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Abstract— Hearing aids are audio capture devices which aim
at providing the hearing impaired with better audibility. Most
of the state-of-the-art systems involve sensing devices that work
independently. However, the availability of a wireless communica-
tion link between two hearing aids would allow to perform spatial
beamforming such as to provide better rejection of interfering
signals. In this paper, we identify and study the above scenario
from an information-theoretic viewpoint. We explore the gain
provided by collaborating hearing aids as a function of the
communication rate. In particular, we derive a closed-form gain-
rate formula in the case where a sound source has to be extracted
from ambient noise. A similar analysis is provided in the presence
of an interfering point source and the corresponding optimal rate
allocation is discussed.

I. INTRODUCTION

A digital hearing aid comprises three principal components:
a set of microphones, a computing unit and a loudspeaker.
Its goal is to process the acoustic signals acquired by the
microphones such as to provide the loudspeaker with a signal
that overcomes the user’s hearing impairments. A possible task
involves combining the incoming signals coherently in order
to extract a sound source coming from a particular direction.
This process is commonly referred to as beamforming and
has been extensively studied over the last decades in the
context of array processing [1]. The ability for an array of
microphones to properly focus in one given direction depends
on many parameters, such as the number of acquiring devices,
the geometry of the array or the computing power available
at the sensors. In particular, better resolution can be achieved
by increasing the spatial extent of the array [2]. Limited by
obvious design considerations, current hearing aids systems
fail to provide good beamforming capabilities. This is mainly
due to the fact that most equipments consist of two audio
capture devices that work independently of each other. In
this context, the availability of a wireless communication link
between the two hearing aids would allow both devices to
collaborate in order to achieve better speech intelligibility in
noisy environments [3].

In this work, we look at the aforementioned problem from
an information-theoretic perspective. We consider a hearing
aid system where the two devices, each equipped with an

1Also with the Department of Electrical Engineering and Computer Sci-
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omnidirectional microphone, are allowed to collaborate using
a rate-constrained wireless link. In this sense, we study the
impact of limited communication rates on the beamforming
capability of a two-sensor array. Under the assumption of
finite communication bandwidth, the beamforming paradigm
studied in the array processing community [1], [2] simply
corresponds to a multi-terminal scenario with a remote source
and a particular correlation structure [4]. In this context, the
setup considered in this paper is identified as being equivalent
to a source coding problem with side information at the
decoder where the source is merely observed in a remote
fashion. This problem, referred to as remote, indirect or noisy
Wyner-Ziv coding in the literature, has been addressed by
various researchers [4], [5], [6] in the scalar case. Extension
to vector sources was investigated in [7] in the context of
high-rate transform coding. In this paper, we study both the
approximation and compression perspectives for this matter
and provide the results needed in order to cope with the
problem at hand. Rate-constrained beamforming of jointly
Gaussian stationary sources is then investigated for two cases
of interest. In the first scenario, we wish to extract a point
source from ambient noise. We derive a closed-form formula
for the beamforming gain provided by our hearing aids setup
as a function of the communication rate and the input signal-
to-noise ratio (SNR). In the second scenario, the presence of
an additional interfering point source is considered and the
corresponding gain-rate function is computed. Rate-allocation
strategies are also discussed.

The outline of the paper is as follows: in Section II, we
describe our hearing aids setup and identify the problem from
an information-theoretic standpoint. Section III provides the
necessary theoretical background. Gain-rate analysis along
with optimal rate allocation strategies are presented for the
two different scenarios of interest in Section IV. We finally
offer some conclusions and future directions of research in
Section V.

II. THE HEARING AIDS PROBLEM

The problem setup is depicted in Figure 1 for the two
scenarios considered in this paper. It consists in a two-
sensor array where each acquiring device is equipped with an
omnidirectional microphone, a processing unit with wireless
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Fig. 1. Our hearing aids system. (a) Without any interferer. (b) With an
interferer.

communications capabilities and a loudspeaker. The distance
between the two hearing aids is l and the origin of the axis
is set in the middle of the array. For the scope of this paper,
we will work under the far-field assumption1, i.e. that a point
source impinging on the array can be accurately modelled as a
plane wave with constant attenuation factor, set here to 1. The
point source S of interest is an acoustic wave propagating
at speed c with a direction αS known at both sensors. The
signal acquired at each microphone is denoted X0 and X1,
respectively. The involved sources are assumed to be zero-
mean continuous-time jointly Gaussian random processes with
(real) bandlimited power spectral densities (PSD) ΦS , ΦX0

and ΦX1
. The relationships between the different PSDs will

be discussed in greater details in Section IV.
The goal of each hearing device is to beamform in the

direction of S in order to mitigate the effect of surrounding
noise or interfering signals. To this end, each device receives
a compressed version of its neighbor’s acquired signal. We
then aim at realizing a minimum mean-squared error (MMSE)
beamformer. This choice is partly motivated by the fact that
the optimality of this processor extends to various other
criteria [1]. In this context, we wish to characterize the best
achievable gain, at each hearing aid, that can be provided by
the availability of a wireless communication link of rate R.
The key is to realize that, under these assumptions, our setup
simply corresponds to a remote Wyner-Ziv problem [5]. For a
given rate R, we wish to encode X1 such as to minimize
the mean-squared error (MSE) between the source S and
its reconstruction Ŝ, assuming the presence of some side
information X0 at the decoder. The corresponding distortion-
rate function is denoted D(R). The gain achieved can thus be
expressed as a function of R as

G(R) =
D(0)

D(R)
. (1)

The next section provides the results needed to compute

1The results of this paper equally apply to the near-field case but the far-
field assumption greatly simplifies the derivations presented in the sequel.

the gain-rate function (1) for the scenarios considered in
Section IV.

III. REMOTE SOURCE CODING WITH SIDE INFORMATION

AT THE DECODER

We consider the setup where an encoder observes a source
S remotely, i.e. by sensing X1. It then sends a representation
of X1 to a decoder that computes a reconstruction Ŝ with the
help of some side information X0. In the spirit of [8], we look
at this problem from two different viewpoints: approximation
and compression.

In the approximation framework, we consider S ∈ C
n,

X0 ∈ C
m0 and X1 ∈ C

m1 to be zero-mean jointly Gaussian
random vectors with covariance matrix RS , RX0

and RX1
,

respectively. For simplicity, we will assume that m0,m1 ≤ n.
The encoder provides a k1-dimensional representation of X1

by mean of a linear transform, i.e. it sends a transformed vector

Y1 = K1X1 (2)

where K1 ∈ C
k1×m1 with k1 ≤ m1. The decoder computes

the reconstruction Ŝ based on Y1 and X0. The goal then is
to design the transform K1 such as to minimize the MSE
between S and Ŝ. This problem was considered in [9] in
the context of optimal linear fusion. In the next theorem,
we provide a different solution from the one proposed in [9]
which, we feel, gives more insights about the architecture of an
optimal encoder. In line with the terminology adopted in [8],
we call this transform the remote conditional Karhunen-Loève
transform (rcKLT).

Theorem 1 (Remote Conditional KLT): The rcKLT K1 ∈
C

k1×m1 is given by

K1 = K̄∗
1RSXe

1
R−1

Xe
1

(3)

where K̄1 ∈ C
n×k1 is the matrix whose columns are the k1

eigenvectors of the matrix RS − RS|Xe
1

corresponding to the
k1 largest eigenvalues and where Xe

1 = X1 −E[X1|X0]. The
resulting MMSE is computed as

E[‖S − Ŝ‖2] = tr(RS|X0,X1
) +

m1−k1∑
i=1

λi (4)

where λi denote the m1 largest eigenvalues of RS|X0
−

RS|X0,X1
arranged in increasing order.

Proof: See Appendix.

In the above notation, RX|Y denotes the covariance matrix
of the error vector X − E[X|Y ]. Theorem 1 shows that the
optimal transform amounts to first compute the best estimate
of S (Wiener filtering) as if the error vector Xe

1 were available
at the encoder and then simply apply a KLT on this estimate. In
other words, it says that we should send the part of S that can
be predicted by X1 but not by X0. It is important to emphasize
that the rcKLT is in general not unitary. Furthermore, it is seen
in the proof of Theorem 1 that the availability of the side infor-
mation at both the encoder and the decoder results in the same
MMSE. In particular, the minimum distortion tr(RS|X0,X1

)
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corresponds to the part of S that can be estimated neither by
X0 nor by X1. Note that with appropriate assumptions, the
rcKLT specializes to the transforms introduced in [8].

In the compression framework, the aforementioned problem
can be recast as follows. Let {S[i]}∞i=1, {X0[i]}

∞
i=1 and

{X1[i]}
∞
i=1 be discrete-time memoryless vector sources such

that, for all i, S[i] ∈ C
n, X0[i] ∈ C

m0 and X1[i] ∈ C
m1

are jointly Gaussian random vectors with mean zero and
covariance matrix RS , RX0

and RX1
, respectively. Here again,

m0,m1 ≤ n. The encoder senses {X1[i]}
N
i=1 and outputs a

bit stream that appears at a rate of R bits per source vector.
Based on the received data and the side information sequence
{X0[i]}

N
i=1, the decoder computes a reconstruction {Ŝ[i]}N

i=1

with averaged MSE DN (R) given by

DN (R) =
1

N

N∑
i=1

E[‖S[i] − Ŝ[i]‖2] . (5)

The goal then is to minimize the incurred distortion DN (R)
for a given R and characterize the optimal tradeoff D(R)
in the limit as N → ∞. This problem was solved in the
scalar case (n = m0 = m1 = 1) in [5]. Extension to
vector sources was considered in [7] in the context of high
rate transform coding. It was demonstrated that the optimal
compression architecture can be split into a decorrelating
transform followed by independent scalar Wyner-Ziv coding of
each component. The authors of [7] showed that the optimal
transform to apply in this context is specifically the rcKLT.
In this sense, Theorem 1 also provides this transform with
an operational meaning in the approximation framework. We
compute in the next theorem the rate-distortion function for
the problem at hand:

Theorem 2 (Remote Wyner-Ziv): The rate-distortion func-
tion for the remote Wyner-Ziv problem with vector sources
is given in parametric form by

R(θ) =

m1∑
i=1

max

{
0,

1

2
log2

λi

θ

}
(6)

D(θ) = tr(RS|X0,X1
) +

m1∑
i=1

min{θ, λi} (7)

where λi are the m1 largest eigenvalues of RS|X0
−RS|X0,X1

and θ ∈ (0,maxi λi]. R(θ) is expressed in units of bits per
source vector and D(θ) in MSE per source vector.

Using arguments developed in [10], extension of Theorem 2
to continuous-time jointly Gaussian stationary processes with
mean zero and bandlimited PSDs follows straightforwardly.
The corresponding formulas are given here for future refer-
ence:

R(θ) =
1

4π

∫ ∞

−∞

max

{
0, log2

Φe(Ω)

θ

}
dΩ (8)

D(θ) =
1

2π

∫ ∞

−∞

ΦS|X0,X1
(Ω) dΩ

+
1

2π

∫ ∞

−∞

min {θ, Φe(Ω)} dΩ (9)

where Φe = ΦS|X0
− ΦS|X0,X1

and θ ∈ (0, ess supΩ Φe(Ω)].
R(θ) is expressed in units of bits per second and D(θ) in MSE
per second. In the above notation, ΦX|Y denotes the PSD of
the error process X − E[X|Y ].

IV. RATE-CONSTRAINED BEAMFORMING

The results derived in the previous section allow us to threat
the hearing aids problem stated in Section II. The two cases
of interest are presented in the next subsections.

A. Ambient Noise

We first aim at quantifying the gain provided by the
availability of the wireless link when the point source S is
surrounded by ambient noise (see Figure 1(a)). This could be
an appropriate model for a conversation in a noisy environment
(e.g. in a crowded room). Under our far-field assumption,
the signals X0 and X1 observed at the two microphones are
expressed as

X0(t) = S(t − τ0) + N0(t) (10)

X1(t) = S(t − τ1) + N1(t) (11)

where Ni is a jointly Gaussian random process with mean
zero and PSD ΦNi

(i = 0, 1) and such that N0, N1 and S are
independent. The variable τi is the delay from the source S
to microphone i. We can easily show that

ΦS|X0
=

ΦS ΦN0

ΦS + ΦN0

(12)

ΦXe
1

=
(ΦS + ΦN0

) (ΦS + ΦN1
) − Φ2

S

ΦS + ΦN0

(13)

ΦSXe
1

=
ΦSΦN0

ΦS + ΦN0

e−jΩτ1 (14)

where Xe
1 = X1 − E[X1|X0]. Using Lemma 1 given in

Appendix, we can write

Φe =
Φ2

SΦ2
N0

(ΦS + ΦN0
) (ΦSΦN0

+ ΦSΦN1
+ ΦN0

ΦN1
)

(15)

and

ΦS|X0,X1
=

ΦSΦN0
(ΦSΦN1

+ ΦN0
ΦN1

)

(ΦS + ΦN0
) (ΦSΦN0

+ ΦSΦN1
+ ΦN0

ΦN1
)

.

(16)
We will further assume that S, N0 and N1 have flat PSDs
over the frequency band [−Ω0,Ω0], i.e.

ΦS(Ω) = σ2
S 1[−Ω0,Ω0](Ω) (17)

ΦNi
(Ω) = σ2

N 1[−Ω0,Ω0](Ω) (18)

for i = 0, 1. In this case, the distortion-rate function corre-
sponding to Equations (8) and (9) can be computed in closed-
form as

D(R) =
Ω0

π

σ2
S σ2

N

2σ2
S + σ2

N

(
σ2

S

σ2
S + σ2

N

2−2πR/Ω0 + 1

)
(19)

for R ≥ 0. The gain-rate function follows by evaluating (1)
using (19). We obtain

G(R) =
2σ2

S + σ2
N

σ2
S + σ2

N

(
σ2

S

σ2
S + σ2

N

2−2πR/Ω0 + 1

)−1

(20)
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Fig. 2. Gain provided by the wireless communication link as a function of
the communication rate R and the input SNR γ.

or as a function of the input SNR γ = σ2
S/σ2

N ,

G(R, γ) =
2γ + 1

γ + 1

(
γ

γ + 1
2−2πR/Ω0 + 1

)−1

. (21)

The gain provided by allowing collaboration between the
hearing aids is plotted in Figure 2 as a function of the
communication rate and the input SNR. As R → ∞, the gain
remains bounded and corresponds to that of a two-sensor array
with no rate constraint. At high SNR, this gain approaches
10 log10(K) [dB] where K = 2 is the number of sensing
devices. We also observe that, in this scenario, the result
depends neither on the actual position of the source nor on
the geometrical properties of our hearing aids setup. This is
due to the far-field assumption and the fact that the noise is
uncorrelated across sensors. Note that a similar analysis can
be carried in the case the involved PSDs are not flat. However,
the corresponding gain-rate function must be generally left in
a parametric form.

B. Ambient Noise and Interfering Source

In the presence of an additional interfering point source,
the beamforming capability provided by collaborating hearing
aids becomes crucial since it allows to separate signals with
different directions of arrival. We assume the interfering signal
I to be an acoustic wave propagating at speed c with a
direction αI known at both sensors (see Figure 1(b)). We
model it as a zero-mean continuous-time jointly Gaussian
random process with (real) bandlimited PSD ΦI . In this case,
the signals observed at the microphones can be written as

X0(t) = S(t − τ0) + I(t − τ̃0) + N0(t) (22)

X1(t) = S(t − τ1) + I(t − τ̃1) + N1(t) (23)

where I is independent of S and Ni (i = 0, 1) and whose
delay with respect to microphone i is denoted τ̃i. Similarly to
Section IV-A, Φe can be computed as

Φe =
Φ2

S

ΦS + ΦI + ΦN0

·
2ΦI (ΦI + ΦN0

) ∆(Ω) + Φ2
N0

2ΦSΦI∆(Ω) + (ΦN0
+ ΦN1

) (ΦS + ΦI) + ΦN0
ΦN1

(24)
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Fig. 3. Rate-constrained beamforming with an interfering source. (a)
The power spectral density Φe used for reverse “water-filling”. (b) The
corresponding gain-rate function.

where we define

∆(Ω) = 1 − cos (Ω (τ̃1,0 − τ1,0)) (25)

with

τ1,0 = τ1 − τ0 =
l sin αS

c
(26)

τ̃1,0 = τ̃1 − τ̃0 =
l sin αI

c
. (27)

In this scenario, the optimal rate-allocation strategy obtained
by reverse “water-filling” over Φe depends on both the direc-
tion of the source and the interferer and the distance between
the hearing devices. Unlike Section IV-A, we observe that
even if the involved PSDs are flat, the corresponding bit-
allocation is not uniform over the frequency band. For given
directions αS and αI , we first code the frequencies for which
the array provides better rejection of the interfering signal. In
this sense, the encoder contributes to the beamforming process
by eliminating the least important frequency components such
as to lower the communication bit-rate. This fact is illustrated
in Figure 3(a) using the signal and noises defined by Equa-
tions (17) and (18), ΦI given by

ΦI(Ω) = σ2
I1[−Ω0,Ω0](Ω) (28)

and the following parameters: l = 0.2 [m], c = 340 [m/s],
αS = 0 [deg], αI = 40 [deg], f0 = Ω0/(2π) = 4000
[Hz], σ2

S = σ2
I = 1 and σ2

N = 0.1. The minima are located
at the frequencies Ω verifying ∆(Ω) = 0, i.e. for which
S and I cannot be disambiguated. The corresponding gain-
rate function is plotted in Figure 3(b). Keeping the above
parameters, we plot in Figure 4(a) the gain-rate function
obtained for different values of αI to illustrate the effect of
an interferer on the reconstructed signal. In the vicinity of S,
the beamforming gain decreases as αI tends to αS since it
becomes difficult to spatially separate the desired signal from
the interferer. We also show in Figure 4(b) the effect of the
array’s spatial extent l on the gain-rate function. Increasing the
distance between the microphones provides better directivity
hence larger gains. For comparison, we provide the gain
achieved with l = 0.02 [m], the typical maximum possible
distance allowing the two microphones to be embedded on
the same hearing aid. We observe the significant gains that
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Fig. 4. Gain-rate with an interfering source. (a) For αS = 0 [deg] and
αI = 10 [deg] (plain), αI = 8 [deg] (dashed) and αI = 5 [deg] (dash-
dotted). (b) For αS = 0 [deg] and αI = 10 [deg] with l = 0.2 [m] (plain)
and l = 0.02 [m] (dashed).

can be achieved by exploiting the spatial extent offered by a
wireless communication link between two hearing aids.

V. CONCLUSION

In this paper, we have investigated the beamforming gain
provided by hearing aids that are allowed to collaborate using a
wireless link. The problem has been identified and solved from
an information-theoretic viewpoint. The impact of limited
communication bit-rates on the beamforming capability of
the hearing aids setup has been explored. Current research
is focusing on extending the analysis provided in this paper
to more general arrays.
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APPENDIX

The proof of Theorem 1 makes use of the following lemma
which can be easily demonstrated:

Lemma 1: Under the Gaussian assumptions made in this
paper, we have

RS|X0
− RS|X0,X1

= RS − RS|Xe
1

(29)

where Xe
1 = X1 − E[X1|X0].

Proof of Theorem 1: It was shown in [9] that an optimal
solution must be such that the MMSE is given by

E[‖S − Ŝ‖2] = tr(RS|X0
) −

m1∑
i=m1−k1+1

λ̃i (30)

where λ̃i denote the eigenvalues of the matrix R∗
SXe

1
RSXe

1
R−1

Xe
1

arranged in increasing order. Using Lemma 1, we have that

RS|X0
−RS|X0,X1

= RS −RS|Xe
1

= RSXe
1
R−1

Xe
1
R∗

SXe
1
. (31)

Using the determinant formula det(AB + I) = det(BA + I),
it follows that the m1 largest eigenvalues of RS|X0

−RS|X0,X1

are given by λi = λ̃i, the n−m1 remaining ones being zero.
The MSE incurred by an optimal transform can thus be written
as

E[‖S − Ŝ‖2] = tr(RS|X0,X1
) +

m1−k1∑
i=1

λi . (32)

It remains to show that the transform given by (3) provides
this MSE. We can write

E[‖S − Ŝ‖2]

= E[‖S − E[S|K1X1, X0]‖
2] (33)

= E[‖S − E[S|X0] − E[S|K1X
e
1 ]‖2] (34)

= E[‖S − RSX0
R−1

X0
X0

−RSXe
1
K∗

1

(
K1RXe

1
K∗

1

)−1
K1X

e
1‖

2] (35)

= tr
(
RS|X0

)
− tr

(
RSXe

1
K∗

1

(
K1RXe

1
K∗

1

)−1
K1R

∗
SXe

1

)
(36)

= tr
(
RS|X0

)
−

m1∑
i=m1−k1+1

λi (37)

= tr
(
RS|X0,X1

)
+

m1−k1∑
i=1

λi (38)

where (34) and (35) follow from properties of the conditional
expectation in the jointly Gaussian case. Equation (36) follows
from the definition of the Frobenius norm, the fact that
expectation and trace commute and from the orthogonality of
X0 and Xe

1 (orthogonality principle). Finally, Equation (37)
follows from the properties of the trace and the definition of
K̄1. Since E[S|K1X1, X0] = E[S|K1X

e
1 , X0], the availability

of X0 at the encoder does not change the MMSE. In this case,
the optimal transform is still given by (3) but the transmitted
coefficients are different since the rcKLT can be applied on
Xe

1 instead of X1.
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