
The Global Sensor Networks middleware for efficient
and flexible deployment and interconnection of sensor

networks �

Karl Aberer, Manfred Hauswirth, Ali Salehi

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. The lack of standardization and the continuous inflow of novel sen-
sor network technologies have made their deployment the main factor of man-
power consumption, considerably complicate the interconnection of heteroge-
neous sensor networks, and make portable application development a challeng-
ing and time-consuming task. To address these problems we propose our Global
Sensor Networks middleware which supports the rapid and simple deployment
of a wide range of sensor network technologies, facilitates the flexible integra-
tion and discovery of sensor networks and sensor data, enables fast deployment
and addition of new platforms, provides distributed querying, filtering, and com-
bination of sensor data, and supports the dynamic adaption of the system con-
figuration during operation. GSN offers virtual sensors as a simple and powerful
abstraction which enables the user to declaratively specify XML-based deploy-
ment descriptors in combination with the possibility to integrate sensor network
data through plain SQL queries over local and remote sensor data sources. The
paper describes GSN’s conceptual model and system architecture, and demon-
strates the efficiency of the implementation through experiments with typical
high-load application profiles. The GSN implementation is available from http:
//globalsn.sourceforge.net/.

Keywords: Sensor networks, sensor middleware, sensor internetworking

1 Introduction

Until now, research in the sensor network domain has mainly focused on routing, data
aggregation, and energy conservation inside a single sensor network. The deployment,
application development, and standardization aspects have only been addressed to a
limited extent so far. However, as the price of wireless sensors diminishes rapidly we
can expect to see large numbers of autonomous sensor networks. Major challenges in
such a “Sensor Internet” environment are the sharing and integration of data among
heterogeneous sensor networks and minimizing of deployment efforts which are a key
�

The work presented in this paper was supported (in part) by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Computing.

cost factor in any system. As successfully demonstrated in other domains, a standard
strategy to address these problems is to devise a middleware which provides powerful
abstractions, codifying the essential requirements and concepts of a domain and of-
fering flexible means for integrating the concrete physical platforms. This speeds up
deployment and additionally pushes forward standardized APIs which simplifies appli-
cation development and enables application portability across all systems supported by
the middleware.

Our Global Sensor Network (GSN) middleware follows this rationale and provides
a uniform platform for fast and flexible deployment and integration of heterogeneous
sensor networks. The design of GSN follows four main design goals:

Simplicity. GSN is based on a minimal set of powerful abstractions which can be
configured and adopted easily to the user’s needs. Sensor networks and data streams
can be specified in a declarative way using XML as the syntactic framework and SQL
as the data manipulation language.

Adaptivity. GSN allows the user to add new types of sensor networks and facilitates
dynamic (re-) configuration of the system during run-time without having to interrupt
ongoing system operation through a container-based implementation.

Scalability. To support very large numbers of data producers and consumers with
a variety of application requirements, GSN considers scalability issues specifically for
distributed query processing and distributed discovery of sensor networks. To meet this
requirement, the design of GSN is based on a peer-to-peer architecture.

Light-weight implementation. GSN is easily deployable in standard computing
environments (no excessive hardware requirements, standard network connectivity, etc.),
portable (Java-based implementation), requires minimal initial configuration, and pro-
vides easy-to-use, web-based management tools.

In the following sections of the paper we describe GSN’s key abstractions and de-
sign decisions, its architecture and implementation, and evaluate the system using real-
world scenarios to demonstrate its efficiency and applicability.

2 Virtual sensors
The key abstraction in GSN is the virtual sensor. Virtual sensors abstract from im-
plementation details of access to sensor data and correspond either to a data stream
received directly from sensors or to a data stream derived from other virtual sensors. A
virtual sensor can be any kind of data producer, for example, a real sensor, a wireless
camera, a desktop computer, a cell phone, or any combination of virtual sensors. A vir-
tual sensor may have any number of input data streams and produces exactly one output
data stream based on the input data streams and arbitrary local processing. The specifi-
cation of a virtual sensor provides all necessary information required for deploying and
using it, including:

– metadata used for identification and discovery;
– the structure and properties of the data streams which the virtual sensor consumes

and produces;
– a declarative SQL-based specification of the data stream processing performed in

the virtual sensor;
– functional properties related to stream quality management, persistency, error han-

dling, life-cycle management, and physical deployment.

2

To support rapid deployment, these properties of virtual sensors are provided in a
declarative deployment descriptor. Figure 1 shows an example which defines a virtual
sensor that reads two temperature sensors and in case both of them have the same read-
ing above a certain threshold in the last minute, the virtual sensor returns the latest
picture from the webcam in the same room together with the measured temperature.�

�

�

�

1 <virtual-sensor name="room-monitor" priority="11">
2 <addressing>
3 <predicate key="geographical">BC143</predicate>
4 <predicate key="usage">room monitoring</predicate>
5 </addressing>
6 <life-cycle pool-size="10" />
7 <output-structure>
8 <field name="image" type="binary:jpeg" />
9 <field name="temp" type="int" />

10 </output-structure>
11 <storage permanent="true" history-size="10h" />
12 <input-streams>
13 <input-stream name="cam">
14 <stream-source alias="cam" storage-size="1"
15 disconnect-buffer-size="10">
16 <address wrapper="remote">
17 <predicate key="geographical">BC143</predicate>
18 <predicate key="type">Camera</predicate>
19 </address>
20 <query>select * from WRAPPER</query>
21 </stream-source>
22 <stream-source alias="temperature1" storage-size="1m"
23 disconnect-buffer-size="10">
24 <address wrapper="remote">
25 <predicate key="type">temperature</predicate>
26 <predicate key="geographical">BC143-N</predicate>
27 </address>
28 <query>select AVG(temp1) as T1 from WRAPPER</query>
29 </stream-source>
30 <stream-source alias="temperature2" storage-size="1m"
31 disconnect-buffer-size="10">
32 <address wrapper="remote">
33 <predicate key="type">temperature</predicate>
34 <predicate key="geographical">BC143-S</predicate>
35 </address>
36 <query>select AVG(temp2) as T2 from WRAPPER</query>
37 </stream-source>
38 <query>
39 select cam.picture as image, temperature.T1 as temp
40 from cam, temperature1
41 where temperature1.T1 > 30 AND
42 temperature1.T1 = temperature2.T2
43 </query>
44 </input-stream>
45 </input-streams>
46 </virtual-sensor>

Fig. 1. A complex virtual sensor definition using other virtual sensors as input

A virtual sensor has a unique name (the name attribute in line 1) and can be
equipped with a set of key-value pairs (lines 2–5), i.e., associated with metadata. Both
types of addressing information can be registered and discovered in GSN and other vir-
tual sensors can use either the unique name or logical addressing based on the metadata
to refer to a virtual sensor. The example specification above defines a virtual sensor with
three input streams which are identified by their metadata (lines 17–18, 25–26, and 33–
34), i.e., by logical addressing. For example, the first temperature sensor is addressed
by specifying two requirements on its metadata (lines 25–26), namely that it is of type

3

temperature sensor and at a certain physical certain location. By using multiple input
streams Figure 1 also demonstrates GSN’s ability to access multiple stream producers
simultaneously. For the moment, we assume that the input streams (two temperature
sensors and a webcam) have already been defined in other virtual sensor definitions
(how this is done, will be described below).

In GSN data streams are temporal sequences of timestamped tuples. This is in line
with the model used in most stream processing systems. The structure of the data stream
a virtual sensor produces is encoded in XML as shown in lines 7–10. The structure of
the input streams is learned from the respective specifications of their virtual sensor
definitions. Data stream processing is separated into two stages: (1) processing applied
to the input streams (lines 20, 28, and 36) and (2) processing for combining data from
the different input streams and producing the output stream (lines 38–43). To specify the
processing of the input streams we use SQL queries which refer to the input streams by
the reserved keyword WRAPPER. The attribute wrapper="remote" indicates that
the data stream is obtained through the network from another GSN instance.

In the given example the output stream joins the data received from two temperature
sensors and returns a camera image if certain conditions on the temperature are satisfied
(lines 38–43). To enable the SQL statement in lines 39–42 to produce the output stream,
it needs to be able to reference the required input data streams which is accomplished
by the alias attribute (lines 14, 22, and 30) that defines a symbolic name for each
input stream. The definition of the structure of the output stream directly relates to the
data stream processing that is performed by the virtual sensor and needs to be consistent
with it, i.e., the data fields in the select clause (line 40) must match the definition of
the output stream in lines 7–10.

In the design of GSN specifications we decided to separate the temporal aspects
from the relational data processing using SQL. The temporal processing is controlled
by various attributes provided in the input and output stream specifications, e.g., the
attribute storage-size (lines 14, 22, and 30) defines the time window used for
producing the input stream’s data elements. Due to its specific importance the temporal
processing will be discussed in detail in Section 3.

In addition to the specification of the data-related properties a virtual sensor also
includes high-level specifications of functional properties: The priority attribute
(line 1) controls the processing priority of a virtual sensor, the <life-cycle> ele-
ment (line 6) enables the control and management of resources provided to a virtual
sensor such as the maximum number of threads/queues available for processing, the
<storage> element (line 11) allows the user to control how output stream data is
persistently stored, and the disconnect-buffer-size attribute (lines 15, 23, 31)
specifies the amount of storage provided to deal with temporary disconnections.

For example, in Figure 1 the priority attribute in line 1 assigns a priority of
11 to this virtual sensor (10 is the lowest priority and 20 the highest, default is 10),
the <life-cycle> element in line 6 specifies a maximum number of 10 threads,
which means that if the pool size is reached, data will be dropped (if no pool size is
specified, it will be controlled by GSN depending on the current load), the <storage>
element in line 11 defines that the output stream’s data elements of the last 10 hours
(history-size attribute) are stored permanently to enable off-line processing, the
storage-size attribute in line 14 defines that the last image taken by the webcam
will be returned irrespective of the time it was taken, whereas the storage-size

4

attributes in lines 22 and 30 define a time window of one minute for the amount of
sensor readings subsequent queries will be run on, i.e., the AVG operations in lines
28 and 36 are executed on the sensor readings received in the last minute which of
course depends on the rate at which the underlying temperature virtual sensor produces
its readings, and finally, the disconnect-buffer-size attributes in lines 15, 23,
and 31 specify up to 10 missed sensor readings to be read after a disconnection from
the associated stream source.

The query producing the output stream (lines 39–42) also demonstrates another in-
teresting capability of GSN as it also mediates among three different flavors of queries:
The virtual sensor itself uses continuous queries on the temperature data, a “normal”
database query on the camera data and produces a result only if certain conditions are
satisfied, i.e., a notification analogous to pub/sub or active rules.

In contrast to Figure 1, which shows the specification of a virtual sensor for pro-
cessing data streams received from other virtual sensors, Figure 2 shows a virtual sen-
sor producing a data stream generated directly by a sensor, in this case a TinyOS-based
wireless sensor.�

�

�

�

1 <virtual-sensor name="Light-sensor1" priority="11">
2 <class>gsn.vsensor.BridgeVirtualSensor</class>
3 <author>Ali Salehi</author>
4 <email>ali.salehi@epfl.ch</email>
5 <description>A TinyOS temperature vsensor</description>
6 <life-cycle pool-size="10" />
7 <addressing>
8 <predicate key="geographical">BC143-N</predicate>
9 <predicate key="type">temperature</predicate>

10 </addressing>
11 <output-structure>
12 <field name="temperature" type="int" />
13 </output-structure>
14 <storage permanent="true" history-size="10s" />
15 <input-streams>
16 <input-stream name="temperature" >
17 <stream-source alias="tsensor" storage-size="1">
18 <address wrapper="tinyos">
19 <predicate key="host">lsirpc24.epfl.ch</predicate>
20 <predicate key="port">9001</predicate>
21 </address>
22 <query>
23 select WRAPPER.TEMPERATURE as temperature,
24 WRAPPER.TIMED as timestamp from WRAPPER
25 </query>
26 </stream-source>
27 <query>
28 select temperature from tsensor
29 </query>
30 </input-stream>
31 </input-streams>
32 </virtual-sensor>

Fig. 2. Virtual sensor definition for a temperature sensor using a TinyOS mote
This virtual sensor obtains its data stream from a specific sensor network which is

directly attached to the computer hosting the GSN instance, rather than through a re-
mote GSN instance. Thus the sensor is addressed physically (lines 18–21) rather than
logically. Despite this necessary difference in addressing, locally and remotely pro-
duced data streams are treated logically the same way and the hosting GSN instance
does not know whether the data is coming from a local or a remote sensor. This specifi-
cation also relies on the availability of a wrapper implementation that connects the sys-

5

tem to the specific type of sensor or sensor network. The implementation of the wrapper
is referenced explicitly in line 18 by the attribute wrapper="tinyos". GSN already
includes wrappers for many platforms. The effort to implement new wrappers is quite
low and we will discuss this in detail in Section 5.1.

The virtual sensor mediates between GSN and the physical sensor. The interface
and access to the sensor is provided by the wrapper as described above. Additionally,
GSN needs to be able to interact with the virtual sensor and this is supported by another
API whose implementation is referenced in line 2. BridgeVirtualSensor is such
an implementation provided by GSN by default which just takes the results of the input
streams (lines 16–32) and provides them in the format specified in lines 11–13. This
is just the simplest case as in fact, this API in meant to support arbitrary application-
specific processing, if required. For example, special detection or image processing
algorithms for image data coming from a camera may be provided here by providing
a customized implementation of the AbstractVirtualSensor class defining the
API (BridgeVirtualSensor also implements AbstractVirtualSensor).

Due to space limitations we cannot describe all possible configuration options,
for example, the various notification possibilities, such as email or SMS. A complete
list along with descriptions and examples is available from the GSN website at http:
//globalsn.sourceforge.net/.

Virtual sensors are a powerful abstraction mechanism which enables the user to
declaratively specify sensors and combinations of arbitrary complexity. It hides the
physical details of the actual sensing devices as much as possible, but still facilitates
the explicit control of any processing aspect, if required. Virtual sensors can be defined
and deployed to a running GSN instance at any time without having to stop the sys-
tem. Also dynamic unloading is supported but should be used carefully as unloading a
virtual sensor may have undesired (cascading) effects.

3 Data stream processing and time model
Data stream processing has received substantial attention in the recent years in other
application domains, such as network monitoring or telecommunications. As a result,
a rich set of query languages and query processing approaches for data streams exist
on which we can build. A central building block in data stream processing is the time
model as it defines the temporal semantics of data and thus determines the design and
implementation of a system. Currently, most stream processing systems use a global
reference time as the basis for their temporal semantics because they were designed for
centralized architectures in the first place. As GSN is targeted at enabling a distributed
“Sensor Internet,” imposing a specific temporal semantics seems inadequate and main-
taining it might come at unacceptable cost. GSN provides the essential building blocks
for dealing with time, but leaves temporal semantics largely to applications allowing
them to express and satisfy their specific, largely varying requirements. In our opin-
ion, this pragmatic approach is viable as it reflects the requirements and capabilities of
sensor network processing.

In GSN a data stream is a set of timestamped tuples. The order of the data stream is
derived from the ordering of the timestamps and GSN provides basic support for man-
aging and manipulating the timestamps. The following essential services are provided:

1. a local clock at each GSN container;

6

2. implicit management of a timestamp attribute (TIMEID);
3. implicit timestamping of tuples upon arrival at the GSN container (reception time);
4. a windowing mechanism which allows the user to define count- or time-based win-

dows on data streams.

In this way it is always possible to trace the temporal history of data stream el-
ements throughout the processing history. Multiple time attributes can be associated
with data streams and can be manipulated through SQL queries. Thus sensor networks
can be used as observation tools for the physical world, in which network and process-
ing delays are inherent properties of the observation process which cannot be made
transparent by abstraction. Let us illustrate this by a simple example: Assume a bank
is being robbed and images of the crime scene taken by the security cameras are trans-
mitted to the police. For the insurance company the time at which the images are taken
in the bank will be relevant when processing a claim, whereas for the police report the
time the images arrived at the police station will be relevant to justify the time of inter-
vention. Depending on the context the robbery is thus taking place at different times.

The temporal processing in GSN is defined as follows: The production of a new
output stream element of a virtual sensor is always triggered by the arrival of a data
stream element from one of its input streams. Thus processing is event-driven and the
following processing steps are performed:

1. By default the new data stream element is timestamped using the local clock of the
virtual sensor provided that the stream element had no timestamp.

2. Based on the timestamps for each input stream the stream elements are selected
according to the definition of the time window and the resulting sets of relations
are unnested into flat relations.

3. The input stream queries are evaluated and stored into temporary relations.
4. The output query for producing the output stream element is executed based on the

temporary relations.
5. The result is permanently stored if required (possibly after some processing) and

all consumers of the virtual sensor are notified of the new stream element.

This logical data flow inside a GSN node is shown in Figure 3.

Stream data element Timestamp

Stream data element Timestamp

Stream Source Query

Stream Source Query ...
Relation Name : Stream Source Alias

...
Relation Name : Stream Source Alias

Input Stream Query

of the stream source query
Relation produced as the result

St
re

am
 e

le
m

en
ts

co
m

in
g

fr
om

 st
re

am
 so

ur
ce

Pers
iste

nt
sto

rag
e Stream Query

as the result of the Input
The relation produced

Virtual Sensor’s Main Java Class

Fig. 3. Conceptual data flow in a GSN node
Additionally, GSN provides a number of possibilities to control the temporal pro-

cessing of data streams, for example:

– The rate of a data stream can be bounded in order to avoid overloading the system
which might cause undesirable delays.

7

– Data streams can be sampled to reduce the data rate.
– A windowing mechanism can be used to limit the amount of data that needs to be

stored for query processing. Windows can be defined using absolute, landmark, or
sliding intervals.

– The lifetime of data streams and queries can be bounded such that they only con-
sume resources when actually active. Lifetimes can be specified in terms of explicit
start and end times, start time and duration, or number of tuples.

As tuples (sensor readings) are timestamped, queries can also deal explicitly with
time. For example, the query in lines 39–42 of Figure 1 could be extended such that it
explicitly specifies the maximum time interval between the readings of the two temper-
atures and the maximum age of the readings. This would additionally require changes
in the input stream definitions as the input streams then must provide this information,
and also the averaging of the temperature readings (lines 28 and 36) would have to be
changed to be explicit in respect to the time dimension. GSN supports all this but due
to space limitations we cannot go into further detail (see the user and developer guides
at http://globalsn.sourceforge.net/ for a full specification).

Additionally, GSN can easily support the integration of continuous and historical
data. For example, if the user wants to be notified when the temperature is 10 degrees
above the average temperature in the last 24 hours, he/she can simply define two stream
sources, getting data from the same wrapper but with different window sizes, i.e., 1
(count) and 24h (time), and then simply write a query specifying the original condition
with these input streams.

Although GSN’s time model is simple it is very flexible and supports a wide range
of application scenarios, for example:

– In a fire alarm scenario when a smoke sensor fires, the user may want to be notified
every 5 minutes and not every 10ms when the sensor does the observation. This can
be accomplished by bounding the rate.

– In an e-home scenario, the user may want to be notified once when the sound sensor
reacts to a crying baby. This can accomplished simply by limiting the number of
readings to 1.

– In a monitoring scenario, a security guard may only want to be notified of alarms
when he is on duty which can be specified via the query’s lifetime.

– The user may be interested in the average of a randomly chosen subset of sensor
readings, which could be specified via a sampling rate on the raw sensor readings.

If the user does not explicitly specify the temporal processing model, GSN uses
default policies which try to best use the available system resources while trying to
achieve load balancing among the sensors and the associated data processing for glob-
ally optimal performance.

To specify the data stream processing a suitable language is needed. A number of
proposals exist already, so we compare the language approach of GSN to the major pro-
posals from the literature. In the Aurora project [1] (http://www.cs.brown.edu/research/
aurora/) users can compose stream relationships and construct queries in a graphical
representation which is then used as input for the query planner. The Continuous Query
Language (CQL) suggested by the STREAM project [2] (http://www-db.stanford.edu/
stream/) extends standard SQL syntax with new constructs for temporal semantics

8

and defines a mapping between streams and relations. Similarly, in Cougar [3] (http:
//www.cs.cornell.edu/database/cougar/) an extended version of SQL is used, modeling
temporal characteristics in the language itself. The StreaQuel language suggested by the
TelegraphCQ project [4] (http://telegraph.cs.berkeley.edu/) follows a different path and
tries to isolate temporal semantics from the query language through external definitions
in a C-like syntax. For example, for specifying a sliding window for a query a for-loop
is used. The actual query is then formulated in an SQL-like syntax.

GSN’s approach is related to TelegraphCQ’s as it separates the time-related con-
structs from the actual query. Temporal specifications, e.g., the window size and rates,
are specified in XML in the virtual sensor specification, while data processing is speci-
fied in SQL. At the moment GSN supports SQL queries with the full range of operations
allowed by the standard SQL syntax, i.e., joins, subqueries, ordering, grouping, unions,
intersections, etc. The advantage of using SQL is that it is well-known and SQL query
optimization and planning techniques can be directly applied.

4 System architecture

GSN uses a container-based architecture for hosting virtual sensors. Similar to appli-
cation servers, GSN provides an environment in which sensor networks can easily and
flexibly be specified and deployed by hiding most of the system complexity in the GSN
container. Using the declarative specifications, virtual sensors can be deployed and re-
configured in GSN containers at runtime. Communication and processing among dif-
ferent GSN containers is performed in a peer-to-peer style through standard Internet
and Web protocols. By viewing GSN containers as cooperating peers in a decentralized
system, we tried avoid some of the intrinsic scalability problems of many other systems
which rely on a centralized or hierarchical architecture. Targeting a “Sensor Internet”
as the long-term goal we also need to take into account that such a system will con-
sist of “Autonomous Sensor Systems” with a large degree of freedom and only limited
possibilities of control, similarly as in the Internet.

Figure 4 shows the layered architecture of a single GSN container.
Each GSN container hosts a number of virtual sensors it is responsible for. The

virtual sensor manager (VSM) is responsible for providing access to the virtual sen-
sors, managing the delivery of sensor data, and providing the necessary administrative
infrastructure. The VSM has two subcomponents: The life-cycle manager (LCM) pro-
vides and manages the resources provided to a virtual sensor and manages the inter-
actions with a virtual sensor (sensor readings, etc.). The input stream manager (ISM)
is responsible for managing the streams, allocating resources to them, and enabling
resource sharing among them while its stream quality manager subcomponent (SQM)
handles sensor disconnections, missing values, unexpected delays, etc., thus ensuring
the QoS of streams. All data from/to the VSM passes through the storage layer which
is in charge of providing and managing persistent storage for data streams. Query pro-
cessing in turn relies on all of the above layers and is done by the query manager (QM)
which includes the query processor being in charge of SQL parsing, query planning,
and execution of queries (using an adaptive query execution plan). The query reposi-
tory manages all registered queries (subscriptions) and defines and maintains the set of
currently active queries for the query processor. The notification manager deals with
the delivery of events and query results to registered, local or remote consumers. The

9

notification manager has an extensible architecture which allows the user to largely cus-
tomize its functionality, for example, having results mailed or being notified via SMS.

Query Processor

Notification Manager

Query Repository

Manager

Life Cycle

Storage

Integrity service

GSN/Web/Web−Services Interfaces

Pool of Virtual Sensors

Stream Quality Manager

Q
ue

ry
 M

an
ag

er

Virtual Sensor Manager

Input Stream Manager

Access control

Fig. 4. GSN container architecture

The top three layers of the architecture deal with access to the GSN container.
The interface layer provides access functions for other GSN containers and via the
Web (through a browser or via web services). These functionalities are protected and
shielded by the access control layer providing access only to entitled parties and the
data integrity layer which provides data integrity and confidentiality through electronic
signatures and encryption. Data access and data integrity can be defined at different
levels, for example, for the whole GSN container or at a virtual sensor level.

To demonstrate the logical steps in data stream processing inside this architecture,
we include UML sequence diagrams for two major control flows: Figure 5 shows how
data produced by a sensor is processed inside a GSN node and Figure 6 shows the
control flow if one GSN node uses data coming over the network from another GSN
node’s virtual sensor.

In Figure 5 the wrapper receives a data item from the producer (physical sensor
or another local/remote virtual sensor) and notifies the wrapper repository about the
newly received data. The wrapper repository checks for the stream sources registered to
receive data from this wrapper and notifies them (a wrapper can be used by one or more
stream sources). The stream source manager evaluates the combined query encompass-
ing all the stream source queries which use the wrapper and provides the input stream
manager with a list of the input streams which might be affected by the newly arrived
data. The input stream manager then evaluates the combined query encompassing all
the input stream sources using the affected stream source and in case one or more of the
input streams produce a new results, GSN will notify the virtual sensors using them.

10

Fig. 5. Control flow for a wrapper producing a data stream

In turn, if a virtual sensor produces a new output, the GSN container retrieves it
from the virtual sensor, retrieves the registered clients of the virtual sensor, and notifies
them if necessary via the notification manager (this is not shown in Figure 5).

In Figure 6 new sensor data from a sensor becomes available at GSN node A.

Fig. 6. Using a remote virtual sensor

The GSN container retrieves the new data and hands it to the local query processor
who runs all queries affected by the new data. As a result of this processing some of
the registered clients should receive new data. Thus the GSN container requests a list of
clients for which new data has become available and instructs the notification manager
to do the actual notification. In the figure we assume that new data for a query registered
from node B has become available and thus node B’s virtual sensor is notified which
acts as a virtual data source and in turn notifies the specific wrapper being responsible
for the remote virtual sensor. Then basically the same interactions as already described
for Figure 5 are triggered at node B.

11

5 Implementation

The GSN implementation consists of the GSN-CORE, implemented in Java, and the
platform-specific GSN-WRAPPERS, implemented in Java, C, and C++, depending on
the available toolkits for accessing specific types of sensors or sensor networks. The
implementation currently has approximately 20,000 lines of code and is available from
SourceForge (http://globalsn.sourceforge.net/). GSN is implemented to be highly mod-
ular in order to be deployable on various hardware platforms from workstations to small
programmable PDAs, i.e., depending on the specific platforms only a subset of modules
may be used. GSN also includes visualization systems for plotting data and visualizing
the network structure. In the following sections we are going to discuss some of the key
aspects of the GSN implementation

5.1 Adding new sensor platforms

For deploying a virtual sensor the user only has to specify an XML deployment de-
scriptor as described in Section 2, if GSN already includes software support for the
concerned hardware/software. Adding a new type of sensor or sensor network can be
done by supplying a Java wrapper conforming to the GSN API. At the moment GSN
provides the following wrappers:

HTTP generic wrapper is used to receive data from devices via HTTP GET or POST
requests, for example, the AXIS206W wireless camera.

Serial forwarder wrapper enables interaction with TinyOS compatible motes. The
serial forwarder is the standard access tool for TinyOS provided in the TinyOS
package.

USB camera wrapper is used for dealing with cameras connected via USB to the
local machine. As USB cameras are very cheap, they are quite popular as sens-
ing devices. The wrapper supports cameras with OV518 and OV511 chips (see
http://alpha.dyndns.org/ov511/).

TI-RFID wrapper enables access to Texas Instruments Series 6000 S6700 multi-protocol
RFID readers.

WiseNode wrapper supports access to WiseNode sensors (developed by CSEM, Switzer-
land, http://www.csem.ch/).

Generic UDP wrapper can be used for any device using the UDP protocol to send
data.

Generic serial wrapper supports sensing devices which send data through the serial
port.

Additionally, we provide template implementations for standard cases and frequently
used platforms. If wrapper implementations are shared publicly this also facilitates
building a reusable code base for virtually any sensor platform. The effort to imple-
ment wrappers is quite low. Table 1 shows the sizes of the wrappers currently shipped
with GSN in terms of lines of source code (mainly in Java).

12

Wrapper type Lines of code
TinyOS 120
WiseNode 75
Generic UDP 45
Generic serial 180
Wired camera 300
Wireless camera (HTTP) 60
RFID reader (TI) 50

Table 1. Code sizes of wrappers
New wrappers can be added to GSN without having to rebuild or modify the GSN

container (plug-and-play). Upon startup GSN locates the wrapper classes and loads
them into the system. After that the wrappers for which virtual sensors have been de-
fined locally are initialized while unused wrappers do not consume resources. Wrappers
can also be parameterized, so that a virtual sensor can provide initialization parameters
to the wrapper, e.g., the acceptable packet format for TinyOS.

5.2 Dynamic resource management
The highly dynamic processing environment we target with GSN requires adaptive dy-
namic resource management to allow the system to quickly react to changing process-
ing needs and environmental conditions. Dynamic resource management accomplishes
three main tasks:

Resource sharing: As the user can modify/remove/add virtual sensors on-the-fly dur-
ing runtime, the system needs to keep track of all resources used by the individual
virtual sensors and enforce resource sharing among sensors (wrappers) where pos-
sible.

Failure management: If GSN detects a faulty virtual sensor or wrapper, e.g., by run-
time exceptions, GSN undeploys it and releases the associated resources.

Explicit resource control: The user can specify explicit memory and processing re-
quirements and restrictions. While restrictions are always enforced, requirements
are handled depending of the globally available resources of the GSN instance.
GSN tries to share the available resources in a fair way taking into account the
explicitly specified resource requirements, if provided.

Dynamic resource management is performed at several levels in GSN as shown in
Figure 7. Separating the resource sharing into several layers logically decouples the re-
quirements and allows us to achieve a higher level of reuse of resources. In the following
we will discuss the different levels.

Sensors

Virtual

Stream Sources

Wrappers

StreamManager

Input Streams

VSensorLoader

InputStreamManager

Wrapper Repository

Fig. 7. Hierarchical resource sharing in GSN

13

Wrapper sharing. Wrappers communicate directly with the sensors which involves
expensive I/O operations via a serial connection or wireless/wired network communica-
tion. To minimize the costs incurred by these operations GSN shares wrappers among
virtual sensors accessing the same physical/virtual sensors. To do so each GSN node
maintains a repository of active wrappers. If a new virtual sensor is deployed, the node
first checks with the wrapper repository whether an identical wrapper already exists,
i.e., wrapper name and initialization parameters of the <wrapper> element in the
virtual sensor definitions are identical. If a match is found, the new virtual sensor is reg-
istered to the existing wrapper as a consumer. If not, a new wrapper instance is created
and registered with the wrapper repository. In the case of remote sensor accesses this
strategy is applied at both the sending and receiving sides to maximize the sharing, i.e.,
multiple virtual sensors on one GSN node share a wrapper for the same remote sensor
and on the node hosting the sensor the wrapper is shared among all nodes accessing it.

Data sharing. The raw input data produced by the wrappers is processed and fil-
tered by the stream sources to generate the actual input data for the input streams of a
virtual sensor. For this purpose a stream source defines what part of the raw input data
is used by the associated stream source query to produce the stream source’s output
data, i.e., by defining the available storage, sampling rates, and window sizes a view
on the raw data is defined on which the stream source query is executed. In terms of
the implementation each wrapper is assigned a storage holding the raw data and stream
source queries are then defined as SQL views on this data store.

This has a number of advantages: (1) It minimizes the storage consumption as raw
data is only stored once. Especially if the sensor data is large, e.g., image data, this is
relevant. (2) If the sensor data comes from a power-constrained or slow device, power
is conserved and processing is sped up. (3) Different processing strategies can be ap-
plied to the same data without having to replicate it, for example, image enhancement
algorithms and object detection can use the same raw image data.

In the same way as a wrapper can be shared by multiple stream sources, a stream
source can also be shared among multiple input streams at a higher level, and input
streams in turn are shared by multiple virtual sensors. In essence each of the layers in
Figure 7 can be viewed as a resource pool where each of the individual resources in the
pool can be shared among multiple resources at the next higher level. Conversely, each
higher level resource can also use any number of lower level resources.

5.3 Query planning and execution

In GSN each virtual sensor corresponds to a database table and each sensor reading
corresponds to a new tuple in the related table. As we use a standard SQL database as
our low-level query processing engine, the question is how to represent the streaming
logic in a form understandable for a standard database engine (as already described,
GSN separates the stream processing directives from the query). We address this prob-
lem by using a query translator which gets an SQL query and the stream processing
directives as provided in the virtual sensor definition as inputs and translates this into
a query executable in a standard database. The query translator relies on special sup-
port functions which emulate stream-oriented constructs in a database. These support
functions are dependent on the database used and are provided by GSN (currently we
support HSQLDB and MySQL). Translated queries are cached for subsequent use.

14

Upon deployment of a virtual sensor ��� , all queries 	�
 contained in its speci-
fication are extracted. Each query 	�
� �����������������������

accesses one or more relations���������������������
which correspond to virtual sensors. Then the query translator translates

each 	�
� ����� �������!���������
into an executable query 	�"
 �����#���������������$�

as described
above and each 	�"
 ��� � �������!����� � � is declared as a view in the database with a unique
identifier %'&
 . This means whenever a new tuple, i.e., sensor reading, is added to the
database, the concerned views will automatically be updated by the database. Addition-
ally, a tuple ���)(� %*&*
 �����+� for each ���)(�,-��������������������� is added to a special view
registration table. This procedure is done once when a virtual sensor is deployed.

With this setup it is now simple to execute queries over the data streams produced
by virtual sensors: As soon a new sensor reading for a virtual sensor

���/.
becomes

available, it is entered into the according database relation. Then the database server
queries the registration table using ��� . as the key and gets all identifiers %*&10 registered
for new data of

��� .
. Then simply all views

� 0 affected by the new data item can
be retrieved using the %'&10 and all

� 0 can be queried using a SELECT * FROM 213
statement and the resulting data can be returned to the virtual sensor containing

� 0 (third
column in the registration table). Since views are automatically updated by the database
querying them is efficient. However, with many registered views (thousands or more)
scalability may suffer. Thus GSN does not produce an individual query for each view
but merges all queries into a large select statement, and the result will then be joined
with the view registration table on the view identifier. Thus the result will hold tuples
that identify the virtual sensor to notify of the new data. The reasons for applying this
strategy are that (1) database connections are expensive, (2) with increasing number
of clients and virtual sensor definitions, the probability of overlaps in the result sets
increases which automatically will be exploited by the database’s query processor, and
(3) query execution in the database is expensive, so one large query is much less costly
than many (possibly thousands) small ones.

Immediate notification of new sensor data is currently implemented in GSN and is
an eager strategy. As an alternative also a lazy strategy could be used where the query
execution would only take place when the GSN instance requests it from the database,
for example, periodically at regular intervals. In practice the former can be implemented
using views or triggers and the latter can be implemented using inner selects or stored
procedures.

6 Evaluation

GSN aims at providing a zero-programming and efficient infrastructure for large-scale
interconnected sensor networks. To justify this claim we experimentally evaluate the
throughput of the local sensor data processing and the performance and scalability of
query processing as the key influencing factors. As virtual sensors are addressed explic-
itly and GSN nodes communicate directly in a point-to-point (peer-to-peer) style, we
can reasonably extrapolate the experimental results presented in this section to larger
network sizes. For our experiments, we used the setup shown in Figure 8.

15

Tinynode TI-RFID
Reader/Writer

Mica2 with WRT54Ghousing box
AXIS 206W

Fig. 8. Experimental setup

The GSN network consisted of 5 standard Dell desktop PCs with Pentium 4, 3.2GHz
Intel processors with 1MB cache, 1GB memory, 100Mbit Ethernet, running Debian 3.1
Linux with an unmodified kernel 2.4.27. For the storage layer use standard MySQL
5.18. The PCs were attached to the following sensor networks as shown in Figure 8.

– A sensor network consisting of 10 Mica2 motes, each mote being equipped with
light and temperature sensors. The packet size was configured to 15 Bytes (data
portion excluding the headers).

– A sensor network consisting of 8 Mica2 motes, each equipped with light, tem-
perature, acceleration, and sound sensors. The packet size was configured to 100
Bytes (data portion excluding the headers). The maximum possible packet size for
TinyOS 1.x packets of the current TinyOS implementation is 128 bytes (including
headers).

– A sensor network consisting of 4 Tiny-Nodes (TinyOS compatible motes produced
by Shockfish, http://www.shockfish.com/), each equipped with a light and two tem-
perature sensors with TinyOS standard packet size of 29 Bytes.

– 15 Wireless network cameras (AXIS 206W) which can capture 640x480 JPEG pic-
tures with a rate of 30 frames per second. 5 cameras use the highest available com-
pression (16kB average image size), 5 use medium compression (32kB average
image size), and 5 use no compression (75kB average image size). The cameras are
connected to a Linksys WRT54G wireless access point via 802.11b and the access
point is connected via 100Mbit Ethernet to a GSN node.

– A Texas Instruments Series 6000 S6700 multi-protocol RFID reader with three
different kind of tags, which can keep up to 8KB of data. 128 Bytes capacity.

The motes in each sensor network form a sensor network and routing among the
motes is done with the surge multi-hop ad-hoc routing algorithm provided by TinyOS.

6.1 Internal processing time

In the first experiment we wanted to determine the internal processing time a GSN node
requires for processing sensor readings, i.e., the time interval when the wrapper gets the

16

sensor data until the data can be provided to clients by the associated virtual sensor. This
delay depends on the size of the sensor data and the rate at which the data is produced,
but is independent of the number of clients wanting to receive the sensor data. Thus it
is a lower bound and characterizes the efficiency of the implementation.

We configured the 22 motes and 15 cameras to produce data every 10, 25, 50,
100, 250, 500, and 1000 milliseconds. As the cameras have a maximum rate of 30
frames/second, i.e., a frame every 33 milliseconds, we added a proxy between the GSN
node and the WRT54G access point which repeated the last available frame in order to
reach a frame interval of 10 milliseconds. All GSN instances used the Sun Java Virtual
Machine (1.5.0 update 6) with memory restricted to 64MB.

The experiment was conducted as follows: All motes and cameras were set to the
same rate and produced data for 8 hours and we measured the processing delay. This
was repeated 3 times for each rate and the measurements were averaged. Figure 9 shows
the results of the experiment for the different data sizes produced by the motes and the
cameras.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

Pr
oc

es
sin

g
Ti

m
e

in
 (m

s)

Output Interval (ms)

15 bytes
50 bytes

100 bytes
16KB
32KB
75 KB

Fig. 9. GSN node under time-triggered load

High data rates put some stress on the system but the absolute delays are still quite
tolerable. The delays drop sharply if the interval is increased and then converge to a
nearly constant time at a rate of approximately 4 readings/second or less. This result
shows that GSN can tolerate high rates and incurs low overhead for realistic rates as in
practical sensor deployments lower rates are more probable due to energy constraints
of the sensor devices while still being able to deal also with high rates.

6.2 Scalability in the number of queries and clients

In this experiment the goal was to measure GSN’s scalability in the number of clients
and queries. To do so, we used two 1.8 GHz Centrino laptops with 1GB memory as
shown in Figure 8 which each ran 250 lightweight GSN instances. The lightweight GSN
instance only included those components that we needed for the experiment. Each GSN-
light instance used a random query generator to generate queries with varying table
names, varying filtering condition complexity, and varying configuration parameters
such as history size, sampling rate, etc. For the experiments we configured the query
generator to produce random queries with 3 filtering predicates in the where clause
on average, using random history sizes from 1 second up to 30 minutes and uniformly
distributed random sampling rates (seconds) in the interval 4 5 � 576 � 6!8 .

17

Then we configured the motes such that they produce a measurement each second
but would deliver it with a probability 9;:<6 , i.e., a reading would be dropped with
probability 6>=?9A@B5 . Additionally, each mote could produce a burst of C readings at
the highest possible speed depending on the hardware with probability DE@F5 , whereC is a uniformly random integer from the interval 4G6 � 6H5I5�8 . I.e., a burst would occur
with a probability of 9KJLD and would produce randomly 1 up to 100 data items. In
the experiments we used 9NMO5 � P'Q and DRMO5 � S . On the desktops we used MySQL as
the database with the recommended configuration for large memory systems. Figure 10
shows two results for stream element sizes (SES) of 30 Bytes and 32KB.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)
 fo

r e
ac

h
cli

en
t

Number of Clients

SES=30 Bytes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500

Av
g.

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)
 fo

r e
ac

h
cli

en
t

Number of Clients

SES=32KBytes

Fig. 10. Query processing latencies in a GSN node

The spikes in the graphs are bursts as described above. Basically this experiment
measures the performance of the database server under various loads which heavily
depends on the used database. As expected the database server’s performance is directly
related to the number of the clients as with the increasing number of clients more queries
are sent to the database and also the cost of the query compiling increases. Nevertheless,
the query processing time is reasonably low as the graphs show that the average time
to process a query if 500 clients issue queries is less than 50 milliseconds. If required,
a cluster could be used to the improve query processing times which is supported by
most of the existing databases already.

In the next experiment shown in Figure 11 we look at the average processing time
for a client excluding the query processing part. In this experiment we used 9NMO5 � P'Q ,D;MT5 � 5 Q , and C is as above. We can make three interesting observations from Fig-
ure 11:

1. GSN only allocates resources for virtual sensors that are being used. The left side
of the graph shows the situation when the first clients arrive and use virtual sensors.
The system has to instantiate the virtual sensor and activates the necessary resources
for query processing, notification, connection caching, etc. Thus for the first clients
to arrive average processing times are a bit higher. CPU usage is around 34% in
this interval. After a short time (around 30 clients) the initialization phase is over
and the average processing time decreases as the newly arriving clients can already
use the services in place. CPU usage then drops to around 12%.

18

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500
Av

g
Pr

oc
es

sin
g

Ti
m

e
fo

r e
ac

h
cli

en
t (

m
s)

Number of clients

SES = 100 Bytes
SES = 15 KB
SES = 25 KB

Fig. 11. Processing time per client
2. Again the spikes in the graph relate to bursts. Although the processing time in-

creases considerably during the bursts, the system immediately restores its normal
behavior with low processing times when the bursts are over, i.e., it is very respon-
sive and quickly adopts to varying loads.

3. As the number of clients increases, the average processing time for each client de-
creases. This is due to GSN’s data sharing functionalities described in Section 5.2.
As the number of clients increases, also the probability of using common resources
and data items grows.

7 Related work
So far only few architectures to support interconnected sensor networks exist. Sgroi et
al. [5] suggest basic abstractions, a standard set of services, and an API to free applica-
tion developers from the details of the underlying sensor networks. However, the focus
is on systematic definition and classification of abstractions and services, while GSN
takes a more general view and provides not only APIs but a complete query processing
and management infrastructure with a declarative language interface.

Hourglass [6] provides an Internet-based infrastructure for connecting sensor net-
works to applications and offers topic-based discovery and data-processing services.
Similar to GSN it tries to hide internals of sensors from the user but focuses on main-
taining quality of service of data streams in the presence of disconnections while GSN
is more targeted at flexible configurations, general abstractions, and distributed query
support.

HiFi [7] provides efficient, hierarchical data stream query processing to acquire,
filter, and aggregate data from multiple devices in a static environment while GSN takes
a peer-to-peer perspective assuming a dynamic environment and allowing any node to
be a data source, data sink, or data aggregator.

IrisNet [8] proposes a two-tier architecture consisting of sensing agents (SA) which
collect and pre-process sensor data and organizing agents (OA) which store sensor data
in a hierarchical, distributed XML database. This database is modeled after the design
of the Internet DNS and supports XPath queries. In contrast to that, GSN follows a
symmetric peer-to-peer approach as already mentioned and supports relational queries
using SQL.

Rooney et al. [9] propose so-called EdgeServers to integrate sensor networks into
enterprise networks. EdgeServers filter and aggregate raw sensor data (using application

19

specific code) to reduce the amount of data forwarded to application servers. The system
uses publish/subscribe style communication and also includes specialized protocols for
the integration of sensor networks. While GSN provides a general-purpose infrastruc-
ture for sensor network deployment and distributed query processing, the EdgeServer
system targets enterprise networks with application-based customization to reduce sen-
sor data traffic in closed environments.

Besides these architectures, a large number of systems for query processing in sen-
sor networks exist. Aurora [1] (Brandeis University, Braun University, MIT), STREAM [2]
(Stanford), TelegraphCQ [4] (UC Berkeley), and Cougar [3] (Cornell) have already
been discussed and related to GSN in Section 3.

In the Medusa distributed stream-processing system [10], Aurora is being used as
the processing engine on each of the participating nodes. Medusa takes Aurora queries
and distributes them across multiple nodes and particularly focuses on load manage-
ment using economic principles and high availability issues. The Borealis stream pro-
cessing engine [11] is based on the work in Medusa and Aurora and supports dynamic
query modification, dynamic revision of query results, and flexible optimization. These
systems focus on (distributed) query processing only, which is only one specific com-
ponent of GSN, and focus on sensor heavy and server heavy application domains.

Additionally, several systems providing publish/subscribe-style query processing
comparable to GSN exist, for example, [12].

8 Conclusions

The full potential of sensor networks will be unleashed as soon as they can be deployed
and integrated easily. At the moment these are cumbersome tasks due to the many het-
erogeneous hardware and software platforms in the sensor network domain. To alleviate
the problem and enable fast and flexible deployment and interconnection of sensor net-
works we have presented our Global Sensor Networks (GSN) middleware. GSN hides
arbitrary stream data sources behind its virtual sensor abstraction and provides sim-
ple and uniform access to the host of heterogeneous technologies available, through
powerful declarative specification and query tools which support zero-programming in-
tegration of sensor networks and on-the-fly configuration and adaptation of the running
system. GSN’s architecture is highly modular in order to be deployable on various hard-
ware platforms. The experimental evaluations of GSN demonstrate that the implementa-
tion is highly efficient, offers good performance even under high loads and scales grace-
fully in the number of nodes, queries and query complexity. GSN is implemented in Java
and C/C++ and is available from SourceForge at http://globalsn.sourcefourge.net/.

References

1. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y.,
Zdonik, S.B.: Scalable Distributed Stream Processing. In: CIDR. (2003)

2. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava,
U., Widom., J.: STREAM: The Stanford Data Stream Management System. In: Data-Stream
Management: Processing High-Speed Data Streams. Springer (2006)

3. Yao, Y., Gehrke, J.: Query Processing in Sensor Networks. In: CIDR. (2003)

20

4. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In: CIDR. (2003)

5. Sgroi, M., Wolisz, A., Sangiovanni-Vincentelli, A., Rabaey, J.M.: A service-based universal
application interface for ad hoc wireless sensor and actuator networks. In: Ambient Intelli-
gence. Springer Verlag (2005)

6. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.: Hour-
glass: An Infrastructure for Connecting Sensor Networks and Applications. Technical
Report TR-21-04, Harvard University, EECS (2004) http://www.eecs.harvard.edu/ U syrah/
hourglass/papers/tr2104.pdf.

7. Franklin, M., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O.,
Edakkunni, A., Hong, W.: Design Considerations for High Fan-in Systems: The HiFi Ap-
proach. In: CIDR. (2005)

8. Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: An Architecture for a World-
Wide Sensor Web. IEEE Pervasive Computing 2(4) (2003)

9. Rooney, S., Bauer, D., Scotton, P.: Techniques for Integrating Sensors into the Enterprise
Network. IEEE eTransactions on Network and Service Management 2(1) (2006)

10. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Balakrishnan,
H.: The Aurora and Medusa Projects. Bulletin of the Technical Committe on Data Engineer-
ing, IEEE Computer Society (2003)

11. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The Design
of the Borealis Stream Processing Engine. In: CIDR. (2005)

12. Gray, A.J.G., Nutt, W.: A Data Stream Publish/Subscribe Architecture with Self-adapting
Queries. In: International Conference on Cooperative Information Systems (CoopIS). (2005)

21

