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Abstract

The purpose of this thesis is to characterize internal strains in polymeric materials due to con-
solidation. In view of this, optical Fiber Bragg Grating sensors are an excellent non-destructive
tool for internal strain characterization and damage detection in composite materials and
structures. Fiber Bragg Gratings (FBG), have become increasingly used in engineering ap-
plications because of their inherent advantages with respect to traditional sensors. They can
provide an important tool in experimental mechanics to perform key experiments that are
difficult or impossible with other standard techniques. In this respect, they are ideally suited
as strain measuring devices in composites, where they can be embedded non-invasively during
fabrication. In view of this, the main goal of this thesis is the development of an experimental
methodology to characterize the residual stresses that are generally present in many mate-
rials and is a complex problem to solve in micro-mechanics. The work is presented in three
interrelated parts.

Long-gauge-FBGs (Bragg grating of w 24 mm) are introduced in cylindrical specimens of
epoxy. In this configuration the fiber is simultaneously a reinforcement and a sensor in a sin-
gle fiber composite. Because the epoxy matrix shrinks during the polymerization process, the
optical sensor undergoes substantial non-uniform strain along the fiber. The response of the
FBG to a non-uniform strain distribution is investigated by using an Optical Low-Coherence
Reflectometry (OLCR) based technique which allows a direct reconstruction of the optical
period along the grating without any a priori assumption about the strain field. A comparison
with the most common reconstruction inverse technique T-Matrix is also proposed, showing
that it generally introduces greater errors without ensuring the uniqueness of the solution.
The OLCR permits in fact the direct measurement of the axial evolution of the residual strain
along the core of the reinforcing fiber, thus providing important information on the internal
state of stress of the specimen at a given stage of its preparation and, later on, during its
service life. In addition, the measured strain distribution evolves along the fiber direction
following a fourth-order function, which clearly presents a plateau over a 20 mm range at
the center of the specimen. In particular, the maximum strain level reached after the matrix
solidification is −2000 µε which increases up to −6000 µε at the end of the post-curing process
of the resin. This value is consistent with the volume reduction of the free resin provided by
the producer and equal to 2 %. This strain corresponds to -450 MPa axial compressive stress
on the embedded reinforcing fiber.
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The implementation of FBG sensors to study the changes in the stress field when a crack is
present in the sample is addressed next. Bragg wavelength distributions have been measured
as a function of the depth of machined circular cracks in the radial direction of the cylinder.
Three different crack depths (namely 7.5 mm, 11 mm and 12 mm) have been machined in
the central section of the specimen. First, these measurements give an indication about the
zone of influence of the reinforcing fiber on the residual stresses and, secondly, they permit
the characterization of the effect of a mechanically induced crack on the initial residual stress
state. In particular, only the stress relaxation due to the introduction of the deepest transver-
sal crack significantly affects the FBG response with a related wavelength variation of 3 nm.
These data are used as input to deduce the radial evolution of the stress field by adapting and
improving the Crack Compliance (C.C.M) inverse Method to retrieve the stress field within a
composite starting from a measurement of strain. A rigorous analytical approach to predict
the residual stress field is described and verified numerically and experimentally. A very good
agreement is found between experimental and numerical values, thus proving the reliability
of the experimental approach.

As last topic in this work, the response of a long FBG to the transverse crack propagation is
monitored experimentally by using the OLCR and modeled numerically. Firstly, a Compact-
Tension specimen submitted to a cyclic fatigue test is chosen with the FBG glued on its
back-face and normal to the crack direction. A simple analytical model predict the FBG
response as the crack advances. Secondly, long- FBG is embedded in a Compact-Tension
specimen of the same dimensions. In particular when the natural crack overpasses the fiber,
the grating can be used to measure the bridging forces between fracture surfaces and/or to
measure the relative opening of the crack. Reconstruction of the FBG signal with T-matrix
indicate problems associated to stress distributions due to highly non-uniform strain field. In
this way, the FBG becomes the excellent candidate to study a number of interesting problems
in the field of the fracture mechanics applications.

Keywords: Residual stresses, FBG, OLCR Technique, Crack Compliance Method, damage
detection



Version abrégée

Le but de cette thèse est la charactérisation des contraintes internes dans les matériaux com-
posites induites pendant le durcissement. Les fibres optiques intégrant des réseaux de Bragg
sont des excellents outils non-destructifs pour la caractérisation des contraintes internes et la
détection d’ endommagements dans les matériaux composites ou les structures. Les réseaux de
Bragg (FBG), sont devenus de plus en plus utilisés dans des applications de haute technologie
en raison de leurs avantages intrinsèques par rapport aux senseurs traditionnels. Ils peuvent
fournir un support important dans le domaine de la mécanique expérimentale pour réaliser
des expériences qui sont difficiles, voire impossibles, à mettre en œvre avec d’autres techniques
standards. A ce sujet, ils conviennent particulièrement comme dispositifs de mesure dans le
cas de contraintes dans les matériaux composites, où ils peuvent être intégres de façon non-
intrusive pendant le processus de fabrication. Pour cette raison, l’un des buts principaux de
cette thèse est le développement d’un procédé expérimental fiable, afin de caractériser les con-
traintes résiduelles qui sont généralement présentes dans beaucoup de problèmes complexes
de la micromécanique. Le travail est présenté en trois parties principales.

Des longs FBGs (réseaux de 24 mm de longueur) sont introduits dans des spécimens cylin-
driques d’époxyde. Dans cette configuration la fibre est simultanemment renfort et senseur
dans un composite dit Single Fiber. Puisque la matrice époxyde se rétrécit pendant le procédé
de polymérisation, le senseur optique subit une substantielle compression non-uniforme le long
de la fibre. La réponse du FBG à une distribution non-uniforme de contrainte est étudiée en
utilisant une technique basée sur la réflectométrie optique à basse coherence (OLCR) qui per-
met une reconstruction directe de la période optique le long du réseau sans aucune hypothèse
à priori sur le champ de déformation. Une comparaison avec la technique de reconstruction
T-Matrix est aussi proposée. On montre qu’elle introduit des erreurs plus grands sans assurer
l’unicité de la solution. Cela permet une mesure directe de la distribution de déformation tout
le long du réseau, et donc fournit des informations très importantes sur l’état des contraintes
internes du spécimen à chaque étape de sa préparation et, plus tard, pendant toute sa durée
de vie. D’ailleurs la distribution de déformation évolue selon une fonction du quatrième ordre
qui présent un plateau de 20 mm d’amplitude au centre du spécimen. En particulier, après
durcissement, la valeur de déformation est -2000 µε qui augmente jusqu’à -6000 µε à la fin
de la post-cuisson. La valeur mésurée correspond à la variation volumique de la résine furnie
par le producteur qui est égale à 2 %. Cette valeur correspond à des contraintes compressives
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de -450 MPa.

L’utilisation des senseurs de Bragg pour étudier les modifications du champ de contrainte
lorsque des endommagements sont présents dans l’échantillon est ensuite présenté. Des distri-
butions de longueur d’onde de Bragg ont été mesurées pour différentes profondeurs de fissures
circulaires usinées radialement dans le cylindre. Trois différentes longueurs de fissure (7.5 mm,
11 mm and 12 mm) ont été introduites dans la section centrale du spécimen. Par rapport à
l’état de contrainte initial, ces mesures donnent premièrement une indication au sujet de la
zone d’influence de la fibre de renfort sur les contraintes résiduelles et, deuxièmement, elles
permettent la caractérisation de l’effet d’une fissure introduite mécaniquement. En particulier
les mesures indiquent que seulement la fissure la plus profonde influence considérablement la
distribution de contraintes (3 nm de variation dans la longueur d’onde de Bragg). Par ailleurs
ces mesures sont employées comme données de base dans la détermination de l’évolution
radiale du champ de contrainte. Pour cela, on a adapté et amélioré la méthode inverse de
la compliance (C.C.M), initiallement utilisée pour retrouver le champ de contrainte dans un
matériau composite à partir d’une mesure ponctuelle de déformation. Une approche analy-
tique rigoureuse pour prédir le champ de contraintes résiduelles est exposée et ensuite vérifiée
numériquement et expérimentellement.

Comme dernière expérience de travail, des réseaux de Bragg ont été utilisés pour détécter et
prédir la longueur d’une fissure réelle qui se propage dans un spécimen. Un spécimen du type
Compact-Tension soumis à un essai cyclique de fatigue est choisi dans ce cas avec le FBG
collé sur la face extérieure perpendiculaire à la direction de propagation de la fissure. Un
model analytique simple est utilisé pour évaluer la longuer de la fissure. Dans un deuxième
cas d’étude, on utilise un réseau de Bragg à la fois comme renfort et comme senseur, après
l’avoir incorporé dans un spécimen du type Compact Tension avec les mêmes dimensions et
préfissuré. En particulier, lorsque la fissure dépasse la position de la fibre, le senseur peut
être utilisé pour mesurer les forces pontantes entre les lèvres de la fissure. La reconstruction
du signal du réseau avec T-Matrix montre des problèmes quand on est en presence de hauts
gradients de déformation. A travers ces expériences, les FBGs montrent d’être d’excellents
candidats pour l’étude de problèmes de grand intérêt dans le domaine de la mécanique de la
rupture.

Mots clés: Contraintes résiduelles, FBG, technique OLCR, méthode de la compliance, détéc-
tion d’endommagement



Estratto

Lo scopo di questo lavoro di tesi é la caratterizzazione delle deformazioni interne in materiali a
matrice polimerica a seguito del processo di polimerizzazione. A tal proposito, le fibre ottiche
contenenti senori di Bragg sono uno strumento eccellente e non distruttivo per la caratter-
izzazione delle deformazioni interne e la detezione di danneggiamento nel caso dei materiali
compositi e delle strutture. I sensori ottici di Bragg (FBG) sono sempre piú usati in appli-
cazioni ingegneristiche grazie ai loro intrinseci vantaggi rispetto ad altri sensori ritenuti oggi
piú tradizionali. Gli FBGs sono infatti in grado di fornire un supporto importante nel caso
della meccanica sperimentale, dove possono essere usati in esperimenti chiave che sono difficili
o impossibili da realizzare con altre tecniche. In quest’ottica, essi sono particolarmente adatti
per misurare le deformazioni nei materiali compositi, dove possono essere inglobati in maniera
relativamente non invasiva durante il processo di fabbricazione. Tenuto conto di queste pre-
messe, il risultato principale di questa tesi é lo sviluppo di una metodologia sperimentale per
caratterizzare gli stress residui presenti in molti materiali e che rimane ancora un problema
da risolvere nel caso della micromeccanica. Il seguente lavoro é sviluppato in tre parti inter-
connesse tra loro.

Reticoli di Bragg cosidetti lunghi (w 24 mm) sono introdotti in provette cilindriche di ma-
teriale epossidico. In questa configurazione la fibra é simultaneamente rinforzo e sensore
in un composito detto a fibra singola. Poiche l’epossidico si contrae durante il processo di
polimerizzazione, il sensore ottico subisce una sostanziale deformazione non uniforme lungo
la fibra. La risposta del reticolo a tale distribuzione non uniforme di deformazione é investi-
gata usando una tecnica basata sull’interferometria ottica a bassa coerenza (OLCR) la quale
permette una ricostruzione diretta del periodo ottico lungo il reticolo senza alcuna assunzione
a priori riguardante il campo di deformazione. Un confronto con la piú comune tecnica di
ricostruzione chiamata T-Matrix é anche proposta, mostrando che quest’ultima generalmente
introduce un errore maggiore senza per altro garantire l’unicitá della soluzione trovata. La
tecnica OLCR permette infatti la misura diretta dell’evoluzione assiale della deformazione
residua lungo il cuore della fibra di rinforzo, fornendo in questo modo una informazione sulla
stato di stress interno della provetta ad un dato momento della sua preparazione e, in se-
guito, durante il suo utilizzo. Inoltre, la distribuzione di deformazione misurata evolve lungo
la direzione della fibra seguendo una funzione del quarto ordine, che presenta chiaramente un
plateau su una regione di 20 mm al centro della provetta. In particolare, il massimo valore
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di deformazione raggiunto dopo la solidificazione della matrice é -2000 µε che aumenta fino
a -6000 µε alla fine del processo di post-trattamento termico. Tale valore é in accordo con
la riduzione volumetrica della sola matrice epossidica fornita direttamente dal produttore ed
uguale a 2 %. Questa deformazione corrisonde a -450 MPa di stress compressivi sulla fibra di
rinforzo.

L’implementazione di sensori di Bragg per studiare i cambiamenti nel campo di stress quando
una frattura é presente nella provetta é l’argomento affrontato in seguito. Distribuzioni di
lunghezze d’onda di Bragg sono state misurate in funzione della profonditá di fessure circo-
lari intagliate meccanicamente in direzione radiale al cilindro. Tre differenti fessure (7.5 mm,
11mm e 12 mm) sono state realizzate al centro del cilindro. Inizialmente, tali misure hanno
dato una indicazione per quanto riguarda l’influenza della fibra di rinforzo sul campo residuo di
stress e, successivamente, hanno permesso di caratterizzare gli effetti dovuti all’introduzione
di una fessura artificiale sullo stato iniziale di stress. In particolare, solo il rilassamento
dovuto all’introduzione di una profonda fessura transversale influenza in maniera significativa
la risposta del reticolo di Bragg con una corrispondente variazione di lunghezza d’onda di 3
nm. Questi dati sono usati come input per dedurre l’evoluzione radiale del campo di stress
adattando e migliorando il metodo inverso della Compliance (C.C.M.) per risalire al campo
di stress all’interno di un composito partendo dalla misura di deformazione. Un approccio
analitico rigoroso per predirre il campo di stress residuo é altreśı descritto e poi verificato per
via numerica e sperimentale. Un accordo molto buono tra valori numerici e sperimentali é
stato trovato, garantendo cośı l’affidabilitá dell’approccio sperimentale proposto.

Come ultimo argomento affrontato in questo lavoro, si é monitorata sperimentalmente at-
traverso la tecnica OLCR e in seguito modellata numericamente, la risposta di un reticolo
di Bragg durante la propagazione di una frattura che si propaga trasversalmente al reticolo
stesso. Per prima cosa, una provetta di tipo Compact Tension sottoposta a un ciclo di fatica
é stata scelta, con il reticolo di Bragg incollato sulla faccia esterna trasversale alla direzione
di propagazione della fessura. In seguito, un FBG lungo, é stato inserito in una provetta
Compact Tension delle stesse dimensioni. In particolare, quando la fessura oltrepassa la fibra,
il sensore puó essere usato per misurare le forze pontanti tra le superfici della frattura e/o
l’apertura relativa tra le faccia della fessura. La riconstruzione del segnale riflesso attraverso
la tecnica T-Matrix ha evidenziato alcuni problemi associati a distribuzioni di stress dovuti a
campi di deformazione altamente non uniformi. In questo modo, i sensori di Bragg possono
essere considerati un eccellente candidato per studiare un numero interessante di problemi nel
campo delle applicazioni relative alla meccanica della frattura.

Parole chiave: Stress residui, FBG, tecnica OLCR, metodo della Compliance, detezione di
danneggiamento



Acknowledgements

First of all, I would like to thank Prof. John Botsis for being more than a thesis supervisor
during these years at EPFL with his human qualities and kindness. He gave me unique oppor-
tunities to study and learn new branches of applied mechanics and numerical analysis, leading
enthusiastically my research activity and always providing new ideas, suggestions and insights.
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“In motu igitur sanguinis explicando easdem offendimus insuperabiles difficultates, quae nos
impediunt omnia plane opera Creatoris accuratius prescrutari; ubi perpetuo multo magis sum-
man sapientiam cum omnipotentia coniunctam admirari ac venerari debemus, cum ne sumum
quidem ingenium humanum vel levissimae vibrillae veram structuram percipere atque explicare
valeat.”
Leonhard Euler (1707-1783).

“Mathematics seems to endow one with something like a new sense.”
Charles Darwin (1809-1882).

“È nelle difficoltà che si prova la fedeltà e la costanza
–Omnia possum in Eo qui me confortat (St.Paul, Philipp. 4,13)–.”
Francesca Cabrini (1850-1917).

“Ci sono solo due cose infinite: l’universo e la stupiditá dell’uomo.
Il fatto é che della prima non sono del tutto certo.”
Albert Einstein (1879-1955).
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Chapter 1

Introduction

1.1 Composite materials: a first approach

Most of the products we see every day are made of monolithic materials. That means that
the individual components consist either of a single material (an unreinforced plastic), or of
a combination of materials that are assembled in such a way that the individual components
are indistinguishable (e.g. a metal alloy).
Composites, on the other hand, consist of two or more materials combined in such a way that
the individual elements are easily distinguishable. Infact, while in the more familiar world
of metals the mixing of different materials typically forms bonds at the atomic level (alloys),
composites typically form molecular bonds in which the original components retain their iden-
tity and mechanical properties. The properties of that new structure are then dependent on
the properties of the constituent materials as well as the properties of their interface.
The individual materials that make up composites are called constituents. Most composites
have two constituents: a binder or matrix and a reinforcement. The reinforcement is usually
much stronger and stiffer than the matrix, and gives to the composite its good properties.
The matrix holds the reinforcements in an orderly pattern. Because the reinforcements are
usually discontinuous, the matrix also helps to transfer load among the reinforcements. Re-
inforcements basically come in three forms: particulate, discontinuous fibers and continuous
fibers. A particle has roughly equal dimensions in all directions, though it doesn’t have to be
spherical. Gravel, microballoons and resin powder are examples of particulate reinforcements.
Reinforcements become fibers when one dimension is long compared to others. Discontinuous
reinforcements (chopped fibers, milled fibers, or whiskers) vary in length from a few millime-
ters to a few centimeters. Most fibers are only a few microns in diameter, so it doesn’t take
much length to make the transition from particle to fiber. With either particles or short fibers,
the matrix must transfer the load at very short intervals. Thus, the composite properties can-
not come close to the reinforcement properties. With continous fibers, however, there are few
if any breaks in the reinforcements. Composite properties are much higher, and continuous
fibers are therefore used in most high performance components. A common example of a
composite is concrete. In fact, it consists of a binder (cement) and a reinforcement (gravel).

1
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Adding another reinforcement (rebar) transforms concrete into a three-phase composite.
Matrix materials are usually some type of plastic and these composites are often called rein-
forced plastics. There are other types of matrices, such as metal or ceramic, but plastics are
by far the most common. There are also many types of plastics, but the two most common
plastic matrices are epoxy resins and polyester resins.
Even if the use of composites is increasing in all products (from sporting goods to automo-
tives and aircrafts to satellities), today, when we speak about composites materials, or just
composites, we are referring to the highly engineered combinations of polymer resins and
reinforcing materials such as glass or carbon fibers. More specifically, a fiberglass composite
structure is a combination of glass fibers of various lengths and resins such as vinyl ester or
polyester. The term FRP is often used, meaning Fiber Reinforced Plastic. FRP is a very
general term for many different combinations of reinforcement materials and bonding resins.
The term composites has thus become extremely useful to describe many materials with many
different properties targeted at an even larger number of applications. To show how compos-
ites have changed our world, look no further than under the hood of a modern car or observe
a sport motorbike (Fig.1.1) and realize that most of what you can see are components made
of composite materials.

Figure 1.1: Example of carbon-fiber reinforced composite pieces used in different applications

Actually, due to their high strength and stiffness coupled with a low density, composites
materials offer designers an increasing number of possibilities in terms of material and system
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solutions. Moreover, they present other benefits such as high processibility, thermal and
acoustic insulating properties and, depending on the constituents, resistance to environmental
factors (corrosion, chemical wear, thermal effect). Finally, composites cost trends are highly
favorable, especially when the total cost of fabrication is considered.
These are some of the reasons that justify why each year composites find new ways into
hundreds of new applications providing highly reliable products to be used in extremely
demanding conditions which no single material can stand by itself.

1.2 Objectives of the present work

The lifetime of a structural component depends on the interaction between its internal defects
and the surrounding stresses that result both from the external loading and the composite
processing. In the latter case, they remain present when the applied forces are removed and
are for this reason named residual stresses. Especially for FRP material, just the fabrication
process can induce an appreciable amount of residual stresses, for instance as a consequence
of the rate of solidification or due to the differences in coefficient of expansion/contraction
of the constituents. Although residual stresses are quite difficult to predict and to measure
reliably, their magnitude and distribution are generally critical for the performance of compos-
ites because they significantly influence the quality and the behaviour of the target structural
material. This explains why residual stresses have to be considered while designing a compo-
nent.
In this frame, the scope of this thesis research is principally to develop a reliable proce-
dure involving a long Fiber Bragg Grating (FBG) sensors in combination with more other
traditional techniques to retrieve the non-uniform residual strain and stress fields generated
during the fabrication of a composite. In particular, the response of an FBG to a non-uniform
strain distribution is investigated using a technique developed at EPFL based on a Optical
Low-Coherence Reflectometry (OLCR) and combined with a reconstruction algorithm called
layer-peeling. This new approach has the main advantage of providing the direct reconstruc-
tion of the optical period along the grating without any a priori assumption on the form of
the axial strain field applied to the fiber. More details on FBG working principles and on the
OLCR technique will be given in Chapter 3 of this thesis. The same technique will be also
implemented to monitor any possible variations of these residual fields as a consequence of
an applied external load and to detect the presence of damage (e.g. cracks) generated and
propagated within the material.
These tasks involve different steps. First, work is done to better characterize the response
of long fiber Bragg grating to a non-uniform axial strain, particularly in applications where
the sensor is embedded. Secondly, after designing an appropriate experimental setup, FBG
are used in conjunction to a typical technique of the fracture mechanics and called Crack
Compliance Method (C.C.M.) to retrieve the transversal evolution of the strain field. The
advantages and the drawbacks presented by the FBG sensor for this kind of applications are
also considered by comparing it with other type of strain gages commonly used in this domain.
Thirdly, fiber Bragg gratings are employed in cases closer to real structural sensing applica-
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tions. In particular, an example is chosen in relatively novel experimental configuration when
using long FBG: a compact tension specimen reinforced with an optical fiber where a natural
crack is generated and propagated during a fatigue test.
Thus, this study addresses long-FBG related issues in the mechanics of composites at var-
ious level, ranging from sensing response to applicability in both fundamental laboratory
experiment and advanced sensing response analyses.

1.3 Thesis structure

The thesis is divided into nine chapters. After an introduction chapter containing the state-
ment of the objectives, Chapter 2 is dedicated to a wide review of the state of the art on the
different techniques used to measure residual stresses. The experimental methods used in this
work are exposed in Chapter 3: FBG sensors and the OLCR apparatus applied to measure
non-uniform strain and stress distributions. Some results from a preliminary test will also
be presented. An effective, non-distructive experimental method is illustrated, combining an
optical interferometrique technique with embedded sensors to investigate the behaviour of a
composite subjected to a non-uniform residual stress distribution.
In Chapter 4, the materials and the protocol chosen to prepare the specimens are illustrated.
In particular will be justified the choice of the kind of specimen, its geometry and dimensions.
The experimental measurements to retrieve the axial strain and stress field on a Single Fibre
Composite (SFC) specimen are recovered in Chapter 5. A first analysis of how the specimen
dimensions affect the residual axial strain field will also taken into account.
The presentation of the Finite Element (FE) model based on an equivalent thermo-mechanical
approach represents the main part of the Chapter 6. The simulations are performed using
both 2-D (axisymmetric) and complete 3-D configurations, obtaining thus, the verification of
the experimental results and assessing the reliability of the employed optical method.
Chapter 7 reveals some practical advantages which come from the use of a embedded long-
FBG’s as a strain sensors. The new experimental setup proposed to apply the Crack Com-
pliance Method to the cylindrical specimen allows one to greatly simplify that methodology
reducing the experimental errors and the time necessary to perform the experiment itself.
This way, the radial evolution of the residual stress is retrieved in particular for two specimen
of different radii, showing thus the applicability of the technique. A third configuration is
finally analized: the effect of a longitudinal machined crack along the specimen [Fig.1.2] .
In this case a wide use of the FE modelling was necessary to explain the results and to model
the considered phenomena.
Because the characterization of residual stresses is not new, in the available literature it
is easy to find different approaches to deal with this subject. Chapter 8 highlights three
analytical models considered as the most representative in the domain and dealing with similar
problems or aspects treated in this work. A comparison between the analytical predictions,
the experimental and finite element results is presented with the aim of generalizing the
analysis of the residual stress problem, at least in the case of a model composite specimen.
Chapter 9 documents further experiments carried out using FBG sensor to measure internal
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Figure 1.2: Experimental configuration used to retrieve the residual strain and stress field by
FBG sensors: a) an epoxy cylinder with a radially machined deep crack; b) an epoxy cylinder
of the same length but shorter radius; c) an epoxy cylinder with a longitudinally machined
deep crack.

strain in composite: a FBG is simply glued on the back side or embedded in a compact
tension specimen and subjected to different load conditions. The measurement results are
used to validate a proposed new analytical model, based on the beam theory which can be
used to predict the length of a fracture produced within the specimen when loaded in a mode
I configuration.
Finally, a summary and suggestions for further work are given in the conclusions. The overall
structure of the thesis is illustrated in Fig.1.3 with the connections between the related topics
additionally highlighted.
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Chapter 2

State of the art

2.1 Residual stresses: an overview

Residual stresses are self-equilibrated stresses supported by a body and that remain embedded
inside the component even after the forces causing the stresses are removed. They superim-
pose on applied stresses and are generally more difficult to predict. A common manifestation
of residual stresses is for example the warping of laminate composites without the application
of any external load. Moreover, they can also aggravate the failure of a component, and often
may cause fatigue failure, quench cracking and stress corrosion cracking.
The subject has been investigated in a number of numerical/experimental works in the past.
In general residual stresses can be classified by the scale over which they self-equilibrate, or
according to the method by which they are measured. Macroscopic residual stresses occur
over large distances (several millimetres) while microscopic residual stresses operate over the
grain scale of the material Fig.2.1. Barnes, for instance, discussed the different kinds of resid-
ual stresses present in continuous carbon-fiber-reinforced thermoplastic composites [7]. In his
paper, he has indicated three levels of stresses to be distinguished in laminated structures:
the Òmicro-stressesÓ existing between individual fibers within a ply, the Òmacro-stressesÓ
which form on the ply-to-ply scale in multiaxial laminates, and at a much larger scale a third
level of stresses due to differential thermal histories of parts of a laminate during the cooling
stage. In order to optimize material quality and minimize component weight, a better under-
standing of the role of residual stresses is then required.
Residual stresses originate from a variety of sources: macroscopic stresses can arise from heat
treatment, machining, secondary processing and assembly. Micro-structural stresses result
typically from the coefficient of thermal expansion mismatch between constituents, differ-
ences in yield stress or stiffness or phase transformations (e.g. cure shrinkage). Both types
may be present at any one time in a material or component [82].
The numerical study of Stone and co-workers [76] is dedicated to the residual stresses associ-
ated with post-cure shrinkage of adjacent layers in composite tubes. Specifically, the authors
developed a model that takes into consideration the material shrinkage occurring after gela-
tion. Other investigators have addressed the problem of local thermal stresses occurring in

7
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Figure 2.1: The different types of residual stresses. σI refers to macro residual stresses, σII

are micro residual stresses that vary on the scale of an individual grain and σIII are micro
residual stresses that exist within a grain, essentially generated by presence of dislocations or
others crystalline defects.
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composite materials by use of concentric circular cylinders models. Modelling of (thermal)
residual stresses has thus been achieved for unidirectional fiber-reinforced composites of in-
finite length and two-dimensional solutions (generalized plane strain) can be found in the
papers of Mikata and Taya [56] and Anifantis [5]. In particular the work of Mikata and Taya
is compared to the pioneering approach of Eshelby [25, 26] who developed a technique to treat
the residual stresses caused by a difference in the thermal contraction of the constituents of
a composite.
For a finite specimen length, closed-form solutions based on a more general three-dimensional
approach have recently been derived by Folias [33] and Quek [66]. For the single fiber push-out
problem, Chai and Mai [17] proposed a theoretical model of stress transfer across fiber/matrix
interface in consideration of interface roughness and thermal residual stresses. It has also
been reported that residual stresses significantly affect interfacial debonding behaviour and
the stress transfer between fiber and matrix.
All the analytical models formulated for the estimation of residual stresses are usually devel-
oped based on significant assumptions about the geometry and the constitutive laws of the
components (i.e linear elastic behaviour). Although such strong hypothesis limit the applica-
bility of these models (residual stress may often exceed the elastic limit of the constituents)
they certainly constitute an efficient and easy-to-use guide for preliminary study.
A much more powerful technique of investigating residual stresses is provided by finite element
modelling, which has been massively used with increasing calculating power of computers [49].
Numerical models can provide significant results only if pertinent experimental strategies are
followed in parallel and, at the same time, experiments need the guideline provided by nu-
merics. This implies, among other things, that one must improve measurement techniques in
order to obtain a greater confidence in the results provided by existing experimental methods.

2.2 Experimental methods used to measure residual stresses

Nowadays, a large number of destructive and non-destructive residual stress measurement
techniques are available. Certain methods are convenient for overall stress measurements
whereas others are restricted to specific regions of the specimen. In particular, layer-removal,
hole drilling and crack compliance techniques [83, 60, 29] are well established for measure-
ment of residual stresses in metallic, polymeric materials. The basis of these methods is the
monitoring of changes in component distortion, either during the generation of the resid-
ual stresses, or afterwards, by deliberately removing material to allow the stresses to relax.
Moreover, the experimental measurements are typically performed over a small area of the
tested specimen. In the hole drilling method for instance [31], a strain-gage rosette is used
to measure surface strains that result when sub-surface stress is released due to the drilling
of a small hole. These strains, are then related to the state of stress in the hole region prior
to the stress relaxation. The method is cheap, widely used, and it has been easily applied
to polymeric samples [31, 51]. Nevertheless, although it is possible to deduce the variation
in stress with depth by incrementally deepening the hole, it is difficult to obtain reliable
measurements much beyond a depth equal to the diameter. Moreover, if the residual stresses
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exceed about the 50% of the yield stress, then errors can arrive due to the localized yielding
[63, 64]. Finally, while the method has been used to asses the levels of stress in coatings
[31, 19], it is not really practical for thin (< 100 µm), or for brittle coatings.
A similar technique, the crack compliance method, involves cutting a small slot to monitor
the relaxation of stress in the vicinity of the crack using a strain gage. By steadily increasing
the depth of the slot it is possible to resolve the stress field normal to the crack as a function
of depth for relatively simple stress distribution. This technique has been successfully applied
especially with metals [28, 62], even if the experimental procedure involved can become com-
plicated. Another interesting method frequently used to measure residual stresses especially
within coatings and layers [83], is the measurement of curvature. The deposition of a layer can
induce stresses which causes substrate to curve. The resulting changes in curvature during
deposition make it possible to calculate the corresponding variation in stress as a function of
the deposit thickness. This approach can present some ambiguity, because the stress distri-
bution associated with a given curvature is not unique.
Alternatively, non-destructive methods (such as diffraction, magnetic, electrical, ultrasonic,
photoelastic, thermo-elastic techniques) can be used if experimental data are required in a
larger area of the specimen. Each method presents its own merits, applicability and restric-
tions. Within the diffraction based methods it is possible to enumerate:

• Electron diffraction

• X-Ray diffraction

• Neutron diffraction

• Hard X-Ray diffraction

but they all present the fundamental drawback of being limited to materials presenting a
crystalline structure. Using diffraction, it is only possible to determine the lattice strain for
a given plane spacing in the direction of the bisector of the incident and diffracted beams.
In order to calculate the strain (or stress) tensor at a sampling gage location at least six
independent measurements of strain in different directions are required [21, 45]. Finally the
equipment needed to perform the experiments is quite expensive and sometimes the errors
generated in the measurement process can be of the same order of magnitude or even greater
than the measured strain itself.
Magnetic methods are based on the monitoring the alteration of the magnetic domain orien-
tation in magnetostrictive materials. The magnetic anisotropy induced by the applied stress
leads to the rotation of an induced magnetic field away from the applied direction [3, 16]. By
following these small rotations, both the principle stress directions and the size of the prin-
ciple stress differences can be measured. Unfortunately, magnetic methods are sensitive to
both stress and the component microstructure, which must therefore be accounted for using
calibration experiments. The problem of the microstructural changes during the experiments
affects the electrical methods too, which happen while measuring variations in the electrical
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conductivity or magnetic permeability in a composite on which are induced by the so called
eddy currents[3, 16].
By the ultrasonic methods, a measure of the stress averaged along the wave path is retrieved
by evaluation of the changes in the ultrasonic speed observed when a material is subjected
to a strain [70]. Ultrasonic wave velocities can depend on microstructural inhomogeneities
[6, 69, 70] and there are difficulties in separating the effects of multiaxial stresses.
When the elastic deformation of a composites generates a small changes in temperature (e.g.
1 mK for MPa steel) then, with an appropriate infrared camera, it is possible to map the
thermal variations undergoes by the material obtaining thus an indication of concomitant
variations in stresses [3]. Piezospectroscopic technique are based on the Raman spectra
measurement[3, 69]. In fact, characteristic Raman or fluorescence luminescence lines shift
linearly with variations in the hydrostatic stresses. The methods are useful because these
spectral shifts can be easily and accurately measured. Furthermore, given the optical trans-
parency of some matrix material such as epoxy [6, 22], it is even possible to obtain subsurface
information. The transparence is also an important characteristic that belongs to materials
showing photoelastic properties. When the light goes through a stressed material there is an
anisotropic change in its speed that gives rise to an interference fringe patterns when such
objects are viewed between crossed polarizers. The stresses applied on the material are de-
duced by a correct interpretation of these fringes.
To complete this short introduction about the techniques that can be used to measure resid-
ual stresses a particular attention has to be done to the interferometric or optical technique,
overall because FBG and the OLCR are part of this category. In a classical interferometer
[3], two beams of coherent light, henceforth referred to as the illumination and and refer-
ence beams, are combined and the resulting wavefront is passed to a detector. In a speckle
pattern interferometery, one or both beams exhibit speckle patterns due to the reflection of
said beam(s) from a diffusely reflecting surface. When these two beams form an image on a
charged coupled device (CCD), an interferogram results. Recording the changes in the phase
angle of the interference signal as a consequence of an applied stress on the surface, allows one
to retrieve the variation in the path length and then the strain. This is the working principle
of the ESPI (electronic speckle interferometery) [71] which has been also used in combina-
tion with the hole drilling method [75] to measure corresponding surface stress relaxation [78].

2.2.1 The use of FBGs to measure residual stresses in composite

Embedded optical fiber Bragg grating (FBG) sensors are well suited for single and multiplexed
strain measurements in composite structures. They have attracted particular attention over
the two last decades in the aerospace industry, manufacturing process monitoring, struc-
tural health monitoring and non-destructive testing. This is essentially due to their ability
to perform direct strain measurement inside host structures at a desired location, provid-
ing valuable information about the local deformation state in complex structures. Moreover,
when the FBG is written in an optical fiber it does not affect its mechanical properties, thus
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allowing it to play at the same time the role of a reinforcement and a relatively non-invasive
sensor.
Initial experiments with FBGÕs were conducted in the 1980Õs as a consequence of the work
of Hill et al.[39] demonstrating the photosensitivity of germanium-doped glass fibers and their
capacity to support permanent gratings. Further studies have shown their advantages over
conventional sensors: they are generally smaller (i.e. a 125µm diameter for a standard tele-
com fiber) and more flexible, lighter, immune to electromagnetic interference, can withstand
corrosive environments and high temperatures. In addition, FBG sensors provide localized
measurements with high sensitivity, reproducibility and linearity of response at selected grat-
ing locations in the host structure. They also show an intrinsic self-referencing capability, are
not susceptible to power fluctuations and can be easily multiplexed in the wavelength domain,
allowing several sensors to be addressed in a single fiber.
The use of FBGÕs for uniform axial strain (tension or compression) and/or temperature sens-
ing have been fully investigated in the past [23, 37] and several practical arrangements have
been reported for the simultaneous measurements of strain and temperature [48]. One tra-
ditionally employs short gage length FBGÕs, fabricated in low-birefringence standard single
mode (SM) fibers. The measurement principle is simply based on the determination of the
shift of the Bragg peak reflected by the grating Fig.2.2a) which gives an indication about the
axial deformation applied to the fiber.

Figure 2.2: Typical reflected spectra of a FBG subjected to a) homogeneous strain; b) non-
uniform strain;

However, in several configurations of interest a three-dimensional state of strain prevails
around a FBG [67]. An important example is the residual strain field arising during the con-
solidation of a multi-layered composite material. When a FBG is subjected to non-negligible
transversal strains, its optical response is generally affected. Thus, transversal strains essen-
tially induce birefringence in the fiber core, which may lead to the separation of the initial
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Bragg peak into two distinct ones along two polarization axes (i.e. the slow and fast eigen-
modes). The relative wavelength difference of the two peaks depends upon the difference
between the transversal strain components. Consequently, FBG sensors appear to be suitable
for monitoring transversal strain differences provided that Bragg peaks are sufficiently sepa-
rated to be distinguished.
While the advantages of embedded FBG over other techniques are very clear, it is important
to underline that, due to its relatively greater dimensions respect to the usual reinforcements
used with the composites, the optical fiber acts mechanically as an elastic inclusion with in-
terfacial conditions that must be addressed. Correct evaluation of strains in the structure
thus requires an adequate modeling of the load transfer between the optical fiber and the
host material. Then, given the complex microstructures of the composite materials, numeri-
cal models are normally used to interpret the experimental results.
When a non-homogeneous strain field is present around the sensing region (e.g. strain gradi-
ents generated by the presence of heterogeneities) the FBGÕs spectral response is particularly
modified (see Chapter 3 for more details). The initial Bragg peak splits into multiple sec-
ondary peaks distributed over a lager spectral range. The grating is said to be chirped and
the FBG’s spectrum becomes more complicated and in general can not be directly interpreted
and related to the strain distribution along the grating length (Fig.2.2b)). This is particularly
evident in long gage length sensors. Existing techniques (e.g. see Measures [53]) can easily
predict spectra modifications corresponding to a given strain distribution. However, the re-
verse problem, which is of interest, i.e. the determination of an arbitrary strain profile from a
measured spectrum, always requires assumptions about the strain profile [61]. The use of the
OLCR measurement and reconstruction technique easily overcomes the problem, providing
the reconstruction of the optical period and the related strain distribution along the grating
without any a priori assumption on the strain profile itself [35]. Distributed strain sensing
with long-gage-length FBG sensors is part of the current research and will be addressed for
relevant mechanical applications.



14 CHAPTER 2. STATE OF THE ART



Chapter 3

Optical methods: FBG and OLCR

technique

3.1 General description

Currently, there are different kinds of optical fibers with different diameters (the most common
are between 125 µm and 400 µm) available on market. They are composed of different
materials (plastic or glass) and designed to work at different wavelengths. In this case only
monomode optical glass fibers commonly used in telecom applications will be taken into
account. In particular, for these applications standard wavelengths are 1300 and 1500 nm but
in this specific case only fibers working at 1300 nm will be taken into account.
The optical fibers are composed of a 9 µm diameter core where the light is guided through
the entire length of the fiber. Around the core there is an optical coating (cladding) whose
function is to assuring the guiding properties of the fiber. Its diameter is in general 125 µm.
In fact, even though these two parts are made of the same glass, the fiber core is doped in
order to have an index of refraction slightly higher respect to the cladding. Finally, to protect
the fiber from surface abrasion and exposure to moisture and then increase its resistence, an
external plastic coating of 250 µm is applied all around the fiber (Fig.3.1). The two most
widespread types of coating are acrylate and polymide, the latter being more high temperature
resistant and thinner than the former.

3.2 FBG working principles

A fiber Bragg grating can be defined as a spatial modulation (or quasi periodic modulation) of
the refractive index created along a desired length of the core of an optical fiber [9, 16](Fig.3.2)
obtained by means of the two-beam interference technique or phase mask method [40]. The
fabrication process is based on the photosensitivity property of the germanium-doped silica
glass fiber core [39]. Co-dopants such as boron can also be added to enhance the photosensi-
tivity phenomenon. Depending on UV laser beam characteristic, exposure time and dopants
used, the most common types of reported gratings are homogeneous, apodized, index and/or

15
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Figure 3.1: Scheme of an optical fiber. Typical dimensions are indicated.

Figure 3.2: Structure of an optical fiber with an embedded FBG. The external plastic coating
surrounding the glass guiding part of the fiber is not indicated here.
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period chirped gratings [24]. Only homogeneous gratings inscribed in low birefringence single
mode (SM) fibers are considered here. For an homogeneous grating, the FBG reflected signal
is comprised of a main, relatively narrow, peak centred at the Bragg wavelength λB0, which
is related to the product of the mean effective refractive index neff and the grating period Λ

through the Bragg condition [53]

λB0 = 2neffΛ (3.2.1)

Note that, for weakly guiding fiber (as those used in these applications) neff ' n0(x, y) ' nco,
where n0(x, y) is the index profile of the unperturbed fiber and nco is the index of the fiber
core [73]. In principle, the transmitted spectrum of a fiber grating is complementary to the
reflected one [53].

Figure 3.3: FBG working principle. The broadband light in(λ) is launched into the fiber
core. r(λ) and t(λ) are the reflected and transmitted signals respectively, around the Bragg
wavelength λB0. Λ is the grating period. In particular, when the grating is stretched, the
reflected Bragg peak simply shifts or presents multiple peaks depending whether the deformation
it undergoes is uniform or not.

However, it is not generally the case because of the transmission losses due to connections (or
those coming from coupling to cladding modes in the case of multi-mode (MM) fibers) [74].
The spectral response of the FBG is influenced by the environmental conditions. In particular,
both strain and thermal variations in the grating region induce changes in the effective index
of the fiber and the grating period, resulting in a modification of the Bragg condition. Thus,
when the grating is subjected to uniform changes in strain and/or temperature all grating
periods experience the same changes resulting in a shift of the Bragg wavelength without
modification of the spectrum shape.
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For a non-uniform variation of applied load or temperature, the resulting Bragg wavelength
becomes a function of the position z along the grating. Assuming constant temperature and
neglecting all birefringence and dispersion effects in the fiber, the three-dimensional load-
induced Bragg wavelength shift can be described by the following equation [72]

λB(z)− λB0(z)
λB0(z)

=
∆λB(z)
λB0(z)

= εz(z)−
n2

eff

2
(p12εz(z) +

1
2
(p11 + p12)(εx(z) + εy(z))) (3.2.2)

where p11, p12 are the Pockels strain-optic constants of the undisturbed fiber and εx(z), εy(z),
εz(z) are the principal strain components within the SM fiber core. The subscript z stands
here for the axial direction. The function λB0 indicates that a non-uniform Bragg wavelength
may exist at the chosen reference state. When the experimental conditions are such that
εx,y(z) = −νf εz, where −νf is the PoissonÕs ratio of the fiber, equation (3.2.2) can be
simplified to

∆λB(z)
λB0(z)

= [1−
n2

eff

2
((1− νf )p12 − νfp11)]εz(z) (3.2.3)

This corresponds to the assumptions of Butter and Hocker describing strain effect on the fiber
[15]. Finally, for axial strain measurements, equation (3.2.3) is often presented in this more
compact form

∆λB(z)
λB0(z)

= (1− pe)εz(z) (3.2.4)

where pe is the effective photo-elastic coefficient which can be easily determined experimentally
(∼= 0.22 in the case of the fiber considered here).

3.3 OLCR Technique

As indicated in equation (3.2.4), the strain distribution along the grating requires the knowl-
edge of the local Bragg wavelengths corresponding to the actual state and the reference state.
According to the coupled mode theory [74, 41, 24], light propagation through a FBG can be
described by a coupling between the forward-propagation fundamental guided mode and its
backward-propagating counterpart. This implies the introduction of a unique complex cou-
pling coefficient q(z) to be determined from pertinent experimental data. The novel optical
low coherence reflectometer (OLCR) apparatus, designed at EPFL, allows one to measure
precisely the FBG complex impulse response h(t) (where t represents the time variable) with
high precision and low noise (generally below -120 dB). Details can be found in [36]. The
incident light is sent into the reflectometer where it is split by a 3-dB coupler into two equal
beams which illuminate the reference and test arms. The latter contains the FBG. In the
reference arm, light is reflected by a mirror which is mounted on a translating stage. By
moving the mirror, one interrogates the FBG on its overall length. Then, the total backward
signal recorded by a dual phase lock-in amplifier included in the detection system (Fig. 3.4)
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that directly extracts the amplitude and phase information of h(t). Once h(t) is measured,
one calculates the spectral response r(λ) of the grating by Fourier transform and q(z) can
be retrieved from r(λ) using the layer-peeling reconstruction algorithm [36, 73]. Finally, the
retrieval of the local Bragg wavelength λB(z) is obtained by the derivative of the phase of the
complex coupling coefficient φ(z) through the following equation

λB(z) = 2neffΛd

(
1 +

Λd

2π

dφ(z)
dz

)2

(3.3.1)

where Λd is the design grating period [34, 36]. A simple schematic of the OLCR setup and
the associated reconstruction process are summarized in Fig.3.4 and Fig.3.5.

Figure 3.4: Simplified scheme of the OLCR-setup.

Figure 3.5: Principle of OLCR-based method to reconstruct the strain distribution from FBG
impulse response measurements.

Some examples of measurements conducted with the OLCR system are illustrated in Fig.3.6
and Fig.3.7. Given in Fig.3.6 are the amplitude (top) and phase (bottom) of the FBG impulse
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response. The curves in light line (bold line) correspond to a non-embedded (embedded) FBG
sensor. In Fig.3.7 the reflection intensity spectra (top) and local Bragg wavelengths (bottom)
are depicted for the FBG configurations considered in Fig.3.6

Figure 3.6: Plots of the amplitude (top) and the phase (bottom) of the impulse response for not
embedded (grey line) and embedded (black line) FBG. The OPLD scale distance corresponds
to the optical path length difference in vacuum between the reference and the test arm

3.4 Preliminary test: residual strain distribution in a block of

epoxy

The proposed OLCR technique is initially used to determine the residual strain field generated
around an optical fiber embedded in an easier to make rectangular 25 × 25 × 40 mm block
of epoxy with the aim of examining and ensuring the reproducibility of the results [20]. The
same geometry was successfully used in the previous work of Bosia et al. [10] to study the
sensitivity of the FBG to transversal loading in PM fibers. The mould especially designed to
prepare the specimens is depicted in Fig.3.8.
The fiber is placed along the longitudinal axis of symmetry (z) and a 24-mm long FBG is
located at the center of the specimen as indicated in Fig.3.9.
Acting as a cylindrical elastic inclusion which is more rigid than the surrounding matrix,
the fiber clearly promotes the development of additional residual stresses in the neighbouring
region. They are mainly caused by the volume shrinkage of the epoxy resin during curing
and post-curing treatment and by the mismatch between the elastic and thermal properties of
the two constituents. In particular, due to the polymerization, the epoxy matrix undergoes a
substantial volume reduction: this effect is shown by the analysis of the FBG reflected spectra
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Figure 3.7: Corresponding reflection intensity spectra (top) and local Bragg wavelength (bot-
tom) for not embedded (grey line) and embedded (black line) FBG

Figure 3.8: View of the mould used to prepare the block specimens in the so called ”horizontal
configuration”.
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Figure 3.9: Scheme of the block specimen (dimensions are in mm). The location of the FBG
is also indicated.

when they are reconstructed for three important steps of the specimen preparation: before
embedding, two hours after curing and two hours after post-curing.
From the previous results, it appears that the specimen sustains an important non-uniform
compressive strain during fabrication, shown by the shape and the position of the resulting
reflected spectra Fig.3.10.

The maximum shift of the Bragg wavelength peak provides an idea of the maximum value of
deformation applied to the grating whereas the distribution of the reflected wavelengths gives
information on the non-uniformity of the strain profile applied along its length. The OLCR
measurements allow to express the local Bragg wavelength distribution λB(z), as a function
of z along the grating length at different stages of the manufacturing process Fig.3.11. When
the new λB(z) is known, the corresponding strains are calculated by the relation 3.2.4 and
represented in Fig.3.12 for a typical case.

It is important to notice the form of the strain profile, with a maximum compressive strain of
−2000 µε and −6000 µε at the centre, after the curing and the post-curing process respectively.
It is also important to underline that the values of strain can be calculated with a maximum
resolution of 30 µε due to the physical limit of the OLCR apparatus (the source bandwith)
which enables to measure the Bragg wavelength with a resolution higher than 25 nm. At the
moment, another important limit of this kind of system is the possibility to do measurements
in dynamic configuration. This is due to the high sensibility of the interference-based system
to the influence of external actions, which can produce a noise which make impossible to come
out the measurement process itself. Nevertheless, despite these drawbacks, in literature there
is no notice of better instruments (in terms of resolution) to perform distributed measurements
at least for static or quasi-static experimental configurations.
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Figure 3.10: Typical FBG reflected spectra during the three stages of the specimens fabrication.
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Figure 3.11: Local Bragg wavelength distributions λB(z) calculated for three processing time.
The corresponding spectra are shown in Fig.3.10.
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Figure 3.12: Axial strain distribution measured before and after post-curing for the block
specimen realized in the horizontal configuration.

3.5 The transfer matrix (T-Matrix) approach to compute the

FBG spectra

The main advantage presented by the OLCR technique to characterize FBG’s is the possi-
bility to directly retrieve the local Bragg wavelength distribution by using the layer peeling
reconstruction algorithm and, consequently, the exact spectrum of a uniform and non-uniform
deformed grating.
Nevertheless, there are a variety of methods to compute the reflection and the transmission
spectra of non-uniform gratings [24, 34, 73] but their performances depend on the knowledge
of the grating parameters and on the exact deformation (i.e. the wavelength distribution due
to an applied load) along the sensor length.
One of the preferred technique is called the transfer matrix method (T-Matrix) where, based
on an inverse scattering approach, one first divides the grating into smaller sections each one
treated as simple uniform grating, yielding the overall FBG spectrum by matrix multiplica-
tion.
For a uniform grating, the coupling coefficient q(z) is considered constant over a limited range
0 ≤ z ≤ L where L is the grating length. The coupled-mode equations can be solved an-
alytically where, in particular, the amplitude and the power reflection coefficients r(σ̂) and
R(σ̂) = |r(σ̂)|2 can be written as follows [24, 34, 74, 73]

r(σ̂) =
−|q|sinh(γL)

σ̂sinh(γL) + iγcosh(γL)
(3.5.1)

R(σ̂) =
sinh2(γL)

cosh2(γL)−
(

σ̂
|q|

)2 (3.5.2)
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where, for a single-mode reflection grating, γ =
√
|q|2 − σ̂2, σ̂ = δ + σ , δ = β − π

Λd
, σ =

2π
λ dneff , β = 2πneff

λ and |q| = π
ληdneff with η defined as the fringe visibility coefficient.

In particular the plot of R(σ̂) corresponds to the FBG spectrum (in reflection), where the
maximum value of reflectivity RMAX is given by

RMAX = tanh2(|q|L) (3.5.3)

To correctly apply the T-Matrix method, the grating has to be divided in a sufficiently large
number of sections N so that each section can be treated as approximately uniform and
characterized by a coupling coefficient qj and thickness ∆j (see Fig.3.13). The knowledge of

Figure 3.13: FBG slicing in sub-sections for the T-Matrix method [34]

the fields uj and vj at the entrance of section j allows to find the fields uj+1 vj+1 at the layer
output. Here uj and vj represent the forward and backward propagating field envelopes in
the layer of thickness ∆j mutually coupled by the coupled mode equations.
The interaction between two layers can be expressed in the form of a transfer matrix relation

Tj =

[
cosh(γj∆j)− i σ̂

γj
sinh(γj∆j)

q∗j
γj

sinh(γj∆j)
qj

γj
sinh(γj∆j) cosh(γj∆j + i σ̂

γj
sinh(γj∆j)

]
(3.5.4)

The fields u1, v1 and uN+1, vN+1 at the grating entrance and output respectively, are then
related to each other by[

uN+1

vN+1

]
= TN · ... · Tj · ... · T1

[
u1

v1

]
= T

[
u1

v1

]
=

[
T11 T12

T21 T22

][
u1

v1

]
(3.5.5)

Since the reconstruction grating problem is a boundary value problem, the reflection coeffi-
cient amplitude r(σ̂) of a fiber grating of length L (see Fig.3.2) can be found by assuming
a forward-going wave incident from z = −∞ (corresponding to the limit condition u1 = 1)
and requiring that no backward-going wave exists for L

2 ≤ z (i.e. vN+1 = 0). Moreover, since
r(σ̂) = v1

u1
from the boundary conditions is easy to verify that r(σ̂) = −T21

T22
. The number of
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section needed for the piecewise-uniform calculation is determined by the required accuracy.
Nevertheless, N may not be made arbitrarily large, since the coupled mode theory approxi-
mations are not valid when a uniform grating section is only a few grating periods long. Thus
the condition to be fulfilled is ∆j � Λ which means that N � 2neff L

λD
. It easy to understand

that the last request can be a problem when the evolution q(z) presents high gradients and
then the dimension of ∆j have to be decreased in order to consider the grating as uniform in
any sub-domain.
It is important to underline that though all the physical parameters of the grating are known,
the T-Matrix method allows to calculate the complex spectral response r(ν) only if the com-
plex coupling coefficient q(z) is defined all over the grating length. In other words the recon-
struction process is possible only if the exact local Bragg wavelength distribution (which is
related to the phase derivative of q(z)) is provided as an input data. In this case the indirect
T-Matrix method and the direct layer-peeling reconstruction process give the same results
(the only difference is the time necessary for the complete reconstruction which is shorter in
the case of the layer-peeling approach).
In Fig.3.14 are shown the spectrum and the wavelength distribution of a grating embedded in
block of epoxy similar to that one presented in Fig.3.9. As expected, the reconstruction of the

Figure 3.14: Spectrum and local Bragg evolution reconstructed with the OLCR technique. The
spectrum corresponds to real one measured with a simple spectrometer.

same grating via T-Matrix is in good agreement with the results obtained by the OLCR and
the layer-peeling approach (Fig.3.16). Since the physical parameters used in the two methods
are the same, the differences in the spectra can be attributed to the approximation in defining
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the chirp function (the variation in the phase of the coupling coefficient) which comes from
a direct interpolation of the local Bragg distribution of Fig.3.14 (see Fig.3.15 a)). It is then

Figure 3.15: Interpolation of the local Bragg wavelength evolution of Fig.3.14 by two slightly
different piecewise constant functions.

clear that the major problem in using the simple T-Matrix approach without the information
provided by the OLCR is the knowledge of the grating chirp function. If no indication is
given about the local Bragg distribution along the grating for example as a consequence of
an external applied load, the only way to guess the wavelength distribution is to use the FE
element method. Starting from an initial possible distribution a minimization procedure is
then used to find the best wavelength evolution which allows to retrieve the real reflected
spectrum. Unfortunately, because in practice this corresponds to solve an inverse problem it
is not unrealistic that the distribution giving the best spectrum’s fit does not correspond to
the real deformation applied on the sensor. From a mechanical point of view this corresponds
to determine a strain distribution which is not the real one. In order to show the importance
of well defining the initial local Bragg distribution, if the piecewise function used to interpo-
late λB(z) of Fig.3.14 is slightly changed (Fig.3.15 b)) the differences between the real and
simulated spectra become more important (Fig.3.17).
Other examples where the T-matrix based approach fails by introducing greater errors while

the OLCR based technique overcomes all the problem’s difficulties can be found in Appendix
A.
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Figure 3.16: Comparison between the reconstructed spectrum via the OLCR and layer-peeling
algorithm (solid line) and the spectrum retrieved by using the T-Matrix approach (dashed line).
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Figure 3.17: Comparison between the reconstructed spectrum via the OLCR and layer-peeling
algorithm (solid line) and the spectrum retrieved by using the T-Matrix approach (dashed line)
when the piecewise function does not corresponds exactly to the λB(z) evolution of Fig.3.14.



Chapter 4

Materials and methods

4.1 The single fiber composite (SFC) specimen: the difficul-

ties in treating the problem

Designing an experiment to characterize the mechanisms that govern the behaviour of a com-
posite structure is generally a difficult task to achieve in practice. The complex morphology
often makes the local strain/stress field very difficult to analyze because the position as well as
the contour of the different constitutive phases of the composite (matrix and reinforcement)
are generally not well defined. Moreover, there are many other parameters (e.g. interface
properties) which interact in a complicated manner thus making the study unrealizable. Al-
ternatively, one can simplify and reduce the geometric complexity without appreciable loss
of generality by considering a specific portion of the real composite structure. In that sense
the block specimen previously presented represents a simplified approach in the study of the
composite behavior. It may be considered as a basic component or element from which a real
composite can be assembled.
To further simplify the geometry, one may instead use a cylindrical specimen, thus providing
an axisymmetric unit cell that represents the composite material (Fig.4.1). This configura-
tions is referred to as a single-fiber composite specimen (SFC).

Figure 4.1: a) Typical transverse section of a unidirectional composite [22] and b) schematic
of the SFC cylindrical specimen extracted from the real material. Dimensions are in mm.

31
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Such a configuration has been used by several researchers in the past (see for example [13, 12])
for typical fiber pull-out and push-out tests. It has also proven to be very convenient especially
to investigate residual stresses in fiber-reinforced composite materials [32, 56] and will be
adopted here.
In the present case, the outer radius of the matrix cylinder is taken much larger than the
radius of the fiber, corresponding to a small fiber volume fraction of 2.5E-5. Clearly, this is
not a representative volume element of a fiber-reinforced composite such as the one depicted in
Fig.4.3a). Nevertheless, such choice is motivated by the fact that this configuration eliminates
free surface effects and creates high level of residual stresses in the fiber. In this work, the
chosen specimen length and diameter correspond to those presented in Fig.4.3. This can be
viewed as the limiting case of a single fiber in an infinite matrix. Note that such a configuration
allows further comparison with the theoretical results of Mikata and Taya [56], at least in the
central region far from the specimenÕs ends. It is expected that the initial length chosen for
the cylinder (L = 40 mm) is large enough with respect to the specimen radius to be able to
neglect the ends effects in the central region of interest. In other words, the choice of L is
motivated by the objective of obtaining generalized plane strain conditions and consequently
constant residual stresses in a large portion of the fiber. This point is discussed in the next
chapter.

4.2 Specimen preparation

All the specimens fabricated and tested in this work contain a standard optical glass fiber of
125 µm (Fig.3.2) in diameter centrally located along the axial direction and embedded in an
epoxy matrix as indicated in Fig.3.9.
The optical fiber-host system is viewed as a two phase composite, for which the fiber volume
fraction is very small compared with that of the epoxy. The optical fiber, supplied by Avensins
Inc., is equipped with a FBG of 24 mm in length, whose center coincides initially with the
center of the specimen and the origin of the system of coordinates (Fig.3.9). Before positioning
the fiber and pre-straining it to 870 µε to obtain a correct alignement, its acrylate coating
is stripped along the entire embedded length (L=40 mm) using a hot sulphuric acid bath
(Fig.4.2).
The stripped surface is also cleaned by mean of successive baths in ethyl alcohol to assure
clean interface conditions.
To prepare the epoxy, an established standard protocol is followed [2], that uses a mixture of
DERTM330, DERTM732 Dow Epoxy resins and DEHTM26 curing agent in respective weight
proportions of 70 : 30 : 10. Once the polymerization process is completed at room temperature
(24 hours), the specimen is removed from the mould and placed in an oven for post-curing
at 60◦ for 9 hours. It is then left to cool inside the oven until room temperature is reached.
The material properties considered for the epoxy matrix are Em = 2.35 GPa, νm = 0.38. In
particular, the Young modulus Em has been experimentally determined according to ASTM
test procedures [1]. For the glass fiber these parameters are 72 GPa and 0.17 respectively,
and they have been directly provided by the manufacturer. When the specimen preparation
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Figure 4.2: Stand used to strip the acrylate coating from the fiber by mean of sulfuric acid
bath (H2SO4, 96%).
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is completed, precise measurements of both length and position of the grating with reference
to one end of the specimen are carried out using the OLCR apparatus [77].

4.3 Specimen geometry

After the preliminary tests on the block specimen presented in Chapter 3, a second kind of
specimen was manufactured. The new geometry is a cylinder with a radius of 12.5 mm and
length of 40 mm. Due to the cylindrical symmetry conditions, this configuration is simpler
to use in numerical simulations and also allows the results to be compared with existing
analytical models. Moreover, the specimen dimensions are such that they can be directly
compared with the data obtained from the block sample (Fig.4.3).

Figure 4.3: Comparison between the geometry of the block and the new cylindrical geometry.
Two possible locations of the FBG are also shown: when it is centrally (black line) and partially
(grey line) embedded. Dimensions are in mm.

To prepare the cylinder the same mould designed for the the block was used, by simply
changing the forming parts as indicated in Fig4.4. A second series of preliminary tests were
conducted by using this cylindrical geometry. By using the OLCR technique the residual
strain distribution along the grating length was also retrieved in this case. As indicated in
Fig.4.5, no appreciable differences are present between the two geometries, thus meaning that
in this particular case, the block and the cylinder can be considered equivalent.
In order to verify that the shape of the strain distribution Fig.4.5 does not depend on the
specimen orientation (gravity effect), a special mould has been designed such that the new
orientation of the fiber is vertical (Fig4.6). As depicted in Fig.4.7 the OLCR analysis reveals
that, also in this last case, the influence of specimen orientation during polymerization does
not play an important role on the level and on the form of the residual strain distribution
inside the sample (Fig.4.7).
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Figure 4.4: Parts of the mould used to realize the block a) and the cylinder b) in the horizontal
configuration. See also Fig.3.8 for more details.

Figure 4.5: Direct comparison between the measured axial strain distribution before and after
post-curing for the block and the cylindrical specimen produced in the horizontal configuration.
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Figure 4.6: Mould used to prepare the cylindrical specimen in the ”Vertical configuration”.

Figure 4.7: Axial strain distribution measured before and after post-curing for a cylindrical
specimen realized in the mould of Fig.4.6 and FBG centrally located.



Chapter 5

Residual axial strain and stress field

in a SFC specimen

5.1 Axial strain evolution for different FBG positions

Since the FBG can be precisely located in different positions along the main axis of symmetry
of the cylinder (from the center to the outside) (Fig.4.3), the complete strain distribution along
the entire length of the embedded optical fiber core has been experimentally determined. This
is accomplished by using two specimens: one with the FBG covering the region z = ±12mm

(centered) and one with the FBG in the z = 5 to z = 30 region (2
3 inside and 1

3 outside).
By superimpose the response of these two sensors, and assuming symmetry about z = 0, one
obtains the strain distribution along the entire length of the specimen. The strain curves
obtained before curing and after post-curing all along the specimen length are depicted in
Fig.5.1

Figure 5.1: Axial strain distribution obtained for the cylindrical specimen of 40 mm length
measured before and after post-curing.

37



38 CHAPTER 5. RESIDUAL AXIAL STRAIN AND STRESS FIELD IN A SFC SPECIMEN

One can observe that after the complete matrix consolidation, the strains (i.e. the local Bragg
wavelengths) evolve in the axial direction following a fourth-order distribution. By considering
Hooke’s law and taking into account the geometrical dimensions of the specimen and the
mechanical parameters of the materials, the maximum compressive stress value is found to
be −450 MPa. The complete stress distribution for a post-cured specimen is represented in
Fig.5.2. All these data are employed as appropriate boundary conditions for the analysis of

Figure 5.2: Axial stress distribution obtained for the cylindrical specimen of 40 mm length
and 12.5 mm radius after the post-cure treatment.

the residual strain and stress field in the surrounding epoxy host by using the finite element
method.

5.2 Dimensional effect on the residual axial strain field

While the level of residual stresses within a composite principally depends on the material
properties and on the manufacturing process, their distribution is mainly influenced by the
form of the specimen [8].
In order to investigate the geometrical influence on the axial residual stress distribution and,
at the same time, verify if the initial dimensions of the specimen allow an acceptance of
generalized plane strain hypothesis at least at the center of the specimen as mentioned the
section 4.1. Cylindrical specimens of three different lengths L have been fabricated, namely
L = 40 mm, 20 mm, 10 mm. The radius r is kept constant and equal to 12.5 mm. For
convenience the samples are denoted S1, S2 and S3 respectively. As seen in paragraph 5.1,
the measurement of the strain along the specimen length can be obtained by superposition of
the results coming from two different gratings located at different positions in two specimens
of the same dimensions. In the case of the specimens S2 and S3, the grating length (24 mm)
exceeds the specimen length and the complete strain curve along the embedded part of fiber
can be retrieved by only one cylindrical sample of each type.
In Fig.5.3, strain measurements are plotted and compared for the three specimens S1, S2
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Figure 5.3: Axial evolution of strain along the fiber for three different cylinder lengths after
the post-curing treatment.
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and S3; note that symmetrical distributions with respect to the plane z = 0 were obtained. In
particular, the axial strain calculated for the specimen S1 reaches a plateau of −6000 µε when
z ≤ 10 mm. In this region a generalized plane strain state prevails indicating that the border
effects are not appreciable at a distance greater than 10 mm from the specimen ends. It is
also noticed that the derivative of the strain curves averaged over the last 5 mm (L = L− 5)
tends to reach a constant value for specimens of at least 20 mm (the corresponding curves
are not reported here), indicating comparable border effects in regions of the same relative
size. However, when the length of the specimen decreases, the size of the plateau as well
as the maximum level of strain (see Fig.5.3) both decreases. For the smallest specimen S3,
one notices that a region of constant strain does not appear, and a maximum strain value of
−1000 µε is registered at the center of the specimen. This comparison justifies the choice of
the S1 sample geometry for further testing.
The previous curves provide a very good indication on the substantial level of volume reduction
undergone by the specimens during the production. This contraction is in practice entirely
transmitted to the fiber in the case of the specimen S1 and S2 . This effect is clearly
highlighted by the spectra presented in Fig.5.4 and here reported only for the specimen S1.
The total wavelength shift of the main peak of 6.4 nm corresponds to 6.100 µε via Eq.3.2.4.
A simple verification of this affirmation can be easily obtained by comparing the volume

Figure 5.4: Evolution of the reflected spectra during the preparation processes of the specimen
S1.

reduction of the epoxy resin evaluated and provided by the producer [2] and that measured
via the FBG. The volume reduction of the resin in the mixture used during the test is equal to



§5.3. THE EFFECT OF THE COATING ON THE AXIAL STRAIN DISTRIBUTION 41

2%. In the same time, the volume reduction of the specimen S1 can be simply approximated
by

∆V

V
= 3

∆L

L
(5.2.1)

In the considered case, ∆L
L exactly corresponds to the strain value measured via the FBG

at the center of the specimen and found to be −6000 µε. Multiplying by three this strain
we obtain (taking into account the possible errors) the volume reduction of the resin, thus
attesting on the reliability of the measurement provided by the proposed optical method.
Alternatively (see Fig.5.5), the same results can be retrieved in an independent manner by

Figure 5.5: Internal sections of the forming parts of the mould showed in Fig.4.6.

directly measuring the variation in length ∆L
L and in the radius ∆r

r undergone by the cylinder
during the polymerization process of the matrix. The shape of reference has been assumed
equal to the internal cavity of the mould (Fig.4.6).
To calculate the volume contraction of the cylindrical sample, a series of precise measurements
have been made in order to evaluate the variations in length along the axial and the transversal
direction. In particular, the radial contraction has been calculated by averaging the results
obtained of five different, equally-spaced, transversal sections while, for the axial contraction,
six longitudinal planes separated by an angle of 60◦ have been taken into account. (Fig.5.6)
The measurements revealed that a radial strain ∆r

r = −0.0068 and and axial strain ∆L
L =

−0.0067 occur in the transversal and longitudinal directions respectively. An experimental
volume contraction of 2.06% is then recovered, exactly as indicated by the producer and
previously measured by the FBG.

5.3 The effect of the coating on the axial strain distribution

If the plastic protective coating is not stripped from the fiber before the embedding pro-
cess, the sensitivity of the fiber Bragg grating is greatly influenced and the data provided
by the sensor will be very difficult to be interpreted. The coating tends in fact to reduce
the stress transfer between the matrix and the fiber by partially absorbing the deformation
applied on the reinforcement. The axial strain determined in a three-phase composite (ma-
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Figure 5.6: Locations of radius a) and of the length b) measurements.

trix+coating+glass fiber) via the FBG are lower than those measured in the case of a stripped
optical fiber. The shape of the strain evolution along the longitudinal direction of the spec-
imen is also very different (see Fig5.7). This experiment also indicates that the interface

Figure 5.7: Evolution of the axial strain distribution before and after post-curing when the
coating is kept around the optical fiber. The result is obtained by superposition of two different
gratings of 15-mm length and located in two different positions.

properties between the glass and the epoxy are better than those between the glass and the
coating. During matrix consolidation the coating follows the deformation of the epoxy and
de-cohesion zones between plastic and glass may appear.
In some cases, the interface between the coating and the fiber is highly weakened and the fiber
may have less of a reinforcement effect, thus allowing the resin free to contract in the axial
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direction. An inversion in the strain generation process can be observed with a maximum
level of compressive strain reached this time at the end of the curing period and not at the
end of the post-curing treatment Fig.5.8. Indeed, though in the literature there is an indica-

Figure 5.8: Strain distribution measured at the center of a cylindrical specimen when the
interface conditions between fiber and surrounding coating fail. An inversion on the behavior
is observed.

tion on the mechanical properties of the coating (Ec = 700 MPa and νc = 0.38) absolutely
no information on the interface characteristics between coating and fiber are given. These
characteristics are particularly important because they are responsible for the transmission
of information from the matrix to the Bragg sensor. Experimentally it is very difficult to
evaluate these properties and some preliminary results [17, 18] obtained by pulling a coated
optical fiber have revealed that a variation in the interface behavior could change even from
fibers coming from the same batch. Due to the uncontrollable properties of the glass-coating
interface, it is extremely difficult conduct reproducible specimen of this type (compare Fig.5.7
and Fig.5.8).
Another problem coming from the use of a coated fiber is related to the thickness of the plas-
tic coating. Around the grating region the thickness may significantly change with respect
to the average thickness of the coating all along the rest of the waveguide Fig.5.9. This is
a consequence of the fabrication process of the FBG. When the gratings are written into an
optical fiber, the region chosen to receive the sensor the fiber is stripped of its original acrylate
coating so that the laser used with the phase-mask method can correctly focus on the fiber
core with an enough power. When the writing process is completed, the fiber is then recoated
to protect the FBG. The recoated parts are generally thicker but not always the same, and the
mechanical properties likely differ due to the processing of the recoating itself. This implies
supplementary problems, because it is now more difficult justify a measure of a lower level of
strain applied on the grating. In fact this can be attributed either to a higher thickness of the
coating, to a failure in the interface between plastic and glass or to the different properties of
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Figure 5.9: Shematic of an optical fiber with an FBG. The recoated region around the grating
shows the difference in thickness that in general exists between the coated and the recoated
part.

the recoated part. Consequently, it is not easy to decouple the problem and determine which
cause principally affects the reduction in strain and each case must be analyzed individually.
Since the coating does not assure a reproducibility of the experimental results, this investi-
gation of the fiber coating influence, reinforces the decision to embed bare fiber sensors into
the epoxy specimen.



Chapter 6

Determination of the radial stress

evolution

Since the FBG only provides information regarding the axial the strain evolution along the
fiber (equation 3.2.4), another experiment is necessary to derive the radial evolution of the
residual strains. The residual stress distribution in the epoxy cylinder (at the experimental
level) is calculated combining the strain measurements provided by the fiber Bragg grating
with a typical technique well known in the fracture mechanics domain as the ”crack compliance
method” (C.C. method for simplicity). In particular, due to the ability of the grating to
provide distributed measurements of strain along a given direction, the system involved in
the C.C. method can be immediatly assembled and subsequently solved, thus providing the
stress evolution normal to the crack.

6.1 The Crack Compliance (C.C.) Method

The approach for the residual stress measurement by the crack compliance method involves
measuring strain at selected locations while a cut of progressively increasing depth (aT ) is
introduced into the part Fig.6.1. The material can simply be mechanically removed, or other
techniques like electron-discharge machining or chemical attack can be adopted depending on
the constituents of the specimen’s matrix. This experimental technique introduced by Cheng
and Finnie [28, 29] and largely applied by Prime and co-workers [63, 62, 64, 65], has been im-
plemented for a number of plane and axisymmetric configurations and extensively validated.
Following the proposed method a new experiment has been designed and realized.
A series of circumferential concentric thin cuts have been machined in the center of a post-
cured specimen S1 as indicated in Fig.6.2. In particular, to avoid an excessive heating in the
contact region between the cutting blade and the cylindrical specimen, a machine equipped
with a water-cooling system has been used.
It is possible to observe in Fig.6.2 that the mechanical stress relaxation due to the introduc-
tion of deep transverse cuts, (aT > 11) significantly affects the FBG response. Such changes
can be clearly detected (more than 5-6% in the strain values) up to a distance of about 10
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Figure 6.1: Configuration used for C.C. method tests

Figure 6.2: Plot of the measured local Bragg wavelength distributions λB(z) for increasing
notch depth aT . The corresponding strain profiles are deduced by using Eq.3.2.4. In particular,
since the reference local Bragg λB0(z) is in this application a constant distribution, the strain
evolutions are equal to the form of the different λB(z)
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FBG diameters from the center of the cylinder. The Bragg wavelength and the corresponding
strain distribution obtained for aT = 12 mm is used to calculate the original residual stress
field that is now relaxed.
The residual stress component normal to the crack plane, σm

z (r, z = 0), is calculated by as-
suming that the original residual stress profile along a cut of depth aT = āT can be represented
by a series expansion

σm
z (r, z = 0) =

n∑
i=0

AiPi(r) rm − āT ≤ r ≤ rm (6.1.1)

where Ai are the unknown coefficients associated to the ith polynomial term Pi. In relation
6.1.1 the orthogonal polynomials Pi are defined over the interval rm − āT ≤ r ≤ rm (rm is
the matrix radius). Note that Legendre polynomials have been used because they provide the
best approximation of σm

z [28] (Fig.6.3).
For each applied function Pi(r) to the faces of the cut, the corresponding strain values

Figure 6.3: Form of the first sixteen Legendre polynomials used as a base to decompose the
stress σm

z (r).

at given location zj along the Bragg grating are calculated by appropriate finite element
simulations. These ”numerical” strains are denoted as the compliance functions Ci(zj ; āT ).
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From linear superposition principle the total strain in the fiber εf
z at z = zj is given by

εf
z (zj ; āT ) =

n∑
i=0

AiCi(zj ; āT ) = [Cji]


A0

...

...

AN

 = [Cji](A) (6.1.2)

Notice that in Eq.6.1.2, [Cji] is the J×(N +1) compliance matrix where the ith column vector
[Ci(z1; āT ), ........, Ci(zJ ; āT )]T is composed of the values of the compliance function Ci(zj ; āT )
when evaluated at J selected positions along the grating. The sampling point zj are selected
within the domain 0 ≤ zj ≤ 4 divided in (J − 1) equally spaced intervals. Even though
in literature [29, 30] a maximum order N = 11 of the Legendre polynomials is indicated as
sufficient to describe the correct evolution of the stress field, in practice for the considered
cut depth āT of 12 mm, N = 15 and J = 50 are found to be the best values to obtain an
accurate solution of the system. The coefficients Ai are determined by a least square fit that
minimizes the error between the measured strains and those given by Eq.6.1.2. The stress
evolution σm

z is finally retrieved via Eq.6.1.1. This leads to

(A) =
(
[C]T [C]

)−1
[C]T (εmeasured) (6.1.3)

where the experimental values of strains (εmeasured) = [εmeas
z (z1), ........, εmeas

z (zJ)]T are eval-
uated at the sampling point zj from the response of the FBG shown in Fig.6.2 when the cut
depth āT = 12 mm. Note that (εmeasured) are obtained by using a spline fitting of the ex-
perimental strain distribution. More precisely, as indicated by the superposition principle in
Fig.6.4, the column vector (εmeasured) has been retrieved as a difference between the measured
strain distribution at the end of the post-curing process (case a) and the strain distribution
along the grating after the cut of depth āT (case b).
The problem of finding the stress released due to machining can be viewed as a problem of

Figure 6.4: Application of the superposition principle to calculate (εmeasured) used in the
Eq.6.1.2

finding a stress distribution σ̃z(r) that, when applied on the fracture surfaces, allows one to
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eliminate the effect of the cutting by closing the fracture. When this stress distribution is
added to the modified residual stress field R̃S, the initial residual stress field RS within the
specimen should be retrieved. Since the embedded grating sensor provides information on the
state of stress at the end of the post-curing (case a) in Fig.6.4 and after cutting (case b) in
Fig.6.4, the experimental strain distribution that has to be used in Eq.6.1.2, corresponding
to the (case c), can be easily retrieved.
It is important to underline that by selecting a series of distinct points along the grating where
the strain is experimentally evaluated from the FBG response, the solution of the system 6.1.2
can be obtained with only one cut Fig.6.5. In the classical C.C. method however, to get the
coefficient Ai one has to introduce a great number of cuts because the strain value is only
read by one strain gage glued on the specimen. This leads to a great improvement of the
method, overall by reducing the number of cracks (only one) needed to solve the system 6.1.2
and consequently the correlated experimental errors.
The number N which indicates the higher polynomial degree taken in the expansion 6.1.1,

Figure 6.5: Local Bragg distribution λB(z) obtained with only one cut of depth āT = 12mm.
Slighly differences in comparison with Fig.6.2 can be attributed to the machining processing.

has to be chosen in order to minimize the total fitting error which has two constituents: the
first is related to the capacity of the chosen series to represent the actual strain profile (i.e.
the completeness of the series) while the second comes from the conditions of inversion of the
matrix Cji which may magnify the errors initially created in the strain profile.
A plot of the determined σz(r) is presented in Fig.6.6. The distribution plotted in Fig.6.6
highlights the effect of the stress transfer which takes place from the reinforcing fiber to the
epoxy matrix. During the curing process, the matrix around the fiber shrinks, but the full or
free contraction of the matrix is constrained as a consequence of being bonded to the fiber.
At the same time, as a result, the matrix is stressed in tension in a direction parallel to the
fiber axis. The fiber is compressed by the constrained shrinkage of the matrix. This results
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Figure 6.6: Radial evolution of the stress σm
z (r) in the plane z=0

in residual axial compressive stresses in the fiber, which reach a maximum at mid-length and
decrease to zero at the fiber ends.
The modified version of the C.C. method works very well and, more importantly, is able to
describe the physics of the problem. The values calculated for the coefficients Ai are finally
presented in Table 6.1. Notice that their amplitudes tend to decrease especially from the 11th

term of the series ([29, 30]) up to the last coefficient which can be practically neglected. This
is a confirmation that N = 15 is a number of Legendre polynomials sufficient to describe
reliably the researched radial stress distribution.

A0 A1 A2 A3 A4 A5 A6

Values -0.2413 0.9273 -1.2749 -0.5892 1.3418 -0.9499 0.2638
A7 A8 A9 A10 A11 A12 A13

0.3188 -0.4941 0.3985 -0.2332 0.1049 -0.0363 0.0092
A14 A15

-0.0015 0.0001

Table 6.1: Values of the coefficients Ai calculated via the C.C. method for the specimen S1.

6.2 The influence of the specimen radius rm on the radial dis-

tribution of stresses

In the previous paragraph, the radial stress evolution σm
z (r) has been obtained for a cylinder

of 40 mm length and a radius rm of 12.5 mm (specimen S1). The effect of the radius rm on
the residual stress profile is investigated in this section.
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Equilibrium of residual stresses in the fiber σf
z (r) and in the matrix domain σm

z (r) requires
that ∫ 2π

0

∫ rf

0
σf

z (r)rdrdθ =
∫ 2π

0

∫ rm

ff

σm
z (r)rdrdθ (6.2.1)

Equation 6.2.1 simply states that the averaged residual stress on any transversal section of the
cylinder is always zero. Nevertheless, probably due to a lack of information in the literature
(available experimental data are not exhaustive) the evolution of the function σm

z (r) is not
well established. A relation of proportionality between σf

z (r) and σm
z (r) is generally assumed

σf
z (r) = const = Kσm

z (r) (6.2.2)

where K is an appropriate constant which depends on the volume ratio of the two components.
Unfortunately, the previous assumption may lead to a significant error in the evaluation of
σm

z (z) for large radii rm of the cylinder, because σf
z (r) is generally assumed constant on the

fiber cross-section. Nevertheless, relation 6.2.2 holds when the external radius of the specimen
is ”sufficiently” small.
In order to prove this assertion, the evolution of the residual stresses σm

z (z) has also been
experimentally obtained by using (Fig.6.7) a specimen of external radius rm = 4mm (indi-
cated here as SS1). The length of the specimen is kept constant at 40 mm. Following the
previously described C.C. method the residual radial stress evolution has been calculated for
the cylinder SS1 and is presented in Fig.6.7. This figure compares the stress distributions and
highlights the errors made by assuming the relationship 6.2.2. One notes that for large radii,

Figure 6.7: Evolution of the axial stress distribution as a function of the specimen radius.

the function σm
z (r) has negative values in the domain 2

3rm ≤ r ≤ rm whose size is about one
third of the specimen radius. Positive values are encountered only in the remaining region.
This is one real case for which the assumption 6.2.2 completely fails.
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When the radius rm decreases, the shape of the function σm
z (r) completely changes. Exper-

imental results for the specimen SS1 indicate an approximatively positive constant value of
the residual stress σm

z (r) across the matrix domain, attesting to the validity of relation 6.2.2.
Note that relation 6.2.1 which makes not assumptions about of the form σm

z (r) and σf
z (r), is

satisfied by all the distributions plotted in Fig.6.7.
It is also important to underline that in Fig.6.8 the maximum strain level reached at the cen-
ter of the specimen SS1 is close to the one obtained for the specimen S1 (see Fig.6.5). This

Figure 6.8: Measured strain distribution before and after cutting a circumferential cut of 3
mm depth for the post-cured specimen SS1.

results indicate that the radius does not considerably the strain distribution built up along
the fiber. This means that only the contraction of the matrix in the axial direction z has, a
priori, a significant role in the generation of the residual stress field. Along the transversal
direction r however, the epoxy matrix can contract freely only respecting Poisson’ ratio.
To complete this analysis, the coefficients Ai calculated vie the C.C. method in the case of
the cylinder SS1 are finally presented in the Table6.2

A0 A1 A2 A3 A4 A5 A6

Values 0.1339 -0.0323 -0.0164 0.0131 -0.0063 -0.0005 0.0050
A7 A8 A9 A10 A11 A12 A13

-0.0062 0.0053 -0.0034 0.0018 -0.0007 0.0002 0.0000
A14 A15

0.0000 0.0000

Table 6.2: Values of the coefficients Ai calculated via the C.C. method for the specimen SS1.
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6.3 Effect of a longitudinal crack on the residual stress field

In the second section of this chapter, the axial stress relaxation along the radial direction is
obtained by introducing a circumferential crack in the specimen. In this section the relaxation
effect of the hoop stresses on the FBG response is investigated. This can be considered as
a natural extension of the application of the C.C. method to the cylindrical geometry [65],
and at the same time allows for a verification of the FBG sensor’s behavior when submitted
to transverse stress variations. However, while the FBG response is relatively simple to in-
terpret when an axisymmetric transversal crack is machined into the specimen (because the
variations in the grating response only depend on the axial effects), it maybe more difficult
to understand in the case of a longitudinal crack. This is mainly due to the loss of the corre-
sponding axisymmeric conditions around the optical fiber [80].
Two successive longitudinal (L) cuts of depth aL = rm

2 and aL = rm−2rf have been machined
(see the insert of Fig.6.9). In each case, a relaxation time of two hours has been allowed before

Figure 6.9: Shift of the principal Bragg peak due to the longitudinal cut. A slightly variation
of the Bragg wavelength is measured after a cut depth of aL = rm

2 (dashed line). A greater
shift is detected for the deeper crack aL = rm − 2rf (dotted line).

the measurements. A grating length of 1.5 mm has been used because the spectrum in this
case is composed by a single peak, whose modification is generally easier to control and to
understand. Moreover, since the strain distribution along the axial direction is well known,
a single short grating is sufficient to capture the maximum strain variation at least in the
central region of the specimen. Using the 1.5 mm long FBG, the spectral response due to the
axial strain relaxation is plotted in Fig.6.9.
The main effect revealed by the test, is a significant shift towards longer wavelengths of the
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grating spectrum (see Fig.6.9). This is seen in the case of the deepest crack, while nearly
negligible variations are created by the initial crack length. One notes a strain relaxation of
50 µm/m is detected when aL = rm

2 and a greater strain variation (190 µm/m) is measured
when aL = rm − 2rf .
Particular attention has to be paid to verify the presence of any possible birefringence affect.
In fact, due to the loss of axial symmetry on a given transversal section of the cylinder, the
in-plane stress relaxation can generate a deformation of the fiber section in such a way that
its shape differs from a circle. As a consequence, two privileged light propagations directions
can be identified and the out-coming light (i.e. the related grating spectrum) becomes po-
larization state dependent and the optical fiber is said to present a state of birefringence.
However, as shown in Fig.6.10, the peak modifications due to the polarization changes are
comprised in a range of 25 pm, which is compatible with the laser wavelength fluctuations.
No measurable birefringence state is then detected within the fiber, probably because its
stiffness is too hight compared to that one of the resin, thus becoming the fiber insensitive
at least to the transverse deformation of the matrix. This result is particularly important,
because represents the experimental evidence that the hypothesis of Butter and Hocker [15]
used in Chapter 3 to model the relation between the applied strain and the FBG response
(i.e. the Bragg wavelength shift) is valid. In practice, it is an affirmation of the fact that, for
this kind of geometry and constitutive materials, only the axial shrinkage produces important
modifications on the physical state of the reinforcing fiber.

Figure 6.10: Maximum peak variation due to the light polarization changes. The curves
represent the same sensor response centered at the wavelength of 1294.15 nm, and recorded
for two different states of polarization.



Chapter 7

FEM analysis

In the engineering domain, finding solutions to complex structural problems easily becomes
very difficult and at times impossible by analytical methods. A possible solution can be found
by the numerical methods among which one of most powerful is the Finite Element Method
(FEM) [42]. Nowadays, FEM is used in different kinds of applications ranging from stress
analysis, heat transfer, fluid flow and so on.
The basis of the FEM is the Ritz-Galerkin method where, for a given loading conditions, a
displacement field satisfying the weak formulation of the problem and the essential boundary
conditions are assumed over a certain body.
In practice, a entire body is divided into smaller elements, connected to each others at par-
ticular points called nodes. The ensemble of all nodes and elements constitutes the FE mesh.
Finally, a displacement field is assumed for each individual element.
The approach is based on the assumption of simple displacement over the elements and an
integration process is carried-out over the entire body. In particular, the displacement field
over a certain element is approximated by a polynomial function of a given order. Then, the
global approximated displacement field is calculated by taking a linear combination of these
local functions (”shape” functions), each of which presents the characteristic of being equal
to one at the corresponding node of the FEM mesh and equal to zero in the all other nodal
points.
A system of N equations with N unknowns has to be solved, where N corresponds to the
number of degree of freedom in the FEM mesh (i.e. the number of nodes times the number
of displacement components per nodes). In some cases this system can be non-linear and an
iterative method has to be used to calculate the solution of the discrete variational problem.
In the finite-displacement formulation the equations of equilibrium for the entire structure are
obtained by combining (in the sense of the virtual work principle) the equilibrium equations
of each node in such way that continuity conditions are assured at each node.
Depending on the particular application involved, and for a given set of boundary conditions,
field parameters such as stress, strain, displacement, temperature distribution, flow velocities,
etc can be retrieved. Given the number of degrees of freedom typically involved in these kind
of problems the calculation power of computers is absolutely necessary to elaborate and solve

55
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the system associated to the FEM method.
One parameter that influences the results of the FEM solution is the mesh quality. A first
indication on that point is represented by the element distortion which has to be reduced to
the minimum. The error of the FEM approximation also depends on the size of the element
used to divide the body or the considered structure in a given number of simpler sub-domains.
The mesh has to be sufficiently refined, especially in regions where the researched fields may
vary with high gradient, for instance near concentrated loads or in the vicinity of the holes,
where stress concentration can occur .
The use of quadratic elements, which have a higher number of nodes per element and consider
parabolic shape functions, generally increases the precision of the results but with a higher
computational cost. Another possibility is the implementation of special elements (e.g. singu-
lar elements), specially designed to capture field singularities in particular geometrical zones
of the body.
In the end, no simple rule exists for choosing the size of the mesh or the kind of element that
must to be used in a finite element model, and only a posteriori parametric study can provide
information on the reliability of the FEM solution.

7.1 The matrix shrinkage function Sm

To model the matrix volumetric shrinkage effect, the problem is considered analogous to
a thermo-elastic one [44]. The analogy with a thermo-mechanical problem is particularly
helpful because at the moment it is the only possiblitity for numerically generating a stress
field within a material which respects the conditions equivalent to a chemical shrinkage (e.g.
there are no forces applied on the contour of the body). Nevertheless, the elastic properties of
the material are considered temperature independent and not to change as the degree of cure
advances during post-curing. As a consequence, the only residual stresses are those associated
with curing shrinkage of the epoxy when the system returns to room temperature.
To simulate the frozen-in strains, a matrix shrinkage function Sm(r, z) is introduced in the
general stress-strain relations as follows

εr(z, r)
εθ(z, r)
εz(z, r)
εrz(z, r)


(m)

=
1

Em


1 −νm −νm 0

−νm 1 −νm 0
−νm −νm 1 0

0 0 0 2(1 + νm)




σr(z, r)
σθ(z, r)
σz(z, r)
σrz(z, r)


(m)

+

+αm∆T (r, z)


1
1
1
0

+ Sm(r, z)


1
1
1
0


(7.1.1)

where αm∆T (r, z) takes into account a possible temperature variation ∆T and α is the co-
efficient of thermal expansion (CTE) of the material. In the present case, αm∆T (r, z) = 0
because all the strain measurements have been performed at the same controlled room tem-
perature. A similar relation holds for the fiber domain by replacing the letter m by f in
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relation 7.1.1, except for the last term which is set to zero because the fiber is taken to have
zero chemical shrinkage (i.e. Sf (r, z) = 0).
Based on the FBG measurement (axial and radial strain evolution) and physical boundary
conditions (for a sufficiently large matrix radius the shrinkage function has to correspond to
the uniform free linear contraction of about −6000µm in the plane z = 0), the following form
can be assumed for the function Sm (i.e. for the evolution of the residual strain field)

Sm(r, z) = Z(z)R(r) =
[
a
( z

20

)4
+ b

( z

20

)2
+ c

]
[1 + df(r)] (7.1.2)

where the constant parameters a, b, c and d have to be determined and f(r) is a polyno-
mial function linked to the derivative of the crack opening displacement C.O.D. [4] (which
corresponds to a strain). Notice that the form of the function Z(z) can be obtained by an
interpolation of the strain distribution provided by the FBG, while the determination of R(r)
requires the data obtained by using the Crack Compliance method.
The C.O.D represents the axial displacement of the crack surfaces expressed as a function of
the radius r of the cylindrical specimen. In particular, the C.O.D. depends on the amplitude
and shape of the stress profile along the radial direction (i.e. σm

r (z)). By using the Weigh
Function Method [46, 27, 79] the C.O.D. can be calculated by

C.O.D. = um
z (σm

z (r), r, a) =
2

E′
m

∫ a

r

[∫ s

0
h(r, s)σm

z (r)dr

]
h(r, s)ds (7.1.3)

where h(r, s) is an appropriate weight function whose form has been calculated via FE simula-
tions for the considered composite cylinder, σm

z (r) is the stress distribution given by 6.1.1 and
E′ = Em

1+ν2
m

(Em and νm are the Young modulus and the Poisson ratio of the epoxy matrix).
More details on the determination of the C.O.D. and the appropriate weight function for the
reinforced cylinder will be given in the subsequent paragraph.
The C.O.D. due to the residual stress σm

z (r) applied on the crack surfaces is plotted in Fig.7.1
showing that its form is compatible with the stress distribution of Fig.6.6

7.1.1 Introduction to the Weight Function method to calculate the Crack

Opening Displacement (C.O.D.)

In the linear elastic fracture mechanics domain the stress field presents a singularity near the
crack tip. In order to characterize this field a special parameter K named Stress Intensity
Factor (S.I.F.) was introduced, giving an indication of the field singularity amplitude around
the crack front.
There are three different types of loading that a crack can experience as Fig.7.2 illustrates.
Mode I loading, where the principal load is applied normal to the crack plane, tends to open
the crack. Mode II corresponds to in-plane shear loading and tends to slide one crack face
with respect to the other. Mode III refers to out-of-plane shear. A cracked body can be loaded
in any one of these modes, or a combination of two or three modes. Because the problems
dealing with the mode I displacement are the most frequent in fracture mechanics, they will
be taken into account in this exposition.



58 CHAPTER 7. FEM ANALYSIS

Figure 7.1: Crack Opening Displacement (the double of the vertical displacement of any single
surface of the crack) for the specimen S1 and a crack depth of 11.5 mm.

Figure 7.2: Three different modes of loading that can be applied to a crack [77].
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The weight functions, first introduced by Paris [58] and developed later by Bueckner [14] and
Rice [68], are nowadays largely used in the linear elastic fracture field with the overall aim
to calculate the Stress Intensity Factor. To use the weight function method the hypothesis
of the superposition principle is usually applied to the system of forces acting on the fracture
(Fig.7.3) There are typically far-field applied forces and the bridging forces. Also, the specimen

Figure 7.3: Superposition principle: the global system of forces acting on the fracture surfaces
of a body is viewed as a sum of single distributions, one representing the far stress field σ∞(x),
one the bridging forces φ(x) and one term that guaranties the equilibrium conditions without
influencing the fracture opening (two auto-compensating actions) [77].

is considered homogeneous far from the fracture and characterized by an effective Young
modulus E′, where E′ = E in the case of plane stress conditions or E′ = E

1+ν2 in the plane
strain conditions. The description that follows is a summary of a wider theory presented by
Tada [79] and by Botsis [11].

7.1.2 Weight functions

Consider a dipole force applied on a surface of a crack, as illustrated in Fig.7.4a). This system
generates a stress intensity factor that can be expressed as follows:

KI(F, a) =
2F√
πa

Φ
(x

a
,
a

w

)
(7.1.4)

where Φ
(

x
a , a

w

)
is a given function depending only on the system geometry that can be cal-

culated analytically or numerically ([27]). Nevertheless, for the most common specimen ge-
ometries in literature it easy to find the complete expression of Φ (see for example [79]). In
particular, a weight function gSIF (x, a, w) can be defined as the function providing the SIF
for a unit dipole force:

gSIF (x, a, w) =
2F√
πa

Φ
(x

a
,
a

w

) ∣∣∣
F=1

(7.1.5)

gSIF (x, a, w) is often indicated as the influence function or Green’s function of a given speci-
men geometry. Similarly, it is possible to calculate the SIF for any type of distribution φ(x)
acting on the fracture surfaces (Fig.7.4b)):

KI(φ, a) =
∫ c2

c1

φ(x)gSIF (x, a, w)dx =
∫ c2

c1

2φ(x)√
πa

Φ
(x

a
,
a

w

)
(7.1.6)
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Figure 7.4: a) Crack submitted to a dipole force and in b) submitted to a distribution of
forces φ(x).

7.1.3 Calculation of crack opening displacement

Consider a cracked body submitted to a load P and to a virtual dipole force F as indicated in
Fig.7.5. Though only the mode I will be considered here, the other two modes can be treated
similarly. Defining UT as the elastic strain energy, for a specimen of unit thickness under
constant load the energy release rate (ERR) G is

G(P, F, a) =
∂UT

∂a

∣∣∣
forces

(7.1.7)

Since the SIF is due to the entire system of forces, namely

KI(P, F, a) = KI(P, a) + KI(F, a) (7.1.8)

from the relation G = K2
I

E′ we have the following relation

G(P, F, a) =
K2

I

E′ =
[KI(P, a) + KI(F, a)]2

E′ (7.1.9)

In particular, since UT is composed of two parts (that of the bulk material UNOCRACK
T and

that due to the crack), taking into account the previous relations the expression of UT becomes

UT = UNOCRACK
T +

∫ a

0

∂UT

∂a′
da′ = UNOCRACK

T +
∫ a

0
Gda′ (7.1.10)

According to the theorem of Castigliano, the displacement of a point in the direction of the
applied load at that point is given by the derivative of UT with respect to the load applied at
that point. If no force is applied on the considered point, it is possible to consider a virtual
force in the direction of the desired displacement. In this particular case, the derivative of
the energy is calculated as the limit as virtual force goes to zero.
In the case of Fig.7.5, the displacement ∆P is given by

∆P = ∆NOCRACK
P +

∫ a

0

∂G(P, F, a′)
∂P

da′ (7.1.11)
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Figure 7.5: Cracked body loaded with a force P and a dipole F. ∆P and ∆F are the displace-
ment in the direction of the forces and d is the distance before deformation [11].

where ∆NOCRACK
P = ∂UNOCRACK

T
∂P . In particular, taking into account Eq.7.1.9 we have:

∂G(P, F, a)
∂P

=
2
E′ [KI(P, a) + KI(F, a)]

[
∂KI(P, a)

∂P

]
(7.1.12)

and via Eq.7.1.11

∆P = ∆NOCRACK
P +

2
E′

∫ a

0
[KI(P, a′) + KI(F, a′)]

[
∂KI(P, a′)

∂P

]
da′ (7.1.13)

A similar expression can be calculated for ∆F :

∆F =
∂UNOCRACK

T

∂F
+

2
E′

∫ a

0
[KI(P, a′) + KI(F, a′)]

[
∂KI(P, a′)

∂F

]
da′ (7.1.14)

and taking into account that KI(F, a) → 0 when F → 0, the last equation ca be re-written as

∆F = ∆UNOCRACK
T +

2
E′

∫ a

0
KI(P, a′)

[
∂KI(P, a′)

∂F

]
da′ (7.1.15)

If the the displacement is determined on the fracture surfaces (i.e. we calculate the C.O.D.
uF ) then ∆NOCRACK = 0. In this case

uF =
2
E′

∫ a

0
KI(P, a′)

[
∂KI(P, a′)

∂F

]
da′ (7.1.16)
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7.1.4 C.O.D. General formulation

The formalism presented in the previous section can be easily generalized to a distribution
of forces Pi(i) = (1, ..., N) applied on the body. For the Eq.7.1.13 and Eq.7.1.14 we have
respectively:

∆Pi = ∆NOCRACK
P +

2
E′

∫ a

0
KI(P1, ....., PN , a′)

[
∂KI(P, a′)

∂P

]
da′ (7.1.17)

∆F = ∆NOCRACK
F +

2
E′

∫ a

0
KI(P1, ....., PN , F, a′)

[
∂KI(F, a′)

∂F

]
da′ (7.1.18)

where

KI(P1, ....PN , a) =
N∑
1

KI(Pi, a) (7.1.19)

Then, the expression of C.O.D. is

uF =
2
E′

∫ a

x1

KI(P1, ...., PN , F, a′)
∂KI(F, a′)

∂F
da′ (7.1.20)

where x1 corresponds to the position we want to know the value of uF . Notice that ∂KI(F,a′)
∂F =

0 if a′ ≤ x1. Taking ∂KI(F,a′)
∂F = gSIF (x1, a, w) it is possible to define a weight function for

the C.O.D. measured at the point x1 and due to a force applied in the point x0:

gC.O.D.(x0, x1, a, w) =
2
E′

∫ a

max(x0,x1)
gSIF (x0, a

′, w)gSIF (x1, a
′, w)da′ (7.1.21)

Calculating now the C.O.D. at the point x1 of the crack face due to a continuous distribution
of pressure φ(x) over the faces of the crack (we neglect the index of u because is not useful
any more) we obtain

u(φ, x, a, w) =
∫ a

0
gC.O.D.(x0, x1, a, w)dx0 (7.1.22)

or, by using Eq.7.1.21

u(φ, x0, a, ) =
2
E′

∫ a

0
φ(x0)

(∫ a

max(x0,x1)
gSIF (x0, a

′, w)gSIF (x1, a
′, w)da′

)
dx0 (7.1.23)

which can be written in the following final form

u(φ, x0, a, ) =
2
E′

∫ a

max(x0,x1

[∫ a′

0
gSIF (x0, a

′, w)φ(x0)dx0

]
gSIF (x1, a

′, w)da′ (7.1.24)

The last expression allows one to calculate the C.O.D. in any point along a given fracture
within a body undergoing a load σ∞ far from the crack region and a load φ(x′) on the fracture
faces.
Since the C.O.D is in general taken from the middle plane of the fracture, for the reasons of
notations we take g(x, a, w) = 2gSIF (x1, a, w), thus obtaining

u(x, a, w) = u∞ − 4
E′

{∫ a

x

[∫ a′

0
g(x′, a′, w)φ(x′)dx′

]
g(x, a′, w)da′

}
(7.1.25)
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where

u∞(x, a, w) =
4
E′

{∫ a

x

[∫ a′

0
g(x′, a′, w)σ∞(x′)dx′

]
g(x, a′, w)da′

}
(7.1.26)

Notice that considering a system of cylindrical coordinate (r, θ, z), changing a′ with s, the
name of the weight function g with h

2 and taking φ(x′) = σm
z (r) the Eq.7.1.25 becomes exactly

the Eq.7.1.3 previously presented (u∞ = 0 because there is not remote load).

7.1.5 Determination of the weight function associated to the reinforced

cylindrical specimen geometry

In the previous paragraphs has been illustrated how it is possible calculate the C.O.D. of a
fracture via the weight functions method. Using this method it is indispensable for determin-
ing the weight function associated to the considered geometry.
As said before, the weight function g(x, a) can be interpreted as the Green’s function for a
stress intensity factor problem. This means that the weight function corresponds to the stress
intensity factor (SIF) KI caused by a pair of normal forces P (P = 1) acting at the point x′.
If we express the single force P in terms of the Dirac delta function by a stress distribution

φ(x) = Pδ(x− x′) (7.1.27)

and introduce this into Eq.7.1.6, we obtain:

KI = P

∫ a

0
g(x, a)δ(x− x′)dx = Pg(x′, a) (7.1.28)

and for a unit force
KI = g(x′, a) (7.1.29)

By using this relation the problem of finding the weight function for a specific geometry is
then changed into the calculation of the stress intensity factor for the same geometry. This
is very useful in all the cases where an analytical expression of the weight function is not
known but has to be determined. In fact, by mean of finite element (FE) simulations the
stress intensity factor can be easily identified becasue the values of KI are directly provided
by the numerical model.
For the particular case of the cylindrical reinforced specimen used in this work, no calculation
of the weight function is reported in the literature. It is then necessary to use the FE analysis
to obtain one possible expression for the Green’s function of this specimen.
There are many books [27, 79] and reference articles [46, 50, 54, 81] where it is possible to
find suggestions or indications suggesting the mathematical form that is more adapted to this
geometry. In this case KI should be calculated using the following formula [79]:

KI =
2P√
πa

H
(

c
a , a

w

)
(
1− a

w

) 3
2

√
1−

(
a
w

)2 = Pg(
c

a
,
a

w
) , P is a concentrated force (P = 1)

(7.1.30)
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where

H
( c

a
,
a

w

)
= h1

( a

w

)
+ h2

( a

w

)( c

a

)
+ h3

( a

w

)( c

a

)2
+ h4

( a

w

)( c

a

)3
(7.1.31)

and hi are polynomials of the fifth order

hi =
5∑

k=0

mi,k

( a

w

)k
, i = 1, 4 (7.1.32)

The geometrical parameters used in Eq.7.1.30 can be found in Fig.7.6 where the load position
x′ has been indicated by c. To define the exact form of the function H (and then hi) it is

Figure 7.6: Reinforced cylindrical specimen modeled to calculate the weight function.

necessary to use a finite element model to calculate the stress intensity factor KI at a given
point close to the crack tip for different combinations of the ratios

(
c
w

)
and

(
a
w

)
varying in an

established range compatible with the dimension of the specimen. When KI is determined,
by using Eq.7.1.30 also the corresponding value of H can be easily calculated. In particular,
at each fixed value of

(
a
w

)
, the FE model provides the value of KI at every corresponding

variation of
(

c
w

)
. This way, H can then be drawn as a function of

(
c
a

)
ant any

(
a
w

)
(i.e. at

each fixed crack length aT ). Solving the system

1
(

c1
aT

) (
c1
aT

)2 (
c1
aT

)3

1
(

c2
aT

) (
c2
aT

)2 (
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)3
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(
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h3
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(
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)
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(
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w

)
.....

.....
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H
(
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w

)


(7.1.33)
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the function hi can be described as a function of
(

a
b

)
and finally calculated by the determina-

tion of the coefficients mi,k as suggested in Eq.7.1.32 via a simple polynomial interpolation.
It is important to notice here that the system 7.1.33 is an over-determined system (we have
more equations that unknowns); its solution is thus obtained via a minimization procedure
(least square fit) in order to reduce the numerical error in the determination of the coefficients
hi.
With reference to the cylindrical specimen used in the tests of Chapter five and six, it has
been simplified by modeling the geometry by an axisymmetric model Fig.7.7 (more details
on the model itself will be given in the subsequent section). It is important to underline that

Figure 7.7: a) One eighth of the 3-D view of the cylindrical specimen. The simulated rz-plane
is highlighted with bold lines. b) Example of the mesh in the model. The applied symmetry
conditions are indicated by using triangular symbols.

particular attention has been taken to mesh the region around the application point of the
force P and around the crack tip, in order to increase the precision in the calculation of the
desired quantities (see Fig.7.7b)).
The length of the fracture aT is chosen to vary between 2.5 mm and 11 mm (conforming to
the experiments presented in Chapter 6), so the corresponding range of

(
a
w

)
is taken between

0.2 and 0.88. The step depends on how many points of measure are needed to make the
calculations sufficiently accurate. At each value of

(
a
w

)
,
(

c
a

)
is varied between 0.15 and 0.9,

so at any corresponding length of fracture a it is necessary to vary the position of c of the
dipole of charges P to obtain the desired ratio for

(
c
a

)
. At any combination of c and a the FE

model provides the value of KI along a given path around the crack tip (Fig.7.8). By using
the finite element simulations the system 7.1.33 can be completed. Finally their solutions
allow to find the function H and hi (Fig.7.9 and Fig.7.10). The polynomial fit of the data
plotted in Fig.7.10 as expressed in Eq.7.1.32, gives the values of the coefficients mi,k Table
7.1. The complete analytical expression of the functions hi have been obtained and presented
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Figure 7.8: Particular of the mesh implemented in the FE model used to calculate the value
of KI . The J-contour integral based on the Virtual Crack Extension Method approach is the
routine used by the FE codes to calculate KI .

Figure 7.9: Evolution of H as a function of
(

c
a

)
for different values of

(
a
b

)
.
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Figure 7.10: The different evolutions of the functions hi for the considered configuration.

mi, k

0.01691 -0.00633 -0.01354 -0.07338 -0.07601 -0.02592
-0.05924 0.58313 -2.19723 3.94309 -3.38017 1.10485
0.13688 -1.40646 5.28842 -9.50370 8.19110 -2.70225
-0.10356 1.04646 -3.93487 7.04412 -6.09661 2.03193

Table 7.1: Coefficients mi,k determined to fit the functions drawn in Fig.7.10.
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in Eq.7.1.34

h1 = 0.01691− 0.00633
( a

w

)
− 0.01354

( a

w

)2
+ 0.07338

( a

w

)3
− 0.07601

( a

w

)4
+ 0.02592

( a

w

)5

h2 = −0.05924 + 0.58313
( a

w

)
− 2.19723

( a

w

)2
+ 3.94309

( a

w

)3
− 3.38017

( a

w

)4
+ 1.10485

( a

w

)5

h3 = 0.13688− 1.40646
( a

w

)
+ 5.28842

( a

w

)2
− 9.50370

( a

w

)3
+ 8.19110

( a

w

)4
− 2.70225

( a

w

)5

h4 = −0.10356 + 1.04646
( a

w

)
− 3.93487

( a

w

)2
+ 7.04412

( a

w

)3
− 6.09661

( a

w

)4
+ 2.03193

( a

w

)5

(7.1.34)
By combining Eq.7.1.34, Eq.7.1.31 and Eq.7.1.32 the explicit expression of g(x, a) can be
finally retrieved.
In particular, it is easy to calculate the analytical expression of the function H in the limiting
cases corresponding to

(
a
w

)
→ 0 and

(
a
w

)
→ 1. In the first case we have

H = m1,0 + m2,0

( c

a

)
+ m3,0

( c

a

)2
+ m4,0

( c

a

)3
(7.1.35)

while for
(

a
w

)
→ 1, the function H assumes the following form:

H =
5∑

k=0

m1,k +
5∑

k=0

m2,k

( c

a

)
+

5∑
k=0

m3,k

( c

a

)2
+

5∑
k=0

m4,k

( c

a

)3
(7.1.36)

7.1.6 The virtual crack extension method to compute KI: stiffness deriva-

tive formulation

The Virtual Crack Extension approach was one of the first FE methods used to inferring
energy release rate in elastic bodies. It can be also used in the case of non-linear behavior
and large deformations at the crack tip.
Consider a two-dimensional cracked body with unit thickness subjected to Mode I loading.
The potential energy of the body, in terms of the finite element solution, is given by

Π =
1
2
[u]T [K][u]− [u]T [F ] (7.1.37)

where Π is the potential energy, [u] the global displacement, [K] the stiffness matrix and [F ]
the global force applied to the structure. We recall here that the energy release rate can be
defined [4, 42] as the derivative of Π with respect to crack area s, for both fixed load and
fixed displacement conditions. In particular for fixed load conditions (more convenient in this
instance), we have for G

G = −
(

∂Π
∂s

)
load

= −∂[u]T

∂s
([K][u]− [F ])− 1

2
[u]T

∂[K]
∂s

[u] + [u]T
∂[F ]
∂s

(7.1.38)

Because in the FE formulation we have [K][u] = [F ], the first term in Eq.7.1.38 must be zero.
In the absence of tractions on the crack face, the third term also vanishes, since load are held
constant. Thus the energy release rate is given by

G =
K2

I

E′ = −1
2
[u]T

∂[K]
∂s

[u] (7.1.39)
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This way, the energy release rate is proportional to the derivative of the stiffness matrix with
respect to the crack length.
Suppose that we have generated a finite element mesh for a body with crack length a and
we wish to extend the crack by ∆a. It would not be necessary to change all of the elements
in the mesh; we could accommodate the crack growth by moving elements near the crack tip
and leaving the rest of the mesh intact. Fig.7.11 illustrates such a process, where element
inside the contour Γ0 are shifted by ∆a, and elements outside the contour Γ1 are unaffected.

Figure 7.11: Virtual crack extension method working principle: a) initial conditions and b)

after virtual crack advance [4].

Each of the elements between Γ0 and Γ1 is distorted, such that its stiffness changes. The
energy release is related to this change in element stiffness:

G = −1
2
[u]T

(
Nc∑
i=1

∂[ki]
∂a

)
[u] (7.1.40)

where [ki] are the elemental stiffness matrices and Nc is the number of elements between the
contour Γ0 and Γ1. Parks [59] demonstrated that Eq.7.1.40 is equivalent to the J-integral.
The value of G (or J) is independent of the choice of the inner and outer contours.
It is important to note that in a virtual crack extension analysis, it is not necessary to
generate a second mesh with a sightly longer crack. It is sufficient merely to calculate the
changes in element stiffness matrices corresponding to shifts in the nodal coordinates. One of
the problems with the stiffness derivative approach is that it involves cumbersome numerical
differencing. Nevertheless, though more recent formulations of the virtual crack extension
method overcome these difficulties, it remains the basis for calculating the SIF of cracked
bodies by using FE method.

7.2 FE analysis of residual stresses

The main application of FEM analysis in this work is the determination of the complete resid-
ual strain field generated during the polymerization process within a SFC specimen based on
the experimental results obtained from the FBGs. The commercial FEM code Abaqus [38] is
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used for simulations.
As indicated in Fig.7.12a) the specimen is considered to be cylindrical fiber-reinforced com-

Figure 7.12: a) Scheme of the two-phase composite modeled in the present analysis and b)

the associated 2-D section meshed with axisymmetric elements.

posite consisting of two concentric cylinders. The fiber is the central cylinder of radius
rf = 0.0625 mm. The matrix domain corresponds to the annulus of inner radius rf and
outer radius rm=12.5 mm. The fiber and the matrix are considered to have a perfect inter-
face. In particular, for the two materials, the stress equilibrium equations are written in the
cylindrical coordinate system (r, θ, z) shown in Fig.7.12a) as follows

1
r

∂(rσ(i)
rr )

∂r
+

∂τ
(i)
rz

∂z
− σθθ

r
= 0

1
r

∂(rτ (i)
rz )

∂r
+

∂σ
(i)
zz

∂z
= 0

i= m,f (7.2.1)

7.2.1 The axysimmetric model

Due to the simple geometry of the considered specimen, an axisymmetric finite element model
is used to retrieve the residual strain state in the specimen. The assumed axisymmetric mode
of deformation states that the non-zero stress components (σr, σθ, σz, τrz) and displace-
ment components (ur, uz) do not vary with θ. The problem can be then considered as
two-dimensional and only the rz-plane shown in Fig7.12b) needs to be meshed. Along the
longitudinal and transversal directions, the matrix domain is discretized into 300 × 300 el-
ements. For the fiber 300 × 30 elements are used. The mesh is constructed with 8-node
quadratic axisymmetric quadrilateral elements and is refined toward the ends and at the
fiber-matrix interface to accommodate potentially strong variations of the field quantities. In
addition, different types of mesh and elements have been compared to check their influence
on the simulation results.
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The constitutive law that governs the behavior of the model is based on relation 7.1.1 where
the function Sm(r, z) is given by 7.1.2. We are reminding that the optimized coefficients
a, b, c, d can be found using a procedure the minimizes the difference between the calculated
and measured strains along the grating. Moreover, the stresses calculated with the model
have also to match the experimental stress evolutions presented in Fig.6.7.
In order to correctly describe the overall residual stress field within the specimen, it is also
necessary to calculate the function f(r) in Eq.7.1.2. As indicated in the first paragraph of this
chapter the form of f(r) is calculated by interpolating the derivative of the C.O.D. sketched
in Fig.7.1.3. In particular it is found that a polynomial of the sixth order is enough to fit the
first derivative of the crack opening displacement, namely

f(r) = a′ + b′
(

r

rm − rf

)
+ c′

(
r

rm − rf

)2

+ d′
(

r

rm − rf

)3

+ e′
(

r

rm − rf

)4

+

+f ′
(

r

rm − rf

)5

+ g′
(

r

rm − rf

)6
(7.2.2)

The best values found for the parameters a, b, c, d and a′, b′, c′, d′, e′, f ′, g′ are reported in Table
7.2 and in Table 7.3 respectively.

a b c d

2.1 0.014 -6.42 0.00015

Table 7.2: Coefficients a, b, c, d used in the function Sm(r, z).

a′ b′ c′ d′ e′ f ′ g′

5.6 3 -317 1342.2 -2345.8 1897.2 -585.5

Table 7.3: Coefficients a′, b′, c′, d′, e′, f ′, g′ used in the function Sm(r, z).

The complete expression of the function Sm can be retrieved and then used in the finite element
model to describe the strain and the stress fields within the whole cylindrical specimen.
The simulated strain distribution along the fiber for the specimen S1 is presented in Fig.7.13
and as expected, it correctly matches the experimental measurements. In Fig.7.14 and in
Fig.7.15 the simulated stress distribution σm

z (r) has been obtained when the function R(r)
in the expression of Sm in taken constant (i.e. d = 0) or in its general form (d 6= 0). This
indicates that, for the considered geometry, only the axial function Z(z) plays a significant
role in the characterization of the matrix shrinkage effect. In particular if the radius of the
cylinder is reduced to 4 mm the function Z(z) correctly fits the experimental results without
an appreciable difference (see 7.16). Nevertheless in a region close to the fiber (see 7.15) the
radial dependence of the function Sm helps in reducing the error between the numerical and
the experimental results. Finally, Fig.7.17 summarizes the radial dependency of the transverse
field at z = 0 that is in relatively good agreement with available results in the literature [43].
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Figure 7.13: Comparison between the experimental (black line) and the numerical (grey line)
axial strain distribution for the specimen S1.

Figure 7.14: The experimental stress evolution σm
z (r) (dotted line) is compared with the

numerical evolution when R(r) is taken in its general form or when the radial effect is neglected
(dashed line).
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Figure 7.15: Particular of the Fig.7.14 where is highlighted the effect on the stress evolution
due to introduction of a radial effect in the general expression of Sm.

Figure 7.16: Evolution of the axial stress distribution as a function of the specimen radius.
The distribution obtained for the bigger and smaller radius are compared with those ones
calculated via the C.C. method.
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To have another independent experimental result to guaranty the quality of the numerical

Figure 7.17: Axial and transversal stress evolutions in the plane z = 0.

simulation, after the post-cure treatment the deformed shape of the cylindrical specimen S1
has been reconstructed by using a Coordinate Measuring Machine (CMM) (Fig.7.18 a)) with
a resolution of µm and is compared with FE prediction. As shown in Fig.7.18 b), even if
some differences (generally at the ends of the specimen) are present due to the simplified
assumption used in defining Eq.7.1.2 (i.e. the variable separation is likely valid only at the
center of the specimen) the simulated data are in good agreement with the measured ones.

7.2.2 The fiber-matrix interface shear stress

In Fig.7.19, the shear stress τr,z(z) is plotted at the fiber matrix interface for the specimen
S1. The plot clearly shows higher shear stresses towards the free surface. That is the region
where the fiber intersects the specimen free ends. Note that the maximum shear value reached
generally increases as long as the FE mesh is simply refined towards the end in the region of
singularity. This is an example of a classical numerical problem that arrives when using the
finite element approach.
Nevertheless, from a physical point of view, the shear stress has to be exactly zero on the
free surface, otherwise the model solution is acceptable only at a certain distance from the
specimen ends.
It is sometimes possible to correct this problem by using singular elements ([38]), whose inter-
est is to eliminate the singularity, providing thus a valid finite value of the desired quantity.
This requires the a priori knowledge of the order of singularity at the point of interest. When
the singularity’s order is unknown it is possible to obtain the desired shear stress value by
using a sufficiently refined radial mesh centered at the point of singularity as indicated by
Kovalev [47]. Even if the number of elements in this last case is higher than that used in the
case of the singular elements, the problem of the singularity can be eliminated. In our case we
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Figure 7.18: a) Photo of a coordinate measuring machine. b) Comparison between the
simulated and the measured cylindrical profile by CMM.

Figure 7.19: Evolution of the fiber/matrix interface shear stress. The mesh refinement of
Kovalev (insert) has been used to catch the correct shear distribution at the specimen end.
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have adopted the mesh refinement suggested by Kovalev. The benefits are visible in Fig.7.19
where the distribution of the shear stress is correctly matched by the model; the shear stress
drops in fact to zero at the specimen ends.

7.3 Finite Element modeling of the longitudinal crack

Since the introduction of the longitudinal crack breaks the axial symmetry of the specimen S1
(see the insert of Fig.6.9), a more complex 3-D mesh of S1 is required to explain the measured
axial strain relaxation along the grating. Nevertheless, taking into account the symmetries
along the axial direction and the crack plane, only a quarter of the cylinder need to be meshed
(Fig.7.20).

Figure 7.20: A quarter of the 3-D model used to simulate the effect of the longitudinal crack.

The mesh is constructed with 20-node quadratic hexaedric elements for the matrix and with
15-node quadratic triangular prisms for the fiber. As in the axisymmetric case, the mesh
is refined towards the ends of the specimen and in the fiber region in order to capture any
variations of the field quantities.
Based on the superposition principle, (see insert of Fig.7.21) the strain distribution due to the
longitudinal crack has been calculated as the difference between the one obtained with the
un-cracked 3-D model (subjected to the function Sm(r, z)) and the one due to relaxed hoop
stress εθ(r) imposed along the crack surfaces.

Note that the hoop stress evolution εθ(r) is numerically identified via the finite element
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Figure 7.21: Complete strain evolution simulated without longitudinal cut (continuous line)
and with a cut of depth aL = rm − 2rf (dashed line). The axial relaxation corresponds to the
one measured by the FBG.

analysis dealing with the axisymmetric model (see. Fig.7.17). In particular

εr(r, z = 0) = p
r2
f

r2
m − r2

f

r2
e − r

r2
Lamé, 1852 (7.3.1)

where p is the constant radial pressure applied at the fiber/matrix interface and equal to 13
MPa. As shown in Fig.7.21 finite element simulations indicate an axial strain strain relaxation
of about 170 µm in the central region of the specimen. As expected, the compressive stress
due to the matrix shrinkage is not equally distributed on the fiber surface (θ dependency).
Consequently the cylindrical specimen is subjected to a bending which slightly deforms the
fiber and relax the strain, overall in a region of 6 mm length close to the plane z = 0 (see
Fig.7.22). The strain variation calculated by the model is 165-175 µm, which is compatible
with that measured by the FBG sensor. A difference of 10 % is observed between the numerical
and the experimental results. It can be attributed to an imperfect alignment of the fiber
along the axial direction or by some possible changes in the interface properties between the
epoxy matrix and the glass fiber produced during the cutting process or during the bending
deformation.
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Figure 7.22: Component in the x-direction of the fiber displacement after machining the
longitudinal crack.



Chapter 8

Analytical modeling of residual

stresses

Composite materials are inherently inhomogeneous, in term of both elastic and inelastic prop-
erties. One consequence of this is that, on applying a load, a non-uniform distribution of stress
is set up within the composite. Much effort has been devoted to understanding and predicting
this distribution, as it determines how the material will behave and can be used to explain the
superior properties of composites over conventional material. In this chapter a brief survey is
given of the methods used for modeling the residual stress distribution in composites. These
techniques range widely in nature and complexity. Some are more suited for certain types of
composites and attention is drawn to areas of particular relevance to fiber-reinforced polymer
matrix composites.
Even though the presented models may involve mathematical approximations ranging from
the good to a very poor they generally present the capability of well estimating the partition-
ing of load between the constituents of composites subjected to external load. In the same
time the analytical model solutions can be used as an ulterior verification of the finite ele-
ment results. Moreover, even if the analytical models are rather limited in terms of properties
which can predict or are computationally daunting, they generalize many problems dealing
with residual stresses providing solutions applicable to different experimental cases. Never-
theless the experimental information remains particularly important because it represents the
final validation of the analytical model prediction.

8.1 The concentric cylinder model of Y. Mikata and M. Taya

In their original approach, Mikata and Taya [56] have studied the general stress field in a
coated continuous fiber composites represented by a four-phase model that consists of fiber,
coating, matrix, and the remaining surrounding composite body. The composites is then sim-
ulated by four concentric long circular cylinders as shown in Fig.8.1. The surrounding body
with the composite properties (outermost cylinder), matrix, coating, fiber (innermost cylin-
der) are denoted by domain, 1,2,3 and 4 respectively, and their radii by r1, r2, r3 and r4. The
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diameter of the fiber and matrix (including a coated fiber) are denoted by d, D respectively
and the coating thickness by c. Since the surrounding body is assumed of infinite dimension,

Figure 8.1: Four-phase model [56].

r1 will be considered infinite at the end of the formulation. Moreover, the concentric material
are regarded as infinitely long also in the axial direction z, thus meaning that the region of
interest is assumed to be sufficiently far from the ends to ensure a generalized plane strain
mode of deformation.
The general solution of the problem is calculated when the entire body (four cylinders) are sub-
jected to three independent boundary conditions, axysimmetric temperature change, ∆T (r),
uniaxial applied stress σ0z and biaxial applied stress σ0r where r and z are the radial and
axial components referred to cylindrical coordinates (r, θ, z). In general, all the materials are
assumed to be transversely isotropic both in stiffness and thermal expansion, where (r, θ)
corresponds to the transverse plane. As a special case, an explicit close form solution is given
considering a uniform temperature change ∆T applied to a continuos fiber embedded in an
infinite matrix. In this extreme case, the materials used in the two-phase model are taken
isotropic homogeneous.
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For the nth domain the general equilibrium equations are given by

1
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(8.1.1)

Due to the axisymmetry of the problem (i.e.the considered geometry is symmetric respect to
the z-axis as are the applied forces and/or displacement), the displacement field in the nth

domain can be expressed as

u(n)
r = un(r)

u
(n)
θ = 0

u(n)
z = wn(z)

(8.1.2)

Taking into account the stress-strain relations and the strain-displacement relations, via a
substitution one obtains the following stress-displacement equations:
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(8.1.3)

where
β

(n)
1 = (C(n)

11 + C
(n)
12 )αnT + C

(n)
13 αnL

β
(n)
3 = 2C

(n)
12 αnT + C

(n)
33 αnL

(8.1.4)

with C
(n)
i,j elastic constant of the nth material and αnT and αnL the thermal expansion coeffi-

cients of the nth material along the transverse (r) and longitudinal (z) direction respectively.
The governing equations of the problem can be derived in term of displacement from Eq.8.1.1
and Eq.8.1.2 obtaining thus

d2un

dr2
+

1
r

dun

dr
− un

r2
= ln

dTn
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d2wn
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(8.1.5)

where

ln =
β

(n)
1

Cn
11

(8.1.6)
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The boundary conditions for this problem are given by:

σn
rr = σ0r, at r = r1

u1 = u2, w1 = w2, σ(1)
rr = σ(2)

rr , at r = r2

u2 = u3 w2 = w3, σ(2)
rr = σ(3)

rr , at r = r3

u3 = u4 w3 = w4, σ(3)
rr = σ(4)

rr , at r = r4

(8.1.7)

∫ r4

0
σ(4)

zz rdr +
∫ r3

r4

σ(3)
zz rdr +

∫ r2

r3

σ(2)
zz rdr +

∫ r1

r2

σ(1)
zz rdr = +

∫ r1

0
σ0zrdr (8.1.8)

The general solution to Eq,8.1.5 if given by

un(r) = Anr +
Bn

r
+

r

2

∫
gn(r)dr − 1

2r

∫
r2gn(r)dr

wn(z) = Hnz + Fn

(8.1.9)

where An, Bn,Hn and Fn are unknown constants which will be determined considering the
appropriate boundary conditions, Eq.8.1.6 and Eq.8.1.7, while gn(r) = ln

dTn
dr . More details

on the solution process exposed by Mikata and Taya can be directly found in their paper and
in the cited references.
More attention has to be paid to the explicit close form solution proposed in the case of a
single inhomogeneity problem (i.e. continuous fiber embedded in an infinite matrix) because
allows a direct comparison between the results of the present analysis and those obtained by
the finite element model exposed in chapter 7.
To this end, we consider the case of uniform temperature change ∆T . The domains of
the matrix, fiber and the radius of the fiber are denoted by 1,2 and r2, respectively. The
displacement and the stress fields in each domain are now expressed as
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(8.1.10)
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When the material 1 and 2 are isotropic both in stiffness and in thermal expansion the
following relations have to be satisfied by the coefficients

C
(1)
11 = C

(1)
33 = 2µ1 + λ1, C

(1)
12 = C

(1)
13 = λ1

C
(2)
11 = C

(2)
33 = 2µ2 + λ2, C

(2)
12 = C

(2)
13 = λ2

α1T = α1L = α1, α2T = α2L = α2

β
(1)
1 = β

(1)
3 = (2µ1 + 3λ1)α1, β

(2)
1 = β

(2)
3 = (2µ2 + 3λ2)α2

(8.1.12)
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where µ1, λ1, α2 and µ2, λ2, α2 are Lamé constants and the thermal expansion coefficient
of the materials 1 and 2 respectively. In particular we remind that the Lamé coefficients are
related to the Young modulus (E) and to the Poisson ratio (ν) of the material by the following
relations:

λi =
Eiνi

(1 + νi)(1− 2νi)

µi =
Ei

2(1 + νi)

i=1,2 (8.1.13)

A substitution process permits to find that

A1 = H = α1∆T
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2

(8.1.14)

Finally, taking into account the previous relations, the expressions giving the stresses in two
constitutive phases of the composite under consideration are
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(8.1.15)

The axial residual stress σf
z (r = 0, z) predicted by the finite element model and due to the

matrix shrinkage effect (function Sm) is then compared with the distribution provided by the
last equation in 8.1.15, where in the term (α1 − α2)∆T , α2 is assumed equal to zero because
the fiber is free of residual stresses.
The two distributions of stresses along the fiber is given in Fig.8.2. Even though the problem
developed and solved by Mikata and Taya is only an ideal treatment of our case because
the real specimen has a finite dimensions, a good agreement is presented in a region of 20
mm length at the center of the cylinder. This is an indirect confirmation of the fact that at
the center of the sample a plane strain mode of deformation can be reasonably assumed to
describe the behavior of the composite. In fact, if in its central section the real cylinder is
modeled by a 2-D generalized plane strain model where the function Sm is substituted by its
constant value of −6000µm, it easy to verify that the numerical radial distribution of stresses
exactly corresponds to that one given by the first relation in Eq.8.1.15.
This affirmation has another important consequence: if the cylindrical fiber reinforced speci-
men is viewed as a holy cylinder where the inclusion is substituted by an equivalent pressure
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Figure 8.2: Simulation of the axial stress distribution along the fiber. Comparison with the
model of Mikata and Taya

p which represents the presence of the fiber, the same radial evolution can be expressed as
(Eq.7.3.1):

σrr(r, z = 0) = p
r2
f

r2
m − r2

f

r2
e − r

r2
Lamé, 1852 (8.1.16)

that for an infinity matrix becomes

σrr(r, z = 0) = p
r2
f

r2
(8.1.17)

On the other hand, taking into account the analogy between the residual stress problem and
its analysis via an equivalent thermo-elastic approach using the shrinkage function Sm, along
the circular section z=0 of the cylindrical specimen the first relation presented in 8.1.15 can
be written as:

σ(1)
rr =

µ1(2µ2 + 3λ2)
µ1 + µ2 + λ2

Sm(r = rf , z = 0)
r2
2

r
(8.1.18)

Finally, by comparison of the two last relations, we arrive at this important result

µ1(2µ2 + 3λ2)
µ1 + µ2 + λ2

Sm(r = rf , z = 0) = p (8.1.19)

This equation clearly states that the pressure acting transversally to the fiber-matrix interface
and due to the presence of the inhomogeneity (the reinforcing fiber) can be directly calcu-
lated from the material properties of the composite constituents and the FBG measurements.
Moreover, this result can be also verified by using the FE simulations. In this last case the
numerical pressure is found to be equal to 13.056 MPa while experimentally p results equal
to 12.999 MPa thus demonstrating the validity of Eq. 8.1.19
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8.2 The asymptotic solution based model of E.S. Folias

Though the model proposed by Mikata and Taya permits a verification of the FE prediction
at the center of the modeled specimen their results are not applicable to fiber of finite length
such as used in the fiber pull- and push-out test. On the other hand, the analysis developed
by Folias provides a verification of the model prediction at the two ends of the specimen since
it gives an approximation of the shear stress distribution along the fiber matrix interface. In
particular, utilizing the form of a general 3-D solution, the author investigates (exclusively at
the analytical level) the whole stress field in the neighborhood of the intersection of a cylindri-
cal inclusion and a free surface Fig.8.3. The inclusion is assumed to be of a homogeneous and

Figure 8.3: Geometrical and loading configurations [32].

isotropic material and the problem solution is obtained when it is embedded in an homoge-
nous plate of arbitrary thickness. The stress field is induced by uniform tension applied on the
plate at point far remote from the inclusion even if a generalization to a thermo-mechanical
load would be possible only modifying the stress-strain relation. Nevertheless, the analysis
revealed that the stresses at the corner (see Fig.8.4) is proportional to %α−2 where % is the
radius from the corner and α represents the order of singularity of the field. In particular,



86 CHAPTER 8. ANALYTICAL MODELING OF RESIDUAL STRESSES

the characteristic values of α only depend on the material properties of the composite’s con-
stituents. In the subsequent a simple introduction on the key points of the model will be

Figure 8.4: Definition of local coordinates system in the region of interest [33].

illustrated, while for more mathematical details we directly send to the original article [32]
and to the related references.
The main objective of the Folias analysis was to derive an asymptotic solution (describing the
stress and the strain fields) valid in the immediate vicinity of the corner points where the in-
terface meets the free surface of the plate. For this purpose, the complementary displacement
field is assumed to have the following form in the two constituents (matrix and fiber):
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where the functions f
(k)
1 and f

(k)
1 are three dimensional harmonic functions. In particular it

is assumed that:
f

(k)
j = r−1/2H

(k)
j (r − a, h− z)e(i2θ) (8.2.2)
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Considering now a convenient change in the local coordinate system (see Fig.8.4), the last
relation can be written as follow
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Under the assumption that the radius of the inclusion is sufficiently large, so that the condition
% � a is meaningful, the solution is chosen to be of the following form:

H
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j =

∞∑
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%α+nF k
jn(φ), with α appropriate constant (8.2.5)

Omitting the tedious and rather complicated mathematical procedure, it is finally possible to
construct the following series expansion in ascending power of %
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In particular all terms up to the order O(%α−2) are satisfied if one assumes that
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and similarly, the displacement and boundary conditions at the cylindrical surface are verified
if also the subsequent combination vanishes
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where for simplicity it is defined

β ≡ 1− 2νm

1− 2νf

µf

µm
(8.2.9)

The characteristic value α may now be determined by setting the determinant of the alge-
braic system 8.2.7-8.2.8 equal to zero. Once the roots have been determined, the complete
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displacement and stress fields can be constructed in ascending powers of %. The stress field
given in the term of the local system of coordinates indicated in Fig.8.4 is reported below.
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or in summary

σ
(m)
i,j = %(α−2)F (φ, θ) (8.2.11)

In particular for the case of only one fiber embedded in the matrix the value of n is 0.
Moreover, after the examination of the stress field, the analysis clearly shows that in the
neighborhood where the fiber meet the free surface the stress evolves proportionally to %(α−2)

and that, for certain material properties, it may become singular.
Following the Folias procedure (i.e. solving the system given by 8.2.7 plus 8.2.8), the char-
acteristic value of α corresponding to the cylindrical geometry and material properties of the
specimen analyzed in this work is found to be 1.62948.
This pure analytical solution is compared with the same value of singularity that corresponds
to the distribution of shear given by the FE model (Fig.7.19). In fact the numerical value of α

can be easily extracted from the numerical solution because simply corresponds to the slope
of the shear distribution τnumerical

rz (z) when plotted in a log-log scale. This value is 1.6232
showing a very good agreement (the difference is of the order of 1,6%) with the analytical
solution of Folias.
The two distributions are plotted in Fig.8.5 with the zone of superposition between the curves
included in a circle. Unfortunatly, even if the model of Folias represents a good step towards
the exact characterization of the shear stress distribution, the proposed models fails at the
very ends of the specimen since the analytical distribution doesn’t return to zero (as it has
to physically). The singularity problem remains thus confining the asymptotic solution in a
region at a certain distance from the entry singular point % = 0.
A possible solution to this important question will be exposed in the next paragraph with the
energetic approach of Quek.

8.3 The energetic approach of M.Y. Quek

As we have seen before, several methods have been developed or are suited for characterize
thermal residual stresses in a single fiber composite specimen. These include finite element
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Figure 8.5: Comparison between the shear distribution of stresses provided by the FE model
(continuous line) and the asymptotic approach (dashed dotted line) adopted by Folias along
the fiber-matrix interface of the cylindrical specimen.

method, cylinder theory in which thermal stresses are determined for an infinitely long fiber
surrounded by a matrix, elasticity solution and so on. The theoretical model proposed by Quek
and developed for the analysis of the thermal stresses in fiber of finite length is based on the
complementary energy approach, in particular on the minimization of the total complementary
energy of the system. These direct method where the forces and not the displacements
are treated as unknowns is preferable because it doesn’t require the use of assumed high-
order displacement fields to obtain greater accuracy in the stresses reducing the problem’s
complexity considerably. In Fig.8.6 is presented the geometry and the system of coordinates
adopted by Quek in his analysis. In the present approach, the complete axisymmetric state

Figure 8.6: The composite specimen used by Quek in its thermal stress problem [66].
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of stress in the fiber and matrix is derived by assuming stress functions

φf = f1(r)g1(z) + h1(z)

φm = f2(r)g2(z) + h2(z)
f and m state for fiber and matrix respectively (8.3.1)

which are not known a priori. The function fi(r) (i = 1, 2) are functions of the radial direction
r, and gi(z) and hi(z) are functions of the axial direction z only. Moreover they exactly satisfy
the equilibrium equations in the fiber end in the matrix domain.
In terms of the Airy stress function, the stresses in the composite constituents can be expressed
as
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Utilizing the free state of stress at the matrix surface and enforcing stress continuity at the
fiber-matrix interface, the number of unknown function can be reduced to f1(r), f2(r) and
g1(z). The unknown functions f1(r) and f2(r) can be obtained in terms of a constant C1 by
applying the appropriate boundary conditions that is fiber and matrix axial stress maximum
at the plane of symmetry and zero at the ends of the composite. The function g1(z) is finally
determined by minimizing the total complementary energy in the fiber and matrix. Once
these functions are known the axial, radial and the shear stress evolution at the fiber matrix
interface can be easily retrieved by a substitution process.
Following the procedure indicated by the author the thermal stresses induced in the fiber and
in the matrix are found to be:
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for the matrix (8.3.4)

where γ = (a2/(b2 − a2)) and C1 is a constant. A first observation can be done: comparing
the first equation of 8.3.3 and 8.3.4 we retrieve the relation 6.2.2, which states that the axial
evolutions of stresses in the fiber and matrix are proportional and are constant all along any
transversal plane. We have experimentally and numerically demonstrated that this affirmation
is valid only for short matrix radii and fails when the radius is greater than 6 mm (at least in
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the case of a SFC specimen). In view of this, the comparison between the FE model and the
analytical approach of Quek has a sense only if it is done in a region close to the reinforcing
fiber.
In the following, the composite’s constituents will be considered homogeneous and isotropic
with a linear elastic behavior. The thermo-elastic strain-stress are:
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(8.3.5)

where µ, E and ν are the shear modulus, modulus of elasticity and Poisson’s ratio, respectively.
The two unknowns that remain to determine are the constant C1 and the function g1(z). The
solution to g1(z) may be obtained by minimizing the total complementary energy

Π∗ = U∗ + V ∗ (8.3.6)

where U∗ is the complementary strain energy and V ∗ is the complementary potential energy
of an eventual load externally applied. In the present case, since the surface of the matrix
and the ends of the fiber are free of any traction, V ∗ is equal to zero.
The total complementary energy then reduces to the complementary strain energy only, and
can be expressed as
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(8.3.7)

Taking into account 8.3.3, 8.3.4 and 8.3.5 and performing the integration with respect to r,
the expression for U∗ may be written as

U∗ = 2π

∫ ∫ ∫ L

0
F [C1, g1(z), g′1(z), g′′1(z)]dz (8.3.8)

Using standard calculus of variations, the Euler-Lagrange equations is:
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(8.3.9)

where F is the expression within the square brackets in Eq.8.3.8. Performing thee differ-
entiation term by term in Eq.8.3.9 we obtain a fourth-order differential equation in g1(z)
as

D1
d4g1

dz4
−D2

d2g1

dz2
+ D3g1 +

D4

C1
(8.3.10)
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The coefficients D1-D4 depends on the material properties and geometry of the specimen and
their explicit expression can be found in the original article of Quek [66].
It easy to verify that general solution to Eq.8.3.10 is given by

g1(z) = cosh(ᾱz)(Acos(β̄z)+Bsin(β̄z))+sinh(ᾱz)(Ccos(β̄z)+Dsin(β̄z))−D4

D3

1
C1

(8.3.11)

where ᾱ and β̄ are the roots of characteristic equation. Considering the following boundary
conditions (in particular the last two conditions give both zero axial and shear stress at the
ends of the fiber)

g(0) = 1

g′(0) = 0

g(L/2) = 0

g′(L/2) = 0

(8.3.12)

the coefficient A, B, C and D can be determined. To obtain the constant C1, Eq.8.3.11 and
its derivatives has to be first substituted into Eq.8.3.8 and the integration performed with
respect to z. Finally, minimizing the the complementary strain energy setting dU∗/dC1 = 0
enables the constant C1 to be determined. The complete solution to g1(z) is then obtained
and a back-substitution into Eq.8.3.3 and Eq.8.3.4 yields the residual stresses in the fiber and
matrix.
Due to the complexity of the mathematics involved, to solve practically the problem and then
calculate the distributions of stresses a symbolic mathematical software Methamatica 5 was
used. In particular, even though the model of Quek is based on some simplified assumptions,
the most interesting result deals with the form of the shear stress distribution provided by this
approach. The analytical form of τ rz

j and calculated from equation Eq.8.3.3 or Eq.8.3.4, as in
the real physical case peaks at some distance into the interface from the fiber ends and return
exactly to zero at the entry point. This distribution is then compared with the same evolution
provided via the FE model based on the Sm shrinkage function and they are finally depicted in
Fig.8.7, where, for completeness, it has been also included the asymptotic evolution of Folias.
It is worthy to note that the maximum values reached by the peaks in the case of the two finite
distributions are slightly different even if they they are not located in the same position along
the interface. Nevertheless this an encouraging result in the assessment of a certain reliability
in the finite element prediction overall in a region very difficult to study at the numerical
level. In practice the numerical distribution shows an average behavior between the real case
(it presents a peak before the specimen end and finishes to zero) and the tendency to go to
infinity because of the presence of the singularity.
Finally, with an interesting parametric study based on the Quek model (variation of the fiber
length, matrix radius, Young modulus and coefficient of thermal expansion) it is possible to
verify how thermal stresses (i.e. the residual stresses) in composites are dependent on the
material properties of the constituents and more importantly on the geometry.
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Figure 8.7: Comparison between the shear distribution of stresses provided by the FE model
(continuous line), the asymptotic approach (dashed dotted line) adopted by Folias and the dis-
tribution based on the energetic approach of Quek (dotted line) along the fiber-matrix interface
of the cylindrical specimen.
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Chapter 9

Crack-fiber interaction

9.1 Introduction

The benefits of using FBG sensors and the OLCR technique to interpret their signal response
has been widely illustrated in the first part of this thesis. This combination of results is
particularly useful in the domain of the composite materials thanks to its capability to pro-
vide distributed measurements of strain at the grating location in a completely non-invasive
manner. Starting from the FBG measurement, the characterization of the residual stress
field inside a composite was successfully treated and the convergence between experimental,
numerical and analytical results was finally obtained.
Another important aspect related to the fiber Bragg gratings is that they play also the role
of reinforcement when embedded into a composite. This allows the creation of self-diagnostic
materials which can be easily monitored during their service life via the optical sensor. Any
change in the composite properties or functionalities could be rapidly detected preventing
failures and possible dangerous situations.
In order to demonstrate this last assertion another important experiment has been conceived
and realized in the framework of this research. Based on the information acquired with the
SFC specimen, a new specimen called compact tension (CT-specimen) was built (Fig.9.1) with
the aim to enlarge the use of the FBG sensor to detect the presence and the effects of a real
crack propagating in the material. The crack was generated and propagated by submitting
the specimen to a fatigue test, where a symmetrical cyclic load was imposed on the sample.
Since the CT-specimen is made of epoxy following the same preparation protocol adopted

in the case of the cylinders, the first measurements of strain (performed without the crack)
give a good indication on the level of residual stresses within the sample for the new geome-
try. In addition, the characteristic dimension of the sample have been defined on the ASTM
international norm.

95
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Figure 9.1: CT-specimen’s geometry with an embedded optical fiber. Dimensions are in [mm].
DN may be changed to check the influence of the fiber position on the final results.

9.2 Notes on fatigue fracture

It is well recognized that when a body or structural component is subjected to a cyclic load,
a nucleation of damage initiates at stress concentration points within the body. Voids, slip
lines, microcracks, etc. appear and the process of rupture starts. Some time later, if the
corresponding stress intensity factor (SIF) is large enough, a macroscopic crack generally
propagates until a catastrophic fracture occurs destroying the body. This phenomenon is
called fatigue crack propagation (FCP).
In the laboratory environment these observations can be reproduced by using a smooth or
notched specimen under a cyclic load, however it remains a formidable problem since a unique
solution valid for all possible specimen geometries does not exist. Empirical treatments have
been developed which cover specific structural components and/or materials systems under
well defined load time profiles. A typical profile is shown in Fig.9.2.
The parameters that completely characterize the load profile are

• Load ratio R = PMin
PMax

• Frequency ν[cycles/second]

If the frequency is known, the number of cycles N and the time t are related by N = νt. In
general it is possible to distinguish two type of cyclic fatigue:

• Low cycle fatigue

• High cycle fatigue
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Figure 9.2: Cyclic load-time profile used in laboratory experiment.

The first type is characterized by relatively high stress (load) levels (equal to or higher than
the yield stress of the material) and by a relatively small number of cycles to failure (hundreds
to few thousands). On the other hand, the high cycle fatigue is characterized by low stress
levels and by a very large number of cycles to failure (thousands to millions).
Although in these type of experiments the quantities typically measured are the number of
cycles to crack initiation [52] and the fracture length as a function of the total number of
cycles, at the moment we are only interested in propagating a natural crack until a certain
point without breaking the specimen. Several tests have been performed using reinforced and
unreinforced CT-specimen, with the aim of finding the good conditions (frequency, number of
cycles, maximum and minimum load) which allow a stable crack propagation. Finally the best
parameters to obtain a cracked specimen are shown in Table 9.2. In particular the maximum

PMax(N) PMin(N) PAv(N) Amp.(N) ν(Hz)
135 35 85 50 3

Table 9.1: Parameters used in the fatigue crack propagation test to obtain a stable crack
evolution in the specimen

and minimum applied load correspond respectively to 30% and to 10% of the critical load
(Pc), which is the load associated to specimen rupture. This last value has been determined
by loading several unreinforced specimens (seven) from zero load to the point of complete
failure. The average value of Pc is found to be 350 N. The total number of cycles however,
is not indicated because it depends on the type of tested specimen (with or without fiber)
and on the environmental conditions (room temperature, humidity, etc.) and may have great
variations from one specimen to another. Indicating by a the distance between the application
point of the load and and the front of the fracture (see Fig.9.4), with the conditions in Table
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9.2 an unstopped fatigue test of three days is usually required to obtain a fracture length of 4
mm in an unreinforced specimen. Two or three time more is necessary when the CT-specimen
contains a reinforcing optical fiber.

9.3 Optical FBG sensor glued on the back face of the specimen

Since this experiment is particularly difficult and a new mould is necessary to prepare the
CT-specimen with an embedded fiber, the FBG has been initially glued on the back face of
the specimen as indicated in Fig.9.3. The fiber was attached by using the same mixture of

Figure 9.3: CT-specimen used in the preliminary test. The optical fiber containing a 1.4
mm-length FBG is positioned on the back face of the specimen and glued using epoxy.

epoxy used for the specimen, but was not post-cured to avoid another thermal treatment to the
matrix material. Actually the optical sensor is attached to the specimen only after a crack of a
desired length has propagated via a fatigue test (Fig.9.4). This greatly reduces the possibilities
of accidental breaking during the manipulation phases of the specimen. Nevertheless, to reach
a sufficient level of polymerization and to assume a certain stability of the material properties,
after gluing the fiber, an interval of one week is imposed before measuring the strain with the
FBG.
The fiber used in the first pilot test was equipped with a 1.4 mm-long-grating positioned at
the origin of the system of coordinates and aligned along z (Fig.9.3). To ensure and maintain
the correct alignment a groove of 0.15 mm depth was machined on the face of the specimen
where the fiber was to be located.
The test was organized as follows:

• Before loading the specimen, a measurement of the deformation applied on the grating
was done to have a new reference state of the sensor.
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Figure 9.4: Compact tension specimen during the test of fatigue crack propagation. The final
length a of the fracture before stopping the test was 25.6 mm.

• Starting from an applied load of 10 Newtons, the CT-specimen was loaded up to 100
Newtons in ten equally spaced intervals.

• At each step, when a stable value of the load was reached, an optical measurement of
the reflected signal from the grating was performed using the OLCR technique and the
experimental strain evolution due to the applied force could be retrieved at the FBG
position.

• The specimen was finally unloaded.

A special stand to manually load the sample was used for this experiment (Fig.9.5). In general,
it was not possible to use a hydraulic machine (as in the case of the fracture propagation)
to better control the loading process since the vibrations produced would have affected the
optical measurements.
Following the experimental procedure mentioned before, different values of strain have been

measured at the point corresponding to the origin of the coordinates for each applied load
(see Fig.9.4). In order to verify the results the test has been repeated twice respecting a
time interval of one week. A summary is presented in Fig.9.6. It is easy to note that in the
case of the curve B (the second test in order of time) the values of strain are slightly higher
(in absolute value) than in the case A. Although care was taken to reproduce as much as
possible the same test conditions (specimen orientation, loading speed and value of the force
at the moment of the measurement, room temperature, grips alignment, etc.), some differences
inevitably remain, thus justifying the variations between the corresponding values shown in
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Figure 9.5: Special stand used to manually load the compact tension specimen.

Figure 9.6: Strain measured at the origin of the system of coordinates shown in Fig.9.3
by using a 1.4-mm-long-grating. The results correspond to two different tests (A and B)
performed on the same specimen and in the same conditions.
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the curves of Fig.9.6. Although the complete system is not automatically controlled, the
curves show the same trend and only in one case (applied force equal to 60 N) the differences
between the experimental strains goes up to 18%.
In view of the encouraging results obtained with the previous test and to exploit as much as
possible the FBG capabilities, the same procedure has been followed to test another specimen.
In this second case a 13-mm-long grating placed in the same position was used with the
aim to obtain a distributed measurement of strain (instead of singular points) along the
axial direction z for each different applied load. Since the grating used this time is longer
than that of the previous test, this experiment is slightly more difficult, because the optical
measurement of the reflected signal takes more time. During the OLCR scan in fact, the
specimen continues to relax and the load decreases affecting in this way the very high-sensitive
optical measurements. Despite the aforementioned problem, as shown in Fig.9.7 the results
achieved in this second case are quite good. It is worth noting that the results should be

Figure 9.7: Strain measured along the axial direction z by using a 13-mm-long-grating. The
grating center is slightly displaced respect to the origin of the coordinate system.

symmetric with respect to the plane z=0. Therefore, the grating center is slightly displaced
(3 mm) in the positive direction of the z-axis, thus explaining the non-symmetric length of
strain distribution’s curves. A similar displacement (4 mm) has also been observed for the
grating of 1.4 mm. This explains the fact that strains measured with the short FBG are
situated in a position corresponding to 4 mm for the long FBG. This assessment has also
been confirmed by OLCR measurement of the two exact positions of the gratings. This
simple comparison underlines one of the advantages coming from the use of long instead of
short FBG for this kind of application.
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9.4 3-D Finite Element modeling of the CT-specimen

To generalize and verify the results experimentally obtained, a 3-D modeling of the CT-
specimen is proposed. Due to the symmetries in the sample’s geometry only a quarter of the
specimen needs to be modeled (Fig.9.8). Quadratic hexahedric elements have been used to

Figure 9.8: A quarter of the modeled CT-specimen.

mesh the main part of the specimen while quadratic wedge elements have been chosen for the
fiber domain and for the crack tip region. In addition other kinds of mesh refinement and
element order have been checked to ensure the quality of the results.
To apply the traction force, both contact and the distributed coupling tool [38] have been
successfully implemented in the model. The first methodology permits one to model the
contact between a shape-retaining surface (which simulates the pin in the grip system of
Fig.9.4) and the surface of the specimen’s hole (Fig.9.9) thus eliminating the problem of
modeling and meshing the pin of metal. The force is then directly applied on the rigid surface
by using a coupling with the reference point (which corresponds to the application point of
the force) and via the contact conditions between this surface and the specimen is finally
transferred to the sample. Nevertheless, since there were no differences in the results, the
application load procedure can be simplified by imposing a coupling directly between the
reference point and the surface of the hole (Fig. 9.10). The results obtained by the FE model
are presented in Fig.9.11 and in Fig.9.12 in the case of the short and long grating respectively.
A good agreement is found between the experimental and the numerical data.

9.4.1 3-D model parameterization

To improve the simulation results a series of geometric parameters have been introduced into
the FE model.
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Figure 9.9: First approach used to model the traction applied to the CT-specimen via the
contact tool and the distributed coupling between a reference point and a rigid surface.

Figure 9.10: Illustration of the load transfer process from the reference point to the hole’s
surface.
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Figure 9.11: Comparison between the numerical simulation (continuous line) and the two
experimental results coming out from the 1,4-mm-long grating placed at 4 mm from the origin
of the system of coordinates along the z-direction.

Figure 9.12: Comparison between the numerical (continuous lines) and the experimental (bold
line) distributions obtained by the 13-mm-long grating along the axial direction z.
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The first parameter considered in the model is the fiber inclination, which allows to take into
account a possible variation in the depth of the groove machined on the back face of the
specimen. A maximum difference of ±0.1 mm between the entry and exit point of the fiber
at the top and the bottom end of the specimen can be considered admissible (see Fig.9.13).
Taking into account the eventual fiber misalignment, a region of possible values of strain can

Figure 9.13: Schematic explaining the possible error committed in the vertical alignment of
the optical fiber. Depending on the grating position, the variation in the strain response could
be important.

be identified whose limits are directly related to the extreme positions assumed by the fiber.
(see Fig.9.14). As it easy to verify, in one case the change in the fiber orientation has an
important effect on the experimental results.
Another parameter related to the fiber is represented by its vertical position here indicated
by DN (see Fig.9.1). It becomes particularly useful to study the deformation behavior of the
specimen as a function of the fiber location within the specimen and will be used later to
validate the new analytical approach based on the beam theory and proposed to model the
compact tension geometry.
Although the crack length a is itself a parameter, more important is the possibility to correctly
reproduce the exact shape of the crack front. To do this, the form of the front can be manually
imposed on the FE model by using a spline tool available in Abaqus [38] and used to define
profiles having non-conventional geometry. Based on experimental observations, the exact
positions of some points that are on the fracture tip can be easily identified. These points
are then correctly located in the model and the form of the front finally retrieved by using a



106 CHAPTER 9. CRACK-FIBER INTERACTION

Figure 9.14: Numerical strain evolution (continuous line) for a short grating located at 4 mm
along the axial direction z and the possible corresponding variations (dashed lines)) due to a
misalignment of the fiber.

spline interpolation. Even if there is a dependence on the number of available points, by using
seven experimental data trough the specimen thickness, the crack tip can be reproduced with
a sufficient level of accuracy.
In the following, a brief numerical analysis reveals the effects in terms of strain distribution
that the front profile may have along the core of the fiber. As indicated in Fig.9.15 and
Fig.9.16 four different front shapes which can be experimentally observed during fatigue crack
propagation tests are taken into account.

The fiber position DN is equal to 2.5 mm while the crack length calculated in the plane
z = 0 is fixed to 23.2 mm. The fracture front is in the influence region of the reinforcment.
For a traction force F equal to 200 N, the strain distributions which would be measured along
the core of the fiber are plotted in the subsequent Fig.9.17.
This analysis clearly highlights that at a distance greater than 5 mm from the plane z = 0

(i.e. the plane containing the fracture) there are no appreciable differences between the
distribution associated to the different shapes of the crack. Nevertheless, in a region very
close to the fiber these differences become important, and a maximum strain variation of the
order of 1000µε can be calculated from one shape to another. In particular, Fig.9.18 and
Fig.9.19 clearly indicate a dependence of the strain distribution on the derivative respect to
the y-coordinate of the fracture profile. In fact, even if the Front A subtends a smaller area
than the Front B, it generates greater deformation along the reinforcement.
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Figure 9.15: Four different shapes of the crack front simulated in the FE model.

Figure 9.16: Plot of the crack fronts shown in Fig.9.15.
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Figure 9.17: Strain evolutions as functions of the front shapes represented in Fig.9.16.

Figure 9.18: Simulated crack fronts used to underline the dependence of the strain on the
derivative of the fracture profile.



§9.5. ANALYTICAL MODELING OF THE CT-SPECIMEN 109

Figure 9.19: Strain evolutions as functions of the front shapes represented in Fig.9.18.

9.5 Analytical modeling of the CT-specimen

In this section we propose an analytical modeling of the compact tension specimen inspired to
the beam theory used to treat reinforced concrete structures [55]. The main hypothesis used
in the model is the planarity of a given internal section of the beam when deformed under
a certain load. This implies that the strain evolves linearly along the section mantaining a
constant value in the transversal direction as indicated in Fig.9.20. Considering the plane of
symmetry z = 0 as shown in Fig.9.20 the previous hypothesis is absolutely acceptable.
When a given load is applied to the specimen the structure equilibrium requires that the
sum of the total forces and moments be equal to zero all over the section. In view of the
parameters and the reference system introduced in Fig.9.20 the following equations have to
be satisfied: ∑

Fξ = 0∑
Fζ = 0

(9.5.1)

or ∫ ζL

0
tEeφ(ζn − ζ)dζ −

n∑
i=1

Af(i)Eeφ(ζn − ζf(i)) +
n∑

i=1

Af(i)Ef(i)φ(ζn − ζf(i))− F = 0

∫ ζL

0
tEeφ(ζn − ζ)ζdζ −

n∑
i=1

Af(i)Eeφ(ζn − ζf(i))ζf(i) +
n∑

i=1

Af(i)Ef(i)φ(ζn − ζf(i))ζf(i)+

− F (b− ζn) = 0 i=1,.....,N
(9.5.2)
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Figure 9.20: The CT-specimen viewed as part of a beam. The strain ε and the stress σ are
supposed to vary linearly along the section.

where Ee and Ef(i) are the Young moduli of the epoxy matrix and of the ith glass fiber
respectively, Af(i) is the area of the ith fiber section, t is the thickness of the specimen, φ is
the curvature’s angle of the section, F the force used to open the crack, ζn is the position
of the neutral axis and ζf(i) is the position of the ith reinforcing fiber. The sums take into
account the case having more than one fiber embedded into the specimen (in the following
development only one fiber will be taken into account).
For a given crack length and defined geometrical parameters, the relations 9.5.2 constitute a
system of two equations in the two unknowns φ and ζn. By solving the first equation with
respect to φ and by substituting into the second of 9.5.2 the exact position of the neutral
axis can be retrieved as a function only of the geometrical and mechanical parameters. In
particular:

φ =
2F

−tEeζ2
L + 4πEer2

fζf − 4πEfr2
fζf − 4πEer2

fζn + 4πEfr2
fζn + 2tEeζeζn

ζn = (−12π(b− ζn)Eer
2
f + 12π(b− ζn)Efr2

f + 6t(b− ζn)Eeζn − ((12π(b− ζn)Eer
2
f+

+ 12π(b− ζn)Efrf2 + 6t(b− ζn)Eeζn)2 − 4(12πEer
2
f + 12πEfrf2 + 6tEeζn)(3t(b− ζn)Eeζ

2
L+

− 2tEeζ
3
L − 12π(b− ζn)Eer

2
fζf + 12(b− ζn)Efr2

f + 12πEer
2
fζ2

f − 12πEfr2
fζ2

f ))1/2)·

· 1
(2(−12πEer2

f + 12πEfr2
f + 6tEeζL))

(9.5.3)
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Finally a back substitution in the system allows to calculate the curvature’s angle and by
using the relations in Fig.9.20 the strain and the stress evolution in the matrix and in the
fiber domain along the direction ζ. A comparison between this original approach proposed
to model the compact tension specimen and the numerical simulations results is presented in
Fig.9.21. It is important to underline that when the crack front is not too close to the fiber

Figure 9.21: Evolution of the maximum value of strain calculated at the origin of the coordi-
nates as function of the crack length a by using the FE model (black line) and the proposed
new approach (grey line) respectively

(up to distances of the order of 2 cm) the model predictions and the numerical simulations
differ of less than 20%. This is particular encouraging, because this approach can be also
used to predict the length of a crack based only on the strain coming out the FBG sensor. To
this purpose, the ligament ζL (Fig.9.20) which corresponds to the length of the ideal beam
section, is expressed as a function of the crack length a as follow:

ζL = h− d− a (9.5.4)

A substitution in Eq.9.5.2 allows now to express the angle φ and the position of the neutral
axis ζn as a function of a as well. The length of the fracture a can be finally retrieved by
finding the root in (terms of a) of the following equation:

σf − σExp
f = Efφ(ζn − ζL)− σExp

f = 0 (9.5.5)

where σExp
f is the experimental value of strain measured in the plane of the fracture via the

FBG sensor. We have applied this process to calculate the fracture length in a CT-specimen
loaded with a force of 100 N. The experimental measurement of the fracture length gave 38.2
mm while the analytical model has predicted a length of 38.4 mm with an error of only 0.5 %.
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Although certain simplified hypotheses have been introduced into the model (the stress and
the strains are considered constant through the section and the singularity at the crack tip is
not taken into account) the analytical and experimental results are in a very good agreement.

9.6 CT-specimen containing an embedded optical fiber

A second series of experimental tests have been conducted on a compact tension specimen
reinforced with an embedded optical fiber Fig9.22. Two specimens have been prepared with
fiber containing FBG sensors of different lengths: one of 1.4-mm-length and the other with
a 13-mm-long grating. The grating is located in the plane z=0 and the parameter DN (see
Fig.9.1) is fixed equal to 2.5 mm. The tests have been carried out as follows:

• Since this time the grating is embedded into the specimen, a measurement of the strain
along the grating has been done during the fabrication steps of the sample: before
embedding, after curing, after post-curing and after the specimen machining. The
strain reference state corresponds to the strain after the specimen machining.

• A fatigue crack propagation test is run to create and increase a natural crack up until
a desired length is reached.

• For a given crack length, three different levels of force (10 N, 50 N, 100 N) are applied
to the specimen.

• At each step, when a stable value of the load is reached, an optical measurement of the
reflected signal from the grating is performed by using the OLCR technique and the
experimental strain evolution only due to the applied force can be retrieved at the FBG
position.

• By continuing the fatigue crack propagation test, the fracture length is advanced towards
the fiber.

• The loading procedure and the OLCR measurements are repeated as indicated at third
and fourth point.

• The test is stopped when the crack has advanced past the fiber.

• The specimen is finally unloaded and used in an eventual post-mortem analysis (i.e.
after a complete failure).

Five different crack lengths have been considered, namely a = 21.6 mm, a = 22.8 mm,
a = 24.1 mm, a = 24.4 mm and a = 24.6 mm. The evolutions of the maximum strain level
measured during the fabrication process of the sample and a subsequent comparisons with
the numerical simulations are presented in the following series of images for the CT-specimen
with an embedded 1.4-mm-long-grating (Fig.9.23 to Fig.9.26).
Unfortunately the maximum fracture length reached in this test was 24.4 mm because the
specimen broke during the following fatigue test. Nevertheless interesting information has
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Figure 9.22: Fatigue crack propagation test on a CT-specimen with an embedded optical fiber.
A natural crack is visible in the notch.

Figure 9.23: Evolution of the maximum value of strain calculated during the specimen prepa-
ration.
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Figure 9.24: Comparison between the experimental (dashed line) and numerical (continuos
line) maximum strain values for a crack length a of 21.6 mm.

Figure 9.25: Comparison between the experimental (dashed line) and numerical (continuos
line) maximum strain values for a crack length a of 22.85 mm.
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Figure 9.26: Comparison between the experimental (dashed line) and numerical (continuos
line) maximum strain values for a crack length a of 24.4 mm.

been obtained from the microscopical observations of the fracture surface overall about the
exact profile of the crack in a region close to the fiber. As highlighted in Fg.9.27 the interac-
tion between the reinforcing fiber and the crack generates an important modification on the
curvature of the crack tip with obvious effects on the local stress field. The same observation
have already been reported in [57] but now, by using the embedded FBG sensors, a direct ex-
perimental measurement of these variations becomes possible thus supporting and providing
data to the theoretical and analytical treatment [84] of the fiber-crack interaction process.
The same test has been repeated on a CT-sample containing a longer FBG (13 mm). The
experimental and numerical results are all summarized and compared in a series of diagrams:
(Fig.9.28 to Fig.9.33) Although the presented results refer to preliminary tests, they clearly
show the potential represented by the embedded FBG sensor to study advanced problems in
the fracture mechanics domain (crack-fiber interaction, bridging forces, matrix-fiber interface
properties, etc) of composites materials.
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Figure 9.27: Profile of the curved crack front interacting with the reinforcing glass optical
fiber. The black line behind the fiber can be explained noting that the fracture front is not
coplanar anymore when pass the fiber. In the region of conjunction a sort of deep valley is
created thus reflecting the light in a different direction.

Figure 9.28: Evolution of the maximum strain value calculated during the specimen prepara-
tion. Since the grating length is 13 mm, the complete wavelength evolutions along the gratings
are presented in the insets of the figure. Notice that a practically constant distribution of
wavelength corresponds to a constant strain in the central region of the specimen.
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Figure 9.29: Comparison between the experimental (bold lines) and numerical (normal lines)
strain distributions along the axial direction z (i.e. along the core of the fiber) for a crack
length a of 21.6 mm measured by a13-mm-long-grating. Each curve refers to a given applied
load: 10 N (lower curves) 50 N (in the middle) and 100 N (upper curves).

Figure 9.30: Comparison between the experimental (bold lines) and numerical (normal lines)
strain distributions along the axial direction z (i.e. along the core of the fiber) for a crack
length a of 22,85 mm measured by a13-mm-long-grating. Each curve refers to a given applied
load: 10 N (lower curves) 50 N (in the middle) and 100 N (upper curves).
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Figure 9.31: Comparison between the experimental (bold lines) and numerical (normal lines)
strain distributions along the axial direction z (i.e. along the core of the fiber) for a crack
length a of 24.1 mm measured by a13-mm-long-grating. Each curve refers to a given applied
load: 10 N (lower curves) 50 N (in the middle) and 100 N (upper curves).

Figure 9.32: Numerical (normal lines) strain distributions along the axial direction z (i.e.
along the core of the fiber) for a crack length a of 24.4 mm measured by a13-mm-long-grating.
Each curve refers to a given applied load: 10 N (lower curves) 50 N (in the middle) and 100
N (upper curves). This case was experimentally analyzed only by using a short grating but the
entire distributions are reported for thoroughness. Let notice the exact form of the fracture
front simulated by the model.
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Figure 9.33: Comparison between the experimental (bold lines) and numerical (normal lines)
strain distributions along the axial direction z (i.e. along the core of the fiber) for a crack
length a of 24.6 mm measured by a13-mm-long-grating. Each curve refers to a given applied
load: 10 N (lower curves) 50 N (in the middle) and 100 N (upper curves).

Figure 9.34: A photograph of a cracked compact tension specimen. The crack has exceed the
fiber and it work as a bridgingbetween the two surfaces of the fracture. The bridging force
along the fiber can be calculated using the deformation data plotted in Fig.9.33.
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Chapter 10

Summary and future work

From an experimental mechanics point of view, Bragg gratings are of great interest as em-
bedded strain sensors for two main reasons: the first is that they can be used to carry out key
experiments to address issues that are difficult or impossible to investigate with other means;
the second is that they provide a practical sensing tool in structural monitoring applications.
Both of these areas have been considered in this work on the use of FBG sensors.

10.1 Summary

Long gage fiber Bragg grating sensors and new Optical Low Coherence Reflectometry Tech-
nique are initially used to characterize the longitudinal evolution of the residual strains
(stresses) along a reinforcing glass fiber included in a polymeric material during the man-
ufacturing process without the need of any initial assumption. By combining this technique
with the layer-peeling algorithm, the direct reconstruction of the optical period of the grat-
ing is possible and, this way, the strain distribution along the fiber is immediately retrieved
without any a priori hypothesis on the strain profile. In particular, for given geometrical
dimensions of the specimen (length L > 40mm), a fourth order evolution function charac-
terizes the distribution of stresses along the axial fiber direction. The form of the function
has been determined from the distributed grating measurements. This is not the case when
the inverse T-Matrix based approach is used to obtain the same results. In fact, since the
complex coupling coefficient is not experimentally measured, it would be difficult to solve the
problem of the uniqueness of the solution and directly calculate the local values of strain that
really build-up along the sensor. The support of the FE method is then necessary to integrate
the initial lack of information.

Since the FBG directly measures the deformation applied along its axis, the transversal evo-
lution of stresses has been obtained by measuring the perturbations of the initial residual
stress field as a consequence of the introduction of a series of circular deep cracks machined in
the radial direction of the specimen. A modified version of the Crack Compliance Method to
take into account the available distributed measurements of strain is thus proposed to retrieve
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the initial residual stress profile present in the region of the crack plane before cutting. The
new approach is more efficient because it allows the retrieval of the stress profile by only one
crack, thus reducing the experimental errors that generally affect this technique. The impor-
tant objective of the thesis to establish a reliable experimental method using FBG sensors in
conjunction with other more traditional techniques to characterize the behavior of composites
has thus been obtained.

The effect of a machined longitudinal crack has been also analyzed. The study revealed that
no transversal effects are measured by the grating likely because of the fiber stiffness. Nev-
ertheless, a small axial relaxation due to the bending effect which results from the loss of
axisymmetry conditions of the cylindrical specimen was successfully measured.

For the purpose of the analysis, the effective volume reduction undergone by the epoxy matrix
during the polymerization process is simulated via an equivalent thermo-elastic problem by
introducing a shrinkage function Sm(r, z). Though some differences (overall at the ends of
the specimen) are present due to simplified assumptions (the variable separation hypothesis
is likely valid only at the center of the specimen) a good correlation between experimental
and FE results has been obtained. Moreover, the numerical predictions are found to be in
good agreement compared with some representative analytical models proposed in literature.

In the final part of the thesis, two feasibility studies have been carried out using FBG sensors
in structural-monitoring inspired applications. In the first case, an FBG glued on the surface
of a CT-specimen was used to inspect and to detect the effects of the presence of a natural
crack propagated during a fatigue test. In the second case, the Bragg grating was directly
embedded into the specimen, providing fundamental information on the study of the stress
field around a crack tip as it interacts with the reinforcing sensing fiber. A simple theoretical
approach based on the beam theory has been used to model these experiments. The main goal
of the model is the possibility to monitor the fracture length starting from the FBG strain
measurements thus realizing a first realistic step towards the development of an embedded
sensor based technique for fiber-reinforced composites that are self-evaluating.

These results demonstrate that, accompanied by an appropriate model, the internal strain
measurements from embedded FBG sensors, can become a powerful technique to characterize
deformation and fracture behavior at various scales of polymeric composite materials.

10.2 Perspectives

Future work can be carried out on various aspects of the research presented herein. The OLCR
is a very powerful technique for measuring strain distributions with high resolution in static
configurations, but is not practical for dynamic measurements. Efforts have to be made in
this direction to improve the existing optical techniques or to find new experimental methods.
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From the point of view of FBG signal interpretation, some questions remain open relative
to their response to non-uniform axial strain fields (very high gradient) and transversal non-
homogeneous strains (birefringence effects). Ideally, a general model including both effects
needs to be developed and systematically applied to interpret measured Bragg data from
embedded sensors. Nevertheless, the present work has shown that an adequate model of the
stress transfer from the host material to the embedded sensor is required in all cases. In
fact, if such a model is available, experimental results can be compared and validated with
numerical predictions.

Fiber optic sensor reliability in the long term is another open question, particularly due to
applications in severe environments and loading conditions, such as impact-induced struc-
tural damage or high-frequency cyclic loading. There are several failure modes of the sensors
themselves (e.g. micro-bending along the optical fiber, degradation of the fiber properties
due to chemical reactions or moisture, etc) which could be incorrectly interpreted as a fail-
ure of the host material and must therefore be considered if the sensor is to provide reliable
indications on the composite’s state of stress. It may be particularly important to account
for micro-bending effects in future work on bridging forces in actual composite structures.
Despite these challenges the methodology proposed in this thesis opens a great number of
possibilities in the field of fracture mechanics.

In the case of real composite applications, the measurements obtained from an FBG when
it is embedded close to other reinforcements would be useful in order to detect and to char-
acterize fiber interaction and to optimize the composite structure. This could be used as a
starting point for the generalization of real composites, where the reinforcing fibers are gen-
erally smaller and have a higher volume fraction.

Finally, in the case of adaptive composites or self-evaluating materials, further progress to-
wards model smart structures can be made. The continuous monitoring of distributed strains
could be used to control the reactions within a system in order to maintain the internal
stresses at a chosen level thus avoiding catastrophic and dangerous failures.
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Appendix A

The T-Matrix reconstruction based

approach for the analysis of other

distributions of strain

As well explained in Chapter 3 the main problem in using the T-Matrix approach is repre-
sented by the need of a priori knowledge of the complex coupling coefficient along the grating
length. This in practice corresponds to the knowledge of the local Bragg wavelength or the
strain distribution along the sensor. On the contrary, when all the data are given both the
possible reconstruction methods result very efficient and not appreciable differences can be
evidenced in the results. In this section the analysis via T-Matrix of the grating response
in the case of the cylindrical specimen with a circular radial crack and in the case of the
CT-specimen is proposed, but in order to show the advantages of the direct OLCR based
method only the physical parameters are provided to the model.

The cylindrical specimen with a radial circular crack
The reflected spectrum from a grating embedded in cylindrical specimen where a circular
crack of 12 mm depth is machined in radial direction is shown in Fig.A.1. Instead of using

Figure A.1: Reflected spectrum from an FBG of 25-mm-length embedded in a cylindrical
specimen with a machined circular crack of-12-mm depth.
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ANALYSIS OF OTHER DISTRIBUTIONS OF STRAIN

the real distribution of local Bragg wavelength depicted in Fig.6.5 a Gaussian evolution is
taken into account (FigA.2) This distribution is particularly interesting especially thanks to

Figure A.2: The Gaussian piecewise constant evolution chosen to represent a realistic distri-
bution of the Bragg wavelength along the FBG. The center of the grating corresponds to the
center of the specimen.

the central peak that gives indications on the presence of regions with high gradient varia-
tions.
Though the curve in Fig.A.2 can be assumed realistic and not far from the real wavelength
evolution (see Fig.6.5 for comparison), the reconstructed spectrum shows important differ-
ences when compared with the real one (Fig.A.3). This is probably due to the aforementioned
high gradient zones, where the decomposition by piecewise constant functions is often difficult
to correctly realize (e.g number N of sub-domains and determination of their amplitude ∆).
As it easy to verify, the reconstructed spectrum only corresponds partially to the measured
one, thus meaning that the chosen wavelength distribution correctly represents the real evo-
lution only in certain regions of the grating. The same conclusion can be applied to the strain
distribution obtained from the wavelength evolution by using Eq.3.2.4.

The Compact Tension specimen
More difficult results the reconstruction process in the case of the cracked CT-specimen rein-
forced with an embedded optical fiber (see Chapter 9). When the crack length a is equal to
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Figure A.3: Comparison between the measured spectrum (grey line) and the reconstructed
spectrum (dashed line) via the T-Matrix approach in the case of the cylinder with a circular
radial crack.
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24.1 mm and the applied load is 50N the reflected spectrum and the local Bragg distribution
correctly measured via the OLCR have the following form:

Figure A.4: Spectrum and local Bragg wavelength evolution retrieved via the OLRC in the
case of the cracked CT-specimen reinforced with an embedded optical fiber.

Also in this case, we choose a Gaussian evolution to describe the wavelength distribution
along the grating length for which the piecewise constant approximating function is shown in
Fig.A.5. This is a typical case where the approximating function presented in Fig.A.5 could
be obtained by using the FE method. In fact, by simulating the CT-specimen geometry and
the load configuration, the FE model provides the distribution of strain along the fiber core
which can be translated in wavelength distribution by using Eq.3.2.4. This distribution is
then used as the input data for the T-Matrix reconstruction process to simulate the reflected
spectrum by the FBG sensor. Nevertheless, due to the highly pronounced peak at the cen-
ter of the distribution, the simulated spectrum presents important differences respect to the
simulated one (Fig.A.6).
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Figure A.5: Piecewise constant function used to approximate the local Bragg wavelength evo-
lution along the core of the embedded optical fiber.
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Figure A.6: Comparison between the real measured spectrum (grey line) and the simulated
one (dashed line) via the T-Marix reconstruction method.
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[4] T.L. Anderson. Fracture Mechanics. CRC Press, Boston, 2000.

[5] N.K. Anifantis, P.A. Kakavas, and G.C. Papanicolaou. Thermal stress concentration due
to imperfect adhesion in fiber-reinforced composites. Composites Science and Technolo-
gies, 57(6):687–697, 1997.

[6] D.R. Askeland. The Science and Engineering of Materials. PWS Publishing Company,
Boston, 1994.

[7] J.A. Barnes and G.E. Byerly. Formation of residual stresses in laminated thermoplastic
composites. Composites Science and Technologies, 51(4):479–494, 1994.
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