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An extensive study and several applications show that a saddlepoint approximation for the
distribution of quadratic forms in normal variates works very well and outperforms existing
approximate methods in accuracy.
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1. I

Let X= (X1 , . . . , Xn
)T be a multivariate normal random vector with mean vector m=

(m1 , . . . , m
n
)T and covariance matrix V. The quadratic form associated with the n×n matrix A is

defined as

Q(X)=XTAX= ∑
n

i=1
∑
n

j=1
a
ij
X
i
X
j
; (1)

without loss of generality we assume that A is symmetric. Quadratic forms enter into many statistics
associated with normally distributed random variables, so we may want to calculate

pr{Q(X)>q}, (2)

where q is a given scalar. In the simplest case, A=V=I
n

and Q(X) is a noncentral chi-squared
variable with n degrees of freedom and noncentrality parameter j2=Wm2

i
(Scheffé, 1959, Appendix

IV). If the matrix A is neither idempotent nor positive definite, classical results such as Cochran’s
theorem (Scheffé, 1959, Appendix VI) implying a chi-squared distribution for the quadratic form
do not apply, and another approach to the calculation of (2) is needed. Johnson & Kotz (1970,
Ch. 29) discuss representations of the distributions of quadratic forms. Imhof (1961) gives exact
methods for computing (2) using real arithmetic. This method has been programmed in Fortran
by Koerts & Abrahamse (1969) and in Pascal by Farebrother (1990). Moreover, as any quadratic
form in independent normal variables can be reduced to a linear combination of chi-squared
variables, the Algol algorithm of Davies (1980) can also be used; a C version is available.

This note proposes a saddlepoint approximation to (2). It is comparable in speed with exact
methods, almost as accurate and is much easier to program. In § 2, theory for quadratic forms is
recalled. Section 3 presents the saddlepoint approximation to (2). The methods are compared in
§ 4, and § 5 illustrates their use in nonparametric regression.

2. T   

We first consider a central quadratic form in which m1= . . .=m
n
=0. Since V is positive definite

and symmetric, it can be factored by Choleski decomposition as CCT, where C is a nonsingular
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lower triangular matrix. It follows that CTAC is symmetric and therefore its eigenvalues are all
real. Thus there is a nonsingular orthogonal linear transformation of X such that Q(X) has the
same distribution as Q(Y )=W l

i
Y 2
i
, where the Y

i
are independent standard normal variables and

l1� . . .�l
n
denote the eigenvalues of CTAC (Scheffé, 1959, Appendix II).

For the general noncentral case a similar reduction is (Imhof, 1961)

Q(Y )= ∑
n

i=1
l
i
x2
h
i
;s2
i

,

where the h
i
are the orders of multiplicity of the l

i
, the x2

h
i
;s2
i

are independent chi-squared variables
with h

i
degrees of freedom and noncentrality parameters s2

i
, and they are defined by the relation

x2
h
i
;s2
i

= (Y1+s
i
)2+ ∑

h
i

r=2
Y 2
r
,

where the Y
i
are independent standard normal deviates. The cumulant generating function of Q(Y )

is (Imhof, 1961, eqn (2.3); Johnson & Kotz, 1970, p. 152)

K(f)=−
1

2
∑
n

i=1
h
i
log (1−2fl

i
)+ ∑

n

i=1
s2
i
l
i

1−2fl
i
, f<

1

2
min
i

l−1
i

.

Note that l1� . . .�l
n

must be determinated explicitly. Imhof (1961) extended Pearson’s (1959)
three-moment central chi-squared approximation to the distribution of noncentral chi-squared
variables. A special case of this is pr{Q(X)>q}jpr (x2

b
>r), where x2

b
denotes a chi-squared variable

with b=c3
2
/c2
3

degrees of freedom, r= (q−c1 )(b/c2 )D+b and c
s
=W ls

i
(h
i
+ss2

i
), for s=1, 2, 3. If

the quadratic form is nonpositive one has to assume that c3>0. Otherwise, one must approximate
the distribution of −Q(X).

In the central case, where s2
1
= . . .=s2

n
=0, h1= . . .=h

n
=1,

c
s
= ∑

n

i=1
ls
i
=tr{(CTAC )s}=tr{(VA)s},

because CTAC and VA have the same eigenvalues. In the central case, Bowman & Azzalini (1997)
rewrite Pearson’s approximation in terms of the first three cumulants of Q(X), which are

k
s
=2s−1 (s−1)! tr{(VA)s}=2s−1 (s−1)!c

s

(Johnson & Kotz, 1970, p. 153). They fit a distribution of type ax2
b
+c, where a=|k3 |/(4k2 ),

b= (8k3
2
)/k2

3
and c=k1−ab. The advantage is that the eigenvalues only enter through tr{(VA)s}

and therefore need not be calculated explicitly.

3. S 

Saddlepoint methods (Daniels, 1954; Reid, 1988; Jensen, 1995) give highly accurate approxi-
mations to density and distribution functions. By contrast with Pearson’s approximation they use
the entire cumulant generating function. One form of saddlepoint approximation to the distribution
of Q(X) or Q(Y ) at q is (Barndorff-Nielsen, 1990)

pr{Q(X)>q}j 1−F
s
(q)=1−W qw+

1

w
logAv

wBr , (3)

where

w=sign(f@ )[2{f@q−K(f@ )}]D, v=f@{K◊(f@ )}D
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and f@=f@ (q), known as the saddlepoint, is the value of f satisfying the equation K∞(f@ )=q; K∞(f)
and K◊(f) are the first and second derivatives of K(f) with respect to f. An alternative to (3) is the
Lugannani–Rice approximation (Lugannani & Rice, 1980), but they are usually indistinguishable
in practice. The existence and uniqueness of f@ follow from Daniels (1954). Calculation of (3) requires
computation of f@ for each q of interest. Under additional conditions (3) gives a relative error of
O(n−3/2 ) for the distribution (Jensen, 1995, § 6.5). When q is close to E{Q(X)}, approximation (3)
can become numerically unstable, and is best avoided. Fortunately such values of q are not of
interest in practice.

4. C

Simulation shows that Imhof ’s (1961) and Davies’s (1980) exact methods differ little so only
Davies’s method will be considered here. In an extensive numerical study, the author considered
39 different quadratic forms. For the 12 most interesting of them, Table 1 records the values of (2)
found by Davies’s method. For the approximations the relative error compared to this method is
given. The quadratic forms Q1 to Q7 are represented in the first column of Table 1 by l

i
, h

i
and

s2
i
, while Q8 to Q12 are represented by A, m and V. The forms are as follows: F

n
is the symmetric

banded n×n matrix with bandwidth one, diagonal (1, 2, . . . , 2, 1) and subdiagonal consisting of
−1’s (Farebrother, 1990); S

n
is a positive definite symmetric banded n×n matrix with bandwidth

two, 7’s on the diagonal, 2’s in the first band and 1’s in the second band; and D
n

is a positive
definite symmetric banded n×n matrix with bandwidth one, 10’s on the diagonal, and −1’s in the
subdiagonal, in the nth line and in the nth column. Quadratic forms Q1 to Q3 were used by Imhof
(1961, Table 1) and Q4 and Q5 were used by Farebrother (1990, Table 1).

Pearson’s three-moment central chi-squared approximation (ii) encounters problems for negative
definite or indefinite quadratic forms, such as Q6 , Q9 , Q10 , Q11 and Q12 , and its relative error can
be large. The saddlepoint approximation (iii) yields very accurate approximations, even for nonposi-
tive quadratic forms. Even with n large, as in Q11 and Q12 , the saddlepoint approximation (iii) is
more precise than (ii).

The saddlepoint approximation (3) is very easy to compute: in the statistical package S-Plus it
takes about 20 lines of commands, whereas Davies’s method requires more than 200 lines of C
code, and to have an estimate of desired accuracy one has to adjust all the input variables. Thus
the saddlepoint approximation can be applied more easily, though there is some additional cost
in computation time because of the use of an interpreted language like S-Plus, and to evaluation
of all the eigenvalues; this is of the order of a few seconds when n=300.

5. A   

Suppose that data (x1 , y1 ), . . . , (xn , yn) of dimension (d+1) have been collected. Their regression
relationship can be modelled as

y
i
=m(x

i
)+e

i
(i=1, . . . , n),

where m(. ) is an unknown function and the e
i
are independent errors with mean zero and variance

s2. A nonparametric estimator of m(x), such as the local least squares estimator, can be written as
m@
H
(x)=S

H
y, where S

H
is the n×n smoothing matrix and H is a d×d symmetric positive matrix,

the bandwidth matrix (Ruppert & Wand, 1994). Suppose that one wants to compare the hypotheses
H0 : E(y

i
)=m and H1 : E(y

i
)=m(x

i
); H0 posits no effect. The standard approach from classical

linear models was extended by Azzalini, Bowman & Härdle (1989) to the nonparametric setting.
They were led to the so-called pseudolikelihood ratio test statistic, T= (0−1 )/1 , where


i
denotes the residual sum of squares under the hypothesis H

i
(i=0, 1). An explicit expression

is T=yTBy/yTCy, where C= (I
n
−S)T (I

n
−S), B is the matrix I

n
−n−1L −C and L is the n×n

matrix with all its entries equal to one (Bowman & Azzalini, 1997, § 5.2). Hence, the corresponding
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Table 1. Probability that the quadratic form exceeds q. (i) Davies’s (1980)
method with accuracy 0·0001, (ii) relative error (%) for Pearson’s (1959)
three-moment central chi-squared approximation, and (iii) relative error (%)

for the saddlepoint approximation

Quadratic form q (i) (ii ) (iii)

Q1=0·6, 2, 0; 0·3, 2, 0; 0·1, 2, 0 0·2 0·9936 0·65 0·007

3 0·1869 0·89 0·727
6 0·0161 0·76 0·709

Q2=0·6, 6, 0; 0·3, 4, 0; 0·1, 2, 0 1 0·9973 0·11 0·001

3 0·8156 0·19 0·031
10 0·0311 0·39 0·132

Q3=0·6, 2, 0; 0·3, 4, 0; 0·1, 6, 0 1 0·9666 1·04 0·026

4 0·2115 0·99 0·260
8 0·0087 1·85 0·042

Q4=30, 1, 0; 1, 10, 0 5 0·9846 1·56 0·058

25 0·4892 1·76 1·021
100 0·0837 0·69 0·266

Q5=30, 1, 0; 1, 20, 0 10 0·9951 0·49 0·010

40 0·4267 1·98 0·942
100 0·1035 1·35 1·152

Q6=−0·6, 2, 0; 0·3, 4, 0; 0·1, 6, 0 −4 0·9900 1·01 0·026

1 0·4010 12·38 3·117
4 0·0098 168·48 1·813

Q7=0·6, 1, 0·1; 0·3, 2, 0·2; 0·1, 1, 0·2 0·1 0·9883 1·18 0·001
0·4 0·8694 1·14 0·337

3·2 0·0775 3·35 1·363

Q8=F5 ; 05 ; I5 0·5 0·9881 1·20 0·017
5 0·5949 1·77 0·519

50 0·0006 11·70 1·578

Q9=−F5 ; 05 ; I5 −25 0·9731 2·77 0·050
−5 0·4051 40·78 0·761

−0·5 0·0119 913·46 1·423

Q10=−S7 ; 07 ; I7 −200 0·9993 0·07 0·002
−50 0·5976 28·68 0·523

−5 0·0023 3341·06 0·714

Q11=−S15 ; 015 ; I15 −200 0·9722 2·86 0·026
−100 0·5106 22·94 0·231

−50 0·0580 77·49 0·282

Q12=−D10 ; 010 ; I10 −200 0·9687 3·24 0·004
−50 0·1124 19·97 0·002

−10 0·0002 24457·37 0·008

p-value can be written as

pr (T>t |H0 )=pr (yTUy>0)=pr (eTUe>0), (4)

where U=B−tC, t is the observed value of T and e= (e1 , . . . , e
n
)T is the error vector. If the e

i
are

normally distributed one can set s2=1 without loss of generality as T is scale-invariant. Hence, if
we set A=U and V=I

n
, the covariance matrix of e, the p-value (4) can be calculated easily.

For illustration, we consider the Great Barrier Reef data for the closed zone in 1993 (Bowman
& Azzalini, 1997, p. 52). Two of its variables are the bottom depth, x, and the catch score, y. A
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Fig. 1. Plot of the relationship between bottom depth (metres)
and catch score in a subsample of the Great Barrier Reef data.
The nonparametric regression curve with h=5, dashed line,
and the curve of no effect, solid line, have been superimposed.

Table 2. T he p-value as a function of the smoothing par-
ameter h for testing a relationship between catch score and
bottom depth in the Great Barrier Reef data. (i) Davies’s
(1980) method with accuracy 0·0001, (ii ) relative error (%)
for Pearson’s (1959) three-moment central chi-squared
approximation, and (iii) relative error (%) for the saddle-

point approximation

h (i) (ii) (iii) h (i) (ii) (iii )

3 0·0604 5·433 0·028 11 0·0334 5·890 1·192
5 0·0633 7·737 0·135 13 0·0289 4·867 1·288

7 0·0516 7·545 0·019 15 0·0258 4·164 0·240
9 0·0407 6·765 0·738 17 0·0234 3·460 1·431

plot of their relationship is given in Fig. 1. Here d=1, so H is a scalar smoothing parameter h.
Figure 1 displays the nonparametric regression curve with h=5 and the curve of no effect. Table 2
gives the p-value (4) as a function of the smoothing parameter h. Bowman & Azzalini (1997) stated
that their approach (ii) is sufficiently accurate to approximate the p-value, but Table 2 shows that
Pearson’s approximation underestimates the exact p-value. The saddlepoint approximation is
extremely accurate. For a significance level of 5%, the p-values recorded in Table 2 suggest that
there exists a relationship between bottom depth and catch score for h>7, but not for h∏7. This
may result from the fact that when h increases the nonparametric local regression curve becomes
smoother and differs from the fitted constant curve significantly.

In practice it is useful to have some idea of the power of a test. Suppose that y1 , . . . , yn are
generated from y

i
=m@

h
(x
i
)+e

i
, where m@

h
(x
i
) is the local least squares estimate evaluated at x

i
, and

the e
i
are drawn independently from the normal distribution N(0, g2). Various combinations of h
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Table 3. T he simulated power (%) as a function of h and g for
testing a relationship between catch score and bottom depth in
the Great Barrier Reef data. (i) Davies’s (1980) method with
accuracy 0·0001, (ii ) Pearson’s (1959) three-moment central chi-

squared approximation, and (iii) saddlepoint approximation

h g (i) (ii) (iii) h g (i) (ii ) (iii )

1 1 93·4 93·4 93·4 9 1 94·6 94·6 94·6
0·5 94·6 94·4 94·6 0·5 95·0 94·8 95·0

0·25 95·4 95·0 95·4 0·25 95·6 95·2 95·6

5 2 93·4 93·0 93·4 11 2 94·4 93·8 94·4
1 94·0 93·8 94·0 1 95·0 94·2 95·0

0·25 94·8 94·4 94·8 0·5 96·0 95·8 96·0

7 2 94·0 93·8 94·0
1 94·6 94·6 94·6

0·1 95·4 95·4 95·4

and g were considered and in each case 500 samples were generated. Table 3 presents the percentages
of times H0 was rejected for significance level 5% and some selected values of h and g. The
pseudolikelihood ratio test seems to be very powerful in the present context, though the power
decreases when g gets large, because large g’s increase the noise. The saddlepoint approximation
gives the same power as does Davies’s method, whereas Pearson’s approximation delivers slightly
smaller estimated power.
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