The kinetics of the adsorption of human serum albumin (HSA) onto spherical resin beads (Blue Sepharose CL-6B) in a closed stirred tank have been investigated. The differential equation with appropriate boundary conditions at the grain outer surface may be solved numerically or to various degrees of approxn. Using the Laplace transform technique to solve the equation of interest, we are able to obtain the exact soln. to the problem, in the Laplace domain. We assume that equil. is described by a linear absorption isotherm and that the adsorption rate is very rapid compared to diffusion in the adsorbent particles. A functional description of the exptl. data in the time domain allows us to computer the corresponding Laplace transform and fit it to the exact soln., to obtain the film mass transfer coeff., kf, and the effective diffusion coeff., De. The main advantage of this Laplace transform technique is that time-consuming numerical approaches are not needed. The two parameters are rapidly and easily found via two algebraic fits, one in the time domain followed by another in the Laplace domain. Using the parameters thus obtained, a numerical soln. of the problem is in good agreement with the exptl. data.