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Abstract--Transient experiments were applied to the study of the adsorbed CO intermediate, (CO),,, 
formed during the CO2 methanation reaction on a 2% Ru/TiO2 catalyst at 383 K. Step-up experiments 
showed that the (CO),, formation steps are inhibited by H20 and enhanced by H 2. Step-down experiments 
showed that the (CO),, hydrogenation is not influenced by the partial pressure of water. Based on the fact 
that water inhibits the overall CO 2 methanation, it is deduced that the rate limiting process in the overall 
reaction is (CO),, formation. 

INTRODUCTION 

Heterogeneous catalytic reactions studied under 
steady-state conditions lead to overall lumped kinetic 
models that do not reflect a unique mechanistic 
physicochemical reality (Carberry, 1976; Baerns et 
al., 1992). The transient behavior of the reaction is 
more sensitive to the elementary step rate constants 
(Renken, 1990). Therefore, dynamic experiments are 
used in order to distinguish between different models 
describing steady-state behavior. 

The simultaneous measurement of the surface- 
adsorbed species and the gas phase reactant-products 
considerably increases the amount of  information 
available for the establishment of a kinetic model. Yet 
it is important to distinguish reactive-adsorbed spe- 
cies from spectator-surface species that do not 
participate in the reaction (Tamaru, 1991)_ Dynamic 
experiments can be used as a tool to understand the 
role of  these observed species. 

In this work, the kinetics of  a surface reaction 
intermediate was studied by transient infrared experi- 
ments and compared to the steady-state kinetics 
obtained for the overall reaction. The aim was to gain 
more insight on the mechanism of formation and 
reaction of  the observed reaction intermediate, as well 
as to determine which process is rate limiting in the 
overall reaction. 

The reaction studied was the CO 2 methanation 
reaction at 383 K on a 2% Ru/TiO2 catalyst. It is 
established in the literature that (CO),, is an important 
reaction intermediate in the CO2 methanation reac- 
tion (Henderson and Worley, 1985; ErdOhelyi et al., 
1986). In this paper the kinetics of the (CO),, surface 
intermediates formed during the CO2 methanation 
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reaction on a 2% Ru/TiO2 catalyst are determined by 
diffuse reflectance infrared spectroscopy (DRIFTS) 
and are compared with the steady-state kinetics for 
the overall CO2 methanation reaction_ 

MATERIALS 

Transient experiments were performed in a single 
pass setup (Fig. 1) composed of  a water evaporator 
and a controlled-environment DRIFTS cell_ Feed was 
supplied through one of two banks of  mass flow 
controllers that could be selected using a low-volume, 
four-way switching valve across which pressure and 
flow rate were equilibrated to avoid surges during 
switching. Reactor effluent composition was deter- 
mined with a Balzers QMG 420 quadrupole mass 
spectrometer coupled with a two-stage continuous 
atmospheric sampling system. The DRIFTS cell 
(Harrick HVC-DR2 vacuum chamber with DRA- 
1200 diffuse reflectance accessory) was located in a 
Nicolet 710 FTIR spectrometer equipped with a mid- 
range MCT detector and a KBr beamsplitter. The 
instrument was operated at a scan speed of  ! scan s -t, 
a resolution of  4 c m  -I, and a number (10-40)  of 
interferograms were co-added depending on the time 
interval between each spectrum collection. 

The water evaporator was made of  a stainless steel 
U-tube filled with l mm glass beads and a small 
quantity of  water_ It was maintained at a temperature 
between 245 K and 283 K in order to vary the feed 
water pressure from a PH,_O value of 0.8 to 
12.3 mbar. 

The apparatus for the steady-state experiments 
consisted of  a recycle reactor linked to the DRIFTS 
cell and is described elsewhere (Marwood et al., 
1994). CO2 (99.995%), H2 (99.9999%) and He 
(99.9999%) gases were used after passing through 
Oxisorb traps that reduce oxygen impurity levels to 
less than 0.1 ppm. 
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Fig. 1. Schematic layout of experimental apparatus. 

METHODS 

Catalyst preparation 
The catalyst was ruthenium (2.13 wt%) dispersed 

on TiO2 (Degussa P25) as described by Thampi et al. 
(1987). Standard pretreatment consisted of heating 
the catalyst to 498K in flowing 40% 02 for 1 h 
followed by a brief purge in He and a reduction in 
20% H 2 at 498 K. The catalyst was then cooled to 
383K in 20% H 2 and left to stabilize for 20min 
before exposure to the reaction mixture. A 30min 
exposure to 20% H 2 at 498K, as well as 20min 
stabilization at 383 K, was performed to clean the 
catalyst surface in between each transient 
experiment. 

IR data 
Infrared (IR) spectra were baseline corrected and 

represented in Kubelka-Munk (K-M) form, with a 
reference spectrum consisting of the clean catalyst in 
flowing 20% H 2 as described by Prairie et al. 
(1991b). The (CO)o data is represented by the integral 
of the IR band in the range 2070-1750cm -j. The 
validity of such a representation was verified. 
Gaseous CO was adsorbed and the catalyst exposed 
to small pulses of H2. Consequently (CO),, reacted to 
form CH4 and the (CO), IR band decreased. A linear 
relationship was observed between the 
2070-1750cm -~ band area and the CH4 formed for 
0co between 0.1 and 1. 

Transient experiments 
Step-up and step-down transient experiments were 

performed where the feed composition was changed 
from an initial to a final feed composition. The effects 
of the H2 and H20 partial pressures as well as the 
reaction temperature on the transient response were 
studied for a total flow rate of 50Nmi/min. The 
experiments are summarized in Table 1. 

Surface IR spectra were acquired at 20 s intervals 
during the first 5 rain of the experiments and at 3 min 
intervals for the rest of the 40min duration of the 
step-up experiments. 

The step-down experiments were performed start- 
ing from the steady state with surface IR spectra 
acquired at l min intervals during the first 5min 
period and at 3min intervals for the rest of the 
experiment. 

RESULTS 

Identification of adsorbed intermediates 
Figure 2e shows the spectrum obtained on the 

surface of 2% Ru/TiO 2 under steady-state CO 2 
methanation conditions. The interpretation of this IR 
spectrum is proposed by comparing it with the spectra 
of each of its individual components. 

Figure 2d shows the spectrum of 2% Ru/TiO 2 
exposed at 383K to flowing 40% CO for 10rain 
followed by a 10min He purge to eliminate the gas 
phase CO absorbance bands, and H E pulses in the He 

Table I. Feed mixtures for transient experiments 

No. Feed initially Switched to mol% H2 PH~_o (mbar) T(K) 

It H2 H2, 10% CO 2 
2 H2 H 2, 10% CO2 
3 20% H 2, 10% CO2 H2 
4 20% H 2, 10% CO 2 H 2 
5 20% H 2, 10% CO 2 H 2 

5 < x < 5 0  
20 

2 < x < 5 0  
20 
20 

2.4 
0.8-12.3 

1.6 
0.8-12.3 

6.1 

383 
383 
383 
383 

363-413 

i" Total flow rate of 100Nml/min instead of 50Nml/min. 
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Fig. 2. D ~ F I ' S  spec~a: a, gas phase CO2; b, gas phase CH4; c, HCOOH adso~tion on 2% Ru/l'iO2; d, CO adso~tion 
on 2% Ru/TiO2; e, CO 2 m e d i a t i o n  on 2% RuffiO2; spec~a recorded at 383 K. 

carder in order to diminish the (COL surface 
coverage. A large band was observed at 2045 cm -~ for 
total CO-coverage (0co = 1) (Cant and Bell, 1982; 
Gupta et al., 1992). This coverage effect is well 
documented for (COL adsorbed on a metal surface 
(Sheppard and Nguyen, 1978). The (CO)a peak 
presented in Fig_ 2e, with a maximum at 2017cm -~, 
corresponds to 0co = 0.6_ 

Figure 2c shows the spectrum of TiO2 at 383 K 
where 2 pl of HCOOH were injected into the flowing 
He carder. Two large bands at 1552cm -I and 
1361cm -I arise from asymmetric and symmetric 
O - C - O  stretching vibrations of adsorbed (HCOO-L 
species (Busca et al., 1987). The 1382cm -I and 
2876 cm -I bands are attributed to the CH bending and 
stretching vibrations. The band at 2952cm -~ results 
from a combination or overtones of v(,~)co~ + 8CH. 
The two negative bands at 3677 cm -~ and 3654 cm -l 
correspond to a decrease of free hydroxyls on the 
TiO2 surface. This decrease is due to (HCOO-L 
formation by a condensation mechanism between 
HCOOH and these hydroxyl groups. 

Figure 2b shows the spectrum of gaseous CH4 
characterized by two bands at 3016 and 1305cm -~ 
associated with their rotational structure, and Fig. 2a 
shows the spectrum of gaseous CO2. The spectrum in 
Fig. 2e, obtained on 2% Ru/TiO2 under steady-state 
CO2 methanation conditions, can therefore be decom- 
posed into two adsorbed species: (CO),, (2023cm -~) 
and (HCOO-)a (1360, 1379, 1555, 2870, 2948cm -I) 
as well as gaseous CO2 (reactant) and CH4 (reaction 
product). 

Steady-state kinetics 
At 383 K, the CO2 steady-state methanation rate 

can be described by: 

RCH ~ = 0.0167 (Pco2) °'22 (PH._) °'57 (PH20) m'z8 
(~rnol g~s) (1) 

where the reaction rate is almost of order ~ in 
hydrogen concentration and is inhibited by water--  
water being a reaction product_ A good correlation is 
obtained between measured and calculated data [eq. 
(1)]. The calculated values were found within a 10% 
interval relative to the measured data. An activation 
energy Ea = 80 ±4kJmol  -~ was measured for the 
overall methanation reaction. This value is in good 
agreement with the value of 79kJmol -I found by 
Prairie et al_ (1991a) for this reaction on a 3.8% Ru/ 
TiO2 catalyst. 

Step-up experiments 
In Fig. 3, gaseous CO2, CH4 and surface (CO),, are 

plotted together for a step-up experiment. A CO2 
(CO),, ~ CH4 sequence can be established. In 
additional experiments (Marwood, 1994) it was 
verified that CH 4 is not adsorbed on the catalyst and 
CO adsorption from the gas phase is fast compared to 
(CO),, formation from CO2. (CO coverage was found 
to follow the gas phase concentration in transient 
experiments without any time delay.) Besides CH4, 
water is formed and detected in the gas phase 
qualitatively following the methane curve. Due to the 
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very low CO2 conversion in the DRIFTS cell, a 
quantitative determination of HzO by mass spec- 
trometry is difficult. The transient response for water 
was therefore omitted in Fig. 3. 

An inhibiting effect of PH,O on the (CO),, forma- 
tion is shown in Fig. 4. The (CO),, data presented 
were normalized by the steady-state value obtained 
after 40 min of reaction. A definite effect of H20 on 
the (CO),, formation rate is observed. A decrease of 
this rate is observed with an increasing value of 
PH20" 

The (CO),, formation is also influenced by the H 2 
concentration. An increasing value of PH,_ results in 
an increase of the (CO)a formation rate. The step-up 
experiments show that H2, as well as HzO, plays an 
important role in the CO2 dissociation mechanism to 
form (CO)~. 

for surface reaction kinetics 4805 

Step-down experiments 
Typical IR data are presented in Fig. 5 for (CO),, 

hydrogenation at 383 K in 20 mol% H z. These spectra 
were acquired at 3min intervals. The uppermost 
spectrum was recorded during steady-state operation 
just before the switch. (CO),, band integrals were 
normalized against the spectrum recorded 2 rain after 
the switch to account for the gas phase CO2 residence 
time in the system. 

Figure 6 shows a semi-log plot of a normalized 
band area against time for varying H2 molar fractions. 
Good linearity is obtained up to 20% H2. For 50% H 2 
an order of 1.5 more adequately describes the data. 
The linearity of these data in a certain H2 concentra- 
tion range suggests that (CO),, hydrogenation 
depends to first order on 0co within this range_ Such 
a first-order dependence is in good agreement with 
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Fig. 5. DRIFTS spectra of (CO),, on 2% Ru/TiO2 during a transient step-down 
experiment. The spectra are recorded at 3 rain intervals after a switch from an 
initial composition of 10% CO,, and 20% H2 in He to 20% H2 in He at 383 K; 
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results presented by Cant and Bell (1982) on a Ru/ 
SiO2 catalyst, or by Mori et  al. (1982) and Tahri et  aL 

(1993) on an Ni/SiO2 catalyst: 

dO 
- k0co P'h2 = k'0co. 

dt 

k '  = kP~4 2 (2) 

Slopes k' in a log-log plot vs hydrogen concentra- 
tion show that the hydrogenation of (CO),, has a half 
order dependence on hydrogen concentration. 

The hydrogenation of (CO),, is independent of the 
H20 partial pressure as is shown in Fig_ 7. This 
observation is important if it is combined with the 
fact that water inhibition was measured under steady- 
state conditions for the overall CO2 methanation 
reaction. 

Figure 8 shows a semi-log plot of the normalized 
band area against time for six temperatures. The 
slopes in this figure represent the reaction rate 
constant k' which is an intrinsic function of tem- 
perature. Plotting k' vs temperature in the Arrhenius 
form yields an apparent activation energy of 62 
± 3 kJ mol -l. 

In summary, the hydrogenation of metal-adsorbed 
CO on the 2% Ru/TiO2 catalyst obeys the following 
kinetic expression at atmospheric pressure and tem- 
peratures up to 413 K. 

r = c s t  e x p ( - 6 2 , 0 0 0 / R T )  0co P ~ .  (3) 
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DISCUSSION 

The CH4 production in the step-up experiment 
shown in Fig. 3 is delayed, indicative of CH 4 
production through a series of consecutive reaction 
steps_ The comparatively faster initial rate of form- 
ation of (CO),, makes this surface species a very 
plausible surface intermediate. The observation that 
H 2 catalyses while HzO inhibits (Fig. 4) the (CO),, 
formation rate has to be taken into account in the 
establishment of a mechanism leading to (CO),,. 
Clearly these observations show that (CO),, is not 
formed by simple CO 2 dissociation. The reverse 
water-gas shift reaction (RWGS) proposed by Prairie 
et  aL (1991a) on the basis that the steady-state (CO),, 
concentration is negatively influenced by H20 is 
consistent with the observed H 2 and H20 effect in the 
transient step-up experiments. The mechanism of the 
RWGS is thought to either go through a formate 
intermediate (Schild et  al . ,  1991; Shido and lwasawa, 
1993) or through a "'surface redox" process (Ernst et  

al . ,  1992; Fujita e t  al. ,  1992). Spectroscopic surface 
experiments performed in this system where 
(HCOO-),, surface adsorbates are measured tend to 
favor the formate mechanism in the following form: 

CO2 + OH- ~ (HCO3)~ 
(HCO3). + 2(H). ~_. (HCOO-)~ + H20 

(HCOO-),, ~ (CO),, + OH- (4) 

CO2 H2 ~- (CO),, + H20. 
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This mechanism is based on the observations that: 

(1) (HCOO-),, is not formed in the absence of H2 
or Ru to dissociate the H2. 

(2) (HCO~),, is observed on the catalyst surface or 
on a blank composed of the TiO2 support upon 
exposure to COs. A CO2 ~ CO2/H2 switch 
results in the decrease of the (HCO~),, while 
(HCOO-)a appears on the catalyst surface. No 
modification of (HCO~),, is observed on the 
blank TiO2 surface. 

(3) Negative hydroxyl bands are measured on the 
IR spectrum of the catalyst surface after 
steady-state reaction. 

(4) The positive effect of H 2 concentration on the 
(CO),, formation as well as the inhibiting effect 
of H20 are compatible with this mechanism. 

A similar mechanism was proposed by Fu et al. 
(1989) for the water-gas shift reaction on a K-Os/  
AI203 catalyst. 

The observation of a one-half order dependence 
on H 2 concentration for the (CO),, hydrogenation 
process indicates that (CO),, methanation has a first- 
order relationship with adsorbed (H),, concentration 
which is in equilibrium with gas phase H 2 via a 
dissociative adsorption process. Neither (CO),, cov- 
erage nor methanation seem to perturb this equilib- 
rium. Similar results for (CO),~ methanation on Ru/ 
SiO2 were also reported by Cant and Bell (1982). 
Water concentration has no effect on the hydro- 
genation of (CO),,. Water inhibition was measured 
under steady-state conditions for the overall C Q  
methanation reaction, Inhibition by water must act 
on the (CO),, formation steps if (CO),, is to be a 
reaction intermediate in the CO 2 methanation reac- 
tion. Such an inhibiting effect of water on the (CO),, 
formation was indeed observed during the step-up 
experiment. This indicates that the rate limiting 
process of the overall methanation reaction is the 
(CO),, formation. 

The overall CO 2 methanation reaction exhibits an 
activation energy of 80 kJ mol -~ for 2% Ru/TiO2. This 
value is in good agreement with the literature where 
values ranging between 67 and 88kJmol -~ are 
reported. For the process of (CO),, methanation, an 
activation energy of 62kJ tool -~ is measured. Thus, 
no elementary step in the pathway between (CO),, and 
CH 4 can be the limiting step in the overall CO2 
methanation reaction, However, (CO), accumulation 
is observed on the catalyst surface under steady state. 
The accumulation of a reaction intermediate placed 
after the rate limiting step in a consecutive reaction 
scheme is controlled by the ratio of the rate limiting 
step reaction constant by the reaction intermediate 
consumption rate. The observed (CO),, accumulation 
thus indicates that the (CO),, hydrogenation process is 
of the same order of magnitude as the (CO),, 
formation process_ A similar conclusion was reached 
with periodic variations of CO2 in the H2 feed 
(Mar'wood et al., 1994). 

MICHEL MARWOOD el al. 

CONCLUSIONS 

The transient kinetic study of the (CO),, surface 
intermediate shows that the (CO),, formation steps are 
inhibited by H20 and enhanced by H2. A RWGS 
mechanism, based on spectroscopic observations, is 

- postulated and can explain the observed H20 and H2 
trends. Although the transient behavior of catalysts 
differs from steady state (Renken, 1993), the follow- 
ing conclusion can be drawn. 

The fact that (CO),, hydrogenation in the transients 
is independent of H20 concentration, as opposed to 
the observation of H20 inhibition under steady-state 
conditions, may indicate that the rate limiting process 
in the overall CO2 methanation reaction is the 
formation of (CO),,. A similar conclusion is reached 
by comparing the apparent activation energies for 
(CO),, hydrogenation and the overall steady-state 
reaction. (CO),, accumulation on the catalyst surface 
reflects a (CO),, hydrogenation rate constant of a 
similar order of magnitude to the rate limiting 
process. 
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NOTATION 

integrated (CO),, infrared band between 
2070 and 1750cm -~ 
steady-state value of the integrated (CO),, 
infrared band under CO2 methanation 
apparent activation energy 
rate coefficient for the (CO),, hydrogenation 
step 
hydrogen partial pressure 
H20 partial pressure 
(CO),, hydrogenation rate 
methane formation rate 
dimensionless variable, normalized by the 
steady-state value of the variable 

Greek letter 
0co fractional surface coverage by CO 
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