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ABSTRACT
We propose a method for high dynamic range (HDR) map-
ping that is directly applied on the color filter array (CFA)
image instead of the already demosaiced image. This render-
ing is closer to retinal processing where an image is acquired
by a mosaic of cones and where adaptive non-linear func-
tions apply before interpolation. Thus, in our framework,
demosaicing is the final step of the rendering. Our method,
inspired by retinal sampling and adaptive processing is very
simple, fast because only one third of operations are needed,
and gives good result as shown by experiments.

1. INTRODUCTION

Most of todays digital cameras use a single sensor coupled
with a Color Filter Array (CFA) for sensing colors. Fur-
thermore, the acquired signal is quantized to more than 8
bits to allow for a noise reduced non-linear image rendering
process. Often, digital camera image processing starts with
demosaicing, a process for color interpolation, which is fol-
lowed by color correction and tone mapping. In this paper,
we investigate rendering of the images before demosaicing.
Our method is based on a model of the human retina, where
colors are also acquired by a mosaic of cone photoreceptors
and where adaptive non-linear processes occur before inter-
polation.

After acquiring an image with a digital camera, some
processing is needed to render the image “pleasing” to the
observer on a given output device. Such processing includes
white-balancing, color correction, and tone mapping. We are
focusing on the latter in this paper.

If the dynamic range of the output device is similar to the
dynamic range of the scene (or the focal plane irradiance),
then a global tone mapping is usually sufficient to render the
scene luminances. Global tone mapping operators compress
the dynamic range non-linearly, using for example a loga-
rithmic, gamma, or sigmoidal function [6]. However, if the
dynamic range of the scene by far exceeds the dynamic range
of the output device, applying only a global operator tends to
compress the tonal range too much, causing a loss of contrast
that results in a loss of detail visibility (see Figure 4 b), which
we often interpret as regions of under- or overexposure.

The human visual system (HVS), on the other hand, is
quite able to process HDR scenes without loss of contrast, as
it can adapt to several orders of magnitudes of light intensity.
On a basic level, the eye contains two sensor systems, cones
and rods, each with functioning ranges for daylight and noc-
turnal vision. However, the HVS is also able to fully interpret

the wide range of luminance levels that occur in daylight con-
ditions. Compared to digital camera images with only global
tone compression, where under- and overexposed regions are
common, the human visual system always give us good detail
discrimination.

It is meaningful to understand which kind of processing
the HVS operates on the acquired light irradiances and to
convert it into algorithms for digital images. Thus, most
existing HDR algorithms [17, 19, 21] are based on HVS
models, such as Retinex [12, 13], which simulate the lo-
cal adaptation that occurs while the eye scans a scene. Re-
cently proposed methods not only use a HVS model, but ad-
ditionally explicitly mimic its functionality by implement-
ing neural processes. In [14], Ledda et al. propose, for
example, to use a model of cone and rod photoreceptors to
simulate a local eye adaptation on HDR images. Reinhard
and Delvin [18] propose the use of a model of cone phys-
iology for dynamic range reduction in daylight conditions.
These two approaches allow refining the modeling of visual
processes rather than adapting parameters, such as is done in
color appearance models [8].

For our HDR rendering framework, we consider a more
extend model of the retina by taking into account several lay-
ers of neurons. Also, we use the similarity between a CFA
and cone image, namely the sampling of just one single chro-
matic value per spatial position. Note that in the retina, this
cone image or mosaic is known to be random [20], while
the camera mosaics are generally regular. Despite this differ-
ence, we think that applying the HDR rendering on the mo-
saiced image better resembles the visual system than apply-
ing demosaicing first. In terms of computation, working on
the mosaiced image reduces computational complexity be-
cause there are three times less pixels to process.

2. MODEL OF RETINAL PROCESSING

It should be noted that we still know very little about the
processing of visual information by the HVS, and what we
do know concerns mostly the retinal processes. The retina
can be studied in isolation by comparing its output to a cal-
ibrated input. Even if there are many physiological studies,
modeling the HVS behavior is always subject to interpreta-
tion. As an illustration, the adaptive and non-linear response
of photoreceptors has been measured with flash illumination
in isolated photoreceptor [9]. But we know that photorecep-
tors are coupled with each other [5] and are part of a synaptic
triad where photoreceptor, horizontal, and bipolar cells form
a dense group. We can thus question the plausibility of the



Figure 1: Schema of the human retina (From webvision
[11])

model of isolated flash responses in this context. Neverthe-
less, physiological HVS models offer an interesting illustra-
tion of the visual processing from which we can get inspira-
tion for digital imaging algorithms.

The retina is composed of two main layers (Figure 1),
the inner plexiform layer (IPL) which is the location of the
synaptic triad of cone, horizontal, and bipolar cells, and the
outer plexiform layer (OPL) where bipolar, amacrine, and
ganglion cells communicate. In these layers, horizontal and
amacrine cells have a role of horizontal connectivity, where
bipolar cells transmit signals from the IPL to OPL. Cones
sample light and ganglion cells transmit information to the
cortex. The definitive role of this cell network is not known
and remains controversial.

Our HDR algorithm is based on a simple model of reti-
nal processing, consisting of a mosaic of chromatic samples
on which we apply two non-linear adaptive processes rep-
resenting the IPL and the OPL. In the final step we apply
demosaicing to render the full color image.

2.1 Chromatic mosaic image formation
In the retina, there are three kinds of cones active in daylight
vision, called L, M and S for Long, Middle and Short wave-
length spectral sensitivity, respectively. These cones form
a random mosaic and as a consequence there is only a sin-
gle chromatic response at each spatial location of the retina.
Most digital cameras similarly sample only a single chro-
matic sensitivity per spatial location through a CFA. Thus,
there is an analogy between the retina and digital camera
sampling of chromatic information.

Moreover, there is no physiological evidence that the im-
age is reconstructed as a regular image in the retina, i.e. an
image with three chromatic samples per spatial location. On
the contrary, it seems that at least in the parvocellular chan-
nel the chromatic and achromatic information remains mul-
tiplexed [10]. Thus, it seems reasonable to assume that the
visual processing in the retina operates directly on the mosaic
of cone responses.

In digital cameras, the mosaicing process according to
the Bayer CFA is comparable to a frequency modulation of
the chromatic signals. This modulation has the property to
modulate the chrominance in the border of the Fourier spec-
trum and leaves the luminance of the image (located in the
middle of the spectrum) unchanged [2]. Thus, we can design
filters that apply independently on luminance and chromi-

Figure 2: Impulse response of the horizontal cells filter.

nance of the CFA image following the kind of filter (low or
high pass) we design. This is similar to some HDR rendering
algorithms, where the image is first transformed to a lumi-
nance chrominance representation, and the local tone map-
ping is only applied to the luminance [15].

2.2 Horizontal cell processing
We suppose that the role of horizontal cells is to estimate
a spatio-temporal low pass filter of the CFA image. Since
the filter is low pass, it applies only on the luminance infor-
mation of the CFA. This is supported by their non-opponent
response to visual stimuli [4]. Also, we propose that this fil-
ter has a small cut-off frequency, according to the size of the
receptive field structure of these cells [16]. We thus use a
FIR filter of size 33x33 given by the transfer function shown
in Figure 2.

2.3 Adaptive non-linearity
We use an adaptive non-linearity that allows adapting the
level of the signal with a non linear mapping. As already pro-
posed by others [14, 18], this adaptive non-linearity can be
implemented with a photoreceptor model given by the Naka-
Rushton equation.

y = k
x

x+ x0
(1)

where x is the input light intensity, and y is the output
light intensity, x0 is the adaptation factor and k is a gain fac-
tor for a digital value range between [0,M], M = 216 for 16
bits images. We want the function of Equation 1 to return a
value M for an input of value of M. Thus, k acts as a range
normalization factor: k = M + x0.

The parameter x0 can be chosen either as a local or
global parameter. The local behavior is given by the hor-
izontal cells, which are known to have a feedback process
on cones [3]. We suppose that this feedback modulates the
adaptation parameter of the cones. The global factor is given
by the mean of pixel intensities over the whole CFA image.

x0 = Fh ∗ x+ x̄/2 (2)

where Fh ∗ x is the signal corresponding to the filtering
of the CFA pixel intensity x by the transfer function Fh of
the horizontal cell layer. This factor is local because its level
depends on the local behavior of the image. x̄/2 corresponds



Figure 3: Transfer function of the Amacrine filter.

to half the mean value of the CFA pixel intensities over the
whole CFA.

2.4 OPL processing
We assume that bipolar cells transmit the IPL signals to the
OPL without any modification. We additionally suppose that
amacrine cells operate similarly to horizontal cells. Thus,
they act as a low pass filter on the bipolar signal and they
modulate the adaptation parameter. We chose a 9x9 convo-
lution filter having the transfer function given in Figure 3.

2.5 Demosaicing process
The final step of the processing is the demosaicing process.
We apply a linear demosaicing method as described in [2].
Note that we do not apply any noise reduction algorithms.
However, noise is amplified by the non-linear processing. In
order to reduce the noise in the resulting image, we thus use
a slightly different algorithm for demosaicing than described
in [2]. We apply the following filters (Equation 3) for lumi-
nance and chrominance estimation in the CFA.

f =

[ 1 2 1
2 4 2
1 2 1

]
/16 flum = f ∗ f

fchr = δ − ( f ∗ f )∗ ( f ∗ f )∗ f

(3)

where δ stands for the discrete Dirac function. We used
bilinear interpolation to interpolate the chrominance. The
low pass behaviors of the filters reduce the noise.

2.6 Results
We experimented with raw images from the digital camera
Canon EOS30. We used the freeware tool dcraw.c1 compiled
under cygwin to extract a ppm image in 16-bits with the com-
mand line dcraw -v -n -m -d -4 *.CRW. The images are then
processed with Matlab. The horizontal cell filtering is ap-
plied and that output is used to calculate the local parameter
of the non-linear function. The next filtering, which is mod-
eling the amacrine cells is applied, followed by demosaicing.
A simple black and white point correction (histogram stretch-
ing) is done to render the image to display. Figure 4 shows
an example of the method.

1http://www.cybercom.net/ dcoffin/dcraw/

Figure 4: Example of the method (a) The image is solely
demosaiced (b) The first non-linearity and the demosaicing
process (c) two non-linearities followed by demosaicing.

Figure 5: Comparison between several methods (a) method
of [15] (b) method of [7] (c) our presented method.



Figure 6: Comparison between several methods (a) method
in [15] (b) our method (c) method in [7] (d) our method.

Figure 5 and Figure 6 show a comparison of the proposed
method with others algorithms. Additional results and com-
parisons are available on a our web site [1].

3. CONCLUSION

We defined a HDR rendering process that is directly applied
on CFA images. The framework is inspired by the retinal
processing that occurs in the human visual system. The
method is fast and gives good results.

Our method loosely falls into the category of center-
surround Retinex HDR algorithms [17]. As opposed to many
of them, our method does not result in halo artifacts. We can
avoid those without using an adaptive filter [15], which in-
creases the computational speed tremendously.

Note that the presented method can be considered as a
pre-processing method for tone mapping. Additional color
rendering, such as white-balancing, color matricing, satura-
tion correction and tone mapping needs to be applied for con-
trolling the appearance for a specific color encoding or out-
put device. For the figures in this article, we only applied a
simple black and white point correction for rendering to dis-
play. Many of these corrections can be included inside the
proposed processing pipeline by optimizing parameters, but
this still needs to be demonstrated.
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