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We consider boundary coverage of a regular structure by a swarm of miniature
robots, and compare a suite of three fully distributed coordination algorithms
experimentally. All algorithms rely on boundary coverage by reactive con-
trol, whereas coordination of the robots high-level behavior is fundamentally
different: random, self-organized, and deliberative with reactive elements.

The self-organized coordination algorithm was designed using macroscopic
probabilistic models that lead to analytical expressions for the algorithm’s
mean performance. We contrast this approach with a provably complete, near
optimal coverage algorithm, which is due to its assumption (noise-less sen-
sors and actuators) infeasible on a real miniature robotic platform, but is
considered to yield best-possible policies for an individual robot.

Experimental results with swarms of up to 30 robots show that self-
organization significantly improves coverage performance with increasing swarm
size. We also observe that enforcing a provably complete policy on a minia-
ture robot with limited hardware capabilities is highly sub-optimal as there is
a trade-off between coverage throughput and time spent for localization and
navigation.

1 Introduction

We consider the multi-robot boundary coverage problem [10], which is moti-
vated by a case study aiming at autonomous inspection of a jet turbine by
a swarm of miniature robots (Figure 1, left), but is also relevant for various
other inspection/coverage tasks such as painting or mowing. The jet turbine
environment imposes drastic constraints on the robotic platform (e.g., minia-
turization, only local communication), and therefore emphasizes a distributed
approach.
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In the boundary coverage problem, a group of k robots is required to
completely inspect all points on the boundary of objects in a specified en-
vironment. In this paper, we consider a specific case of boundary coverage
concerned with regular structures.

Fig. 1. Left: A swarm of miniature robots Alice [5] executing boundary coverage
in a simplified 2D model of a jet turbine’s engine. Right: The miniature robot Alice
with its extension module.

The boundary coverage problem was formally introduced by Easton and
Burdick [10], who also provided a provably complete, near optimal algorithm
for coordinating a team of holonomic point robots, whereas we introduced a
probabilistic algorithm that was experimentally validated using a swarm of
miniature robots in [7]. Obviously, the feasibility gap between the two ap-
proaches is large: In [10] trajectories for robot coordination are calculated
off-line, assuming perfect navigation/localization abilities of the robots. In [7]
instead we use no planning, but coordination is fully decentralized and reac-
tive, enabling execution by minimalist robots with crude sensors and limited
localization capabilities. While [17] extends the algorithm of [10] to work in
dynamic environments with distributed path re-planning, we raise the level
of coordination of our minimalist approach: we implement and compare two
algorithms on the Alice platform [5] that rely on orthogonal paradigms, de-
liberative planning with minimal reactive parts [2] and self-organization [3].
Whereas in the deliberative approach robots plan their trajectories based
on an algorithm leading to provably complete coverage, in the self-organized
approach robots follow simple heuristics that govern their behavior upon in-
teraction with other robots or the environment.

1.1 Related Work

Random versus deliberative strategies for the coverage problem in theory and
simulation have been addressed previously by for instance [11, 16]. In this
paper, we address this problem experimentally by large scale robotic exper-
iments. Due to the limitations of real miniature robots, we do not expect
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complete coverage. However, we would like to study whether it is indeed a
good policy to always choose the next robot’s action assuming sensing and
actuation were perfect, which is considered best practice [16].

Although boundary coverage is distinct from distributed coverage path
planning [1,4], which considers coverage of every accessible point in the envi-
ronment by a robot team, boundary coverage of a regular structure, and thus
visiting every one of its elements, is comparable with visiting every cell of a
grid as for instance in [1, 4].

1.2 Self-Organization as Coordination Mechanism

Self-organization is emerging from the interplay of four ingredients: Posi-
tive and negative feedback (e.g., amplification or saturation, respectively),
randomness, and multiple interactions among individuals [3]. While self-
organization might achieve less efficient coordination than other distributed
control schemes, it can provide extremely high levels of robustness and can be
applied to miniature robotic platforms such as those mentioned in this paper.

One of the major drawbacks of self-organization in an engineering context
is its lack of analytical tractability of the resulting collective behavior. We
try to overcome this limitation by combining reactive control (e.g., [2]) on
the individual level with probabilistic modeling [12], that allows us to cal-
culate the analytic mean of arbitrary swarm performance metrics based on
the (probabilistic) behavior of the individual agent. Modeling can hence be
used to guide the design process [6,8] (see below), which lead to an improved
communication scheme that is experimentally studied in this paper.

2 Experimental Setup

Experiments are conducted in a 60cm×65cm arena populated with 25 blades
in a regular pattern (Figure 1, left), mimicking the rotor and stator blades in
a turbine. Stator blades can be distinguished from rotor blades as their curva-
ture is concave whereas the curvature of a rotor blade is convex when looking
at the edge following the round tip (considering coverage of the boundary in
clockwise direction), compare Figure 2. The Alice robot (Figure 1, [5]) has a
size of 2cm×2cm×2cm, a differential wheel drive with reaching speed of up
to 4 cm

s
, and four infrared distance sensors for obstacle detection (up to 3cm),

and 4Bit/s local communication up to 6cm. It is endowed with a PIC micro
controller with 368bytes of RAM.

For implementing more sophisticated collective navigation algorithms and
enhancing both on-board computation and communication capabilities, we use
an extension module measuring 2cm×2cm. The extension module is inspired
by [14] and provides 2.4Ghz wireless communication (Chipcon CC2420),
512kB Flash, and a TI MSP430 processor (4KByte RAM) running TinyOS.
The extension module is connected to the Alice’s serial port (Figure 1). In
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this paper, the extension module is exclusively used as provider for additional
computational power, and communication between the robots is solely based
on the on-board infrared distance sensors.

Systematic experiments involving 5 to 30 robots are monitored using an
overhead camera and the tracking software SwisTrack1 [9].

3 Self-Organized Approach: Interactive Random

Coverage

In [7] we implement a very simple distributed algorithm: robots are searching
randomly through the arena; on encountering a blade, a robot attaches to
it and circumnavigates it for a certain time (10s), and finally leaves it at its
tip. By this, we exploit the structure of the environment to bias the robots’
trajectories. Although this makes sense in a continuous environment such as
a real cylindrical turbine, a bounded arena leads to sub-optimal performance
due to non-uniform distribution of the robots [7]. In [6] we introduce the con-
cept of robots acting as “beacons” preventing other robots from finishing the
inspection of a blade, and find an optimal (dynamic) policy for employing
the beacon state in [8]. Using probabilistic modeling we show theoretically
that turning the beacon behavior on after a certain time can lead to a 5%
improved performance, but only if there are more robots than blades. In this
contribution we combine lessons learned from [6–8], and have the robots per-
form an additional movement along the blades contour for 50% of the blades
on average (the robot’s decision to leave a blade at its tip or sweep along its
contour for leaving at the other end is taken randomly with a 50/50 chance).
By this, the spatial distribution of the robots is uniform, and at the same time
robots communicate that this blade has already been inspected while moving
along its contour. Additionally, we exploit low bit-rate local communication
(via the Alice’s on-board infrared sensors) for decreasing redundant inspec-
tion by having robots abandon an inspection if they are following or encounter
another inspecting robot (in this case only the robot having the blade to its
right will leave). Finally, searching robots will not attach to a blade if there
is an inspecting robot nearby (6cm max.). These additional steps were neces-
sary, as it is difficult to show a 5% performance increase, as predicted in [8]
for static beacons, experimentally in a significant way.

4 Complete Approach: Spanning-Tree Coverage

Exploiting the regularity of the structure, the Alice constructs a spanning tree
with the blades as nodes, and possible routes between nodes as edges. Hereby
we consider the 4-neighborhood of each blade as possible routes (Figure 2,

1 http://swistrack.sourceforge.net
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left). Edges are numbered from 0 to 3, where the direction 0 is given by the
direction of the face that follows on the round tip when considering clock-wise
coverage of the boundary. Nodes are indexed with 2D coordinates relative to
the root, where the x-axis is given by the direction of edge 1, and the y-axis
by the direction of edge 0 (compare Figure 2, left).

The spanning tree is constructed on-line and systematically explored by a
Depth-First-Search (DFS) algorithm. The DFS algorithm is setup such that
the direction of exploration is not biased in order to promote uniform coverage
of the environment (see Section 3), even if the robots restart exploration
occasionally due to failure. This is achieved by selecting the edges in clockwise
or counter-clockwise order depending on the coordinate of the node.

An edge is considered as fully explored when all nodes connected to it have
been visited. Once all edges of a node are explored, the DFS algorithm makes
the robot physically return to its parent node (known as backtracking) and
explores remaining unexplored edges of this node. The algorithm goes on until
it reaches the spanning tree’s root, a policy leading to provably complete cov-
erage. Notice that the algorithm explores all possible edges, including those
ending at a wall. As DFS will visit every node at least twice during backtrack-
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Fig. 2. Left: Possible routes between a blade and its four neighbors. A behavioral
algorithm drives the robot to one of two launch-points (black circles), whereas the
blade-to-blade transition is executed by open-loop control. Right: Possible trajectory
for a single robot along a spanning-tree in a 5x5 blade environment (bold line).
Dotted lines are paths the robot is backtracking, dash-dotted line are “short-cuts”
provided by the A

∗ algorithm.

ing, we use the A∗ algorithm for calculating the shortest path to the first node
that has unexplored edges along the backtracking path (see [15] for a similar
algorithm and analysis). Once the first node that has unexplored edges on
the robot’s path is determined, A∗ finds the provably optimal path from the
robot’s current location to this node by searching its spanning-tree. Also, A∗

allows the robot to terminate if there are no unexplored edges left, whereas
the standard DFS algorithm would require the robot to physically return to
the spanning tree’s root in order to terminate.
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Figure 2, right, shows a possible spanning tree constructed by the DFS
algorithm and short-cuts provided by A∗.

5 Low-Level Reactive Robot Control

The random and the self-organized coverage algorithms rely on three basic
behaviors [2]: obstacle avoidance, wall following (left and right), and assessing
an objects type (blade, arena boundary, or another robot). Performing bound-
ary coverage and exploring the spanning tree instead requires the following
additional behaviors: determining the blade’s type (rotor or stator) at the
spanning tree’s root, navigating to one of two distinct way-points, traversing
8 possible edges (4 for rotor and 4 for stator blades), and finally backing up
non-navigable edges (i.e. those ending in a wall). The flow-chart of the robot’s
controllers is summarized in Figure 3, left, for the random/self-organized cov-
erage algorithm, and in Figure 3, right, for the deliberative-reactive approach.

The type of a blade is determined by measuring the curvature of the blade
between its round and its sharp tip. This is achieved by counting the number
of increments of the wheels’s stepper motors: the round and the sharp tip
can be distinguished by the amount of sharp turns necessary for surrounding
them. In order to reach a certain level of confidence, a robot might need
to circumnavigate a blade multiple times. For instance, for determining the
blade type, the difference of “votes” for either type needs to be equal to
two, whereby a vote is based on a certain threshold. Parameters determining
the termination criteria for the behavioral algorithms have been determined
experimentally, and aim at a trade-off between accuracy and time needed.

Action-selection is hard-coded in the Alice for the random/self-organized
approach, whereas the behavior is selected by the extension module for the
deliberative algorithm. After each behavior is terminated, the Alice stops, and
reports to the DFS algorithm, which in turn selects the appropriate behavior
for physically guiding the robot along the spanning tree.

If a behavior has obviously failed (termination criteria not reached within
a given time, 10s in our experiments, or a mismatch between the location of
the Alice and the belief of the DFS algorithm occurred, e.g. being at a wall
while the DFS algorithm expects a blade), the Alice and the extension module
are reset and 10s of obstacle avoidance is executed, in order to restart from a
random position.

6 Results

We first compare performance of random exploration, self-organized coordi-
nation, and deliberative-reactive coverage for a swarm of 10 real robots. Over
10 experiments, the DFS algorithm needed 788±375s to complete (results
with standard deviation), whereas random exploration and self-organization
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Fig. 3. Flowchart of the robot controller implementing the behavioral layer of the
random/self-organized algorithm (left) and deliberative-reactive algorithm (right).
Left : State transitions requiring communication (self-organized coordination) are
dashed / labeled gray. Right : On state transitions the Alice sends a message to the
DFS algorithm on the extension module (capitalized and separated by a “/” from
the event). State transitions from the STOP state are always caused by the DFS
algorithm.

led to 303±112s and 336±192s, respectively. Compare also Figure 4, left. We
also measured the mean time to failure (MTF) in the deliberative-hybrid ap-
proach. This is the mean time until the robots reboot due to navigation error,
and was measured in terms of distinct blades covered as MTF (k) = 2.8± 1.4
blades, and MTF (t) = 138s ± 73.3s in terms of time, leading to an average
coverage time of 49.4s per blade.

Inspection performance (time to completion) using non-communicating
robots for swarms of 20, 25, and 30 robots (100 experiments each) are con-
trasted with inspection time for communicating swarms (Figure 4, left, error
bars represent the standard error). The absolute improvement of the self-
organized approach is given in Figure 4, right. Given the relatively small
difference between the results, we applied a non-parametric test for statisti-
cal significance (Kruskal-Wallis). Here, experiments involving 30 robots are
most significant (p-value equal to 0.07%), whereas results obtained with 20
robots have an estimated chance of 6% to be a random artefact. Additional
experiments (32 repetitions) for swarms of 5, 10, and 15 robots did not al-
low for drawing a significant conclusion (p-value from 62% to 30% for 5 to 15
robots). We conjecture however that the trend—the benefit of communication
increases linearly with the swarm size—holds also for smaller team sizes.

7 Discussion

We observe that communication can significantly improve performance of the
self-organized coverage algorithm, and performance seems to grow at least
linearly with swarm size. Also, the deliberative-reactive approach is outper-
formed even by half the number of robots performing probabilistic coverage.
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Fig. 4. Left: Time to completion for swarms of 20, 25, and 30 robots running self-
organized coordination algorithms with and without communication. Right: Relative
improvement of communication over the probabilistic coverage algorithm without
communication for 20 to 30 robots.

This results is mainly due to the fact that the effective time-per-blade in the
deliberative approach is very large (49.4s vs. around 15s in the self-organized
approach). This difference can be explained by the additional circumnavi-
gations that are necessary in order to determine the blade type, extra time
needed for navigating to distinct way-points (due to the crude sensors, a robot
might need multiple circumnavigations until it has enough evidence to deter-
mine the way-point), and finally due to necessary exploration of dead-ends
(arena boundary).

Although the time-per-blade is three to four times higher in the delib-
erative approach, coverage performance is only by a factor two worse than
the probabilistic approach, showing the benefit of planning the trajectories
according to a near optimal, deliberate policy.

We notice that in practice the reliability that can be achieved is a function
of the time that one is ready to invest to collect sensory information (as we
do for determining the blade type that depends on a majority vote). In fact,
extensive simulations in Webots [13] have shown that relaxing the policies that
are necessary for guaranteeing complete coverage, i.e. re-booting on facing a
wall instead of exploring the edge and returning to the blade—a sequence
of actions that is likely to fail—yielded performance in the range of the self-
organized approach with communication.

8 Conclusion and Further Work

We show how concepts from self-organization can be used to design highly
robust distributed coordination schemes for boundary coverage. In particular,
performance indeed benefits from multiple interactions, which is a key concept
in self-organization. Designing such a controller is an iterative process, which
is supported by modeling on different abstraction levels [7,8]. This approach is
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in strong contrast with a classical design that starts from a provably optimal
policy, which is enforced as good as possible.

Acting according to a deliberative scheme might lead to worse performance
than a random policy, as the time needed for assessing the environment (navi-
gating on a blade, exploration of dead-end edges) is preventing the robot from
actually performing the task. In particular, the complete algorithm proposed
in this paper is not feasible to be implemented on the Alice platform due to
limited computational resources, but needs additional hardware that in itself
exceeds the capabilities of the Alice robot by an order of magnitude. We thus
conjecture that size constraints might make a self-organized approach the sole
choice, for instance in inspection tasks inside the human body or micro ma-
chinery. We also conclude that evaluating an algorithm’s performance solely
based on theoretic completeness criteria is misleading as deterministic com-
plete approaches necessarily degenerate to probabilistic completeness under
real world constraints. In the future, we would like to analytically assess the
trade-off between probabilistic completeness and inspection time for deriving
optimal policies knowing the constraints of a particular platform. For instance,
by using probabilistic modeling we will be able to estimate how many robots
will fail on average, and also how likely it is for a failed robot to meet a robot
that is still “on track”. We can then show, how much accuracy is needed for
executing the behavioral part, so that complete coverage can be achieved by
collaboration.
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