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Abstract: We consider a swarm-intelligent inspection system concerned with
the inspection of blades in a jet turbine. The system is based on a swarm of
autonomous, miniature robots, using only on-board, local sensors. We capture
the dynamics of the system at a higher abstraction level using non-spatial,
probabilistic, discrete-time macroscopic models, which we use in an optimal control
framework to find an optimal collaboration policy minimizing time to completion
and overall energy consumption of the swarm. We consider time-invariant and
time-variant decision variables for various stage constraints (energy consumption),
and find optimal profiles using an extremum-seeking control scheme. In particular,
we show that using a communication-based policy exclusively towards the end of
the inspection progress decreases time to task completion, but only if there are at
least as many robots as blades.

1. INTRODUCTION

For designing self-organized robotic systems, un-
derstanding of the relation between individual and
collective behavior is of outmost importance. To
avoid costly and time-consuming experiments, to
allow for a priori insight into a given system,
and to formally address stability and convergence
properties, appropriate models are necessary.
Self-organization is emerging from the interplay
of four ingredients. Positive feedback (e.g., am-
plification) and negative feedback (e.g., satura-
tion, resource exhaustion), randomness, and mul-
tiple interactions among individuals (Bonabeau et
al., 1999). While self-organization might achieve
less efficient coordination than other distributed
control schemes, it can provide extremely high lev-
els of robustness and can be applied to miniature
robotic platforms such as those mentioned in this
paper.
Distributed coordination policies for coverage and
collective navigation tasks using multi-agent sys-
tems have been formally assessed using methods

from automatic control by, for instance, Cortés et
al. (2004), and Jadbabaie et al. (2003), respec-
tively. The applied (deterministic) models how-
ever usually are — while being mathematically
rigorous — not of easy application to real ro-
botic swarms characterized by limited computa-
tion and communication capabilities as well as
noisy sensors and actuators. Furthermore, Miluti-
novic et al. (2003) have applied optimal control
theory in combination with macroscopic models
based on hybrid automata in order to achieve
central coordination of a robotic swarm. Being
randomness and fully distributed control at the
core of a self-organized swarm coordination, none
of these modeling approaches was well suited for
our purposes. For this reason, we make use of
probabilistic macroscopic models, able to statis-
tically capture the average dynamics and perfor-
mances of a self-organized robotic swarm. The
model has been developed based on a incremen-
tal, multi-level modeling methodology (realistic,
microscopic and macroscopic models) which has



Fig. 1. Left : Overview of the turbine set-up in
the realistic simulator. Right : Overview of the
real-robot set-up.
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Fig. 2. The high-level behavioral flowchart of the
robot controller as a Finite State Machine
(FSM).

been successfully applied to several case studies
(see for instance, Martinoli et al., 2004), and
which has lead to quantitative good agreement
between reality and modeling predictions. In this
contribution, we move a step forwards and we
show how this type of models can be useful for
dynamic optimization (Kirk, 2004) of the individ-
ual control parameters of a homogeneous swarm
engaged in the inspection of a jet-turbine interior
(Correll and Martinoli, 2006a).
As we showed earlier for this case study, predic-
tions of the macroscopic model could be validated
experimentally (realistic simulation and robotic
experiments, see Figure 1) for some particular
experiments, and modeling was hence used to ex-
plore different parameters of the individual robot
controllers by systematically searching the design
space (Correll and Martinoli, 2006b). In this work
we will consider dynamic beacon-policies as we
introduced them in (Correll and Martinoli, 2005)
together with terminal constraints on the con-
sumed total energy, which renders systematically
searching the design space extremely time con-
suming.

1.1 Case study and robots’ controllers

The overall behavior of a robot in a beacon-less
policy (no communication) can be summarized as
follows (see Fig. 2, without dashed states). The
robot searches for blades throughout the turbine,
combining schemes that drive the robot forward,
avoid obstacles, and follow contours. Team-mates,
walls, and blades are differentiated by on-board
sensors, and are avoided or inspected, respectively.
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Fig. 3. The corresponding Probabilistic FSM
(PFSM) used in the models, capturing de-
tails of interest of the schema-based con-
troller. Dashed arrows/states characterize the
beacon-based behavior.

A robot can start circumnavigating a blade at
any point of its contour but can leave the blade
exclusively at its tip. This allows the robot to bias
its blade-to-blade trajectory without using any
sophisticated navigation mechanisms, exploiting
a specific feature of the environmental pattern
(Correll and Martinoli, 2006a). A blade can be left
only if a timeout parameter Tmax has expired. The
corresponding timer is set when the robot attaches
to the blade. In (2005), Correll and Martinoli add
the following behavior (see Fig. 2, dashed states
and arrows): after inspecting a blade, a robot
remains at its tip for the time Ts, where it serves
as a beacon and signals to all robots within its
range possibly approaching this blade to avoid it,
or abort its circumnavigation, in case the other
robot has already attached to the blade at another
point. We note that in addition to the mere
interaction based on mutual avoidance, signaling
introduces a further coupling mechanism among
the robots, which is in this case the main positive
feedback leading to spatial self-organization.

2. MACROSCOPIC MODELS FOR SWARM
ENGINEERING

The central idea behind our macroscopic models
is to describe the experiment as a series of rate
equations whose parameters are computed from
the interactions’ geometrical properties and sys-
tematic experiments with one or two real robots
or realistic simulation (Martinoli et al., 2004).
Consistent with previous publications, we can use
the controller’s FSM depicted in Fig. 2 as a blue-
print to devise the Probabilistic FSM (PFSM or
Markov chain) representing the whole swarm at
the macroscopic level. The overall PFSM for the
system is represented graphically in Fig. 3, using
two coupled PFSMs, one representing the robot(s)
and one representing the shared turbine environ-
ment. At the macroscopic level a state defines
the average number of individuals in the same



mode and the same inspection state. The state
granularity can be fine tuned in order to achieve
an appropriate balance between model complexity
and details relevant for the swarm performance
metrics (in our case, the time to completion and
the energy consumption of the swarm).
All our models are time-discrete (time step T ),
and characterized by two categories of parameters:
state-to-state transition probabilities and behav-
ioral delays. These parameters are computed and
calibrated with the same method illustrated by
Correll and Martinoli (2006b). Values adopted for
our models are the same as summarized in (Correll
and Martinoli, 2005).

2.1 Model Parameters

In our inspection model, pe, pr, and pw represent
the encountering probabilities of blades, robots,
and walls respectively. Te, Tr, and Tw define
the average time needed for circumnavigating a
blade, avoiding a teammate, and avoiding a wall
respectively, and Tb is the average time lost on a
blade before a beacon is met. While Tr and Tw are
calibrated by simple experiments involving only
one or two robots, Te and Tb are functions of blade
geometry, the time-out Tmax, and the signaling
range of a robot, respectively, which are detailed
in (Correll and Martinoli, 2005).
The probability to hit a beacon pb is a function
of the number of robots acting as a beacon Nb(k)
and the number of inspected blades Mi(k)

pb(k) =
Nb(k)
Mi(k)

, Mi(k) ≥ Nb(k) > 0 (1)

Finally we calculate the probability to hit a vir-
gin or inspected blade, pvirgin and pinspected, by
multiplying the number of virgin and inspected
blades, Mv(k) and Mi(k), with the probability pe

to encounter one blade.
Ts(k) is the time spent signaling as a beacon, and
is given by

Ts(k + 1) = Ts(k) + T̃s(k), (2)

with Ts(0) = Ts,init, and T̃s(k) = 0 in the static
case, while T̃s(k) = f(k) with f(k) a non-linear
function with arbitrary parametrization in the
dynamic case, allowing to increase or decrease the
time spent as beacon during the experiment.

2.2 Mathematical Description of the Macroscopic
Model

From Fig. 3, right, we can derive a set of difference
equations (DE) to capture the dynamics of the
whole system at the macroscopic level. We for-
mulate one DE per considered state and exploit
equations stating the conservation of the number
of robots and the number of blades to replace one

of the DEs.
Given M0 blades and N0 robots, the number of
robots covering virgin and inspected blades Nv

and Ni, the number of robots in obstacle avoid-
ance Na, the number of robots being a beacon Nb,
and the number of robots in search mode Ns are
given by (3)–(8) (compare also Fig. 2); the number
of virgin blades Mv and the number of inspected
blades Mi are calculated by (9)–(10):

Nv(k + 1) = Nv(k) + ∆v(k)−∆v(k − Te) (3)

Ni(k + 1) = Ni(k) + ∆i(k)−∆b(k) (4)

−∆i(k − Te)Γ(k − Te; k) (5)

Na(k + 1) = Na(k) + ∆r(k) + ∆w(k) (6)

−∆r(k − Tr)−∆w(k − Tw)

Nb(k + 1) = Nb(k) + ∆i(k − Te)Γ(k − Te; k)

+∆v(k − Te)

−
−T̃s(k)∑

j=0

∆v(k − Te − Ts(k) + j)

−
−T̃s(k)∑

j=0

∆i(k − Te − Ts(k) + j)

·Γ(k − Te − Ts(k) + j; k) (7)

Ns(k + 1) = N0 −Nv(k + 1)−Ni(k + 1) (8)

−Na(k + 1)−Nb(k + 1)

Mv(k + 1) = Mv(k)− ξe∆v(k − Te) (9)

Mi(k + 1) = M0 −Mv(k + 1) (10)

with k representing the current time step (and
absolute time kT ); k = 0 . . . n, n being the total
number of iterations (and therefore nT the end
time of the experiment). The ∆-functions define
the coupling between state variables of the model
and can be calculated as follows:

∆v(k) = pvirgin(k)Ns(k) (11)

∆i(k) = pinspected(k)Ns(k) (12)

∆b(k) =
T

Tb
pb(k)Ni(k) (13)

∆r(k) = pr(N0 − 1)Ns(k) (14)

∆w(k) = pwNs(k) (15)

Similar to the collaboration model described by
Martinoli et al. (2004), the Γ-function represents
the fraction of robots that unavailingly waited
for collaboration. Here, Γ expresses the fraction
of robots that did not encounter a beacon before
leaving a blade after Te.

Γ(k − Te; k) =
k∏

j=k−Te

(1− T

Tb
pb(k)) (16)

Due to the possibility of leaving a blade before
it has been completely covered due to Tmax,
we introduce a parameter ξe in (9), being the



percentage of a blade a robot covers on average
at each new interaction with it. Similarly to Te,
ξe can be calculated from the blade geometry and
Tmax as show by Correll and Martinoli (2005).
Note the summation introduced in (7) which is
necessary for allowing Ts to be time variant (for
T̃s(k) = 0 the equations simplify to those from
Correll and Martinoli (2005)). In short, if Ts is
decreased by T̃s, all robots that became a beacon
in the interval [k − Ts(k)− T̃s(k); k − T̃s(k)] need
to continue searching at once. For increasing Ts,
no robot shall leave the beacon state for T̃s. Note,
that using this notation, the model can only give
valid prediction for T̃s(k)ε]−∞; 1] as for T̃s(k) >
1, T̃s(k+1) will be zero, and thus renders the sum
useless.

2.2.1. Initial Conditions The initial conditions
are Ns(0) = N0 and Na(0) = Nv(0) = Ni(0) =
Nb(0) = 0 for the robotic system (all robots in
search mode) while those of the environmental
system are Mv(0) = M0 and Mi(0) = 0 (all blades
virgin). The dynamic parameter Ts(k) is initial-
ized by Ts(0) = Ts,init. As usual for time-delayed
DE, we assume ∆x(k) = Nx(k) = Mx(k) =
Ts(k) = 0 for k < 0.

2.3 Swarm Performance Metrics

We consider a composite metric J = nT +
E(k, N0, Nb) for evaluating the performance of
the swarm consisting of time to completion nT
(terminal cost) and energy consumption (stage
cost). For calculating the energy consumption,
we use the following model for the individual
agent. During every time step T that a robot is
moving (Search, Avoidance, or Inspection modes,
compare Fig. 2), it consumes η Watt on average,
while it consumes γ Watts during every time step
it is in beacon mode to account for idling and
communication cost. Thus, the swarm energy used
from the beginning of the experiment up to time
step k can be calculated by

E(k,N0, Nb) =
k∑

j=0

((N0 −Nb(k))η + Nb(k)γ)T,

(17)
with N0 the number of robots and Nb(k) the
profile of the number of robots acting as a beacon.
The task is completed if all blades are inspected
(Mv(n) = ε), with 0 < ε a certain degree of
confidence. To compute the time to completion
nT , Mv(n) = 0 is an easy condition to apply in the
experiment. However, in the macroscopic model,
this represents a limit condition as lim

k→∞Mv(k) =
0, and thus we solve the macroscopic model for
Mv(n) = ε, with ε a reasonable small value.

3. OFF-LINE OPTIMIZATION USING
MACROSCOPIC MODELS

In this section we formally introduce the dy-
namic optimization problem. Note that due to
its discrete nature the applied metrics are only
approximately convex. In particular, due to the
assumption that a blade can only be left at its tip,
the average time spent on a blade yields discrete
values that are a multiple of the time needed to
inspect a blade, and thus infinitesimal changes
in Tmax do not necessarily lead to changes in
performance. For this reason, we constrained all
numerical methods to minimum step sizes of 10s
for Tmax and 1s for Ts.

3.1 Dynamic Optimization

We are interested in finding an optimal beacon
policy, i.e. a profile for Ts(k) that minimizes time
to completion nT . We consider Tmax a time-
invariant input, and T̃s(k) the time-varying deci-
sion variable defining the profile Ts(k). With the
dynamics of the system given by (3)–(10) and the
same initial conditions (2.2.1), we formulate the
optimization problem as follows

min
Tmax,T̃s(0)...T̃s(N−1)J = nT + E(n,N0, Nb) (18)

s.t. 0 = Mv(n)− ε

In this case, energy consumption at time k (com-
pare (17)) is considered as a stage cost, and 0 =
Mv(n) − ε is a terminal constraint ensuring all
blades have been inspected. For simplifying the
dynamic optimization problem we parameterize
T̃s(k) as follows:

T̃s(k) =
{

a when ks ≤ k ≤ ks + ∆ks,
0 else. (19)

The profile Ts(k) is hence (see equation (2))
defined by three decision variables Ts,init, ks and
∆ks, and a fixed parameter a (see below). Thus,
Ts(k) has the value Ts,init until time ks where it
increases until Ts(k) = Ts,init + a∆ks at ks +
∆ks. The optimization problem can hence be
reformulated to

min
Tmax,Ts,init,ks,∆ks

J = nT + E(n, N0, Nb) (20)

s.t. 0 = Mv(n)− ε

with J the cost and u = [Tmax, Ts,init, ks,∆ks]
the vector containing the decision variables to
optimize.

3.2 Extremum-Seeking Control

We use Extremum-Seeking Control based on
tracking the necessary condition of optimality
(NCO), which is ∂J

∂u = 0, i.e. the first derivative



of the cost equals to zero is a necessary condition
for optimality. Note, that by constraining mini-
mum step-sizes of our discrete parameters, and
exploiting the fact that the macroscopic model is
predicting the average performance of the system,
we can assume J to be convex, differentiable, and
∂2J
∂2u to be positive definite. NCO allows treating
the optimization problem as a control problem,
which we formulate as follows

u̇ = −α
∂J

∂u
, (21)

where α is the gain of the integral controller that
drives ∂J

∂u to zero 1 .
As ∂J

∂u cannot be calculated analytically in this
case, we add a perturbation in form of a sinusoidal
function to individual components of the vector u.
The period length of the perturbation is hereby
chosen to be larger than the time needed to reach
steady-state. Note that the NCO tracking control
loop is time-continuous, and is independent of
the type (continuous-time or discrete-time) of
the plant to optimize. Hence, we estimate ∂J

∂u as
follows

∂J

∂u
≈ J(u + p(j))− J(u)

p(j)
, (22)

with p(j) the perturbation vector at run j.

4. RESULTS

All DEs were solved until the number of virgin
blades were reduced to ε = 0.1. If not stated
otherwise, all scenarios consider 20 robots and 16
blades, the time discretization of the system is
T = 1s, and energy consumption η = 1W and
γ = 1W .

4.1 Static Optimization

In a first step, we validated findings from Cor-
rell and Martinoli (2006b) and Correll and Mar-
tinoli (2005) for constant Ts(k) = 0 using the
MATLABr function fmincon that finds a min-
imum of an unconstrained multivariable func-
tion by Sequential Quadratic Programming. We
found T ∗max ≈ 20s, yielding an optimal inspection
time of n∗T = 144s and energy consumption
E∗ = 2900J . Introducing different constraints on
the total energy consumption, yields more inter-
esting results. For instance for arbitrary chosen
E(nT ) <= 2720J , the optimization routine con-
verges to Ts = 5s leading to n∗T = 149s. For
E(n∗) <= 2500J instead, we found T ∗s = 49s,
yielding n∗T = 219s and E∗ = 2705J , i.e. the
constraints could not be satisfied.

1 One can show using Lyapunov theory that the optimal
feedback solution for convex cost functions is always stable
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Fig. 4. Development of the state variables with an
optimal policy for Ts(k) (k∗s = 40).

4.2 Dynamic Optimization

For finding an optimal beacon policy, we con-
strained the parameter a (compare Equation 19)
to take discrete values in the interval [−1;+1],
where a = 0 is the static case treated above. In
other words, we consider two policies, first to relax
a beacon policy by decreasing Ts over time, and
second, to foster a beacon policy by increasing Ts.
We performed optimization for 8 ≤ N0 ≤ 40 with
M0 = 16. We observe a bifurcation of the system
for the ratio of robots to blades, as an optimal
profile for Ts(k) could only be found for M0 ≤ N0.
Optimization using fmincon yields T ∗s,init = 0 and
∆k∗s = 0 for a = −1, i.e. starting with a beacon
policy always decreases performance.
On the other hand, setting a = +1, yields an
optimal policy T ∗s,init = 0, k∗s = 40, ∆k∗s = 7
leading to an inspection time of n∗T = 138s
using only E∗ = 2494J , for N0 = 20 robots. The
evolution of the state variables for this particular
case is depicted in Figure 4.
Using the extremum-seeking control scheme in-
stead of fmincon, with u̇ according to (21), and
a sinusoidal perturbation (values for p(j) from -
4 to 4 following a sinusoidal pattern), leads to
an optimum n∗T = 138s and E∗ = 2524J for
T ∗s,init = 0, ksT

∗ = 40, and ∆k∗s = 6.

5. DISCUSSION

Imposing a constraint on the energy (E(n∗) <=
2720J) yielded an optimal signaling time of T ∗s =
5s. This value intuitively makes sense, as the
maximum time a beacon policy can save is the
time to fully surround a blade (Tb = 20s), but
only if the beacon is indeed met by another ro-
bot. Longer signaling times slows down inspection
progress as the involved robots can not be used
for search, which in turn leads to higher overall
energy consumption. Trying to find an optimal
policy for further minimizing energy consumption
(E(n∗) <= 2500J) failed, and suggests a minimal



energy consumption of E = 2705J in n∗T = 219s
for T ∗s = 49s (static optimization).
Using dynamic optimization, we discover an opti-
mal profile for Ts(k) resulting in a dynamic beacon
policy. Unfortunately, the optimal time to employ
the beacon policy, k∗s is a function of the number
of robots — the more robots there are, the earlier
inspection finishes, and hence the smaller will
be k∗s—as well as the ratio of robots to blades.
Nevertheless, it might be possible for the robots,
even in a real scenario, to estimate the necessary
parameters online, for instance by measuring the
ratio of encountered blades to encountered robots.
Extremum-seeking control allowed to reach the
optimum after a few iterations (between 5 and 25),
each involving the estimation of the gradients for
the four decision variables from measurements of
the system.

6. CONCLUSION AND FURTHER WORK

Optimal Control theory has shown to provide
powerful tools for optimizing self-organized ro-
botic swarms in an inspection task, and provided
non-obvious control policies that potentially in-
crease performance when applied to a real system.
In particular, our optimal control of the beacon-
on time is directly affecting the nonlinear mech-
anism at the core of the self-organized coordina-
tion mechanism. Here, NCO tracking methods are
attractive since they allow treating the optimiza-
tion problem as a control problem with all the
advantages related to sensitivity reduction and
disturbance rejection in an analytical tractable
fashion.
It is also to note that the performance gain for
the optimal beacon policy in this case study is
very small (around 5% compared with a system
without collaboration) and thus requires large
number of experiments in order to show statis-
tically significant results (in the order of 50-100
runs), especially as the standard deviation of the
performance metric is large due to the probabilis-
tic nature of self-organization. Finally, as model
parameters like interaction probability and inter-
action time are uncertain as they are computed
using a simple heuristic or calibrated by simple
experiments involving only a few robots, the op-
timum of the real system might be different from
the optimum observed on the model. At this point
it would be interesting to extend the presented
extremum seeking control scheme for parameter
estimation (involving the real system in the loop),
and hence complement our current methodology
for modeling swarm robotic systems.
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