
Looking Ahead in Open Multithreaded Transactions

Maxime Monod1, Jörg Kienzle2, Alexander Romanovsky3

1 Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
2 School of Computer Science, McGill University, Montreal, Canada

3 University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
Maxime.Monod@epfl.ch, Joerg.Kienzle@mcgill.ca, Alexander.Romanovsky@newcastle.ac.uk

Abstract

Open multithreaded transactions constitute building blocks
that allow a developer to design and structure the execu-
tion of complex distributed systems featuring cooperative
and competitive concurrency in a reliable way. In this pa-
per we describe an optimization to the standard open mul-
tithreaded transaction model that does not impose any par-
ticipant synchronization when committing a transaction,
but still provides the same execution semantics. This opti-
mization – letting participants “look ahead” and continue
their execution on the outside of the transaction – makes it
possible to speed up the execution of in individual trans-
action with multiple participants tremendously. The pa-
per describes all technical issues that had to be solved,
e.g. adapting concurrency control of transactional objects
to be look-ahead aware, adapting joining rules for look-
ahead participants, and re-defining exception handling in
the presence of look-ahead.

1. Introduction

Large-scale, distributed systems often give rise to com-
plex concurrent and interacting activities, and are therefore
extremely difficult to understand, design, analyze and mod-
ify. In addition, as distributed systems grow bigger, they
are inevitably exposed to an increasing number of faults:
hardware faults, faults in the environment, faults in the un-
derlying middleware, and even software design faults in the
system itself.

In data-centric applications, where multiple objects
must usually be accessed or updated together to correctly
reflect the real world, great care must be taken to keep re-
lated objects globally consistent. Any interruption of up-
dates to objects, or the interleaving of updates and accesses,
can break the overall consistency of an object system. In or-
der to reduce the complexity inherent in concurrent systems
and to provide a base for implementing fault tolerance, re-
searchers have used advanced and elaborate concurrency

features such as transactions [1] and atomic actions [2], in
the design of distributed systems.

The Open Multithreaded Transaction model (OMTT)
[3] is an advanced transaction model that has been intro-
duced for the development of reliable, data-centric, dis-
tributed systems with loosely coupled, cooperative and
competitive concurrent entities. OMTTs provide building
blocks that allow a developer to reason about the design
and the execution of a system more easily. At the same
time, OMTTs act as error confinement regions that prevent
corrupted application state from contaminating other parts
of the system.

Unfortunately, the standard OMTT model also imposes
very tight synchronization between concurrent collaborat-
ing entities that slows down the execution significantly.
This paper describes how the synchronization constraints
of the OMTT model can be relaxed by allowing the partici-
pants of a transaction to look ahead and continue executing
on the outside of the transaction before the outcome of the
transaction is known. As a result, participants do not have
to wait for each other anymore, which reduces the overall
execution time tremendously.

The paper is structured as follows. Section 2 introduces
the original open multithreaded transaction model. Its lim-
itations are detailed in section 3. The look-ahead optimiza-
tion and all the technical issues that had to be solved are de-
scribed in section 4. A prototype implementation for Java
is discussed in Section 5. Section 6 reviews related work in
this area, and the last section draws conclusions.

2. Open Multithreaded Transactions

Open Multithreaded Transactions [3] constitute build-
ing blocks that allow a developer to design and structure
the execution of complex distributed systems featuring co-
operative and competitive concurrency in a reliable way.
Open multithreaded transactions, just as standard transac-
tions, encapsulate a set of operations and give them the so-
called ACID properties: atomicity, consistency, isolation



and durability [1]. The difference is that OMTTs provide
features for controlling and structuring not only accesses to
objects, as usual in transaction systems, but also processes
taking part in transactions.

2.1. Participants

The OMTT model allows several threads or processes,
here called participants, to enter the same transaction in or-
der to perform a joint activity. The participants are loosely
coupled, i.e. they progress independently, but may col-
laborate or share information by using the same objects.
OMTTs support nesting, i.e. participants of a transaction
can enter subtransactions. Participants can also spawn new
threads, but these threads have to terminate inside the trans-
action in which they were created.

All participants that entered the transaction have to vote
on the transaction outcome before leaving. If all partici-
pants are satisfied with the work they performed inside the
transaction, then the transaction commits, i.e. the changes
to the application state are made durable and visible to the
outside world. However, if only one of the participants
votes abort, then all changes are undone, as if the trans-
action never happened. To guarantee this atomicity and
isolation, participants are only allowed to leave the open
multithreaded transaction once its outcome has been deter-
mined. As a result, participants of a transaction that com-
mits have to wait for the slowest of all participants to vote,
and then exit synchronously [2].

The upper part of figure 1 shows an open multithreaded
transaction T 1 that is created by participant C. Participants
A, B, and D join the transaction later on. The synchronous
exit rules dictates that, although B, C, and D finish their
work inside T 1 early by voting commit, they are blocked
until participant A also votes commit.

2.2. Transactional Objects

Within an open multithreaded transaction, participants
can access a set of transactional objects. Although in-
dividual participants evolve independently inside an open
multithreaded transaction, they are allowed to collaborate
with other participants of the transaction by accessing the
same transactional objects. The transactional objects there-
fore must preserve data consistency despite concurrent ac-
cesses from within a transaction (cooperative concurrency),
and at the same time provide isolation among concurrent
accesses from different transactions (competitive concur-
rency). Typically, this is done by a concurrency control
component (see section 4.6) that monitors all access to a
transactional object.

2.3. Exception Handling

Open multithreaded transactions have been designed for
reliable system development by providing error confine-
ment and fault tolerance capabilities. The model incor-
porates disciplined exception handling adapted to nested
transactions. It allows individual participants to perform
forward error recovery by handling an abnormal situation
locally. If local handling fails, the transaction support ap-
plies backward error recovery and reverses the system to a
consistent state.

The model distinguishes internal and external excep-
tions. The set of internal exceptions for each participant
consists of all exceptions that might occur during its execu-
tion. There are three sources of exceptions inside an open
multithreaded transaction:

• An internal exception can be raised explicitly by a par-
ticipant;

• An external exception raised inside a nested transac-
tion is raised as an internal exception in the parent
transaction;

• Transactional objects accessed by a participant of a
transaction can raise an exception to signal a situation
that violates the consistency of the state of the trans-
actional object. Objects that perform such checks are
called self-checking transactional objects [4].

All these situations give rise to a possibly inconsistent ap-
plication state. If a participant does not handle such a sit-
uation, the application’s correct behavior can not be guar-
anteed. A programmer of a participant should therefore
prepare handlers for all internal exceptions. However, if by
mistake an internal exception is not handled, then the exter-
nal exception Transaction_Abort is automatically signaled,
and the application consistency is restored by aborting the
transaction. Likewise, if any participant of a transaction
explicitly signals an external exception, the transaction is
aborted, the exception is propagated to the containing con-
text, and the exception Transaction_Abort is signaled to all
other participants. If several participants signal an external
exception, each of them propagates its own exception to its
own context.

3. Limitations of OMTTs and Look-Ahead

Using open multithreaded transactions to structure the
execution of complex concurrent systems makes the sys-
tems easier to understand, and helps reasoning about error
containment and other fault tolerance properties [5]. How-
ever, using open multithreaded transactions also results in
a heavy run-time overhead.

To guarantee isolation, open multithreaded transactions
require participants that finished working on behalf of a



Participant B

Participant C

Participant D

Participant A
T1

lone code look-ahead transaction

T’(T1)

Participant B

Participant C

Participant D

Participant A
T1

T2

Participants are blocked until outcome is known

former transaction

Two Open Multithreaded Transactions Executed Without Look-Ahead

Two Open Multithreaded Transactions Executed With Look-Ahead

Figure 1. Standard vs. Look-ahead OMTTs

transaction to wait until all other participants of the same
transaction have completed their work. Since in open mul-
tithreaded transactions the individual participants are only
loosely coupled, they rarely complete their work at the
same time. But still, all participants have to wait for the
slowest one to finish. Especially for long running transac-
tions, the blocking time of individual participants can be
considerable. In [6], for example, a bidder participant in an
online auction is blocked until the auction closes.

Following the idea suggested in [7] for the conversation
scheme, we propose not to block participants of an open
multithreaded transaction when they vote commit. Instead,
they are allowed to look ahead from the transaction and
start working on the outside, just as if the transaction had
really committed. Looking ahead can be seen as optimistic
transaction execution (see section 6).

Figure 1 illustrates the performance increase of look-
ahead. The upper part of the figure shows two open mul-
tithreaded transactions T 1 and T 2 executed using the stan-
dard open multithreaded transaction model. Participants B,
C and D are blocked until participant A finally votes com-
mit. T 2 is executed after T 1. The lower part of Figure 1
shows how the same two transactions can be executed more
efficiently if look ahead is allowed. T 2, now named T ′(T 1),
is started as soon as participant C finishes its work in T 1.

Obviously, look ahead results in more efficient execu-

tion of open multithreaded transactions in case the former
transaction (T 1 in Figure 1) commits. However, if things
go wrong, e.g. participant A decides to abort T 1, then the
execution of the look-ahead transaction T ′(T 1) is poten-
tially erroneous too, since it was based on the assumption
that the former transaction committed.

4. Look-Ahead OMTTs

The main issue with look-ahead is that in case the for-
mer transaction aborts, all operations executed by partic-
ipants that looked ahead have to be undone too, because
they were based on the assumption that the former trans-
action had committed. Unfortunately, only operations exe-
cuted from within a transaction are undoable. There is no
guarantee that a look-ahead participant immediately enters
a new transaction when it exits the former one. The partic-
ipant might execute lone code (see lower part of Figure 1),
i.e. code that is not encapsulated within a separate transac-
tion.

Other issues include dealing with nesting and joining of
look-ahead transactions, creation and termination of par-
ticipant threads, concurrency control and exception han-
dling. The following subsections describe how our model
addresses all these problems.



4.1. Dealing with Lone Code

We did not want to restrict looking ahead to participants
which immediately start a new transaction. Therefore we
decided to encapsulate the lone code of look-ahead partici-
pants in an implicit transaction, which is created at the mo-
ment the first participant looks ahead from a transaction.
All subsequent operations of the look-ahead participant are
done from within this implicit transaction. If ever another
participant looks ahead from the former transaction, it also
automatically joins the implicit one.

The implicit transaction behaves just like a normal trans-
action. It isolates look-ahead participants from the out-
side world, i.e. it prevents them to communicate results
of the former transaction to others. This is good, since
this prevents cascading aborts in case the former transac-
tion aborts. The special thing about implicit transactions is
that their boundaries are not known to the developer. Even
if all look-ahead participants start or enter new transactions,
the implicit transaction is not committed. It only ends when
the former transaction commits.

Figure 2 illustrates the idea of implicit transactions.
When participant E looks ahead of transactions T 1.1, an
implicit transaction i(T 1.1) is created. When participant D
leaves T 1.1, it immediately creates a look-ahead transac-
tion T ′(T 1.1). The implicit transaction i(T 1.1) continues to
exist, even when participant E joins T ′(T 1.1). It can’t com-
mit, because the outcome of T 1.1 is not known yet. Later,
when C looks ahead from T 1.1, it joins the same i(T 1.1)
again. In the mean time, when E looks ahead from T ′(T 1.1),
a new implicit transaction i(T ′(T 1.1)) is created, which ends
as soon as participant D finishes T ′(T 1.1). Finally, D and
E also join i(T 1.1), which commits and ceases to exist as
soon as T 1.1 commits.

4.2. Short Look-Ahead Transactions

Since operations made by look-ahead participants are
only valid if the former transaction commits, we cannot al-
low look ahead transactions or implicit transactions to com-
mit before the former transaction commits. Look-ahead
transactions that are completed are therefore put on a com-
mit queue and committed as soon as the former transaction
commits.

4.3. Spawned Participants

The creation and termination of threads in open mul-
tithreaded transactions is restricted (see section 2.1): any
participant joining an open multithreaded transaction has
to leave as well, and participants created inside a transac-
tion must also terminate inside it. The main reason for this
restriction is that recreation of threads is very tricky. If

participants would be allowed to enter a transaction from
the outside and then terminate inside, an abortion of the
transaction after the thread has terminated would require
the recreation of the thread.

OMTTs do not restrict the creation and termination
of threads in lone code. However, we encapsulate lone
code executed by look-ahead participants within an implicit
transaction. When lone code contains thread creation or
termination operations, we therefore run into similar prob-
lems than the original model. Assuming that thread cre-
ation and termination is not used that often, we suggest
to block creation and termination operations of look-ahead
participants executing lone code until the outcome of the
former transaction is known.

4.4. Nesting

Open multithreaded transactions can be nested. Our
look-ahead scheme maintains this flexibility, i.e. it supports
look-ahead between parent and child transactions. Multi-
level look ahead is possible; our model keeps a list of look-
ahead dependencies associated with each transaction. In
case a former transaction aborts, all implicit and explicit
look-ahead transactions are aborted. Since implicit trans-
actions are created to encapsulate lone code, looking ahead
from the top-level transactions can be supported as well.

4.5. Joining and Cascading Aborts

After looking ahead from a transaction, a participant
may decide to join any already existing transaction. In case
of look-ahead, this rule might lead to some complications.

Circular dependencies could arise if a look-ahead par-
ticipant is allowed to re-join a former transaction. Re-joins
are therefore forbidden. This is not a severe restriction, be-
cause such a situation is impossible to create in the standard
model in the first place.

To avoid cascading aborts, look-ahead participants that
try to join non look-ahead transactions are blocked until the
outcome of the former transaction is known. If look-ahead
participants would be allowed to join any ongoing trans-
action, the joint transaction would become a look-ahead
transaction as a result. This problem is illustrated in Fig-
ure 3. T 1 becomes T ′(T 2) once participant B looks ahead
from T 2 and joins T 1. Likewise, T 2 becomes T ′(T 3) when
participant D looks ahead from T 3 and joins T 2. As a re-
sult, an abort of T 3 triggers the abort of T 2 and T 1, which
are transactions that started earlier than T3!



T1
Participant A

Participant C

Participant D

Participant F

Participant E

Lone code is encapsulated 
in an implicit transaction

Participant B
T1.1

Participant D starts a look-ahead 
transaction immediately

Encapsulation ends when 
outcome of T1.1 is known

T’(T1.1)

i(T1.1)

i(T’(T1.1))

i(T1.1)

Figure 2. Implicit Transactions Hide Lone Code

T3

T2=T’
(T3)

T1=T’
(T2)

=T’’
(T3)

Participant A

Participant C

Participant D

Participant E

Participant B

HandlerX Y

T’’
(T3) and T’

(T3) have to be aborted

Figure 3. Cascading Aborts Due to Uncontrolled Joins

4.6. Resource Dependencies and Concurrency
Control

Access to resources, i.e. transactional objects, is the
most important issue that needs to be addressed when al-
lowing look-ahead in OMTTs. In the standard model,
where all participants wait until the outcome of the trans-
action is known, participants leaving a transaction and then
entering a new one can safely access the same transactional
objects. The problem arises when look-ahead is enabled,
because a look-ahead transaction might use the same ob-
jects while or even before the former transaction uses them.

Figure 4 illustrates the situation. The look-ahead trans-
action T ′(T 1) invokes operation A on transactional object
O, and subsequently the former transaction T 1 invokes op-
eration B on the same object. But since operation A was
invoked from within the look-ahead transaction T ′(T 1), it
semantically depends on the successful execution of the
former transaction T 1, which includes the execution of op-

eration B. In order to get a correct deadlock- and starvation-
free execution of look-ahead OMTTs, the concurrency con-
trol associated with a transactional object must be aware of
this additional dependency.

Concurrency control comes in two flavors: pessimistic
(conservative) or optimistic (aggressive), both having ad-
vantages and disadvantages. The principle underlying pes-
simistic concurrency control schemes is that, before at-
tempting to perform an operation on any transactional ob-
ject, a transaction has to get permission to do so. If a trans-
action invokes an operation that causes a conflict, the trans-
action is blocked or aborted. This can lead to deadlock
situations. On the other hand, any transaction that success-
fully runs to completion is guaranteed to commit. The fol-
lowing section describes how the widely used pessimistic
lock-based concurrency control can be adapted to support
look-ahead.



T1

Transactional Object O 

operation A operation B

T’
(T1)

Participant B

Participant C

Participant D

Participant A

Figure 4. Object Dependencies

Lock-based Pessimistic Concurrency Control Lock-
based concurrency control protocols use locks to imple-
ment permissions to perform operations. When invoking
an operation on a transactional object, the participant must
first request the lock associated with this operation from the
concurrency manager of the transactional object. Before
granting the lock, the concurrency manager must verify that
this new lock does not conflict with any other lock held by
other transactions in progress. If the concurrency manager
determines that there indeed would be a conflict, the partic-
ipant requesting the lock is blocked, waiting for the release
of the conflicting lock. Otherwise, the lock is granted, and
the participant may proceed and execute the operation. The
order in which locks are granted to transactions imposes an
execution ordering on the transactions with respect to their
conflicting operations. Two-phase locking [8] ensures seri-
alizability by not allowing transactions to acquire any more
locks after they released a lock. This implies in practice
that a transaction acquires locks during its execution (1st
phase), and releases them at the end once the outcome of
the transaction has been determined (2nd phase).

It turns out that the standard lock-based protocol can-
not be used in the presence of look-ahead without causing
deadlocks. For example, the look-ahead transaction in Fig-
ure 4 might acquire a write lock on the transactional ob-
ject O when invoking operation A. As a result, the former
transaction blocks when it wants to execute operation B,
waiting for T ′(T 1) to complete. However, the look-ahead
transaction T ′(T 1) can only commit after T 1, because it has
been executed with the assumption that T 1 committed (see
section 4.2). This circular dependency creates a deadlock.

The only solution is to make the lock-based protocol
look-ahead aware. If ever a transaction wants to acquire a
resource whose lock is held by one of its look-ahead trans-
actions, then the lock should be granted anyway, thus inval-
idating the look-ahead transaction, which must be aborted
(and restarted). Of course, this modification changes the
nature of the lock-based protocol. In a strict sense the pro-

tocol is not pessimistic anymore : after granting permis-
sion to access an object to a look-ahead transactions, the
permission might be revoked again. [9] talks about similar
ideas in the context of flexible locking for monitor objects
in real-time systems.

Optimistic Concurrency Control In optimistic concur-
rency control schemes [10], transactions are allowed to
perform conflicting operations on objects without being
blocked, but when they attempt to commit, transactions are
validated to ensure that they preserve serializability. If a
transaction is validated, it means that it has not executed
operations that conflict with the operations of other trans-
actions, and it then commits. A distinction can be made
between optimistic concurrency control schemes based on
forward validation or backward validation, depending on
the manner in which conflicts are determined.

Forward validation checks to ensure that a committing
transaction does not conflict with any still active transac-
tion and, consequently, that the committing transaction’s
effects will not invalidate any active transaction’s results.
One possibility [11] is to abort the committing transaction
if a conflict is detected with a transaction that is still active.
This scheme can not be used with look-ahead, for a former
transaction might abort because of a conflict with one of its
look-ahead transactions, which would in turn then trigger
the abort of the look-ahead transaction as well.

A different forward validation protocol, avoiding wasted
aborts, such as broadcast commit [12] should be used with
look-ahead. It guarantees to commit all transactions that
reach their commit point. In this strategy, all active trans-
actions including look-ahead transactions that have per-
formed operations conflicting with the validating transac-
tion are aborted.

Backward validation protocols check that the commit-
ting transaction does not conflict with previously commit-
ted transactions. If a conflict is detected, the committing
transaction is aborted. Backward validation protocols work



fine with look-ahead, since the commit of look-ahead trans-
actions is artificially delayed until their former transactions
successfully committed (see section 4.2).

4.7. Exception Handling

Look-ahead complicates exception handling in two sit-
uations:

• An exception might be thrown in a former transaction
from which one or several participants have already
looked ahead;

• An exception is thrown in an implicit or explicit look-
ahead transaction.

Exception in Former Transaction An internal excep-
tion that is thrown in a former transaction does not require
any additional action to be taken. The participant that en-
countered the exception first attempts to handle it locally,
and, if the handling is successful, the execution of all par-
ticipants, including the look-ahead participants, can con-
tinue as is. However, if local handling fails, an external ex-
ception is propagated to the outside, which is treated as an
abort vote. Hence, the former transaction must be aborted,
together with all implicit and explicit look-ahead transac-
tions.

The idea is illustrated in Figure 5. When participant
B throws the external exception Y and votes for aborting
T 1.1, the work performed by look-ahead participants C, D,
and E is automatically aborted as well.

An alternative to automatically aborting all look-ahead
participants is to inform them of the abort by throwing a
new pre-defined exception LA_Exception in their contexts.
Transactions that have been designed with look-ahead in
mind could then attempt to handle the situation. How-
ever, the difficulty of writing correct look-ahead handlers
increases with the amount of look-ahead and difference in
nesting levels, and is therefore not recommended (see sec-
tion 6).

Exceptions Thrown in Look-Ahead Context If an in-
ternal exception is thrown in a look-ahead participant, the
participant could attempt to immediately handle it locally.
However, the exception might have been triggered by the
fact that the former transaction is still in progress. This
can happen, for instance, when the look-ahead participant
tries to access an object that was supposed to contain a re-
sult that the former transaction was supposed to produce.
In this case it makes sense to block the look-ahead trans-
action before performing any handling. Subsequently, if
a resource conflict between the former transaction and the
look-ahead is detected, then the look-ahead transaction is
aborted and restarted. Only if there is no resource conflict

and the former transaction commits successfully, the par-
ticipant is unblocked and can then start handling the excep-
tion.

5. Implementation

5.1. Look-ahead Run-time

The run-time support for open multithreaded transac-
tions has been implemented in an object-oriented frame-
work called OPTIMA [3]. Class hierarchies implementing
standard transactional behavior are provided by the frame-
work, for example, support for optimistic and pessimistic
concurrency control, different recovery strategies, different
caching techniques, different logging techniques, and dif-
ferent storage devices. In addition, programmers can cus-
tomize the framework by implementing their own support
classes. This flexibility is achieved using design patterns.

In order to implement looking ahead in OPTIMA, the
component that handles the transaction life-cycle had to be
adapted to keep track of all look-ahead dependencies and to
take care of aborting look-ahead transactions in case a for-
mer transaction aborts. Additionally, the concurrency con-
trol component implementing the pessimistic lock-based
protocol had to be changed as described in section 4.6.
These changes, however, are completely transparent to the
application programmer.

Blocking the creation and termination of threads in im-
plicit transactions encapsulating lone code turned out to be
implementable using aspect-oriented programming tech-
niques. The technique assumes that the transaction context
is associated with a thread using InheritableThreadLocal.
This class provided by the standard Java run-time ensures
that newly created threads inherit the same transaction con-
text as the thread that creates them. Using AspectJ [13], it
is then possible to intercept the creation of a thread, deter-
mine if the creation has happened within an implicit trans-
action and block it accordingly. Since Java is a garbage
collected language, intercepting the termination of threads
is not easy. We have so far decided to prevent look-ahead of
spawned participants from a nested transaction in our Java
implementation of OPTIMA.1.

5.2. Look-ahead Interface

An important part of OPTIMA is the interface it offers
to programmers. Good interfaces should be easy to use.
They should not require the programmer to write compli-
cated or contrived code, but offer clear abstractions that

1In our Ada implementation of OPTIMA, blocking thread termination
is feasible. By associating a controlled object with a thread, its destructor
is invoked before the thread terminates.



Exception X raised Exception Y raised in T1

Implicit and explicit look-ahead transactions are aborted

Participant A

Participant C

Participant D

Participant F

Participant E

Participant B

T1

T1.1

i(T’
(T1.1)

)T’
(T1.1)

i(T1.1)

HandlerX Y

i(T1.1)

Figure 5. Exception Handling and Look-Ahead

are integrated with all other programming language fea-
tures. An additional requirement for good interfaces, es-
pecially in the context of reliable system development, is
safety. A programmer should not be able to make mis-
takes that would result in an incorrect program when using
the framework. Based on these criteria, a procedural, an
object-based, and an object-oriented interface to OPTIMA
have been developed in [14] for the Ada programming lan-
guage. An aspect-oriented interface for the Java version of
OPTIMA is described in [15].

Unfortunately, none of the previously developed inter-
faces to OPTIMA can support look-ahead. The main chal-
lenge is that the framework must be able to restart look-
ahead transactions and implicit transactions encapsulating
lone code in case a former transaction aborts. In main-
stream programming languages such as Java and Ada, it
is not possible to jump to any point in the program and
start execution from there. This is a major problem when
introducing look-ahead, as illustrated in Figure 6.

The code snipped attempts to buy a computer by means
of an online auction, and then, if there is enough money
on the account left, buys a printer at an online store. The
bottom of Figure 6 shows a piece of AspectJ code that uses
the aspect-oriented interface of OPTIMA to make the bid
method transactional (marked with a !1). This is done by
defining a pointcut that intercepts all calls to public meth-
ods of Auction objects (marked with !2). The actual code
that starts and commits the bid transaction is hidden inside
OPTIMA.

With look-ahead, the participant executing the Java code
optimistically looks ahead from the bid transaction as if the
auction was successful, continuing the execution, querying
the balance and buying the printer. But other participants
of the bid transaction might abort the auction later on. All
changes made to transactional objects by the look-ahead
participant, such as buying the printer, can be undone, since
they have been executed from within transactions. How-

successful = false;
while (!successful} {

// browse online auctions for computers
try {

auction.bidForComputer(); !1

successful = true;
catch (Transaction_Aborted e)

{ successful = false; }

}
if (myAccount.queryBalance()) > 1000

{ onlineStore.buyPrinter(); }

aspect TransactionalExampleAspect extends
Optima.TransactionalMethods {
pointcut MethodsToMakeTransactional() : !2

call (public * Auction.*(..)); }

Figure 6. Problematic Transactional Java Code

ever, after aborting all the changes, the execution has to
resume inside the while loop. This is unfortunately not pos-
sible, not even with the help of aspects.

To solve this problem, we defined a high level interface
to OPTIMA, in which a programmer has to split his code
into chunks, and schedule the chunks to be executed with
or without transactional semantics. The programmer can
then define dependencies among the block in a work-flow
like manner.

Figure 7 shows a flow diagram that illustrates the idea2.
The programmer can specify that the bidding activity has to
execute successfully before continuing. Since this interface
forces the programmer to write a separate code chunk for
the bidding, OPTIMA can jump back into the while loop,
and then start a new bid.

2Programmer details of the interface are not shown in this paper due
to space reasons.



Bid for Computer Successful? Check Balance > 1000 Buy Printer
Yes

No

Yes
Start Done

No

Figure 7. Look-Ahead Interface for OPTIMA

6. Related Work

6.1. Atomic Actions

Atomic actions [16] are atomic units intended for struc-
turing the execution of collaborative concurrent systems.
Based on conversations [17], atomic actions provide ad-
ditional support for forward error recovery and exception
resolution. In atomic actions, a fixed number of partici-
pants enter an action and cooperate inside it to achieve joint
goals. They are designed to cooperate inside the action
and are aware of this cooperation. The participants share
work and explicitly exchange information in order to com-
plete the action successfully. To guarantee action atomic-
ity, no information is allowed to cross the action border.
Just like open multithreaded transactions, atomic actions
enforce synchronous exit, i.e. participants have to leave the
action together when all of them have completed their job.

Since participants can communicate with each other di-
rectly, errors can spread from one participant to the other.
Therefore, all participants have to be involved when re-
turning the system into a consistent state. Atomic actions
provide cooperative exception handling for that purpose.
When an exception is raised in any participant, appropriate
handlers are initiated in all participants. Concurrent excep-
tions are resolved using a resolution graph.

In [18], an extension of atomic actions has been devel-
oped that does not impose any participant synchronization
on action exit. The challenge that has to be faced when
introducing look-ahead into atomic actions is cooperative
exception handling. In order to still guarantee atomicity
and isolation in case of exceptional situations, the closest
common parent action to all participants and look-ahead
participants has to be identified, and cooperative handling
has to be initiated at that level. To this aim, [18] describes
a distributed protocol that finds, for any exception raised,
an action containing all potentially erroneous information,
aborts all of its nested actions, resolves multiple concur-
rent exceptions and involves all the action participants into
cooperative handling of the resolved exception. In the
scheme, no service messages are sent and no service syn-
chronization is introduced if there are no exceptions raised.

Comparison Between Look-Ahead in AA and OMTT
Although the idea of looking ahead in atomic actions is
similar to looking ahead in open multithreaded transac-
tions, the issues that had to be addressed are fundamentally

different in each case.
Participants of an atomic action are collaborating

closely. They have been designed together, they work to-
gether, and they even collaborate to handle exceptional sit-
uations. Exception handling has to be done at the clos-
est common parent level, and that level might be high, es-
pecially if participants look ahead several times. Writing
handlers for looking ahead at a higher level can be tricky,
since the details of nested actions are in general unknown
to higher level actions. Also, since handling has to be done
in the parent action, look-ahead in atomic actions does not
allow looking ahead from a top-level action. Since atomic
actions do not allow their participants to access external ob-
jects / resources, the atomic action look-ahead scheme does
not have to address resource sharing issues.

Participants in open multithreaded transactions on the
contrary are only loosely coupled. They might collaborate
with other participants, but they do this by accessing shared
objects. Dealing with resource dependencies between for-
mer and look-ahead transactions (see section 4.6) is one
of the main issues in look-ahead OMTTs, and requires ex-
tending traditional concurrency control algorithms. Excep-
tions are less problematic, since a participant first attempts
to handle them locally. If this is done successfully, the
other participants do not have to be involved. In case of
an abort caused by an external exception, the look-ahead
participants have to be aborted and restarted. Look-ahead
situations can therefore be handled without involving par-
ent transactions, and hence looking ahead from a top-level
transaction is possible.

6.2. Duality of Fault-Tolerant System Structures

A very interesting paper that describes somehow related
work is [19]. The authors analyze transactions – what
they call the Object and Action model – and atomic ac-
tions – what they call Process and Conversation model.
They suggest that these two models are dual and provide
a mapping between them. Using this mapping, they show
that mechanisms used in one model can have interesting
counterparts in the other model. For example, they ana-
lyze locking schemes used in transactions, and show that
in atomic actions this corresponds to entering and exiting
the action. In order to guarantee isolation, transactions re-
lease all acquired locks in one go when the transaction is
finished (so-called 2-phase locking [8]). Similarly, partic-
ipants of atomic actions have to leave synchronously – all



together – to guarantee isolation.
Following these ideas, a parallel can be drawn between

looking-ahead in OMTTs and optimistic concurrency con-
trol schemes in standard transactions. Optimistic concur-
rency control schemes allow a transaction to go ahead and
modify transactional objects whenever they want to – opti-
mistically hoping that there will be no conflicts. However,
all accesses are closely monitored, and when a transaction
attempts to commit, validation ensures that the transaction
did not perform operations that violate isolation. Similarly,
looking ahead allows participants to exit a transaction – op-
timistically hoping that it will not perform operations that
violate isolation. However, all operations performed by
look-ahead participants are closely monitored and their ef-
fects kept under control by means of implicit transactions.

6.3. OASIS Business Transactions

In June 2002, the Organization for the Advancement
of Structured Information Systems, short OASIS, has in-
troduced the Business Transaction Protocol [20]. It has
emerged based on the observation that maintaining all
of the transactional ACID semantics of transactions in a
loosely coupled environment such as the Internet is not
practical. In such an environment, transactions might take
hours, days or even longer to complete, and resources can-
not reasonably be locked or reserved for a potentially indef-
inite amount of time. Intermittent connections and varying
load also make it hard to guarantee availability or progress.

While still providing the options of using standard trans-
actions (here called atoms), the business transaction proto-
col also defines cohesions. A cohesion may deliver differ-
ent termination outcomes to its participants; some partici-
pants will confirm whilst the others will cancel. The isola-
tion property is relaxed, allowing the effects of a cohesive
interaction to be externally visible before the interaction is
committed. Consistency is determined by agreement and
interaction between the initiator and the coordinator.

Open multithreaded transactions with look-ahead are
somehow half way between strict transactions and cohe-
sions. If applied to a distributed Internet application, look-
ahead OMTTs do not slow down the loosely coupled par-
ticipants (similar to cohesions), but can still guarantee the
ACID properties in case of exceptional situations (similar
to transactions).

6.4. OMTTs and External Devices

OMTTs can be extended to support atomic manipulation
of external objects (including devices and files) following,
for example, the ideas from [21]. This paper identifies four
types of objects which can be made "transactional" under
some assumptions and with additional software support.

More specifically the reversible objects are classified into
objects which can be rolled back by compensation or by
step-by-step rollback, the non-reversible objects are clas-
sified into objects for which execution can be postponed
or which require fictitious execution. To support this we
will need to implement a special middleware layer which,
depending on the type of the object, logs all the requests
directed to the object (with or without executing them).
These logs can be either cleared when the transaction aborts
or used to avoid double execution after the aborted trans-
action restarts. For some types of objects all the logged
operations are executed on transaction commit.

7. Conclusion

Open multithreaded transactions provide a powerful
concept that facilitates the development of reliable, dis-
tributed systems with cooperating and competing concur-
rent entities. Unfortunately, OMTTs also impose strict syn-
chronization between participants of a transaction at com-
mit time. As a result, all participants are blocked until the
slowest one finishes its work. Especially for long running
transactions, the waisted computation time can be signifi-
cant.

We have shown in this paper that this synchronization
constraint can be relaxed, allowing participants to look-
ahead from a transaction and continue on the outside as
if the transaction had committed. As a result, participants
do not have to be suspended any more, and hence the ex-
ecution speed of an individual transaction is significantly
increased. Our approach is transparent to the application
developer, since it preserves the execution semantics of the
original model.

To achieve this smooth integration, several technical is-
sues had to be solved:

• Non-transactional code that is executed after a trans-
action commits had to be encapsulated in implicit
transactions.

• The concurrency control of transactional objects had
to be made look-ahead aware.

• The joining and forking rules for look-ahead transac-
tions had to be refined.

• The exception handling rules had to be adapted to sup-
port exceptions thrown in the former transaction, as
well as exceptions thrown in look-ahead transactions.

• The interface to the Java version of OPTIMA, the run-
time support for OMTTs, had to be changed in order
to make it possible to restart transactions.

Our results show that OMTTs lend themselves perfectly
for look-ahead, mainly because of the fact that partici-
pants of open multithreaded transactions only collaborate



loosely through transactional objects. Looking ahead is es-
pecially applicable in distributed Internet applications such
as e-commerce systems, where individual participants of a
transaction are very independent entities.

This contrasts with other approaches such as atomic ac-
tions or conversations, where due to the tight collaboration
of the individual participants the introduction of look-ahead
could not be achieved in a transparent manner.

8. Acknowledgments

Jörg Kienzle is partially supported by the Natural
Siences and Engineering Research Council of Canada.
Alexander Romanovsky is partially supported by the FP6
IST RODIN Project.

References

[1] J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques. San Mateo, California: Morgan Kaufmann
Publishers, 1993.

[2] R. H. Campbell and B. Randell, “Error recovery in asyn-
chronous systems,” IEEE Transactions on Software Engi-
neering, vol. SE-12, pp. 811 – 826, August 1986.

[3] J. Kienzle, Open Multithreaded Transactions — A Transac-
tion Model for Concurrent Object-Oriented Programming.
Kluwer Academic Publishers, 2003.

[4] J. Kienzle, A. Romanovsky, and A. Strohmeier, “Open mul-
tithreaded transactions: Keeping threads and exceptions un-
der control,” in Proceedings of the 6th International Wor-
shop on Object-Oriented Real-Time Dependable Systems,
Universita di Roma La Sapienza, Roma, Italy, January 8th
- 10th, 2001, pp. 209 – 217, IEEE Computer Society Press,
2001.

[5] A. Romanovsky, “On structuring cooperative and compet-
itive concurrent systems,” The Computer Journal, vol. 42,
no. 8, pp. 627 – 637, 1999.

[6] J. Kienzle, A. Romanovsky, and A. Strohmeier, “Auction
system design using open multithreaded transactions,” in
Proceedings of the 7th International Worshop on Object-
Oriented Real-Time Dependable Systems, San Diego, Cal-
ifornia, USA, January 7th - 9th, 2002, (Los Alamitos, CA),
pp. 95 – 104, IEEE Computer Society Press, 2002.

[7] K. H. Kim and S. M. Yang, “Performance impacts of look-
ahead execution in the conversation scheme,” IEEE Trans-
actions on Computers, vol. 38, pp. 1188–1202, August
1989.

[8] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger, “The
notion of consistency and predicate locks in a database sys-
tem,” Communications of the ACM, vol. 19, pp. 624 – 633,
November 1976.

[9] C. Kloukinas and S. Yovine, “Synthesis of safe, QoS ex-
tendible, application specific schedulers for heterogeneous
real-time systems,” in 5th Euromicro Conference on Real-
Time Systems (ECRTS’03), Porto, Portugal, pp. 287–294,
July 2003.

[10] H. T. Kung and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Transactions on Database Sys-
tems, vol. 6, pp. 213 – 226, June 1981.

[11] J. R. Haritsa, M. J. Carey, and M. Livny, “On being opti-
mistic about real-time constraints,” in PODS Õ90. Proceed-
ings of the Ninth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems: April 2 - 4, 1990,
Nashville, Tennessee (ACM, ed.), vol. 51 (1) of Journal of
Computer and Systems Sciences, (New York, NY 10036,
USA), pp. 331 – 343, ACM Press, 1990.

[12] D. A. Menascé and T. Nakanishi, “Optimistic versus pes-
simistic concurrency control mechanisms in database man-
agement systems,” Information Systems, vol. 7, no. 1, pp. 13
– 27, 1982.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm,
and W. G. Griswold, “An overview of AspectJ,” in 15th
European Conference on Object–Oriented Programming
(ECOOP’2001), (June 18–22, 2001, Budapest, Hungary),
pp. 327 – 357, 2001.

[14] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and
M. Patiño-Martinez, “Transaction support for ada,” in Re-
liable Software Technologies - Ada-EuropeÕ2001, Leuven,
Belgium, May 14-18, 2001, no. 2043 in Lecture Notes in
Computer Science, pp. 290 – 304, Springer Verlag, 2001.

[15] J. Kienzle and R. Guerraoui, “AOP - Does It Make
Sense? The Case of Concurrency and Failures,” in 16th
European Conference on Object–Oriented Programming
(ECOOP’2002) (B. Magnusson, ed.), no. 2374 in Lecture
Notes in Computer Science, (Malaga, Spain), pp. 37 – 61,
Springer Verlag, 2002.

[16] P. A. Lee and T. Anderson, “Fault tolerance - principles
and practice,” in Dependable Computing and Fault-Tolerant
Systems, Springer Verlag, 2nd ed., 1990.

[17] B. Randell, “System structure for software fault tolerance,”
IEEE Transactions on Software Engineering, vol. 1, no. 2,
pp. 220 – 232, 1975.

[18] A. Romanovsky, “Looking ahead in atomic actions with ex-
ception handling,” in The 20th IEEE Symposium on Reliable
Distributed Systems (SRDS ’01), pp. 142 – 151, IEEE, Oc-
tober 2001.

[19] S. K. Shrivastava, L. V. Mancini, and B. Randell, “The dual-
ity of fault-tolerant system structures,” Software — Practice
& Experience, vol. 23, pp. 773 – 798, July 1993.

[20] Organization for Advancement of Structured Information
Systems, “Business transaction protocol,” June 2002.

[21] A. B. Romanovsky and I. V. Shturtz, “Unplanned recovery
for non-program objects,” Computer Systems Science and
Engineering, vol. 8, pp. 72–79, April 1993.


