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Abstract
We address the issue of how statistical and

information-theoric measures can be employed to
quantify the categorization process of a simulated
robotic agent interacting with its local environment.
We show how correlation, entropy, and mutual infor-
mation can help identify distinct informational struc-
ture which can be used for object classification. Fur-
ther, by means of the isometric feature mapping al-
gorithm, we analyze the weights of a neural network
designed to find clusters based on these distinct infor-
mation theoretic characteristics of the object’s shape,
size and color. We conclude that an understanding of
the information-theoretic implications of categoriza-
tion could help design robots with improved catego-
rization and better exploration strategies.

1 introduction

In our daily lives, we are exposed to a barrage of
multimodal sensory stimulation (e.g., visual, tactile,
proprioceptive). Perceptual categorization can be con-
ceptualized as the ability to identify regularities in this
continuously changing stream of sensory information,
and to treat similar, but not necessarily identical ob-
jects and events, as being somehow equivalent. Re-
cently, evidence has been accumulating showing that
perceptual categorization is not a mere mapping from
a set of sensory nodes to a set of category nodes – as
previously assumed – but is instead the result of a pro-
cess of sensorimotor coordinated interaction between
an embodied agent and its local environment. Such
interaction has been hypothesized to be one of the
major information theoretic implications of embodi-
ment, because it allows an agent to actively generate
constraints in its sensory input ([1, 2, 3, 4]). Such con-
straints, in turn, simplify the problem of learning cat-
egories by inducing spatio-temporal correlations, and
by reducing drastically – in an information theoretic

sense – the number of degrees of freedom (dimension-
ality) of the sensory space.

This paper aims at quantitatively underpinning this
hypothesis (see also [1, 2, 5, 6, 7, 8]). We present the
analysis of data collected by a simulated robotic agent
by means of correlation, mutual information, geomet-
ric separability index, and isometric feature maps. We
conclude that an information-theoretic approach to
the study of categorization leads to a better (quan-
titative) understanding of how embodied interaction
simplifies category learning despite the high dimen-
sionality of the sensorimotor data sets. This approach
may also shed light on the characteristics of the ob-
jects being categorized, and reduce the time required
by the agent to learn.

2 Experimental Setup

We simulated a two-wheeled robot moving in
a closed environment cluttered with randomly dis-
tributed, colored objects. Objects in the environment
were red cubes and cylinders.

The robot was equipped with 11 proximity sensors
(d0−10) and a pan-controlled image sensor or cam-
era unit (see Fig. 1b). The proximity sensors had a
position-dependent range (see caption of Fig. 1). The
output of each sensor was affected by additive white
noise, and was partitioned into a space having 32 dis-
crete states, leading to sensory signals with a 5 bit res-
olution. To reduce the dimensionality of the input
data, we divided the camera image into 24 vertical
rectangular slices (i0−23). We computed the amount
of “effective” red color in each slice as R=r-(b+g)/2.

For the control of the robot we opted for the Ex-
tended Braitenberg Architecture [3] (see Fig. 2). To
pick up the regularities induced by the sensorimotor
coordination we used a Kohonen feature map [9].

Before being projected onto the Kohonen map,
the 28-dimensional input vector consisting of the ac-
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Figure 1: (a) Bird’s eye view of the robot and its eco-
logical niche. The trace represents a typical path of
the robot during an experiment. (b) Schematic rep-
resentation of the agent. The distance sensors have
a range that depends on their position. If rl is the
length of the robot, then the range of d0, d1, d9, and
d10 is 1.8 rl, the one of d2 and d3 is 1.2 rl, and the one
of d4, d5, d6, d7, and d8 is 0.6 rl.

Figure 2: Block diagram of the control architecture.

tivations of 24 red channels, the activations of two
out of four proximity sensors located on the same
side of the robot (that is, either the pair d2,d9, or
the pair d3,d10), as well as the left and right mo-
tor activation values (ml,mr), was preprocessed by
the “input selector” (see Fig. 2). If the agent cir-
cled an object counter-clockwise – i.e., the object
was on its left – the input vector of the Koho-
nen map was [i0, i1, . . ., i23, d2, d9,ml,mr]T . How-
ever, if the agent circled an object clockwise – i.e.,
the object was on its right – the input vector was
[i23, i22, . . ., i0, d3, d10,mr,ml]T . That is, the vector
(i0,. . . ,i23) was fed to the Kohonen map in reverse or-
der (i23 was the first element, followed by d3 and d10,

and the right and left motor activation). The reason
for this re-ordering operation was to avoid having the
Kohonen map discriminate between objects, based on
the direction of circling.

The 28-dimensional output vector of the input se-
lector was normalized to unit length, and each of
its elements was projected onto each of the neu-
rons of the Kohonen map (that is, the input layer
was fully connected to the map layer). The Koho-
nen map consisted of 576 neurons, arranged in the
form of two-dimensional lattice with Nr=24 rows and
Nc=24 columns. The network’s 24x24x28=16128 ini-
tial synaptic weights were chosen from a random set.
The dependence of the learning-rate parameter η on
discrete time n was chosen to be η(n) = η0 e−n/τ1 ,
where η0=1.0 was the initial value of the learning pa-
rameter, and τ1 = 2.2log Nr Nc . That is, the learn-
ing rate decreased exponentially over time. Another
feature of the Kohonen map was that the size of the
neighborhood of each neuron shrank over time. The
dependence on discrete time n was σ(n) = σ0 e−n/τ2 ,
where σ0=9.0 and τ2 = 2.0log Nr Nc .

3 Behavioral specification

At the outset of each experimental run the behav-
ioral mode of the robot was set to “exploring.” In this
mode the robot roams through the environment at a
constant speed while avoiding obstacles. Upon detec-
tion of a salient red object, the robot approaches it un-
der guidance of the visual system (“tracking” mode).
As soon as the object is close, the robot starts cir-
cling around it keeping it in the center of its visual
field by adjusting the camera’s pan-angle (“circling”
mode). Concurrently, a habituation signal starts in-
creasing. While the robot circles the object, the values
of the input signal (24 image sensors,a pair of side dis-
tance sensors, and two motor activations) – after being
appropriately re-organized by the input selector – are
projected onto the Kohonen feature map; the synaptic
weights of the network are updated, and the learning-
rate parameter decreased. The robot keeps circling
around the object for a while and then resumes the
exploration of its environment. The trace of a typical
experimental run is shown in Fig. 1a. The entire ex-
periment comprised 78 such experimental runs, each
run consisting of approximately 6000 data samples.
All samples were stored into a time series file for sub-
sequent analysis.

The categorization error as the percentage of mis-
classified objects per unit of time is shown in Fig. 3.
Clearly, the network learned to discriminate between
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Figure 3: Categorization error (vertical axis) versus
time (horizontal axis). (a) cubes; (b) cylinders.

cubes and cylinders: The classification error after
timestep 77 dropped to almost zero.

4 Methods

In this section, we describe the statistical and infor-
mation theoretical measures employed in this paper.
The correlation Corr(X,Y ) quantifies the amount of
linear dependency between two random variables X
and Y (e.g., two sensory channels), and is given by∑

x∈X

∑
y∈Y p(x, y) (x−mX)(y−mY ))/σX σY , where

p(x, y) is the second order (or joint) probability den-
sity function, mX and mY are the mean, and σX

and σY are the standard deviation of x and y com-
puted over X and Y . The entropy of a random vari-
able X is a measure of its uncertainty, and is de-
fined as H(X) = −∑

x∈X p(x) log p(x), where p(x)
is the first order probability density function asso-
ciated with X (in a sense entropy provides a mea-
sure for the sharpness of p(x)). Similarly, the joint
entropy between variables X and Y is defined as
H(X, Y ) = −∑

x∈X

∑
y∈Y p(x, y) log p(x, y). For en-

tropy as well as mutual information, we assumed the
binary logarithm. Using the joint entropy H(X, Y ),
we can define the mutual information between X and
Y as MI(X,Y ) = H(X) + H(Y ) − H(X,Y ).

To get a better grasp on the regularities in the sen-
sory space, we computed also the Geometric Separa-
bility Index (GSI) introduced in [10]. Geometric sep-
arability is a generalization of linear separability, and
quantifies how close regions in the sensory space be-
longing to the same object are to each other. The
GSI is computed by checking for every sensory pattern
whether the nearest pattern (in terms of the Euclidean
distance) is part of the same class. It is calculated as

follows:
n∑

i=1

(f [xi] + f [xi
∗] + 1) mod 2

N
,

where f [xi] = 0, if xi belongs to one class, and
f [xi] = 1, if xi belongs to the other class (f is also
called the category function); xi is the i-th sensory
pattern (N-dimensional vector), and xi

∗ is the near-
est neighbor of xi. If the nearest pattern in sensory
space always belong to the same class of the currently
perceived object the GSI is 1. High values of the GSI
thus indicate that the sensory patterns belonging to
the two categories are quite separated in the input
space and easy to discriminate, while value close to
0.5 indicate that the sensory patterns corresponding
to the two categories completely overlap.

In addition to these three measures, we also used
the isometric feature mapping, or Isomap, algorithm
described in [11]. Isomap solves the problem of di-
mensionality reduction by using local metric informa-
tion to learn the underlying global geometry of a data
set. It discovers – given only the unordered high-
dimensional input – the low-dimensional representa-
tions of the data. Although the classical techniques
for dimensionality reduction such as Principal Compo-
nent Analysis (PCA) and Multi Dimensional Scaling
(MDS) are simple to implement and efficiently com-
putable, many data sets contain non linear structures
that are invisible to PCA and MDS. Isomap combines
the major algorithmic features of PCA and MDS with
the flexibility to discover nonlinearity in the input
data.

5 Data Analysis and Results

Correlation

While the robot circled the object, we observed neg-
ative correlation between the left and right motors.
The circling behavior also induced negative correla-
tion between pairs of proximity sensors located on the
same side of the robot, that is, between (d2,d9), (d0,d2)
and (d2,d4) when the robot circled the object in the
counter-clockwise direction. (see Fig. 4).

There is a high discrepancy in the (d0,d2) sen-
sor correlation between cubes (-0.3083) and cylinders
(0.7109). In the case of cylinders, due to their smooth
surface, the sensors d2 as well as d0 will always be in
contact with the object. Due to the corners of the
cubes, as well as the length of its edge, this positive
correlation will not be evident.



Correlation Cubes Cylinders

(d2,d9) -0.4995 -0.3189
(d0,d2) -0.3083 0.7109
(d2,d4) -0.4476 0.0540

Table 1:
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Figure 4: Distance sensor correlation matrix obtained
from the pair-wise correlation between pairs of dis-
tance sensors (indexes d0 to d10) for (a) cubes and
(b) cylinders . The behavioral state is “circling”. The
higher the correlation the larger the size of the square.

While the robot was circling around a cube, strong
correlations between the output of all the 24 red chan-
nels (i1 to i24) could be observed. The average correla-
tion amounted to 0.5628 (see Fig. 5a). For cylindrical
objects, the average correlation between the same red
channels (i1 to i24) was 0.1321.
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Figure 5: Image sensor correlation matrix obtained
from the pair-wise correlation between pairs of image
sensors (indexes 1 to 24) for (a) cubes and (b) cylin-
ders. The behavioral state is “circling”. The higher
the correlation the larger the size of the square.

Entropy and mutual information

The pair-wise mutual information between the 24
image sensors, and the 11 proximity sensors is shown

in Fig. 6 and Fig. 7. The diagonals of the plots repre-
sent the entropy of the sensory stimulation.

While the robot circled the object, we observed high
mutual information between pairs of proximity sensors
located on the same side of the robot, that is, between
(d2,d9), (d0,d2) and (d2,d4) when the robot circled the
object in the counter-clockwise direction.

Mutual Information Cubes (bits) Cylinders (bits)

(d0,d0) 0.0464 0.1752
(d2,d2) 3.0225 3.0439
(d9,d9) 1.0292 0.9103
(d0,d2) 0.0252 0.1475
(d2,d4) 0.1956 0.0506
(d2,d9) 0.1919 0.0858

Table 2:

There is a high discrepancy in the sensor d0 entropy
between cubes (0.0464) and cylinders (0.1752). This
discrepancy is also observed in (d0,d2) mutual informa-
tion between cubes (0.0252) and cylinders (0.1474).In
the case of cylinders, due to their smooth round sur-
face, the sensor d0 will always be in contact with the
object. However the sharp corners of the cube prevent
this contact from occurring as frequently. We also ob-
serve a high discrepancy in (d2,d4) mutual information
between cubes (0.1956) and cylinders (0.0506).
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Figure 6: Distance sensor mutual information matrix
obtained from mutual information between pairs of
distance sensors (d0 to d10), in one particular exper-
imental run. The behavioral state is “circling” (a)
cubes and (b) cylinders. The higher the mutual infor-
mation the larger the size of the square.

While the robot was circling around a cube, high
mutual information between the output of all the 24
red channels (i1 to i24) could be observed. The aver-
age mutual information amounted to 0.8166 bits (see
Fig. 7a). For cylindrical objects, the average mutual
information between the same red channels (i1 to i24)
was 0.2676 bits.
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Figure 7: Image sensor mutual information matrix ob-
tained from the pair-wise mutual information between
pairs of image sensors (indexes 1 to 24), in one par-
ticular experimental run. The behavioral state is “cir-
cling” (a) cubes and (b) cylinders. The higher the
mutual information the larger the size of the square.

Geometric Separability Index (GSI)

The GSI identifies the regularities founded by the
Kohonen map in the sensory space, allowing us to pre-
dict the Kohonen map’s learning performance. A GSI
of 0.9989 when the robot has learnt to classify the
cubes and cylinders. Sensory motor interactions indi-
cates the presence of clusters in the data, which the
Kohonen map has extracted. Indeed, the “circling”
behavioral mode by inducing constraints in the input
space, made cubes and cylinders discernible because
data points belonging to one object were close to each
other in the data space (correlation). The data points
belonging to different objects are far apart.
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Figure 8: Dimensionality reduction of the 28-
dimensional sensory input vector. Applied to N=576
vectors with K=7, Isomap learned a two-dimensional
embedding of the data’s informational structure.

Isometric feature mapping

To get a grasp on the high-dimensional space
spanned by the sensory data, we used the Isomap al-
gorithm. By applying Isomap to the 28-dimensional
input space, we were able to compress it to a two-
dimensional space. In Fig. 8, the clusters have been
enclosed in boxes. The X axis shows positive corre-
lation with a linear combination of the following fac-
tors: a) the difference between distance sensors d2-d9

or d3-d10: cubes are clustered by higher values of this
difference and cylinders by the lower values; b) the dif-
ference of right and left motor mR-mL: the cubes are
clustered according to higher values of this difference
compared to the cylinders; and c) the sum of the im-
age sensor values focused on the object being circled:
cubes display a larger number of image sensor activa-
tions than cylinders.The total correlation considering
all these factors was 0.931.

Activation of the sensor d2 orients the robot to-
ward objects (attraction); activation in d9, on the
other hand, makes the robot turn away from objects
(repulsion). For cubes, due to their flat surfaces and
sharp corners, attraction prevails on repulsion. This
results in cubes being associated with larger values
of the differences d2-d9, and d3-d10. In the case of
cylinders, however, attraction prevails on repulsion,
causing the cylinders to be associated with low values
of the difference d2-d9 or d3-d10. Due to the sudden
turns the robot has to make when circling cubes, the
differencemR-mL is higher for cubes than for cylin-
ders. When circling cubes, the robot is closer to it
than for cylinders. The reason behind this is that
in the case of cylinders, the robot starts circling the
object, when one of its distance sensors d4 or d5 de-
tects the object ahead. However, in the case of cubes,
the distance sensors d4 or d5 do not detect the cube.
Rather, it is detected by the center distance sensor d6

which has a much shorter range. This causes the robot
to be much closer to the encircled object in the case
of cubes (larger number of image sensor activations)
than in the case of cylinders (smaller number of image
sensor activations).

6 Further discussion and conclusion

Does sensorimotor coordinated activity induce dis-
cernible regularities or structure in the sensorimotor
space? As shown by the statistical and information-
theoretic analyses of the recorded sensory and motor
data, appropriate coordinated motor activity leads to



a characteristic “fingerprint” of the sensorimotor inter-
action – that is, spatio-temporal patterns in the sen-
sorimotor space reproducible across multiple experi-
mental runs (for a similar result see also [7]). Such
patterns can be identified, and exploited to simplify
subsequent discrimination tasks.

It is important to note that the categorization for
the robot is based on a 28-dimensional vector of senso-
rimotor values, where each of the sensors take 32 val-
ues (each sensor has a 5 bit resolution). Indeed, this
results in a very large space of potential sensorimo-
tor configurations (2832). The circling behavior of the
robot, allows the agent to generate constraints in its
sensory input that lead to a drastic dimensionality re-
duction of the sensory space. This greatly reduces the
search space of the robot. In other words, the circular
behavior, akin to the object rotation behavior found in
human infants [12], or exploration strategies observed
in adults exploring objects with their hands [13], in-
duces spatio-temporal correlations among the sensory
patterns. These correlations are a further indication
of the fact that the sensorimotor coupling leads to a
reduction of the degrees of freedom in the input space
[2].

The high values of correlation that we have ob-
served in the “circling” behavioral state allow us to
infer that while in this state, the agent generates re-
dundancy in the sensory signals, which can picked up
by the agent itself. In turn, such redundancy is a pre-
requisite for learning, and provides a basis for some
sort of “self-cognition.” That is, the agent can acquire
a notion of its own emergent behavior.

We further note that while it is possible, at least
in simple cases, to characterize exploration strategies
by means of information theoretic and statistical mea-
sures, the proposed measures are by no means equiva-
lent, but complement each other. For instance, in con-
trast to linear correlation, mutual information takes
into account also nonlinear dependencies between var-
ious stochastic variables. The geometric separability
index, on the other side, discerns sensory input based
on how linearly separable it is, that is, based on where
it falls respect to a hyperplane. Isomap, finally, tries to
isolate nonlinear degrees of freedom in the data set. It
would be of interest to understand if the agent could
perform such “analyses” on its own. By character-
izing its interactions with the environment, it would
form the basis on which to build its own individual
experiences, its memory. In future work, we also plan
to study more complex agent-object interactions, and
to experiment with more sophisticated robots.
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