
Implementing Example-based Tools for Preference-based
Search ∗

Paolo Viappiani
Artificial Intelligence Laboratory (LIA)

Ecole Polytechnique Fédérale de Lausanne
(EPFL)

1015 Lausanne, Switzerland
paolo.viappiani@epfl.ch

Boi Faltings
Artificial Intelligence Laboratory (LIA)

Ecole Polytechnique Fédérale de Lausanne
(EPFL)

1015 Lausanne, Switzerland
boi.faltings@epfl.ch

ABSTRACT
Preference-based search is the problem of finding an item
that matches best with a user’s preferences. User studies
show that example-based tools for preference-based search
can achieve significantly higher accuracy when they are com-
plemented with suggestions chosen to inform users about the
available choices. We present FlatFinder, an implementa-
tion of an example-based tool and discuss how such a tool
as well as suggestions can be efficiently implemented even
for large product databases.

1. INTRODUCTION
People frequently use the world-wide web to search through
a large collection of items. The most common search facil-
ity available on the web is based on a form that is directly
mapped to a database query and returns a ranked list of the
most suitable options. The user has the option to return to
the initial page and change his preferences and then carry
out a new search. This is the case for example when search-
ing for flights on the most popular travel web sites12. Such
tools are only as good as the query the user formulates. A
study [6] has shown that among the users of such sites only
18% are satisfied with their final choice.

The goal of preference-based search should be to enable the
user to make an accurate decision, meaning that the chosen
item is actually the most preferred one. Accuracy is impor-
tant in e-commerce for many reasons: it leads to an increase
of user satisfaction and confidence and thus more repeated
visits; customers would even be willing to pay more.

In most cases, users do not know exactly what they are

∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.6SP. Supported by ACM.
1http://www.travelocity.com/
2http://www.expedia.com

looking for: they might consider different trade-offs or they
might even have conflicting desires about the features the
item should have. In fact psychological studies have shown
that people construct their preferences [14] while learning
about the available products. Therefore preference-based
search should also help users in formulating accurate pref-
erences.

We believe that the key issues for implementing successful
preference-based search systems are:

1. preference modeling: the formalism chosen to model
preferences

2. preference elicitation: how to acquire or learn prefer-
ences from the user

3. usability: ease of use of the interface

4. scalability: do the algorithms used by the tool scale up
for large databases?

The first point, preference modeling, requires the designer to
choose from possible preference representations. The user
expresses the preferences using an interface by qualitative
statements; these are then translated into the internal pref-
erence model.

Preference elicitation is crucial. Decision theory [11] pro-
vides a method that guarantees perfect decision accuracy
by first eliciting a model of the user’s preferences through a
series of questions, and then determining the optimal choice
based on this model. However, even for simple items such as
cameras, eliciting such a model would require hundreds of
questions, and few users would be ready to undergo such a
lengthy process. A major challenge is that in an interaction
on the WWW, few users are willing to tolerate more than
5-10 interaction cycles before reaching a result. Therefore,
we need to provide users a concise way to express prefer-
ences that would be usable. At the same time we would
benefit from approaches able to mitigate the inaccuracies in-
evitably created when translating a user’s qualitative state-
ment into a quantitative model of preferences suitable for
ranking items.

First, we describe the example-critiquing approach to pref-
erence based search. We then discuss how to model prefer-
ences and to compute suggestions. Finally we will discuss

Initial

preferences

System shows K

examples

User revises the

preference model by

critiquing examples

Userpicks the final

choice

Figure 1: Example-critiquing interaction. The dark box is
the computer’s action, the other boxes show actions of the
user.

Figure 2: Isy-travel is an example-critiquing tool for plan-
ning business-trips. Here the user is planning a one-day trip
from Geneva to Hamburg. The preference model is shown at
the bottom, and the user can state additional preferences by
clicking on features of the shown example.

how to implement scalable tools and present a prototype for
student accommodation search called FlatF inder.

1.1 Example-critiquing
People are usually not able to state preferences up-front and
behavioral decision theory studies [14] have shown that peo-
ple construct their preferences as they see the available op-
tions. The elicitation through an interaction based on exam-
ples is therefore faster and often more precise than a com-
prehensive preference elicitation procedure; the latter may
construct its model based on an incoherent set of answers!

Figure 2 shows Isy-travel, a commercial tool for business
travelers [16]. Here, the user is shown examples of options
that fit the current preference model well. The idea is that
an example either is the most preferred one, or there is some
aspect in which it can be improved. Thus, on any of the
examples, any attribute can be selected as a basis for cri-
tiquing. For instance, if the arrival time is too late, then this
can be critiqued. The critique then becomes an additional
preference in the model.

This form of example critiquing has been proposed by var-

ious researchers, including the ATA system of Linden et
al. [13], SmartClient [16], and more recently dynamic cri-
tiquing [20].

The advantage of such a system in the elicitation of pref-
erences is that examples help users reason about their own
preferences, revise them if are inconsistent, have an idea of
which preferences can be satisfied and make trade-off deci-
sions.

Example-critiquing has been shown to provide a means for
effective preference elicitation. Pu and Li [15] have shown
that example-critiquing with its tradeoff support enables
consumers to more accurately find what they want (with
up to 57% increase in accuracy) and be more confident in
their choices, while requiring a level of cognitive effort that
is comparable to simple interfaces such as a ranked list [18].

2. INCREMENTAL PREFERENCE MODEL
ACQUISITION

In example-critiquing, a preference is stated as reaction to
displayed options. A critiques can either be negative reac-
tions to the options shown, when none of them satisfy the
preference, or positive reactions, when an option satisfies the
preference.

For instance, if the tool shows the user examples that all
arrive at London Stansted airport, and she requests to land
in Heathrow, that critique would be a negative reaction. If
the system indeed showed one flight landing in Heathrow,
by stating that preference she would be positively reacting
to the shown examples.

If certain preferences are missing from the current model of
the user, the system provides examples that do not satisfy
those unknown preferences. If the user is aware of all of
her preferences, she can realize the necessity to state them
to the system by posting what we have called a negative
reaction critique. However our intuition is that this is not
always the case, because the user might not not know all
the available options. Moreover, stating a preference costs
some user effort (in our prototype, 2 selections and 2 clicks)
and rationally she would do that only if she perceives this
as beneficial.

To use a metaphor, the process of example-critiquing is hill-
climbing: the user states preferences as long as he perceives
it as bringing to a better solution. However, the process
might end in a local optimum: a situation in which the
user can no longer see potential improvement. For exam-
ple, a user looking for a notebook computer might start
looking for a low price, and thus find that all models weigh
about 3 kg. Since all of the presented models have about
the same weight, he or she might never bother to look for
lighter models. This influence of current examples prevents
the user from refocussing the search in another direction;
this is known as the anchoring effect [23].

For these reasons we display two sets of examples:

• candidate examples that are optimal for the prefer-
ence model, and

• suggested examples that are chosen to stimulate the
expression of preferences.

We conducted user studies to evaluate the decision accuracy
of example critiquing with and without suggestions. We
found [19] that with the aid of suggestions, users state more
preferences and, more importantly, achieve a much higher
decision accuracy (up to 70%). Subsequently, we looked at
the logs of the user study to check frequency of the different
type of critiquing described before. In most of the cases
(55%) a preference is stated as positive critiques.

2.1 Optimal candidate examples
Preference-based search looks for the option that best sat-
isfies a preference model. The best options can be found by
sorting the database items according to their cost. In the
database community [7] this is known as the top-k query.

Note that because of the translation from qualitative state-
ments into a quantitative preferences, the resulting cost func-
tion and the induced ranking are inaccurate. A common
approach in many web search applications is to compensate
by showing not just one, but a set of k options. Faltings
et al. in [8] show that given a bound on the error of the
representation, it is possible to compute a minimum k such
that the user can find the truly best option among this set
of k possibilities. Interestingly, while k grows with the error
and the number of preferences, it is independent of the to-
tal number of options available, so that the approach scales
even for searches in large collections.

2.2 Suggestions: diversity & lookahead prin-
ciple

The importance of the diversity of the example shown was
recognized by Linden, S. Hanks and N. Lesh ([13]) who ex-
plicitly generated examples that showed the extreme values
of certain attributes, called extreme examples. However, an
extreme example might often be an unreasonable choice: it
could be a cheap flight that leaves in the early morning, a
student accommodation where the student has to work for
the family, an apartment extremely far from the city. More-
over, in problems with many attributes, there will too many
extreme or diverse examples to choose from, while we have
to limit the display of examples to few of them.

We assume that user is minimizing her own effort and will
add preferences to the model only when she can expect them
to have an impact on the solutions. This is the case when:

• she can see several options that differ in a possible
preference, and

• these options are relevant, i.e. they could be reason-
able choices, and

• these options are not already optimal, so a new pref-
erence is required to make them optimal.

In all other cases, stating an additional preference is likely
to be irrelevant. When all options would lead to the same
evaluation, or when the preference only has an effect on

options that would not be eligible anyway, stating it would
only be wasted effort. This leads us to the following look-
ahead principle as a basis for suggestion strategies:

Suggestions should not be optimal under the cur-
rent preference model, but should provide a high
likelihood of optimality when an additional pref-
erence is added.

We stress that this is a heuristic principle based on assump-
tions about human behavior that we cannot formally prove.
However the high decision accuracy achieved in user studies
[19] is an important motivation. Furthermore, examining
the incremental critiques more in detail in the user studies,
we found that in most cases there was a displayed example
that became optimal because of the addition of a preference.
This provides another clue of the validity of the principle.

In the following sections we present our model of treating
preferences, the suggestion strategies, the implementation
and the scalability issues.

3. THEORETICAL MODEL
3.1 Modeling items and preferences
We assume that items are modeled by a fixed set of m at-
tributes that each take values in associated domains. Do-
mains can be enumerated, consisting of a set of discrete el-
ements, or numeric. In this paper, we consider preferences
on individual attributes and independent of one another (i.e.
we do not consider conditional preferences). A preference r
is an order relation of the values of an attribute a.

For a practical preference-based search tool, it is convenient
to express preferences in a concise way. We consider total
orders (each pair is comparable) and express them by a nu-
merical cost function c, dk → <+, that maps a domain value
dk of an attribute ak to a real number. A preference always
applies to the same attribute ak; we use the notation ci(o)
to express the cost that the function assigns to the value of
option o for that attribute.

Whenever o1 is preferred to o2 according to preference i, the
first will have lower cost (for preference i) than the second:
ci(o1) < ci(o2).

An overall ranking of options can be obtained by combin-
ing the penalty functions for all stated preferences. Some
researchers [9] have proposed the use of machine learning
algorithms for finding the best aggregate function for a par-
ticular user. In our systems, we combine them using a
weighted sum, which corresponds well to standard multi-
attribute utility theory [11]. Thus, if Rc = {c1, .., cs} is the
set of the cost functions of all preferences that the user has
stated, we compute the cost C(o) =

P
ci∈Rc

wi · ci(o). Op-
tion o1 is preferred over option o2 whenever it has a lower
cost, i.e. C(o1) < C(o2).

The user states preferences in a qualitative way (for example
“the price should be less than 500 dollar”). We map these
qualitative statements into parameterized functions that are
standardized to fit average users. These are chosen with
respect to the application domain.

o1o2

domain

1

r

Figure 3: For an ordered attribute, a new preference will
prefer o1 over o2 if the reference value r falls between the
values of the attribute, and the preference is of the right
polarity.

Similar models for modeling preferences in databases have
been proposed in [12]. Preference modeling for example-
critiquing is discussed in more detail in [17].

3.2 Model-based Suggestion Strategy
In [19] we proposed different strategies that use the concept
of pareto-optimality to implement the look-ahead principle
stated in the introduction: suggestions should not be op-
timal yet, but have a high likelihood of becoming optimal
when an additional preference is added. We call them model-
based suggestion strategies because they specifically choose
examples to stimulate the expression of additional prefer-
ences based on the current preference model.

We model preferences by standardized functions that cor-
rectly reflect the preference order of individual attribute
values but may be numerically inaccurate. When gener-
ating suggestions, we would like to use a model that is not
sensitive to this numerical error. Pareto-optimality is the
strongest concept that would be applicable regardless of the
numerical details of the penalty functions.

An option o is dominated by another option ō (equiva-
lently we say that ō dominates o) if

• ō is not worse than o according to all preferences in
the preference model: ∀ci ∈ R : ci(ō) ≤ ci(o)

• ō is strictly better than o for at least one preference:
∃cj ∈ R : cj(ō) < cj(o)

An option o is pareto-optimal if it is not dominated by
any other option. The dominance relation is a partial or-
der of the options that we will denote with the Â operator;
Pareto-optimal options can also be seen as the set of maxi-
mal options with respect to the dominance relation.

In our applications, users initially state only a subset R of
their true preference model R. When a preference is added,
dominated options with respect to R can become Pareto-
optimal. The look-ahead principle can be formulated as fol-
lows: an ideal suggestion is an option that is Pareto-optimal
with respect to the full preference model R, but is dominated
in R, the partial preference model.

The model based suggestions try to guess the chance that a

(dominated) option has to become Pareto optimal. To be-
come pareto-optimal when a new preference is added to the
model, an option has to be strictly better than any domi-
nating option with respect to this new preference.

We use a heuristic estimation of the probability that a hid-
den preference on attribute ai makes o better than o+ ac-
cording to that preference, hence escaping the dominance
relation. Such a heuristic considers the difference between
the attribute values: the higher this difference, the more
likely that new preference will make the option preferred.
The reasoning is illustrated in Figure 3. The chances that
a new preference will treat o1 and o2 differently depends
on the difference between their values. Assuming that the
shape of such a penalty function is a step function with
sharp increase from 0 to 1, if the reference point falls at
any point with equal probability, the chance of breaking the
dominance is directly proportional to this difference.

4. ALGORITHMS AND SCALABILITY
In this section we analyze the algorithms to compute the
candidates and suggestion examples and their complexity;
we consider the problem of scalability and show some faster
approximations.

4.1 Generation of Candidates
As said earlier, candidates are the best examples correspond-
ing to the current set of preferences R. The generation of
candidates can be addressed by a a top-k query to the data-
base. The set of options retrieved {o1, .., ok} is such that
C(o1) ≤ C(o2) ≤ .. ≤ C(ok) and for any other option ō in
the database C(ō) ≥ C(ok).

While the trivial approach would compute the score of each
option in the database, the Fagin algorithm [7] can do this

with middleware complexity O(N (m−1)/mk1/m) where m is
the number of attributes and k the number of candidates we
want to generate. This algorithm can be applied to a differ-
ent aggregate function as long as it satisfies some properties
(monotonicity, strictness).

4.2 Generation of Suggestions
The model based strategy requires the analysis of the domi-
nance binary relation, by making a series of pairwise checks
between the options of the catalog. Each one evaluates two
options, say o1 and o2, to determine whether o1 dominates
o2, o2 dominates o1, they are equally preferred for all the
preferences, or they are not comparable (i.e. there is no
dominance in either direction). This is done by considering
iteratively each of the preferences and comparing o1 and o2

for at most m comparisons (as soon as two preferences give
opposite order of o1 and o2, they are not comparable), where
m is the number of preferences, so the complexity is O(m).

Since the dominance relation is a partial order, we can ex-
ploit asymmetry and transitivity to save some of the pair-
wise checks, however in the worst case we have to make
n(n− 1)/2 checks. So the complexity of the complete dom-
inance analysis is O(n2m).

The algorithm for model-based suggestions is presented in
the Algorithm 1. Update is responsible for updating the

value for the estimation of the probability p(o, ai) of becom-
ing Pareto optimal given that the missing preference is on ai;
its precise definition depends on the particular assumptions
on the possible preferences.

In the probabilistic strategy, the update multiplies the cur-
rent value by wai ∗ δ(o, od), where δ(o, od) is the heuristic
estimation presented in the previous section (based on the
normalized distance between the attribute values) and wai

is a weight representing the probability that there is a pref-
erence on that attribute. Intuitively the more dominating
options there are, the more p(o, ai) decreases. For more de-
tails, refer to Viappiani et. al. [24].

In another model-based strategy, the attribute strategy, we
assume that the preferences that the users can state are
only of the kind LessThan or GreaterThan (the user cannot
express preferences for a value in the middle), therefore we
check whether the current option has a value that is either
smaller or bigger than any value of the dominating options:
only in this case can a preference break all the dominance
relations simultaneously. In this strategy, update will take
the minimum of the absolute values of the δ̄, and returns 0
if they are of different sign.

Algorithm 1: Model-based suggestions(int n)

δ heuristics based on the normalized differences

for all option ∈ OPTIONS do
p(option) = 0
for all ai ∈ Au = {attributes with no preferences} do

p(option, ai) = 1 //contribution for attribute ai

for all od ∈ OD = {od ∈ O : od Â option} do
//we iterate over the set of options that
dominates o
δ̄ ← δai(o, od)
p(option, ai) = update(p(option, ai), δ̄)

p(option) = 1−Qai
(1− p(option, ai))

suggList ← order options according p
return first n options in suggList;

Our model based strategies have complexity O(nmd), where
m is the number of attributes and d is the number of dom-
inating options. It is difficult to calculate an average value
for d in function of n, because it depends on the data and
correlation between attribute values. While generally the
set of dominating options is much smaller than the set of
options, in the worst case they can be a linear fraction of
n. Sorting the options according to the resulting probability
(to select the best n) costs nlogn in term of complexity.

The overall complexity is O(n2): while this complexity was
not a problem for our prototype, we expect it to be more
problematic as the item collections grow. Approximations
will be necessary for large databases.

We propose the following approximations:

• to select suggestions from the top k options

• to replace pareto-dominance with utility dominance

• to assume dominating options as a fixed number of
options at the top

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160 180

S
ug

ge
st

io
ns

Rank position

Suggestions by rank position

Figure 4: The position of suggestions in the overall rank-
ing; repeated queries are performed on a database of student
accommodations with 187 options, 3 model-based suggestions
are retrieved. On average, 50% of the suggestions are in the
top 16% of the overall ranking, 80% in the top 47%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

F
ra

ct
io

n
bo

un
d

k/
si

ze

Catalog size

Fraction of Suggestions in the top-k query

50% bound
80% bound

Figure 5: For different size of catalogs, the bound k re-
quired to guarantee that respectively 50% and 80% of the
suggestions are in the top k positions.

4.2.1 Approximation 1: select suggestions from the
top

From experimental tests, it emerged that suggestions are not
evenly distributed according to their current costs, but they
are often at the top. This is not surprising: since suggestions
are options that should be reasonable, we will expect them
to be not too far in the ranking from the current candidates.

In the actual use of the preference based search tool on the
apartment database used by FlatFinder (the prototype pre-
sented in Section 5.1), in more than the 80% of the cases
suggestions are among the top half of the options (ordered
according to the optimal query) and in more than the 60%
in the top quarter of the options.

We considered how to mitigate the impact of very large data
sets by only considering suggestions in the subset of the cat-

alog that contains the top-k options for the preference query.
Since an option can be dominated only by options that have
lower cost C(), the preliminary phase of dominance analysis
is also simplified. We can run the algorithms presented be-
fore on a database containing only the options returned by
the top-k query with a given bound kb. Using this approxi-
mation, the computation is going to do O(k2

b) checks.

We ran several generations of suggestions with our data-
base of student accommodation and random databases of
different size. We look for the bound kb for which a certain
fraction of suggestions lie in the top kb positions in the rank-
ing. Choosing the bound kb in this way, we can guarantee a
limited decrease in the quality of suggestions that does not
depend on the size of the catalog.

Figure 5 shows that the bound grows more slowly as the
catalog size increases. Using interpolation we found that
the bound for ensuring 50% of suggestions approximately in-
creases as the function 2.1nlg(1.5). Substituting this function
into k2

b , we found that the complexity of the computation
of suggestions is O(n1.2), that is significantly lower than n2.
Empirically we found that these bounds for random data
are higher than with real data, with correlation between the
attributes values. Figure 4 shows the rank position of the
suggestions retrieved on a database of student accommoda-
tions: 50% of the suggestions are in the top 16%, 80% in the
top 47%.

This method results in a significant improvement in com-
plexity. However, such complexity might be still costly for
some applications.

4.2.2 Approximation 2: utility dominance
Instead of pareto dominance, we can use other forms of dom-
inance. In particular, we might use the total ordering estab-
lished by the combination function defined in the preference
modeling formalism, such as a weighted sum C(). We call
this utility-domination, and the utility-optimal option is the
most preferred one.

An option can become utility-optimal only if it is strictly
better than all options that currently utility-dominate it,
although this is not a sufficient condition. The utility domi-
nance approximation consists of checking the probability of
breaking utility dominance. The advantage is that the dom-
inating set is easily computed by simply checking the cost:
once we have the ranking for the current preferences, the
utility-dominating set will be composed by all the options
prior in the ranking.

However, we still have to make, for each option, a compari-
son to its utility-dominators. These are 1 for the first option
in the rank, 2 for the second, and n for the last. So, even if
the calculation of dominators is faster, this strategy is still
quadratic O(n2). We have a total complexity of O(n2), of
the same order as the complete method, even if faster in
practice.

4.2.3 Approximation 3: top-domination
This approximation strategy looks at the probability of break-
ing the dominance with the options at the top of the rank-
ing. This method requires testing each option against a fixed

number kd of best options to check if their dominance could
be broken. We don’t have to look for the dominating set:
these are always the options at the top in the ranking. For
each option we need to make a constant number of compar-
isons to these top options, on m attributes. Therefore this
method is much faster with a complexity O(nm).

The difference with approximation 1 is that there we tested
only a subset of the options against their actual dominating
set, while here we test all the options against a constant set
of dominators.

4.3 Evaluation of the Approximations
We evaluated the approximated techniques on the ability to
find Pareto-optimal options considering the unknown pref-
erences. We ran simulations with the apartment database
and with randomly generated data. We generated a random
model consisting of 5 preferences and we calculated the num-
ber of times the method successfully fulfilled our lookahead
strategy (the hit rate) when some the preferences are not
stated yet (i.e. the frequency of finding, among the sugges-
tions selected, an option that became Pareto-optimal by the
addition of one among the missing preferences).

method note hit rate
model-based suggestions 80.8%

approximation 1 kb = 50% 74.5%
approximation 2 utilitarian 73.2%
approximation 3 kd=3 25%
approximation 3 kd=6 70.1%
no suggestions more candidates 33%

Table 1: The hit-rate according to our look-ahead
principle for the different approximation strategies
and the complete method of generation of sugges-
tions. For comparison, we show the case in which
we simply display more candidates.

The first approximation gives almost the same hit rate as
the complete search, so it could often be a reasonable choice.
In cases in which a very low complexity is required, the third
approximation with kd = 6 can be considered: it is much
faster and still achieves a significantly greater hit rate that
just showing more options from the top. Utility-dominance
does not provide a good balance between computation ben-
efit and losses and would rarely be the method of choice.

5. PROTOTYPE IMPLEMENTATION
Example-critiquing provides specific support for preference
construction through suggestions and support for tradeoffs.
These require separate ranking mechanisms that are not eas-
ily implementable on top of a conventional database system.

We therefore use a separate preference-based search layer, as
shown in Figure 6. Through a Java API, it can be used for
preference-based search on any collection of items defined
in terms of attributes, domains and the possible penalty
functions for expressing preferences. The preferences are
expressed using a web interface that allows only qualitative
statements and then translated to the internal representa-
tion. The platform allows the designer to choose from a
set of parameterized functions that implement the possible
preferences.

data

source

configuration files

catalog

descriptor

ECATALOG API

preference

management

generic catalog

modeler

Servlet

(Controllers)

JSP pages

search

configuration

search evaluator REQUEST

RESPONSE

SERVER

Figure 6: The architecture of ECATALOG, the generic pref-
erence based search tool.

We separated the design of visualization and user interac-
tion from the preference-based search engine. Our architec-
ture utilizes the Model-View-Controller (MVC) design pat-
tern, implemented with the Java Server Pages (JSP model
2). It allows to separate the application logic (the deci-
sion problem model defined in our API) from the View (the
JSP pages). This makes the framework easy to be extended
and simplifies the programming by focusing at one aspect
at time.

5.1 FlatFinder
FlatFinder is a web application for finding student housing
that uses example-critiquing interaction. It uses actual of-
fers of student housing from an university database that is
updated daily, and usually contains about 200 options.

Each option is modeled by 10 attributes: type of accommo-
dation (room in a family house, room in a shared apartment,
studio apartment, apartment), rent, number of rooms, fur-
nished (or not), type of bathroom (private or shared), type
of kitchen (shared, private), transportation available (none,
bus, subway, commuter train), distance to the university and
distance to the town center.

Preferences are combined using a weighted sum. For numer-
ical attributes, the tool allows preferences consisting of a re-
lational operator (less than, equal, greater than), a threshold
value and an importance weight between 1-5; for example,
“distance to university less than 10 minutes” with impor-
tance 4. The penalty function LessThan(x,k) for numerical
domains takes the form of a ramp starting at k: the penalty
is 0 if x is less than k, and grows linearly after this point.
The result is multiplied by the importance.

For the price attribute, the tool uses a slightly different
penalty function consisting of a ramp with small slope be-
low and high slope above a threshold value. For discrete
attributes, a preference specifies that a certain value is pre-
ferred with a certain importance value (the other values are
supposed to be equally disliked with the same violation de-
gree). The system maintains the current set of preferences,
and the user can state additional preferences, change the ref-
erence value of existing preferences, or remove one or more
of the preferences at every interaction cycle.

The interaction starts with an empty set of preferences;
the user is presented with an introductory page and has
to choose one attribute on which to state the first prefer-
ence. Then the dialogue proceeds with the standard page
of the interface. It displays three panels: the Preference
panel where the user sets and revises his preferences, and
can change their importance. Once the changes have been
made, the Search button updates the Result panel, where
the results are shown: the best options (candidates) accord-
ing to the user’s preferences and suggestions. The user can
store options in a basket for later comparison; at the end of
the interaction, the user will chooses one among the options
saved in the basket and checkout.

6. RELATED WORKS
Modeling and reasoning with preferences has been studied
by a number of authors [12, 5]. Database researchers [1]
have studied query systems that evaluate predicates with a
continuous degree of validity and allow partial matches, as
in fuzzy sql (FSQL) [3]. Top-k queries are queries that find
records with highest score [7]. Preferences received lately at-
tention by the AI community as well; algorithms have been
proposed to find the best configuration based on qualita-
tive representation of preferences in configuration [10] or as
partial orders [2].

Example critiquing was first proposed in [22] and has since
been used in several recommender systems, such as FindMe [4],
ATA [13], SmartClient [16], ExpertClerk [21]. The ATA sys-
tem [13] is particularly important, as it was the first to in-
corporate the notion of suggestions, which is crucial to our
work. In dynamic critiquing [20], a popular family of exam-
ple critiquing interfaces, a metaphor of navigation through
the product space is implemented; the interface proposes
pre-computed critiques (simple and compound) that can be
selected by the users.

7. CONCLUSIONS
Preference-based search is a ubiquitous problem on the web.
We have presented tools based on examples that can achieve
higher decision accuracy than the traditional form filling ap-
proach. User studies show that such tools can greatly help
the user, especially when they integrate the display of sug-
gestions that make the users aware of possible choices and
stimulate the preferences expression. The principle we fol-
low is that good suggestions are items that become optimal
when other possible preferences are considered. Our sugges-
tion strategies are based on the concept of Pareto optimality.

However few web sites currently support preference based
search. The main issue is that such personalized search
tools are hard to implement for large databases and user
populations. To overcome this problem, we presented three
approximations that simplify the computation, making the
generation of suggestions scale.

The first approximation considers possible suggestions only
in the top options returned by a top-k query. It maintained
a hit-rate (74.5%) close to the optimum with a significant
reduction of the number of pairwise checks required in the
computation. The second considers utility dominance in-
stead of the standard dominance relation, simplifying the

computation of dominating options. However, it as lower
hit-rate (73%) and a higher complexity.

Finally, the third considers as dominating options the ones
with lowest cost. It can be a reasonable choice for large
databases as it achieves a very fast computation of sugges-
tions with a complexity of O(nm) and provides a hit rate of
70.1%

8. REFERENCES
[1] R. Agrawal and E. L. Wimmers. A framework for

expressing and combining preferences. In SIGMOD
Conference 2000, pages 207–306, 2000.

[2] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos,
and D. Poole. Preference-based constrained
optimization with CP-nets. Computational
Intelligence, Special Issue on Preferences in AI and
CP, to appear, 2005.

[3] B. P. Buckles and F. E. Petry. Fuzzy databases in the
new era. In SAC, pages 497–502, 1995.

[4] R. D. Burke, K. J. Hammond, and B. C. Young. The
FindMe approach to assisted browsing. IEEE Expert,
12(4):32–40, 1997.

[5] C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh.
Reasoning about soft constraints and conditional
preferences: complexity results and approximation
techniques. In Proc. IJCAI 2003, Acapulco, Mexico,
August 2003.

[6] M. S. D. W. Equity. Transportation e-commerce and
the task of fulfilment, 2000.

[7] R. Fagin. Fuzzy queries in multimedia database
systems. In PODS ’98: Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 1–10, New York,
NY, USA, 1998. ACM Press.

[8] B. Faltings, M. Torrens, and P. Pu. Solution
generation with qualitative models of preferences. In
Computational Intelligence, pages 246–263(18). ACM,
2004.

[9] S.-w. H. Hwanjo Yu and K. C.-C. Chang. Rankfp: A
framework for supporting rank formulation and
processing. In ICDE 2005, pages 514–515, 2005.

[10] U. Junker. Preference-based search and multi-criteria
optimization. In Eighteenth national conference on
Artificial intelligence, pages 34–40. American
Association for Artificial Intelligence, 2002.

[11] R. L. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. John
Wiley and Sons, New York, 1976.

[12] W. Kiesling. Foundations of preferences in database
systems. In VLDB 2002, pages 311–322, 2002.

[13] G. Linden, S. Hanks, and N. Lesh. Interactive
assessment of user preference models: The automated
travel assistant. In Proceedings, User Modeling ’97,
1997.

[14] J. Payne, J. Bettman, and E. Johnson. The Adaptive
Decision Maker. Cambridge University Press, 1993.

[15] P. Pu and L. Chen. Integrating tradeoff support in
product search tools for e-commerce sites. In J. Riedl,
M. J. Kearns, and M. K. Reiter, editors, ACM
Conference on Electronic Commerce, pages 269–278.
ACM, 2005.

[16] P. Pu and B. Faltings. Enriching buyers’ experiences:
the smartclient approach. In SIGCHI conference on
Human factors in computing systems, pages 289–296.
ACM Press New York, NY, USA, 2000.

[17] P. Pu and B. Faltings. Decision tradeoff using
example-critiquing and constraint programming.
Constraints: An International Journal, 9(4), 2004.

[18] P. Pu and P. Kumar. Evaluating example-based
search tools. In ACM Conference on Electronic
Commerce (EC’04), 2004.

[19] P. Pu, P. Viappiani, and B. Faltings. Increasing user
decision accuracy using suggestions. In CHI, page to
appear, April 2006.

[20] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth.
Dynamic critiquing. In P. Funk and P. A.
González-Calero, editors, ECCBR, volume 3155 of
Lecture Notes in Computer Science, pages 763–777.
Springer, 2004.

[21] H. Shimazu. Expertclerk: Navigating shoppers buying
process with the combination of asking and proposing.
In Proceedings of the 17 International Joint
Conference on Artificial Intelligence (IJCAI’01),
volume 2, pages 1443–1448, 2001.

[22] F. N. Tou, M. D. Williams, R. Fikes, D. A. H. Jr., and
T. W. Malone. Rabbit: An intelligent database
assistant. In AAAI, pages 314–318, 1982.

[23] A. Tversky. Judgement under uncertainity: Heuristics
and biases, 1974.

[24] P. Viappiani, B. Faltings, V. Schickel-Zuber, and
P. Pu. Stimulating preference expression using
suggestions. In Mixed-Initiative Problem-Solving
Assistants, volume FSS07-05 of AAAI Fall Symposium
Serie, pages 128–133. AAAI, 2005.

