 2
return $b/title

This notion in FLWOR expression is similar to the numeric predicates in the
XPath expressions. Above query can be written as using only the XPath expres-
sions:

doc(“bib.xml”)//book[2]/title

However the later query is also supported by an XQuery implementation
and has a compact syntax, but the XQuery processor only recognizes the first
query. In fact, the second query is just a sweet syntax of the first one, for pro-
grammer usage. And, XQuery supports the positional variable of FLWOR
expressions in its core syntax. In this project, in order to simplify our XQuery syn-
tax, we generate and support only the positional variable in FLWOR expressions
and not predicates in XPath expressions.

 21

The NodeSeq class in xml library of Scala has an apply() method to make
its elements accessible. So the exceeding query in Scala is:

(load(“bib.xml”) \\ book).apply(1) \ “title”

Only difference is that the sequence counter in XQuery starts from 1, though
Scala like the other programming languages counts form 0.

Eliminating Duplicates with ‘distinct-values()’ in FLWOR Expressions

Data often contains duplicate values, and FLWOR expressions are often
combined with the distinct-values() function to remove duplicates form sub-
trees. The following query returns the last name of each author:

doc(“bib.xml”)//author/last

Since one of the authors wrote two books in the bibliography, the result of
this query contains a duplicate: <last>Stevens</last>.

The distinct-values() function extracts the values of a sequence of
nodes and creates a sequence of unique values, eliminating duplicates.

distinct-values(doc(“bib.xml”)//author/last)

As you can see, the output of the above query is:

Stevens Abiteboul Buneman Suciu

The distinct-value() function eliminates duplicates, but in order to do
so, it extracts values form nodes. FLWOR expressions are often used together
with distinct-values() to create subtrees that correspond to sets of one or
more unique values. For the preceding query, we can use an element constructor
to create a last element containing each value:

for $l in distinct-values(doc(“bib.xml”)//author/last)
return <last>{ $l }</last>

In Scala a sequence can contain duplicate values but an Scala Set can not.
In order to obtain a sequence without the duplicates, we can put its elements in a
set collection. In this project, I implemented a distinct-values() function
which takes a sequence of nodes and returns a non-duplicated sequence. This
function is located in the xquery library of Scala and it can be used by Scala pro-
grammers like other built-in functions. The definition of this function is given
here:

distinct_values(nodes: NodeSeq): NodeSeq

Using this recent method, the previous query in Scala language will be:

distinct_values(load(“bib.xml”) \\ “author” \ “last”)

 22

This implementation seems more general than the XQuery’s one, because it
eliminates the duplicates and simultaneously maintains the tree structure. During
transformation, the required structure is constructed and added to the XQuery
built-in function.

Path Expressions

In XQuery, path expressions are used to locate nodes in XML data.
XQuery's path expressions are derived from XPath 1.0. A path expression consists
of a series of one or more steps, separated by a slash, /, or double slash, //. Every
step evaluates to a sequence of nodes.

doc(“bib.xml”)/bib/book/author
or
doc(“bib.xml”)//author

The projection functions, \ and \\, in xml library of Scala are similar to path ex-
pressions in XQuery.

load(“bib.xml”) \ “book” \ ”author”
or
load(“bib.xml”) \\ “author”

In both cases, the steps are evaluated from left to right. The first step identi-
fies a sequence of nodes using an input function, a variable that has been bound to
a sequence of nodes, or a function that returns a sequence of nodes. The expres-
sion on the left-hand side is evaluated firstly and returns the resulting nodes in
document order, then the right-hand side expression is evaluated once for each
left-hand side node, merging the results to produce a sequence of nodes in docu-
ment order. If the result contains anything that is not a node, a type error is raised.
When the right-hand expression is evaluated, the left-hand node for which it is be-
ing evaluated is known as the context node.

The only difference between two languages is that: path expressions in
XQuery which start with an input function should include the document node
while this should not be appear in projection functions of Scala. So, we should be
aware of this difference to transform Scala code to XQuery code properly.

The step expressions that may occur on the right hand side of a / in XQuery
are the following:

- A NameTest, which selects element or attribute nodes based on their name. A
simple string is interpreted as an element name; for instance author in the pre-
vious examples. If the name is prefixed by the @ character, then the NameTest
evaluates to the attributes of the context node that have the specified name.
For instance,

 23

doc(“bib.xml”)/bib/book/@year

returns the year attribute of each book.

In Scala an attribute can be extracted in the same manner as XQuery or
using attribute method of Node class.

load(“bib.xml”) \ “book” \ “@year”
or
for (val b <- load(“bib.xml”) \ “book”) yield
 Text(b.attribute(“year”))

The namespaces and wildcards are supported in both languages. The name-
spaces comes before the node name separated by ‘:’ in both languages and
wildcards are ‘*’ and ‘_’ in XQuery and Scala.

- A KindTest, which selects processing instructions, comments, texts and nodes:
processing-instruction(), comment(), text(), node(). Scala does
not support this kind of tests in its path expressions.

- An expression that uses an explicit “axis” together with a NameTest or Kind-
Test to choose nodes with a specific structural relationship to the context node.
If the NameTest book selects book elements, then child::book selects book
elements that are children of the context node. Principal axis supported by
XQuery are:

• Forward axis: self, child, attribute, descendant, descendant-
or-self, following and following-sibling.

• Revese axis: parent, ancestor, ancestor-or-self, preceding and
preceding-sibling.

There are some corresponding methods for these axis in Scala:
child, attribute, descendant, descendant_or_self.

In general, some forward axis can be replaced by equivalent path expressions,
for instance, books/child::book is equivalent to books/book and so on. So,
it is not really necessary to have an implementation for each of them in Scala.

- A PrimaryExpression, which may be a literal, a function call, a variable name,
or a parenthetical expression.

The predicates follow the PrimaryExpressions and there are two different
types in XQuery:

• Boolean Predicates, are boolean conditions, between square brackets, [],
that select a subset of the nodes computed by a step expression.

doc(“bib.xml”)//author[last=”Stevens”]

 24

But, this query is equivalent to the following FLWOR expression:

for $author in doc(“bib.xml”)//author
where $author/last = “Stevens”
return $author

So we don't need to support the boolean predicates in path expressions of
Scala. We can simply write a for-comprehension that filters the nodes
which satisfy the predicate:

for (val author <- load(“bib.xml”) \\ “author”;
author \ “last” == “Stevens”)
yield author

• Single numeric value Predicate

The predicate like:

doc(“bib.xml”)//book/author[1]

is equivalent to the following FLWOR expression:

for $b in doc(“bib.xml”)//book
for $a at $i in $b/author
where $i = 1
return $a

So, once again, it is not necessary to support the numeric value predicates
in Scala and the equivalent code in Scala is:

for (val b <- load(“bib.xml”) \ “book”)
yield (b \ “author”)(0)

The only problem is that; Scala raises an exception when we try to extract
the first author of a book that doesn’t have any author.

Sequence Expressions

An XQuery sequence is an ordered collection of zero or more “items”. A
sequence containing exactly one item is a “singleton”. Sequences are never nested
in XQuery; for example, combining the values 1, and (2, 3) into a single sequence
results in the sequence (1, 2, 3). As you see, one way to construct a sequence in
XQuery is by using the “comma operator”, which evaluates each of its operands
and concatenates the resulting sequences, in order, into a single result sequence. A
sequence containing zero items is called an “empty sequence”.

In Scala, NodeSeq class represents a sequence of nodes and contains project
functions and comprehension methods. Sequence comparison are added to this
class during this project.

 25

Sequence Operators

XQuery provides the union, intersect, and except operators for combin-
ing sequences of nodes. Each of these operators combines two sequences,
returning a result sequence in document order. A sequence of nodes that is in
document order, never contains the same node twice. If an operand contains an
item that is not a node, an error is raised.

The union operator takes two node sequences and returns a sequence with
all nodes found in the two input sequences. This operator has two lexical forms: |
and union. The intersect operator takes two node sequences as operands and
returns a sequence containing all the nodes that occur in both operands. The ex-
cept operator takes two node sequences as operands and returns a sequence
containing all the nodes that occur in the first operand but not in the second one.

All these operators eliminate duplicate nodes from their result sequences
based on node identity and the resulting sequence is returned in document order.

The union, intersect, and except methods from List class of Scala cor-
respond to these XQuery sequence operators. Since a sequence of nodes may be
treated as a list of nodes using asList method from NodeSeq class in Scala, so the
sequence operators are already integrated in xml library of Scala.

Arithmetic Expressions

XQuery supports the arithmetic operators for addition (+), subtraction (-),
multiplication (*), division (div and idiv), and modulus (mod), in their usual bi-
nary and unary forms. Unary operators have higher precedence than binary
operators and parentheses should be used when is needed. A subtraction operator
must be preceded by whitespace if it could otherwise be interpreted as part of the
previous token. For example a-b will be interpreted as a name, but a – b and a –
b will be interpreted as arithmetic expressions.

The div operator performs division on any numeric type. The idiv operator
requires integer arguments, and returns an integer as a result rounding toward 0.
All other arithmetic operators have their conventional meanings. If an operand of
an arithmetic operator is a node, atomization is applied. For instance, the follow-
ing query returns 4:

2 + <int>{ 2 }</int>

The order of operand evaluation is implementation-dependent. If an operand
is an empty sequence, the result of an arithmetic operator is an empty sequence.
Empty sequences in XQuery frequently operate like nulls in SQL or Node-
Seq.Empty in Scala. The result of the following query is an empty sequence:

2 + ()

 26

If the atomized operand is a sequence of length greater than one, a type error
is raised. If an operand is untyped data, it is cast to a double, raising a dynamic er-
ror if the cast fails. This implicit cast is important, because a great deal of XML
data is found in documents that do not use W3C XML Schema, and therefore do
not have simple or complex types. Many of these documents however contain data
that is to be interpreted as numeric. The prices in our bibliography are one exam-
ple of this. The following query adds the first and second prices, returning the
result as a double:

let $p := doc(“bib.xml”)//price
return $p[1] + $p[2]

In xml library of Scala, each node has an implicit converter from its string
value to a double value, using parseDouble() method of java.io.Double class,
so the arithmetic operators of Double class will be used, when there is an arithme-
tic operator between two node operands. A dynamic error will be raised if the
double casting fails. The previous query in Scala language can be written:

val p = load(“bib.xml”) \\ “price”;
p(0) + p(1)

Scala’s sweet syntax allows the apply function be demonstrated in a sim-
plify manner as represented above. As you see, this query returns nothing, and
don’t have the same effect as XQuery one; because let expressions are not present
in Scala.

Logical Expressions

The only logical operators in XQuery are ‘and’ and ‘or’. The first step in
evaluating a logical expression is find the “effective boolean value” of each of its
operands. Once again, the order is implementation-dependent. If an operand is an
empty sequence, its value is false. If an operand is a sequence whose first item is a
node, its value is true. If an operand has a string type or it is untyped data, its
value is false if the operand has zero length; otherwise it is true. If an operand has
any numeric type, its value is false if it is numerically equal to zero; otherwise it is
true. In all other cases the logical operation raises a type error.

In addition to ‘and’ and ‘or’ operators, XQuery provides a not() function
that takes a general sequence as parameter and returns a boolean value.

In Scala, the logical operators (&, |, and !) have the same results for the
boolean values, but there is no signification of logical operators neither for the se-
quences nor other atomic values.

Comparison Expressions

 27

XQuery has several sets of comparison operators, including value compari-
sons (eq, ne, lt, le, gt, ge), general comparisons (=, !=, <, <=, >,
>=), node comparisons (is, <<, >>). Value comparisons and general compari-
sons are closely related; in fact, each general comparison operator combines an
existential quantifier with a corresponding value comparison operator.

Value Comparisons

The value comparisons compare two atomic values. If either operand is a
node, atomization is used to convert it to an atomic value. If either operand is un-
typed, it is treated as a string. Using value comparisons, strings can only be
compared to the other strings, which means that value comparisons are fairly strict
about typing. Therefore, an explicit cast is needed to cast price to a decimal in the
following query:

for $b in doc(“bib.xml”)//book
where xs:decimal($b/price) gt 100.0
return $b/title

In general, if the data you are querying is meant to be interpreted as typed
data, but there are no types in the XML, value comparisons force your query to
cast when doing comparisons; general comparisons are more loosely typed and do
not require such casts. This problem does not arise if the data is meant to be inter-
preted as string data, or if it contains the appropriate types.

If either operand is an empty sequence, a value comparison evaluates to the
empty sequence. If an operand contains more than one item, then a value compari-
son raises an error. For example, the following query raises an error:

for $b in doc(“bib.xml”)//book
where $b/author/last eq “Stevens”
return $b/title

The reason for the error is that many books have multiple authors, so the
expression $b/author/last returns multiple nodes.

Although there is not any equivalent value comparison in Scala, we can use
general comparison instead. The reason is explained in the following subsection.

General Comparisons

There are two significant differences between value comparisons and gen-
eral comparisons: The first is that, general comparisons apply atomization to both
operands, but the result of this atomization may be a sequence of atomic values.
The general comparison returns true if any value on the left matches any value on
the right, using the appropriate comparison. The second difference involves the
treatment of untyped data; general comparison try to cast to an appropriate “re-
quired type” to make the comparison work. When a general comparison tests a

 28

pair of atomic values and one of these values is untyped, it examines the other
atomic value to determine the required type to which it casts the untyped operand:

• If the other atomic value has a numeric type, the required type is double.
• If the other atomic value is also untyped, the required type is string.
• Otherwise, the required type is the dynamic type of the other atomic value.

If the cast to the required type fails, a dynamic error is raised.

These conversation rules mean that the comparisons done with general
comparisons rarely need to cast when working with data that does not contain
W3C XML Schema simple types. On the other hand, when working with strongly
typed data, value comparisons offer greater type safety.

In the preceding query, we can use the general comparison ‘=’ instead of
the value comparison ‘eq’, and obtain suitable result that is title of books whose
are written by Stevens:

for $b in doc(“bib.xml”)//book
where $b/author/last = “Stevens”
return $b/title

But sometimes when an operand has more than one step, the general com-
parison can lead to confusing results.

The following example contains three general comparisons. The value of the
first two comparisons is true, and the value of the third comparison is false. This
example illustrates the fact that general comparisons are not transitive!

(1, 2) = (2, 3)
(2, 3) = (3, 4)
(1, 2) = (3, 4)

The following example contains two general comparisons, both of which are
true. This example illustrates the fact that ‘=’ and ‘!=’ operators are not inverse
of each other!

(1, 2) = (2, 3)
(1, 2) != (2, 3)

Usual comparisons in Scala (==, !=, <, <=, >, >=)are implemented
only for operands with atomic values. In fact, a typical version of Scala does not
support “sequence comparisons”. To implement the previous query in Scala lan-
guage, one should use a complicated code like:

for (val b <- load(“bib.xml”) \\ “book”;
 val l <- b \ “author” \ “last”;
 l.text == “Stevens”;
 val t <- b \ “title”)
yield t;

 29

In this project, the concept of general comparisons is introduced for the
NodeSeq class of xml library by adding some new methods (==, !=, <, <=, >,
>=). As you know, each operator in Scala is a method of the left hand side object.
So a sequence of nodes (such as b \ “author” \ “last”) can be compared to
Any value (like string “Stevens”) in Scala using the usual operators. For instance,
the previous query using our methods can be simplified to:

for (val b <- load(“bib.xml”) \\ “book”;
 b \ “author” \ “last” == “Stevens”;
 val t <- b \ “title”)
yield t;

The only problem is that comparison can not be done in the reverse way; it
means we cannot compare a string in left hand side with a NodeSeq in right hand
side, because in this case the comparison operator from String class will be used
by Scala and not the general comparison from NodeSeq class. But, since the com-
parison in the reverse order is not frequently used in the programming languages,
for example one used to write x == 2 and not 2 == x, this problem can be disre-
garded in this project. One other alternative is using ==(2, x) instead of 2 == x,
for the moment.

Since value comparisons can be replaced by general comparisons, if the type
error is ignored, they are not explicitly implemented in xml library of Scala. For
example, the result of these two queries are equivalent, if we consider there is
only one title per book; otherwise the first query results a type error while the sec-
ond one results true:

for $b in doc(“bib.xml”)//book
where $b/title eq “Data on the Web”
return $b

for $b in doc(“bib.xml”)//book
where $b/title = “Data on the Web”
return $b

Node Comparisons

Node comparisons in XQuery are used to compare two nodes, by their iden-
tity or by their document order. Each operand must be either a single node or an
empty sequence; otherwise a type error is raised. If either operand is an empty se-
quence, the result of the comparison is an empty sequence. A comparison with the
‘is’ operator is true if the two operand nodes have the same identity, and are thus
the same node; otherwise it is false. For example the following comparison is
false because each constructed node has its own identity:

<a>5 is <a>5

A comparison with the ‘<<’ operator returns true if the left operand node
precedes the right operand node in document order; otherwise it returns false. A

 30

comparison with the ‘>>’ operator returns true if the left operand node follows
the right operand node in document order; otherwise it returns false.

The node comparisons are not supported by Node class of Scala. Because,
node identity is not really defined for Node class. One can re-implement the hash-
Code() method in order to guarantee the unique node identity and document order
in Scala.

Constructors

XQuery provides constructors that can create XML structures within a
query. Constructors are provided for element, attribute, document, text, comment,
and processing instruction nodes. Two kinds of constructors are: direct construc-
tors and computed constructors.

In a similar way, Scala programming language also provides constructors to
create XML structures through Scala code. Scala code can be combined with
XML expressions to generate content dynamically.

In both languages, the direct constructor, curly braces, {}, delimit enclosed
expressions, distinguishing them from literal text. Enclosed expressions are evalu-
ated and replaced by their value, using XQuery or Scala interpreter, as illustrated
by the following example:

<example>
 <p> Here is a query in XQuery. </p>
 <eg> doc(“bib.xml”)//title <eg>
 <p> Here is the result of the query. </p>
 <eg>{ doc(“bib.xml”)//title }</eg>
</example>

<example>
 <p> Here is a query in Scala. </p>
 <eg> load(“bib.xml”) \\ “title” <eg>
 <p> Here is the result of the query. </p>
 <eg>{ load(“bib.xml”) \\ “title” }</eg>
</example>

The above queries might generate the following results:

<example>
 <p> Here is a query in XQuery. </p>
 <eg> doc(“bib.xml”)//title <eg>
 <p> Here is the result of the query. </p>
 <eg><title>Data on the Web</title></eg>
</example>

<example>
 <p> Here is a query in Scala. </p>
 <eg> load(“bib.xml”) \\ “title” <eg>
 <p> Here is the result of the query. </p>

 31

 <eg><title>Data on the Web</title></eg>
</example>

Since these languages use curly braces to denote enclosed expressions, some
convention is needed to denote a curly brace used as an ordinary character. For
this purpose, a pair of identical curly brace characters within the content of an
element or attribute are interpreted as a single curly brace character (that is, the
pair “{{” represents the character “{”and the pair “}}” represents the character
“}”).

An alternative way to create nodes is by using a computed constructor. In
XQuery an element book with a publication year as its attribute and a title and list
of authors as its children can be created as below:

element book {
 attribute year {“2003”}
 element title {“XQuery from Experts”}
 element author {“Don Chamberlin”}
 element author {“Denise Draper”}
 element author {“Mary Fernandez”}
}

The same element book can be constructed in Scala using Elem case class:

Elem(null,“book”,new UnprefixedAttribute(“year”,“2003”,Null),
 TopScope,
 Elem(null,“title”,Null,TopScope,Text(“XQuery from Experts”)),
 Elem(null,“author”,Null,TopScope,Text(“Don Chamberlin”)),
 Elem(null,“author”,Null,TopScope,Text(“Denise Draper”)),
 Elem(null,“author”,Null,TopScope,Text(“Mary Fernandez”))
)

The interface of Elem class is given here:

Elem(prefix: String, label: String, attributes: MetaData,
scope: NamespaceBinding, child: Node*)

An element attribute in Scala extends from MetaData class and may be Null, pre-
fixed or un-prefixed:

UnprefixedAttribute(key: String, value: String,
next: MetaData)
PrefixedAttribute(prefix: String, key: String, value:
String, next: MetaData)

However the attributes are usually considered as strings, but in Schema-
based documents they may be typed, as well as other XML elements. So, an im-
proved technique would be considering a type for their values and conserving
them for extraction usage. In Scala we can imagine an attribute value with type
Any. In the preceding example, the attribute year of element book is perhaps an
integer. By importing this approach in the future versions of Scala, we will be
able to visualize the comparison represented below:

 32

for (val b <- load(“bib.xml”); b.attribute(“year”) > 2000)
 yield b

Quantified Expressions

Some queries need to determine whether at least one item in a sequence sat-
isfies a condition (existential quantifier), or whether every item in a sequence
satisfies a condition (universal quantifier). Qualifiers sometimes make complex
queries much easier to write and understand.

Both languages support the quantifiers. The some expression in XQuery cor-
responds to the exists() method in Scala and every expression corresponds to
the forall() method in Scala.

some $a in doc(“bib.xml”)//author satisfies
($a/last = “Stevens”)

is equivalent to:

(load(“bib.xml”) \\ “author”).
exists(a => a \ “last” == “Stevens”)

The result of a quantifier expression is boolean (true or false) in Scala,
and true() or false() built-in function in XQuery.

In general, if a universal quantifier is applied to an empty sequence, it al-
ways returns true, because every item in that (empty) sequence satisfies the
condition, even though there are no items.

Conditional Expressions

XQuery’s conditional expressions are used in the same why as conditional
expressions in other languages. Following example shows a query that uses a con-
ditional expression to list the first two authors’ names for each book a dummy
name containing “et al.” to represent any remaining authors. In XQuery both
the then and else clause are required. The empty sequence () can be used to
specify that a clause should return nothing.

for $b in doc(“bib.xml”)//book
return
 <book>
 { $b/title }
 { for $a at $i in $b/author
 where $i <= 2
 return $a }
 { if (count($b/author) > 2)
 then <author>et al.</author>
 else () }
 </book>

 33

The equivalence query in Scala is:

for (val b <- scala.xml.load(“bib.xml”) \ “book”) yield
<book>
 { b \ “title” }
 { (b \ “author”)(0) (b \ “author”)(1) }
 { if ((b \ “author”).length > 2) <author>et al.</author> }
</book>

Conditional expressions are not supported by current version of TypedCode
class in reflection library of Scala. So in this project, corresponding transforma-
tion rules are not represented, however as you can imagine, the transformation is
quite simple.

Other Expressions

The operators represented in this section are not really introduced in this
project. But, here we want to present the provided facilities in XQuery and com-
pare them with a programming language such as Scala, and express the fact that it
is roughly possible to re-implement any programming code using XQuery lan-
guage even if it seems strange.

Instance Of

The instance of operator in XQuery is very similar to the isInstanceOf
method from Scala Any class and it tests an item for a given type. For instance, the
expression 3.14 instance of xs:decimal is true and is equivalent to
(3.14).isInstanceOf[Double] in Scala.

TypeSwitch

The typeswitch expression chooses an expression to evaluate base on the
dynamic type of an input value. It is similar to the SWITCH-CASE statement in
usual programming languages, but it branches based on the argument’s type, not
on its value. It is exactly what we can do using “pattern matching” expressions in
Scala.

Cast As

The cast as expression occasionally is necessary to convert a value to a
specified type. It creates a new value of a specified type based on an existing
value. It is comparable with asInstanceOf method form Scala Any class.
XQuery also provides an expression that tests whether a given value is castable
into a specified type.

Treat As

 34

The treat as expression asserts that a value has a particular type, and
raises an error if it does not. It is similar to a cast, except that it does not change
the type of the its arguments. treat as and instance of could be used together
to implement the same functionality as typeswitch, however in general,
typeswitch that provides better type information and do static typing is prefer-
able.

User-Defined Functions

XQuery permits its users to create the functions, when a query becomes
large and complex. It allows functions to be recursive, which is often important
for processing the recursive structure of XML documents.

Variable Definitions

A variable can be define in the prolog part of a query. Such a variable is
available at any point after it is declared. For instance, if access to the titles of
books is used several times in a query, it can be provided in a variable definition:

define variable $titles { doc(“bib.xml”)//title }

 To avoid circular references, a variable definition may not call functions
that are defined prior to the variable definition.

 35

Chapter 4

Scala to XQuery Transformer

In the previous chapter, I tried to extract the transformation rules from Scala
sweet syntax to XQuery sweet syntax by introducing equivalence expressions in
both languages. In this chapter, the transformation rules for the core syntax are
represented. Since the abstract syntax transformation may be too complicated to
read and understand, the transformation rules are only represented for the core
syntax. In the next chapter some more details about abstract syntax transformation
are given.

Transformation Rules

Because Scala is a pure object-oriented language, each value in Scala is an
object and since it is class-based, all values are instances of a class. So the trans-
formation rules should be defined for the fields and methods of each required
class. Since our transformer in this project is a XQuery transformer, we consider
only xml library of Scala. The principal class in xml library is NodeSeq class. So
we first represent the transformation rules for the fields and methods of NodeSeq
and its subclasses. The comparison operators (general comparisons) are also
added to the NodeSeq class. Then, the transformation rules for sequence compre-
hensions are illustrated. Finally, two recently added methods in NodeSeq class for
supporting let and order by clauses are demonstrated.

The transformation rules are represented using “inference rules”. In this rep-
resentation, expressions before the horizontal bar illustrate the preconditions and
Scala core syntax (in sweet representation), and following expressions illustrate
equivalence code in XQuery core syntax. Suppose T is a one-to-one transforma-
tion function which takes an Scala code and returns corresponding XQuery code.
The expression e∈E describes the fact that expression e has a type E. If e is an
expression of type NodeSeq in Scala; then T(e) is an expression of type “se-
quence” in XQuery.

NodeSeq Class

Transformation of projection functions is almost straightforward. The only
point is that, if the expression at the left hand side is an XML document load, the
transformation should add the “document node”. Because XPath expressions in
XQuery have an explicit “document node”. As a substitute, one can use a double

 36

slash (//), always after a document load, to skip the “document node” automati-
cally (see third rule below).

e ∈ NodeSeq e’ ∈ String
e \ e’

T(e)/T(e’)

e ∈ NodeSeq e’ ∈ String
e \\ e’

T(e)//T(e’)

e = load(s’) s’, e’ ∈ String
e \ e’

T(e)//T(e’)

Scala provides an apply function to access the elements of a sequence.
XPath expressions offer a syntax which is similar to access the elements of an ar-
ray in typical programming languages (position of element in the sequence
enclosed by square braces, []). But, as you remember from previous chapter, I
proposed to employ the positional function at within for clauses, to simplify our
XQuery abstract syntax.

e ∈ NodeSeq i ∈ int
e (i)

for $x at $j in T(e)
where $j = i+1
return $x

The filter method, and apply method with an anonymous function as argument
(e(x => p)), in NodeSeq class have the same signification so the transformation
rule is identical:

e ∈ NodeSeq x ∈ Node p ∈ Boolean
e filter (x => p)

for $x in T(e)
where T(p)
return $x

find method in Scala returns the first element of an Iterable object that satisfies
a condition, if any; otherwise it returns None.

 37

e ∈ Iterable x ∈ Node p ∈ Boolean
e find (x => p)

for $y at $i in
 for $x in T(e)
 where T(p)
 return $x
where $i = 1
return $y

As you can see, map and flatMap functions have the same transformation rules:

e ∈ NodeSeq x, x’ ∈ Node
e map (x => x’)

for $x in T(e)
return T(x’)

e, e’ ∈ NodeSeq x ∈ Node
e flatMap (x => e’)

for $x in T(e)
return T(e’)

Quantified function from Scala language can be transformed to the similar expres-
sions in XQuery:

e ∈ Iterable x ∈ Node p ∈ Boolean
e exists (x => p)

some $x in T(e) satisfies (T(p))

e ∈ Iterable x ∈ Node p ∈ Boolean
e forall (x => p)

every $x in T(e) satisfies (T(p))

Concatenation of two sequences in Scala can be done using concat() method. In
XQuery, concatenation is done using “comma separator”:

e, e’ ∈ Iterable
e concat e’

(T(e), T(e’))

 38

One possible transformation rule is represented here to transform sameElements
method using quantified expressions:

e, e’ ∈ Iterable
e sameElements e’

every $x in T(e) satisfies
(some $y in T(e’) satisfies ($x = $y))

There exists some XQuery built-in functions for methods length and text:

e ∈ NodeSeq
e length

count(T(e))

e ∈ NodeSeq
e text

string(T(e))

In this part, some special transformations are represented (that are specified
by *). In fact, there is not any correspondence for these Scala functions in XQuery
and I transformed them differently as explained for each case.

The method foreach from Iterable class which applies a function to all its
elements and returns nothing, has not equivalent expression in XQuery. So we are
not able to process a for-do loop using XQuery processor. However a for-do
statement in Scala may contain the other parts transformable to XQuery code. For
example, following query can be partially processed by XQuery and Scala inter-
preter:

for (val b <- load(“bib.xml”) \ “book”;
 b \\ “last” == “Stevens”)
 Console.println(b \ “title”)

This code is equivalent to:

(load(“bib.xml”) \ “book”).filter(b => b \\ “last” == “Ste-
vens”).foreach(b => Console.println(b \ “title”))

And, filter can be transformed to XQuery code, as you know. So we only
transform the expression behind foreach method to XQuery code. Then, an Scala
code is constructed to apply a foreach method to the evaluated results by XQuery
processor. Finally, Scala interpreter, evaluates the final results:

 39

e ∈ Iterable x ∈ Node u ∈ Unit
e foreach (x => u)

T(e)

Since NodeSeq and Seq[Node] have the same signification, they are both a
sequence of nodes in XQuery, the methods that convert these two types to each
other, can not be transformed in XQuery and they should be added later by Scala
interpreter:

e ∈ Seq[Node]
NodeSeq.fromSeq(e)

T(e)

e ∈ Seq[Node]
NodeSeq.view(e)

T(e)

The conv method is added to the NodeSeq class in order to expand the
arithmetic operators. It takes the text format of a NodeSq and casts it to a double
value if it is castable and it contains only one single node; otherwise an exception
is raised.

e ∈ NodeSeq
NodeSeq.conv(e)

T(e)

In fact, by adding this implicit function in NodeSeq class, Scala can support the
queries like:

for (val b <- load(“bib.xml”) \ “book”;
 (b \ “price”) / 2 > 50) yield b

In XQuery there is only one type which describes sequence of items. While
in Scala there are several types which represent a collection such as: Seq, List,
Iterator, … So the methods that convert these types to each other, can not be
transformed in XQuery, and they should be processed by Scala interpreter. Obvi-
ously, the methods that are based on Scala Lists such as foldLeft, foldRight,
/:, and :\ are not transformable in XQuery.

*

*

*

*

 40

Each method in {asList, toList, elements, theSeq, toString()}
will be transformed identically and then the appropriate method will be added by
Scala interpreter to obtained results:

e ∈ NodeSeq
e asList

T(e)

General comparisons

General comparisons are implemented for NodeSeq class and its subclasses.
In this project, the structural and general equalities are supposed to be the same.
This suggestion is not actually exact, and once two different syntaxes are supplied
for them, we can separate their definitions.

For each Scala operation in {==, !=, <, <=, >, >=} an XQuery opera-
tion exists in {=, !=, <, <=, >, >=}. The transformation rule for general
equality is represented here. For the others, the transformation is similar.

e ∈ NodeSeq x ∈ Any
e == x

T(e) = T(x)

Let Method

As it was explained before, there was no equivalence for let clauses in
Scala. I added a let method in NodeSeq class which has the same signification.
The let clause gives a name for a NodeSeq and returns another NodeSeq.

x, e, e’ ∈ NodeSeq
e let (x => e’)

let $x := T(e)
return T(e’)

OrderBy Method

In a same way, I defined a method orderBy() similar to the XQuery order
by clauses. An orderBy() method, takes a NodeSeq and changes the order of this
sequence by a given key and returns another sequence.

*

 41

e, e’ ∈ NodeSeq x ∈ Node
s ∈ {ascending, descending}
e orderBy (x => e’, “s”)

for $x in T(e)
order by T(e’) s
return $x

Node Class

The transformation rules for all methods that Node class inherits from Node-
Seq class or other classes are the same. Only most useful and important methods
are transformed from this class:

n ∈ Node key ∈ String
n attribute (key)

T(n)/@T(key)

n ∈ Node uri, key ∈ String
n attribute (uri, key)

T(n)/@T(uri):T(key)

n ∈ Node
n attributes

T(n)/@*

n ∈ Node
n child

T(n)/*

n ∈ Node
n descendant

T(n)/descendant::*

n ∈ Node
n descendant_or_self

T(n)/descendant-or-self::*

As you observed, the Node class implements some methods to access the
other nodes in document order such as child, descendant, ... But, it forgets

 42

about some other important methods such as parent, ascendant and so on. My
personal idea is that if we are interested to introduce the document order and lo-
cating nodes in Scala language, we should respect the entire standards from W3C
documentation, otherwise the user will be surprised!

Elem Class

Transformation rules for constructing XML elements are given here. If an
XML element doesn’t contain Scala code in its attribute value nor its content the
transformation is unique (T(e) = e). Otherwise, the transformation should be ap-
plied on attributes and children elements.

prefix, label ∈ String attributes ∈ MetaData
scope ∈ NamespaceBinding child ∈ Node*
Elem(prefix, label, attributes, scope, child)

<prefix:label T(attributes)>
 T(child)
</prefix:label>

e ∈ Elem attrs ∈ MetaData
e % (attrs)

<e.prefix:e.label T(attrs)>
 e.child
</e.prefix:e.label>

MetaData Class

Transformation rules for constructing attributes are given here. An attribute
is usually constructed inside an element. If there is no element an auxiliary ele-
ment should be constructed to include the attribute, but it is not the case in current
Scala version. An attribute in Scala can be Null, prefixed or unprefixed. Trans-
formation of Null attribute is nothing (T(Null) = ()).

key, value ∈ String next ∈ MetaData
UnprefixedAttribute(key, value, next)

T(key) = T(value) T(next)

prefix, key, value ∈ String next ∈ MetaData
PrefixedAttribute(prefix, key, value, next)

T(prefix):T(key) = T(value) T(next)

 43

Input Functions

Most usual input function in Scala is load from XML object. There are some
other functions for loading an XML document with processing instructions and
comments in Scala that are not transformed to XQuery and are not represented in
this report.

s ∈ String
load(s)

doc(s)

Examples

In this section, the sequence comprehensions of xml library are transformed
to FLWOR expressions using the transformation rules given before. Since a se-
quence comprehension is composed of map, filter, and flatMap functions, and
we have already transformed such functions, so the rules represented here are al-
ready well-known. In the case, when we have a sequence of generators followed
by filters, each generator can be transformed separately.

In this representation the first expression is in Scala sweet syntax, the sec-

ond expression is in Scala core syntax, the third expression is in XQuery core
syntax, and the last expression, if any, is in XQuery sweet syntax. However the
sequence comprehensions only use some special order of these functions (for ex-
ample a filter followed by a map function never happens, similarly, a flatMap
of filter function), but all possible orders can be transformed to XQuery lan-
guage without any difficulty.

x, e’ ∈ Node e ∈ NodeSeq
for (val x <- e) yield e’
(or)
e map (x => e’)

for $x in T(e)
return T(e’)

x, e’ ∈ Node f ∈ Node => Boolean e ∈ NodeSeq
for (val x <- e; f(x)) yield e’
(or)
(e filter (x => f(x))) map (x => e’)

for $x in
 for $x in T(e)
 where T(f(x))
 return $x
return T(e’)
(or)

 44

for $x in T(e)
where T(f(x))
return T(e’)

x, y, e’’ ∈ Node e, e’ ∈ NodeSeq
for (val x <- e; val y <- e’) yield e’’
(or)
e flatMap (x => e’ map (y => e’’))

for $x in T(e)
return
 for $y in T(e’)
 return T(e’’)
(or)
for $x in T(e), $y in T(e’)
return T(e’’)

x, e’ ∈ Node f ∈ Node => Boolean e ∈ NodeSeq
s: sequence of generators
for (val x <- e; f(x); s) yield e’
(or)
(e filter (x => f(x))) flatMap (x => … map (z => e’))

for $x in
 for $x in T(e)
 where T(f(x))
 return $x
return
 for T(s)
 return T(e’)
(or)
for $x in T(e), T(s)
where T(f(x))
return T(e’)

Using the definition of let() method, a let of filter or map, and flatMap of
let expressions are allowed.

y, e, e’ ∈ NodeSeq x ∈ Node f ∈ Node => Boolean
(e filter (x => f(x))) let (y => e’)

let $y :=
 for $x in T(e)
 where T(f(x))
 return $x
return T(e’)

x, e, e’ ∈ NodeSeq y, e’’ ∈ Node
e let (x => e’ map (y => e’’))

let $x := T(e)
return
 for $y in T(e’)
 return T(e’’)

 45

(or)
let $x := T(e)
for $y in T(e’)
return T(e’’)

x, e, e’ ∈ NodeSeq y ∈ Node f ∈ Node => Boolean
e let (x => e’ filter (y => f(y)))

let $x := T(e)
return
 for $y in T(e’)
 where T(f(y))
 return $y
(or)
let $x := T(e)
for $y in T(e’)
where T(f(y))
return $y

y, e, e’, e’’ ∈ NodeSeq x ∈ Node
e flatMap (x => e’ let (y => e’’))

for $x in T(e)
return
 let $y := T(e’)
 return T(e’’)
(or)
for $x in T(e)
let $y := T(e’)
return T(e’’)

An orderBy method can be followed by map or flatMap:

e, e’ ∈ NodeSeq x, y, e’’ ∈ Node
s ∈ {ascending, descending}
(e orderBy (x => e’, “s”)) map (y => e’’)

for $y in
 for $x in T(e)
 order by T(e’) s
 return $x
return T(e’’)
(or)
for $x in T(e)
order by T(e’) s
return T(e’’)

e, e’, e’’ ∈ NodeSeq x, y ∈ Node
s ∈ {ascending, descending}
(e orderBy (x => e’, “s”)) flatMap (y => e’’)

 46

for $y in
 for $x in T(e)
 order by T(e’) s
 return $x
return T(e’’)
(or)
for $x in T(e)
order by T(e’) s
return T(e’’)

Finally a FWOR expression can be written as demonstrated here:

e, e’ ∈ NodeSeq x, y ∈ Node f: Node => Boolean
s ∈ {ascending, descending}
(e filter (x => f(x))) orderBy (y => e’, “s”)

for $y in
 for $x in T(e)
 where T(f(x))
 return $x
order by T(e’) s
return $y
(or)
for $x in T(e)
where T(f(x))
order by T(e’) s
return $x

 47

Chapter 5

Scala Query Shipping Implementation

In this chapter, some implementation techniques are explained and more
clarified. This project includes an xquery library in Scala programming language.
Also, some modifications are applied to the existing xml and reflection library.

As mentioned before, the Scala code that contains an XML query will be
processed by an XQuery processor and it should be marked by a special type
called TypedCode from reflection library of Scala. A TypedCode is parsed and
type checked by Scala parser and type checker. But, Scala compiler does not
process the code marked as a TypedCode so does not generate the byte codes; in-
stead, it generates a code that will be construct an abstract tree during execution-
time. This abstract tree which contains the useful information from Scala query is
transformed to the XQuery code. The transformation is a tree to tree transforma-
tion. So for a given Scala AST, an equivalence XQuery AST is generated, and
then the XQuery source is created using the XQuery pretty printer.

However, in the previous chapter, the transformation rules are represented
based on the core syntax, for simplification reasons, the implemented transformer
in this project, transforms an Scala abstract syntax to corresponding XQuery ab-
stract syntax.

XQuery AST and Pretty Printer

The xquery library defines the XQuery tokens and sets up an abstract syntax
tree and pretty printer for XQuery language. The Tokens object in xquery library,
initiates all required tokens to construct XQuery source code from XQuery ab-
stract syntax. In fact, it contains all operators and some built-in functions of
XQuery language. The Tree object defines an abstract syntax tree and the
Printer object, defines a pretty printer for XQuery language.

In this project, I tried to simplify the XQuery EBNF and specify a compact
abstract syntax tree. Since XQuery expressions and XML elements are closely
combined, XQuery grammar must support the XML expressions. On the other
hand, Scala syntax supports XML expressions within Scala code. So our proposal
is to reuse these XML expressions inside XQuery expressions. In order to share
the XML expressions between Scala language and XQuery language, I suppose
that every XQuery expression is an XML node with a name specified by the ex-
pression and with a content as expression itself. For instance, the following for

 48

clause in XQuery is represented only using XML expressions. In this representa-
tion, only the useful information of an XQuery is stored, so we obtain a
compressed syntax comparing with XQueryX syntax.

for $b in doc(“bib.xml”)//book
where $b/price < 100
return $b/title

<for>
 <var>b</var>
 <dslash>
 <doc><literal>bib.xml</literal>
 </doc><ident>book</ident>
 </dslash>
 <lthan>
 <slash><var>b</var>
 <ident>price<ident></slash>
 <literal>100</literal>
 </lthan>
 <slash>
 <var>b</var><ident>title</title>
 </slash>
</for>

So, each node in XQuery abstract syntax tree contains the useful information of its
children and extends from the Node class of Scala:

case class For(v: Var, pos: Option[Var], domain: Node,
where: Option[Node], order: Option[NodeSeq], return: Node)
extends Node

case class Var(ident: String) extends Node

Also, each case class overrides the label, child, and text method of Node
class. The print method from Printer is used to pretty printing of an XQuery
expression. Using this approach, we provide a simple, compact, and exact abstract
tree for XQuery language. A query Q has an abstract syntax as represented in table
2:

Table 2: XQuery AST

Q = Sequence {Q}
Q = For V [V] Q [Q] [Q O1] Q
Q = Let V Q [Q] [Q O1] Q
Q = Some V Q Q
Q = Every V Q Q
V = Var ident
Q = Op O2 Q [Q]
Q = Literal value
Q = Ident ident
Q = Attribute ident
Q = FunCall F {Q}

 49

In this abstract syntax, O1 is a set of order by operations: ascending and
descending. O2 is a set of unary and binary operators. And F is a set of built-in
functions defined by XQuery language. Using this abstract syntax, the previous
query is constructed by:

For(
 Var(“b”),
 None,
 Op(DSLASH, FunCall(DOC, Literal(“bib.xml”)),
 Ident(“book”)),
 Some(OP(LTHAN, Op(SLASH, Var(“b”), Ident(“price”)),
 Literal(100))),
 None,
 Op(SLASH, Var(“b”), Ident(“title”))
)

Some other simplifications that are considered in this project, are listed here:
Although a FLWOR expression is a sequence of for or let clauses followed by
some optional clauses and a required return clause, in our syntax only one for
clause or let clause is allowed per return clause. In other words, the first definition
is only used by XQuery user as a sweet syntax, while the second one is used by
XQuery processor in the core syntax. For example, these three expressions are
equivalent in XQuery language; but generating the last one is straightforward
from abstract syntax:

for $x in e, $y in e’, $z in e’’
return e’’’

for $x in e
for $y in e’
for $z in e’’
return e’’’

for $x in e
return
 for $y in e’
 return
 for $z in e’’
 return e’’’

The same simplification is applied for the quantifiers. For example, the two codes
represented below are equal; but the last definition is used in our abstract syntax:

some $x in e, $y in e’, $z in e’’ satisfies (p)

some $x in e satisfies (
 some $y in e’ satisfies (
 some $z in e’’ satisfies (p)))

The other simplification in FLWOR expressions, which is implied by Scala,
is that considering only one order by specification per expression. In fact, using
Scala orderBy() method that was defined in this project, we can not apply two

 50

order for a given sequence. For instance, the following query can not be generated
by current version of Scala:

for $a in doc(“bib.xml”)//author
order by $a/last descending $a/fist descending
return $a

This query sorts the authors first in reverse order by the last name, then if
there are two authors with the same last name, sorts them in reverse order by their
first name. Finally, it returns the alphabetically sorted authors.

An XML element in Scala is the same as an XML element in XQuery. It
may contain an attribute or a content which is Scala code or XQuery expression
itself. In this case, the non-XML expression in attribute value or element content
should be enclosed by curly braces: {}. Even if transformation of an XML ele-
ment in Scala code to an XML element in XQuery code is straightforward, but the
Scala code in attribute value or element content should be transformed to the
equivalence code in XQuery.

However, there are two different ways to create an XML element in Scala
and XQuery: direct and computed construction. But, only the first one is used in
XQuery abstract syntax. It means, either the Elem constructor or XML literals in
Scala are transformed to the XML literals in XQuery. Only for some simplifica-
tion and printing reasons, another case class ElemNode is added to the XQuery
abstract tree. This case class has the same number of arguments with the same
signification as the Elem class. Only the attributes and children are a little bit dif-
ferent for simplifying the transformation. Also, the text method is implemented
differently to print properly the XML elements inside XQuery expressions, and
vise versa.

XQuery Transformer

In this project and maybe in many other similar projects, a specified Scala
code which is processed using another processor or interpreter during execution-
time, is defined as a TypedCode variable. The TypedCode class of reflection li-
brary of Scala only supports a subset of Scala code. It means we can not write
every Scala valid code inside a TypedCode variable. For the moment, we added
only the necessary expressions for this project. For instance, we can not declare a
new variable or function inside a TypedCode variable. Moreover, conditional ex-
pressions, pattern matching expressions, and try-catch expressions, which are very
useful in Scala usual code, are not added to the TypedCode class. However, some
modern query languages such as Oracle and XQuery support these types of ex-
pressions, but they are not very essential in formal query languages.

 51

The Transform object from xquery library, defines the trans() method
which takes a TypedCode variable with a given type argument T and returns an-
other TypedCode with the same type T. The argument contains the Scala code that
should be transformed and return value contains the Scala code to invoke XQuery
processor on the XQuery generated code. In order to transform the following
Scala code to corresponding XQuery code, the trans() method is represented as
shown here. Variable tc stands for typedcode and ttc for transformed typed-
code. Both tc and ttc have the same type.

val tc:TypedCode[NodeSeq] =
 for (val b <- load(“bib.xml”) \ “book”;
 b \ “price” < 100) yield b

val ttc:TypedCode[NodeSeq] = Transform.trans(tc)

The generated TypedCode as the result of trans() method, after transformation,
should contain an Scala code which is very similar to:

load(new java.io.StringReader(
GalaxTest.run(“for $b in doc(\“bib.xml\”)//book where
$b/price < 100 return $b”)))

Finally, to evaluate the query and obtain the results, an Scala interpreter
should be invoked using Interpreter.interpret(ttc) which should have the
same result as Interpreter.interpret(tc). For the moment, such an Scala in-
terpreter does not exist. Once an Scala interpreter is implemented for TypedCode,
the final results of query processing will be attained.

The scenario of trans() method is explained here using previous example:
First of all, the code inside variable tc typed by TypedCode is not processed by
Scala compiler, instead, during execution-time an abstract syntax tree from reflec-
tion library is constructed. The method trans() from Transform object
transforms this generated Scala AST to corresponding XQuery AST. Then,
XQuery pretty printer generates the source code from XQuery AST using print
method. Afterward, an Scala code should be generated to invoke an XQuery proc-
essor (like Galax implementation). Finally, the results of XQuery processor
should be loaded in a well-known type for Scala such as NodeSeq.

Galax implementation returns the results inside an XML document on the
standard output and the method run() in GalaxTest object serializes the results
to an string. This is why, a java string reader is used to load the resulted XML
document. So, GalaxTest object in xquery library specifies a run() method
which takes an XQuery source code as string and serializes the evaluated results
to another string.

One question is that, how the external variables and methods are defined in-
side a TypedCode variable? It means, how we can transform a variable or method

 52

inside a TypedCode which is declared before. In this project, since we will use an
Scala interpreter to evaluate the results, later after the transformation, we can
delegate this responsibility to the Scala interpreter. So, Scala interpreter is respon-
sible to replace variable and method definitions using the conception of reflection.

For instance, suppose following Scala code:

val x:double = 100
…
val tc:TypedCode[NodeSeq] =
 for (val b <- load(“bib.xml”) \ “book”;
 b \ “price” < x) yield b
…
val ttc:TypedCode[NodeSeq] = Transform.trans(tc)

However, variable x is well-defined inside the TypedCode, and there is no
compile error, but variable x is not defined for XQuery processor. And the trans-
former can not transform it uniformly. In other words, the usual transformation is
not allowed in this case and transformer should not generate a code like:

load(new java.io.StringReader(GalaxTest.run(“for $b in
doc(\“bib.xml\”)//book where $b/price < x return $b”)))

Our solution is to generate following code instead of the code above:

load(new java.io.StringReader(
GalaxTest.run(“for $b in doc(\“bib.xml\”)//book where
$b/price < ”
+ x.toString() +
“ return $b”)))

When this code is evaluated by Scala interpreter, variable x will be replaced
by its value and then method run will be invoked with an well-known string. In
order to be able to do this transformation, an auxiliary node is added in XQuery
abstract syntax tree called ScalaVar. It contains the Scala code for variable, and
during printing, a new Scala code will be generated to concatenate XQuery source
code with Scala code.

Using this technique, an external variable can be used wherever inside a
TypedCode and transformation can continue transforming properly without any
difficulty. But the external methods depend on their positions in the query and
their arguments should be treated differently. Usually, the external methods that
contain literal arguments can be transformed using the same approach as external
variables. See following example for more details:

def square(x:double):double = { x * x }
…
val tc:TypedCode[NodeSeq] =
 for (val b <- load(“bib.xml”) \ “book”;
 b \ “price” < square(10)) yield b
…

 53

val ttc:TypedCode[NodeSeq] = Transform.trans(tc)

This query can be transformed in this way:

load(new java.io.StringReader(
GalaxTest.run(“for $b in doc(\“bib.xml\”)//book where
$b/price < ”
+ square(10).toString() +
“ return $b”)))

The problem produces when an external method contains an unevaluated
statement. In this case, if the unevaluated statement doesn’t have any dependant
variable, it can be transformed and process by XQuery code, otherwise, the trans-
formation would be impossible and Scala interpreter should evaluate the entire
query. The following example represents two different cases which use an exter-
nal sum function; the first one is transformable but the second one is not:

def sum(nodes:NodeSeq):double = {
 var s:double = 0
 for (val node <- nodes)
 s = s + node
 s
}
…
val tc:TypedCode[double] =
 sum(load(“bib.xml”) \ “book” \ “price”)
…
val ttc:TypedCode[double] = Transform.trans(tc)

The suggested result of transformation is shown here:

sum(load(new java.io.StringReader(
GalaxTest.run(“doc(\“bib.xml\”)//book/price”))))

But, there is not any proposition for transforming this query:

val tc:TypedCode[NodeSeq] =
 for (val b <- load(“bib.xml”) \ “book”;
 sum(b \ “price”) < 200) yield b

Because, variable b is undefined inside the method sum and Scala interpreter
is unable to evaluate the expression b \ “price” without any information of
variable b. The only solution can be replacing the definition of the external func-
tion inside the TypedCode and then transforming the entire code to the XQuery
code.

Abstract Syntax Transformation

As you know, TypedCode class in reflection library has an abstract syntax
tree which is a subset of Scala abstract syntax. On the other hand, the trans()
method of Transform object in xquery library transforms such an abstract syntax

 54

to an XQuery abstract syntax. So it is necessary to be familiar with this syntax.
This section represents the reflection abstract syntax and explains the abstract syn-
tax transformation in more details. The abstract syntax for TypedCode class is
given in the following table (table 3):

Table 3: Scala TypedCode AST

As you see, a TypedCode T can contain only a limited code (C) form Scala
AST. For instance, it can not hold an IF-THEN-ELSE statement nor MATCH-CASE
statement. Moreover, we can not define a new variable or function inside a
TypedCode (For example, val x = 2 or def f(x:int):int = { x } are not
legal inside a Typedcode). But, the provided code is quite enough for implement-
ing XML queries in Scala TypedCode. Also, TypedCode has a type which
represents the type of enclosed code. For the moment, TypedCode has a function
type (anonymous function ()=>SomeType). So every code inside a TypedCode is a
Function with empty List (Nil) as parameter and some codes as its body. The
body can be one of the codes mentioned in the above table.

The abstract syntax for Symbol(S) and Type(T) classes are represented here (see
table 4 and table 5):

Table 4: Scala Symbol AST

In this project, since transformation doesn’t consider the types, only NoType is
used form Type class.

T = TypedCode C
C = Ident S
C = Select C S
C = Literal value
C = Apply C {C}
C = TypeApply C {C}
C = Function {S} C
C = This S
C = Block {C} C
C = New C

S = Class name
S = Method name T
S = Field name T
S = TypeField name T
S = LocalValue S name T
S = LocalMethod S name T
S = NoSymbol
S = RootSymbol

 55

Table 5: Scala Type AST

However the combination of these syntaxes can produce a vast number of
Scala code, only few of them are used in practice. In fact, there are limited num-
ber rules to create Scala abstract syntax from Scala core syntax. Some of these
rules are explained here:

In Scala abstract syntax, the code to invoke a filed of an object or class has
the following format. Similarly, invoking a method without any argument has the
same syntax:

Select(c:Code, Method(m))

Using this syntax, the field or the method m is invoked on the object c and it
is equivalent to the dot notation c.m in Scala core syntax. Corresponding abstract
syntax to invoke a method m with arguments args on c is represented below:

Apply(Select(c, Method(m)), args)

The equal core syntax is: c.m(args).

An argument of a method in Scala can be a simple code such as Literal or
Ident or more complicated code such as anonymous Function. In the second
case, some local variables are defined in its parameters and a code is defined in its
body.

Using these two major rules for Scala abstract syntax, the transformation
rules form Scala abstract syntax to XQuery abstract syntax can be simplified and
even done automatically.

For example, suppose variable b is a book in our bibliography. The method
child from Node class can be called on b like: b.child. The abstract syntax for
this code is given here:

T = NoPrefix
T = NoType
T = NamedType name
T = PrefixedType T S
T = SingleType T S
T = ThisType S
T = AppliedType T {T}
T = TypeBounds T T
T = MethodType {T} T
T = PolyType {S} {T, T} T
T = ImplicitMethodType {T} T

 56

Select(Ident(LocalValue(“b”)), Method(“child”))

In this representation, we overlooked the type and owner of variable b and
the type of method child. This information does not influence the transformation
rules. As you remember, b.child in Scala is equivalent to b/* in XQuery. So the
trans() function transforms the above Scala abstract syntax into a BinOp node in
XQuery abstract syntax:

BinOp(SLASH, Var(“b”), Ident(“*”))

Another example represents how a map method is transformed to a FLWOR
expression. Suppose variable biblio contains all books from our bibliography.
Following code only yields all of the books from biblio:

biblio.map(b => b)

In abstract syntax, this code is equivalent to:

Apply(Select(Ident(LocalValue(“biblio”)), Method(“map”)),
 Function(Ident(LocalValue(“b”)),
 Ident(LocalValue(“b”))))

Corresponding XQuery abstract syntax after transformation is:

For(Var(“b”), None, Var(“biblio”), None, None, Var(“b”))

In other words, an Scala abstract syntax like:

Apply(Select(c:Code, Method(“map”)),
 Function(x:Symbol, y:Code))

is equivalent to a For node in XQuery:

For(x, None, T(c), None, None, T(y))

In this transformation both c and y (Scala Code) should be transformed and re-
placed by their equivalent XQuery code.

 57

Chapter 6

Future Works

First of all, I would like to present some enrichments to the Sequence Com-
prehensions. In this project, I added some original lambda functions similar to the
let and order by clauses from XQuery language in xml library of Scala. These
functions can be imported to the Scala sweet syntax to generalize existing se-
quence comprehensions. In fact using these functions a for-comprehension will be
capable to do exactly what we expect from FLOWR expressions. Moreover, some
new concepts can be introduced in Scala sequence structure, such as sequence
comparisons and sequence arithmetic and logic operations. In this project, se-
quence comparisons are only added into the xml library.

Some enhancements are proposed for xml library of Scala:

• XML QNames: In the current version of xml library in Scala, the famous
XML QNames (name of XML elements, attributes,…) are considered as
strings. If this type can be replaced by another literal type such as QName,
then XML and XPath representation in Scala will be more elegant.

• XML Attributes: In Scala, XML attributes are treated differently form
XML nodes, while in almost all data models proposed for XML this is not
the case. An XML attribute like an XML element has a QName and a
value similar to the element content that may hold any type and not only
string. Moreover, an XML attribute without any XML element is not
meaningful and a temporary element should be constructed to enclose the
attribute.

• Sequence Comprehensions: The usual for-comprehensions are composed
from an optional filter function followed by a required map or flatMap
function. In the case of node sequences, flatMap function can cover the
whole functionality of map function (as you know each single node is a se-
quence of only one node). Furthermore, by constructing a for-
comprehension based on filter and flatMap functions for NodeSeq
class, the user can expect the same result as FLWOR expressions. In fact,
yield statement will collect the sequences in the same way as return
clause.

• Lambda Functions: Other problem related to map and flatMap functions
in NodeSeq class is that, their return values should be necessarily an Scala
node or a sequence of Scala nodes. This constraint implies many limita-
tions because we are not able to yield the strings, numeric values and so
on. An ideal solution would be authorizing them to yield Any. In fact, map

 58

yields Any and flatMap yields Seq[Any]. But I am not sure if this solution
could be realistic.

• Path Expressions: The document order and XPath expressions are not en-
tirely supported by xml library of Scala. There is only a limited access
from one node to the other nodes in a document. For instance, there is not
any function to access the parent of a given node.

• Node Identity: More important, Scala doesn’t generate a unique identity
for a created node. In fact, the node identity should be created either when
an XML document is loaded or when a node is created directly. Once this
feature is supported, the node comparisons can also be introduced in Scala.

Finally, some modifications that improve this project are represented:

• Scala TypedCode Extension: The Scala code that can be transformed to
XQuery code should be extended; by adding the useful classes in Code
class of reflection library. Current version supports only identifiers, liter-
als, method selection, argument apply, functions, blocks, and new instance
creation. Other expressions that can be added and are supported by
XQuery language are: conditional expressions, pattern matching, new
variable and method definition. The XML literals are supported partially;
for instance, XML attributes can not be generated.

• XQuery Syntax Extension: XQuery tokens and abstract syntax tree can
be completed by adding the other expressions. Once there is a correspon-
dence between the abstract syntax of Scala and the abstract syntax of
XQuery, the transformation rule can also be added.

• TypedCode Limitations: The parameter type of a TypedCode must accept
any Scala legal type, instead of anonymous functions. Other limitation is
that the variables with a TypedCode type can not be defined inside the
other functions; for instance, inside the main function. Another problem of
TypedCode class is that, we can not define two polymorphic methods with
a TypedCode argument and different parameter types, because Scala rec-
ognizes a double function definition. This problem in this project prevents
differently transforming of different TypedCodes. For instance, a Typed-
Code that contains a double should be transformed differently from a string
one or node one.

• XQuery library Extension: Some aggregation functions and distinct-
values() function are already added in an auxiliary library and are acces-
sible for Scala programmers. Other required functions from different query
languages can also be added in the same manner to improve Scala query-
ing capabilities.

• Scala Interpreter: The next necessary step would be certainly implement-
ing an Scala interpreter for evaluating TypedCode class.

• Relational Databases: Finally, the other similar project is defining and
transforming Scala semi-structured queries for relational database interac-
tions.

 59

Conclusion

Scala programming language evolution is extremely fast. All powerful exist-
ing functionalities of Scala as well as all recently incorporated features make it
easier to exploit academic, research and development areas. Comparing with other
languages, (such as XML API of Java or XLinq project of .Net [9]) Scala’s XML
library is finely adapted to the standards proposed by W3C Consortium, and is
simply flexible to provide additional norms related to this technology. In addition,
this project includes some useful methods like sequence comparisons and se-
quence ordering into this library to increase querying capabilities.

This project combines both the provided facilities from XML library and the
integrated query features of Scala to realize an XML query language, then im-
proves the performance of the XML query processing in Scala using query
shipping. One of our objectives in this project was reducing transfer-time and
memory-consumption of XML data in Scala application.

This project proposed the transformation rules from Scala core syntax to
XQuery core syntax. Only Scala’s XML library and relevant expressions are sup-
ported in this transformation. In this project a compact and exact abstract syntax
tree for XQuery language, based on XQuery EBNF, was introduced. Only essen-
tial expressions from XQuery are considered in this project. However, the
proposed abstract syntax is fairly extensible and can be completed later as much
as required. Due to the generality of the Scala’s XML expressions, these expres-
sions are shared between Scala and XQuery languages.

Since there is not an standard implementation for XQuery language, several
existing XQuery processors such as Galax, eXist, and Saxon were analyzed in this
project. We preferred Galax implementation for XML query processing because it
provides useful APIs and for some simplicity reasons. However, Galax is a project
under development but it benefits from the most important aspects of XQuery
such as data model, static type system and optimization.

More importantly, a simple and efficient transformer from Scala abstract
code to XQuery abstract code was implemented in this project. In order to per-
form the transformation at execution-time, another abstract syntax was proposed
for Scala code from reflection library. This abstract syntax was expanded during
this project to cover all necessary Scala expressions for XML query manipulation.

To conclude, Scala programming language possesses sufficient facilities to
interact with native XML database systems. On the other hand, Scala transforma-
tion to XQuery expressions is absolutely achievable. However in this project we
attained almost all our objectives mentioned in the second chapter, but one fun-

 60

damental issue that remains undecided for Scala developers is that: In reality,
which part of Scala code should be transformed into XQuery code and when
query shipping is preferable? It means that, Scala programmer decides which part
of Scala code should be evaluated by Scala interpreter and which part by XQuery
processor to obtain efficient results.

Acknowledgements

I would like to thank my project supervisor, Prof. Martin Odersky, and my
project assistant, Gilles Dubochet, for initiating the idea of this project and for
their helps, advises and supports. I would also like to thank Burak Emir for his
key advices about xml library of Scala. I feel extremely grateful for the opportu-
nity to spend a whole semester working on a project in a field of my personal
interest. And I hope, this project would be a good start point in the new generation
of programming languages and XML technologies.

 61

References

1. M. Odersky, et al., “An Overview of the Scala Programming Language”,
LAMP-EPFL, 2004.

2. M. Odersky, et al., “The Scala Language Specification”, LAMP-EPFL,
2006.

3. D. Chamberlin, et al., “XQuery from the Experts”, Addison-Wesley, 2004.
4. F. Yergeau, T. Bray, et al., “Extensible Markup Language (XML) 1.0

(Third Edition)”, W3C Recommendation, 2004.
5. A. Berglund, S. Boag, et al., “XML Path Language (XPath) Version 2.0”,

W3C Candidate Recommendation, 2005.
6. S. Boag, D. Chamberlin, et al., “XQuery 1.0: An XML Query Language”,

W3C Candidate Recommendation, 2005.
7. D. Box, A. Hejlsberg, “The LINQ Project - .NET Language Integrated

Query”, Microsoft Corporation, 2005.
8. “The .NET Standard Query Operators”, Microsoft Corporation, 2005.
9. “XLinq .NET Language Integrated Query from XML Data”, Microsoft

Corporation, 2005.
10. M. Fernandez, J. Simeon, and P. Wadler, “A semi-monad for semi-

structured data”, 2001.
11. D. Kossmann and M. Franklin, “A study of Query Execution Strategies for

Client-Server Database Systems”, 1996.
12. L. Wong, “Kleisli, a Functional Query System”, 1998.
13. G. Dubochet, “The Slinks Language”, Master Thesis, 2005.
14. M. Fernández, J. Siméon, “The Galax System”, 2005.

