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Abstract

This paper establishes tight bounds on the best-case
time-complexity of distributed atomic read/write storage
implementations that tolerate worst-case conditions. We
study asynchronous robust implementations where a writer
and a set of reader processes (clients) access an atomic
storage implemented over a set of 2t+b+1 server processes
of which t can fail: b of these can be malicious and the rest
can crash. We define a lucky operation (read or write) as
one that runs synchronously and without contention. It is
often argued in practice that lucky operations are the most
frequent. We determine the exact conditions under which
a lucky operation can be fast, namely expedited in one-
communication round-trip with no data authentication. We
show that every lucky write (resp., read) can be fast despite
fw (resp., fr) actual failures, if and only if fw + fr ≤ t− b.

1 Introduction

It is considered good practice to plan for the worst and
hope for the best. This practice has in particular governed
many complexity studies in dependable distributed comput-
ing [9, 18, 10].

It is indeed admitted that distributed algorithms ought to
tolerate bad conditions with many processes failing or com-
peting for shared resources such as communication chan-
nels. Under these conditions, the distributed system is
clearly asynchronous as there is no realistic bound on rel-
ative process speeds and communication delays.

Fortunately, those bad conditions are considered rare and
whilst it is good to make sure algorithms tolerate them when
they happen, one would rather optimize the algorithms for
the common, not that bad conditions. It is for instance of-
ten argued that distributed systems are synchronous most of
the time, that there is generally little contention on the same
resources at any given point in time [4] and that failures are
rare. Hence, when measuring the complexity of a distrib-

uted algorithm and judging whether the algorithm is fast, it
is reasonable to measure its (time) complexity under such
best case conditions. An algorithm that would be efficient
under rare worst case conditions and slow under frequent
best case conditions, would not be practically appealing.

In this paper, we study distributed algorithms that im-
plement the classical single-writer multi-reader (SWMR)
atomic storage abstraction [17]: a fundamental notion in
dependable distributed computing [20, 3]. This abstraction,
also called the SWMR atomic register, captures the seman-
tics of a shared variable on which processes, called clients,
can concurrently invoke read and write operations. Atom-
icity stipulates that (1) a read r must return a value written
by a concurrent write (if any), or the last value written, and
(2) if a read r′ that precedes r returns value v, then r must
return either v or a later value.

We consider robust, sometimes called wait-free, im-
plementations of an atomic storage where no client re-
lies on any other client to complete any of its operations:
the other clients might have all stopped their computation
(crashed) [17, 14, 2]. The storage abstraction is imple-
mented over a set of 2t + b + 1 server processes of which
t can fail: b of these can be malicious, deviating arbitrar-
ily from the algorithm assigned to them, while the rest can
crash. In this paper, we assume that stored data is not au-
thenticated.1

It is a known result that 2t + b + 1 is a resilience
lower bound for any safe [17] storage implementation in an
asynchronous system [21]2 and, to ensure atomicity with
this resilience, more than one communication-round trip
is needed between a client (the writer or the readers) and
the servers [1, 11]. In [2] for instance, even if only server
crashes are tolerated (i.e., b = 0), the reader needs to send a
message to all servers, wait for their replies, determine the
latest value, send another message to all servers, wait for

1For completeness, we consider the impact of using data authentication
in Section 5.

2Actually, [21] proves the optimal resilience lower bound for the spe-
cial case where b = t. It is not difficult to extend this result for b 6= t using
the same technique.



replies, and then return the value. A total of two communi-
cation round-trips is thus required for every read operation.

The goal of this paper is to determine the exact condi-
tions under which optimally resilient implementations that
tolerate asynchrony and contention (worst-case conditions),
can expedite operations (reads or writes) whenever the sys-
tem is synchronous and there is no contention. We say that
an operation is lucky if (a) it runs synchronously and (b)
without contention. In short, this means that (a) the client
that invokes the operation reaches and receives replies from
all non-faulty servers in one communication round-trip, and
(b) no other client is invoking a conflicting operation (no
read is overlapping with a write).

We define the notion of a fast operation as one that exe-
cutes in one communication round-trip between a client and
the servers. Indeed, it is usual to measure the time complex-
ity of an operation by counting the number of communica-
tion rounds needed to complete that operation, irrespective
of the local computation complexity at any process involved
in the operation (server or client). The rationale behind this
measure is that local computation is negligible with respect
to communication rounds (assuming data is authenticated).

This paper shows that in order for every lucky write to
be fast, despite at most fw actual server failures, and every
lucky read to be fast, despite at most fr actual server fail-
ures, it is necessary and sufficient that the sum fw+fr is not
greater than t− b. This result expresses the precise tradeoff
between the thresholds fw and fr.

We proceed as follows. We first give an algorithm with
2t + b + 1 servers that tolerates asynchrony and t server
failures among which b can be malicious: the algorithm al-
lows every lucky read (resp., lucky write) to be fast in any
execution where up to fw (resp., fr) servers fail, provided
fw + fr = t − b. Note that all fw (resp. fr) failures can
be malicious, provided fw ≤ b (resp. fr ≤ b). The chal-
lenge underlying the design of our algorithm is the ability
to switch to slower operations that preserve atomicity un-
der the worst conditions: asynchrony and contention, as
well as t failures out of which b can be malicious, with
2t+b+1 servers (optimal resilience [21]). A key component
of our algorithm is a signalling mechanism we call “freez-
ing”, used by the reader to inform the writer of the presence
of contention. Interestingly, this mechanism does not rely
on intercommunication among servers, nor on servers push-
ing messages to the clients.

We then give our matching upper bound result by show-
ing that no optimally resilient asynchronous algorithm can
have every lucky write be fast despite fw actual server fail-
ures and every lucky read be fast despite fr actual server
failures, if fw +fr > t− b. Our upper bound proof is based
on indistinguishability arguments that exploit system asyn-
chrony, the possibility of some servers to return an arbitrary
value, and the requirement that every write wr (resp., read

rd) must be fast whenever wr (resp., rd) is lucky and at
most fw (resp., fr) servers are faulty. To strengthen our
tight bound, we assume in our proof a general model in
which servers can exchange messages and even send un-
solicited messages.

We use the very fact that our upper bound proof requires
every lucky operation (in particular, every lucky read) to be
fast, to (1) drastically increase the sum of the thresholds fw

and fr to fw = t − b and fr = t, by allowing a certain
number, yet just a small fraction, of lucky read operations to
be slow. We also highlight the fact that (2) our upper bound
is inherent to atomic storage implementations, but does not
apply to weaker semantics; we discuss how to modify our
algorithm and get a regular [17] storage implementation in
which every lucky write (resp., read) is fast despite the fail-
ure of fw = t − b (resp., fr = t) servers. We prove the
optimality of (1) and (2) by showing, along the lines of [1],
that no optimally resilient safe [17] algorithm can achieve
fast writes despite the failure of more than t− b servers.

The rest of the paper is organized as follows. We present
in Section 2 our general system model together with few de-
finitions that are used in the rest of the paper. In Section 3
we present our algorithm, which we prove optimal in Sec-
tion 4. In Section 5 we discuss several alternatives to the
assumptions underlying our result. We conclude the paper
by discussing the related work in Section 6.

2 System Model and Definitions

The distributed system we consider consists of three dis-
joint sets of processes: a set servers of size S containing
processes {s1, ..., sS}, a singleton writer containing a sin-
gle process {w}, and a set readers of size R containing
processes {r1, ..., rR}. We denote a set of clients as a union
of the sets writer and readers. We assume that every client
may communicate with any server by message passing us-
ing point-to-point reliable communication channels. When
presenting our algorithm, we assume that servers send mes-
sages only in reply to a message received from a client: i.e.,
servers do not communicate among each other, nor send un-
solicited messages. However, to strengthen our tight upper
bound, we relax these assumptions. To simplify the presen-
tation, we assume a global clock, which, however, is not
accessible to either clients or servers.

2.1 Runs and Algorithms

The state of the communication channel between
processes p and q is viewed as a set msetp,q = msetq,p

containing messages that are sent but not yet received. We
assume that every message has two tags which identify
the sender and the receiver. A distributed algorithm A is
a collection of automata. Computation of non-malicious



processes proceeds in steps of A. A step of A is denoted by
a pair of process id and message set 〈p, M〉 (M might be ∅).
In step sp = 〈p,M〉, process p atomically does the follow-
ing (we say that p takes step sp): (1) removes the messages
in M from msetp,∗, (2) applies M and its current state stp
to Ap, which outputs a new state st′p and a set of messages
to be sent, and then (3) p adopts st′p as its new state and puts
the output messages in msetp,∗. A malicious process p can
perform arbitrary actions: (1) it can remove/put arbitrary
messages from/into msetp,∗ and (2) it can change its state
in an arbitrary manner. Note that the malicious process p
cannot remove/put any message into a point-to-point chan-
nel between any two non-malicious processes q and r.

Given any algorithm A, a run of A is an infinite sequence
of steps of A taken by non-malicious processes, and actions
of malicious processes, such that the following properties
hold for each non-malicious process p: (1) initially, for each
non-malicious process q, msetp,q = ∅, (2) the current state
in the first step of p is a special state Init, (3) for each step
〈p, M〉 of A, and for every message m ∈ M , p is the re-
ceiver of m and ∃q, msetp,q that contains m immediately
before the step 〈p, M〉 is taken, and (4) if there is a step that
puts a message m in msetp,∗ such that p is the receiver of
m and p takes an infinite number of steps, then there is a
subsequent step 〈p, M〉 such that m ∈ M . A partial run is
a finite prefix of some run. A (partial) run r extends some
partial run pr if pr is a prefix of r. At the end of a partial
run, all messages that are sent but not yet received are said
to be in transit.

We say that a non-malicious process p is correct in a run
r if p takes an infinite number of steps of A in r. Otherwise a
non-malicious process is crash-faulty. We say that a crash-
faulty process p crashes at step sp in a run, if sp is the last
step of p in that run. Malicious and crash-faulty processes
are called faulty. In any run, at most t servers might be
faulty, out of which at most b ≤ t may be malicious. In this
paper we consider only optimally resilient implementations
[21], where the total number of servers S equals 2t + b + 1.

For presentation simplicity, we do not explicitly model
the initial state of a process, nor the invocations and re-
sponses of the read/write operations of the atomic storage
to be implemented. We assume that the algorithm A ini-
tializes the processes, and schedules invocation/response of
operations (i.e., A modifies the states of the processes ac-
cordingly). However, we say that p invokes op at step sp, if
A modifies the state of a process p in step sp so as to invoke
an operation (and similarly for response).

2.2 Atomic Register

A sequential (read/write) storage is a data structure ac-
cessed by a single process. It provides two operations:
WRITE(v), which stores v in the storage, and READ(),

which returns the last value stored. An atomic storage is a
distributed data structure that may be concurrently accessed
by multiple clients and yet provides an “illusion” of a se-
quential storage to the accessing clients.

We refer the readers to [17, 20, 14, 15] for a formal de-
finition of an atomic storage, and we simply recall below
what is required to state and prove our results.

We assume that each client invokes at most one opera-
tion at a time (i.e., does not invoke the next operation until
it receives the response for the current one). Only read-
ers invoke READ operations and only the writer invokes
WRITE operations. We further assume that the initial value
of a storage is a special value ⊥, which is not a valid input
value for a WRITE. We say that an operation op is complete
in a (partial) run if the run contains a response step for op.
In any run, we say that a complete operation op1 precedes
operation op2 (or op2 succeeds op1) if the response step of
op1 precedes the invocation step of op2 in that run. If nei-
ther op1 nor op2 precede the other, the operations are said
to be concurrent.

An algorithm implements a robust atomic storage if every
run of the algorithm satisfies wait-freedom and atomicity
properties. Wait-freedom states that if a client invokes an
operation and does not crash, eventually the client receives
a response (i.e., operation completes), independently of the
possible crashes of any other client. Here we give a defini-
tion of atomicity for the SWMR atomic storage.

In the single-writer setting, WRITEs in a run have a nat-
ural ordering which corresponds to their physical order. De-
note by wrk the kth WRITE in a run (k ≥ 1), and by valk
the value written by the kth WRITE. Let val0 = ⊥. We say
that a partial run satisfies atomicity if the following proper-
ties hold: (1) if a READ returns x then there is k such that
valk = x, (2) if a READ rd is complete and it succeeds
some WRITE wrk (k ≥ 1), then rd returns vall such that
l ≥ k, (3) if a READ rd returns valk (k ≥ 1), then wrk

either precedes rd or is concurrent to rd, and (4) if some
READ rd1 returns valk (k ≥ 0) and a READ rd2 that suc-
ceeds rd1 returns vall, then l ≥ k.

2.3 Lucky Operations

A complete READ/WRITE operation op by the client c
is called synchronous, if the message propagation time for
every message m exchanged in time period [topinv , topresp ],
where op is invoked at topinv and completed at time topresp ,
between client c and any server si is bounded by the con-
stant tc,si

known to the client c. A complete operation
op is contention-free if it is not concurrent with any other
WRITE wr. An operation op is lucky if it is synchronous
and contention-free. Note that, in our SWMR setting, every
synchronous WRITE operation is lucky.



2.4 Fast Operations

Basically, we say that a complete operation op is fast if
op completes in one communication round; otherwise, op is
slow. In other words, in a fast READ (resp., WRITE):

1. The reader (resp., writer) sends messages to a subset
of servers in the system (possibly all servers).

2. Servers on receiving such a message reply to the reader
(resp., writer) before receiving any other messages.
More precisely, any server si on receiving a message
m in step sp1 = 〈si,M〉 (m ∈ M ), where m is sent by
the reader (resp., writer) on invoking a READ (resp.,
WRITE), replies to m either in step sp1 itself, or in a
subsequent step sp2, such that si does not receive any
message in any step between sp1 and sp2 (including
sp2). Intuitively, this requirement forbids the server to
wait for some other message before replying to m.

3. upon the reader (resp., writer) receives a sufficient
number k of such replies, a READ (resp., WRITE)
completes.

3 Algorithm

Proposition 1. There is an optimally resilient implementa-
tion I of a SWMR robust atomic storage, such that: (1) in
any partial run in which at most fw servers fail, every lucky
WRITE operation is fast, and (2) in any partial run in which
at most fr servers fail, every lucky READ operation is fast,
where fw + fr = t− b.

In the following, we first give an overview of the algo-
rithm and then we give a detailed description of the WRITE
and READ implementations.3

3.1 Overview

If a WRITE is synchronous (i.e., lucky) and at most fw

servers are faulty, the WRITE is fast and completes in a
single (communication) round. A slow WRITE takes an ad-
ditional two rounds. The READ operation also proceeds in
series of rounds (a fast READ, completes in a single round).
In every round, a client sends a message to all servers and
awaits a response from S − t different servers. In addition,
in the first round of every operation, a client c awaits re-
sponses until the expiration of the timer, set according to
the message propagation bounds tc,s∗ (see Section 2.3).

Roughly speaking, a fast WRITE, writes the new value
in at least S − fw servers. Consider a lucky READ rd, such
that the last WRITE that precedes rd is a fast WRITE wr

3For space limitations, the correctness proof is omitted; for details see
the full paper [13].

that writes vfast and that at most fr servers are faulty. In
this case, vfast is written into at least S−fw servers, out of
which a set X containing at least S − fw − fr = 2b + t + 1
servers are correct. Since no value later than vfast is written
before rd completes (since rd is lucky), all servers from
the set X will respond with vfast in the first round of rd.
Similarly, if wr is a slow WRITE, in every (out of three)
rounds, wr writes vslow to at least S − t servers. In this
case, a lucky READ rd that comes after wr will read, in its
first round, a value vslow written in the third (final) round
of wr from at least S − t − fr ≥ b + 1 correct servers. In
both cases, our algorithm guarantees that rd is fast and that
it returns vfast (resp., vslow) at the end of the first round.

However, since rd is fast, it does not send any additional
messages to servers after the first round. Therefore, when
returning a value v, a fast READ rd must itself “leave” be-
hind enough information so the subsequent READS will not
return the older value. This is precisely the case, when rd
encounters a set X containing at least 2b + t + 1 (resp.,
b + 1) servers that “witness” a fast (resp., slow) WRITE.
To illustrate this, consider a READ rd′ by some reader rj

that succeeds rd. In addition, for simplicity, assume that no
WRITE operation that succeeds wr is invoked (naturally,
the correctness of our algorithm does not rely on this as-
sumption). In case wr is fast, rj is guaranteed to receive a
response from at least 2b + t + 1− (t + b) = b + 1 servers
that belong to the set X , in every round of rd′, overwhelm-
ing the number of responses from malicious servers (at most
b) that may be trying to mislead rj . Now consider the case
where wr is slow. Out of at least b+1 servers that “witness”
a third (final) round of wr and respond to a fast READ rd,
at least one is non-malicious, which means that the second
round of the write wr completed and a set Y containing at
least S − t − b = t + 1 non-malicious servers “witnessed”
the second round of wr. Reader rj is guaranteed to receive
a response from at least one non-malicious server si, that
belongs to the set Y in every round of rd′. Roughly speak-
ing, si claims that the first round of wr completed and that
a set Z of at least S − t − t = b + 1 correct servers “wit-
nessed” the first round of wr. All the servers from set Z
will eventually respond to rd′ confirming the claims of si.

A value v is returned only if at least b + 1 servers re-
port the exact value v. Since servers do not store the entire
history of all the values they receive, in the case the writer
issues an unbounded number of WRITEs and if readers do
not inform the writer about their (slow) READs, server data
can repeatedly be overwritten. This leads to the impossibil-
ity of confirming any value at b + 1 servers. To solve this
issue, our algorithm employs a careful signalling between
the readers and the writer, a mechanism we call freezing.
Roughly, to initiate freezing, a slow READ rd′ by reader rj

writes its own timestamp ts′rj
to all servers. Every server si

appends ts′rj
to its reply to the first round message of every



subsequent WRITE (until the writer “freezes” the value for
rd′). As soon as the writer receives ts′rj

from at least b + 1
different servers, the writer “freezes” the value for rd′ and
writes it in the dedicated server field, frozenrj

. Our algo-
rithm guarantees that the writer “freezes” at most one value
per (slow) READ. The READ rd′ reads the servers’ value
of frozenrj

and is guaranteed to eventually return a value.
Finally, a slow READ writes back the value v it returns in

a well-known manner [2]. The writeback procedure follows
the communication pattern of the WRITE operation and,
hence, takes three communication rounds.

3.2 WRITE implementation

The pseudocode of the WRITE implementation is given
in Figure 1. The writer maintains the following local vari-
ables: (1) a local timestamp ts initially set to ts0, (2) a
timestamp-value pairs pw and w initially set to 〈ts0,⊥〉, (3)
array read ts[∗] initially set to read ts[rj ] = 〈tsr0〉, for
every reader rj , where tsr0 is the initial local timestamp at
every reader (see Section 3.3).

The WRITE operation consists of two phases: pre-write
(PW) phase and write (W) phase. The writer w begins the
PW phase of operation wr = WRITE(v) by increasing its
local timestamp ts, updating its pw variable to reflect the
new timestamp-value pair 〈ts, v〉 and triggering the timer T
(line 3). Then, the writer sends the PW 〈ts, pw, w, frozen〉
message to all servers (line 4). The field frozen of the
PW message is sent optionally in case the writer has to
“freeze” a value for some ongoing READ. On reception
of a PW 〈ts, pw′, w′, ∗〉 message, every server updates its
local copy of pw and w, if these are older than pw′ and
w′, respectively. Even if PW.pw′ and PW.w′ are older
than the servers’ local copies pw and w, servers take into
account the information in the frozen field of the PW
message (lines 5-6, Fig. 3). Servers reply to the writer
with a PW ACK〈ts, newread〉 message. In the optional
newread field, servers inform the writer about the slow
READS that have difficulties returning a value.

In the PW phase, the writer awaits both for valid re-
sponses 4 to the PW message from S − t different servers
and the expiration of the timer. The writer completes the
PW phase by executing the freezevalues() procedure, that
consists of local computations only (line 7). If the writer
received at least S − fw valid PW ACK messages, the
WRITE completes. Otherwise, the writer proceeds to the
second, W phase.

The freezevalues() procedure detects ongoing slow
READS. Namely, in every READ invocation, the reader rj

increases its local timestamp tsrj and, unless the READ is
fast, rj stores this timestamp into servers’ variable tsrj

. In

4A valid response to a PW 〈ts, ∗, ∗, ∗〉 message is a
PW ACK〈ts, ∗〉 message, with the same ts.

Initialization:
1: pw := w := 〈ts0,⊥〉; ts := ts0; T := timer(); frozen := ∅;
2: ∀rj |rj ∈ readers : read ts[rj ] := tsr0

WRITE(v) is {
3: inc(ts); pw := 〈ts, v〉; trigger(T ) % pre-write (PW) phase
4: send PW 〈ts, pw, w, frozen〉 to all servers
5: wait for PW ACKi〈ts, newread〉 from S − t servers and expired(T)
6: frozen := ∅; w := 〈ts, v〉
7: freezevalues()
8: if PW ACKi〈ts, ∗〉 received from S − fw servers then return(OK)
9: else for round= 2 to 3 do % write (W) phase
10: send W 〈round, ts, pw〉 to all servers
11: wait for reception of WRITE ACKi〈round, ts〉 from S − t servers
12: return(OK) }

freezevalues() is {
13: (∀rj , |{i : (PW ACKi.ts = ts) ∧ ((〈rj , tsrj

〉 ∈
∈ PW ACKi.newread) ∧ (tsrj

> read ts[rj ]))}| ≥ b + 1 do
14: read ts[rj ] := b + 1st highest value tsrj

15: frozen := frozen ∪ 〈rj , pw, read ts[rj ]〉 }

Figure 1. WRITE implementation (writer)

every round of WRITE operation, servers piggyback those
timestamps along the id of the issuing reader to PW ACK
message within the newread field, in case the writer did not
already “freeze” a value for this READ (lines 5-7 Fig. 3).
When the writer detects b+1 servers that report a timestamp
for the reader rj (tsrj

) higher than the writer’s locally stored
value of read ts[rj ] (line 13, Fig. 1), the writer updates its
read ts[rj ] value to the b + 1st highest tsrj

value received
in the newread fields of the valid responses to the PW
message (line 14, Fig. 1) and “freezes” the current value of
the timestamp value pair pw for the reader rj , by assigning
frozen := frozen∪〈rj , pw, read ts[rj ]〉. The set frozen
is sent to all servers within the PW message of the next
WRITE invocation. On reception of a PW message with
a non-empty field frozen, servers update their local vari-
ables frozenrj if the frozen value matches the timestamp
tsrj stored at the server, or if it is newer (line 6, Fig. 3). The
freezevalues() procedure ensures wait-freedom in runs in
which the writer issues an unbounded number of WRITEs.

The write (W) phase takes two rounds. Pseudocode of
W phase is depicted in lines 9-12, Fig. 1 and lines 12-
17, Fig. 3. In each of the rounds, the writer sends the
W 〈round, ts, pw〉 message to all servers and awaits S − t
valid responses from different servers. At the end of the
second round of W phase, WRITE completes.

3.3 READ implementation

The pseudocode of our READ implementation is given
in Figure 2. At the beginning of every READ operation, the
reader rj increases its local timestamp tsrj . The reader rj

proceeds by repeatedly invoking rounds (until it can safely
return a value) that consist of: (1) reading the latest values
of the server variables pw, w, vw and frozenrj

and (2)



writing the timestamp tsrj to variable tsrj
at every server.

In every round rj awaits S − t server responses. The first
round of every READ is specific: (1) rj does not write tsrj

to servers and (2) rj waits for both at least S − t responses
and for the timer triggered at the beginning of the round to
expire.

Definitions and Initialization:
1: readLive(c, i) ::= (pwi = c) ∨ (wi = c)
2: readFrozen(c, i) ::= (frozeni.pw = c) ∧ (frozeni.tsr = tsr)
3: safe(c) ::= |{i : readLive(c, i)}| ≥ b + 1
4: safeFrozen(c) ::= |{i : readFrozen(c, i)}| ≥ b + 1
5: fastpw(c) ::= (|{i : pwi = c}| ≥ 2b + t + 1)
6: fastvw(c) ::= (|{i : vwi = c}| ≥ b + 1)
7: fast(c) ::= fastpw(c) ∨ fastvw(c)
8: invalidw(c) ::= |{i : ∃c′ : readLive(c′, i)∧

∧(c′ts < c.ts ∨ (c′.ts = c.ts ∧ c′.v 6= c.v))}| ≥ S − t
9: invalidpw(c) ::= |{i : ∃c′ : pw[i] = c′∧

∧(c′ts < c.ts ∨ (c′.ts = c.ts ∧ c′.v 6= c.v))}| ≥ S − b − t
10: highCand(c) ::= ∀c′∀i : (readLive(c′, i) ∧ c′.ts ≥ c.ts ∧ c′ 6= c) ⇒

⇒ invalidw(c′) ∧ invalidpw(c′)
11: tsr := tsr0; T := timer();

READ() is {
12: inc(tsr);
13: rnd := 0; pwi := wi := 〈ts0, v0〉,rndi := 0, 1 ≤ i ≤ S;
14: repeat
15: inc(rnd); if rnd = 1 then trigger(T )
16: send READ〈tsr, rnd〉 to all servers
17: wait for READ ACKi〈tsr, rnd, ∗, ∗, ∗, ∗〉 from S − t servers and

and (expired(T ) or rnd > 1)
18: C := {c : (safe(c) and highCand(c)) or safeFrozen(c)}
19: until C 6= ∅
20: csel := (c.val : c ∈ C) ∧ (¬∃c′ ∈ C : c′.ts > c.ts)
21: if (¬fast(c) or (rnd > 1)) then writeback(csel)
22: return(csel.val)

23: upon receive READ ACKi〈tsr, rnd′, pw′, w′, vw′, frozen′
j〉 from si

24: if (rnd′ > rndi) then
25: rndi := rnd′; pwi := pw′; wi := w′;

vwi := vw′; frozeni := frozen′
j }

writeback(c) is {
26: for round= 1 to 3 do
27: send W 〈round, tsr, c〉 message to all servers
28: wait for receive WRITE ACKi〈round, tsr〉 from S − t servers }

Figure 2. READ implementation (reader rj)

A reader rj maintains the following local variables: (1)
arrays pwi, wi, vwi, frozeni, 1 ≤ i ≤ S that keep the latest
copy of the server’s si variables pw, w, vw and frozenrj

and (2) a local timestamp tsrj , that is increased once at the
beginning of every READ invocation. We define the pred-
icates readLive(c, i) and readFrozen(c, i) in lines 1 and
2 of Figure 2, respectively, to denote that: (1) a timestamp-
value pair c is seen in the latest copy of either the variable
pwi, or the variable wi of the server si (readLive(c, i)),
and (2) a timestamp-value pair c is seen in the latest copy of
the frozenrj

.pw of the server si, under the condition that
the last value of frozenrj

.tsr of the server si is tsrj , the
current local READ timestamp (readFrozen(c, i)).

A reader rj can only return a value c.val if a timestamp-
value pair c is safe or safeFrozen (lines 3,4 and 18,
Fig. 2), i.e., c must have been either (a) readLive(c, ∗)
(for safe) or (b) readFrozen(c, ∗) (for safeFrozen),

Initialization:
1: pw, w, vw := 〈ts0,⊥〉; newread := ∅; ; tsrj

:= tsr0

2: ∀rj |rj ∈ readers : 〈frozenrj
.pw, frozenrj

.tsr〉 := 〈〈ts0,⊥〉, tsr0〉

3: upon receive PW 〈ts, pw′, w′, frozen〉 from the writer
4: update(pw, pw′); update(w, w′)
5: ∀j : 〈rj , pw′

j , tsr′j〉 ∈ frozen do
6: if tsr′j ≥ tsrj

then 〈frozenrj
.pw, frozenrj

.tsr〉 := 〈pw′
j , tsr′j〉

7: newread :=
⋃
〈rj , tsrj

〉, for all rj such that tsrj
> frozenrj

.tsr

8: send PW ACKi〈ts, newread〉 to the writer

9: upon receive READ〈tsr′, rnd′〉 from reader rj

10: if (tsr′ > tsrj
) and (rnd′ > 1) then tsrj

:= tsr

11: send READ ACKi〈tsr′, rnd′, pw, w, vw, frozenrj
〉 to rj

12: upon receive W 〈round, ts, c〉 from client clnt
13: update(pw, c)
14: if round > 1 then update(w, c)
15: if round > 2 then update(vw, c)
16: send WRITE ACKi〈round, ts〉 to clnt

update (localtsval, tsval) is {
17: if tsval.ts > localtsval.ts then localtsval := tsval}

Figure 3. Code of server si

for at least b + 1 different servers. Moreover, unless the
reader return c.val such that c is safeFrozen (but c is
rather safe), every other timestamp-value pair c′ that is
readLive(c, i) for some si with a higher timestamp (or the
value v′ 6= v with the same timestamp) must be deemed
invalidw (line 8, Fig. 2) and invalidpw (line 9, Fig. 2),
i.e., highCand(c) must hold (lines 10 and 18, Fig. 2). The
predicate invalidw(c) holds if S−t servers respond (either
in pwi or wi variables) with a timestamp-value pair with a
timestamp less than c.ts or with the same timestamp as c.ts
but with a value different than c.val. Similarly, the predi-
cate invalidpw(c) holds if S−b−t servers respond in their
pw fields with a timestamp-value pair with a timestamp less
than c.ts or with the same timestamp as c.ts but with a value
different than c.val.

When the reader selects a value c.val that is safe to
return, and if this occurs at the end of the first round of
the READ invocation, the reader evaluates the predicate
fast(c) (defined in line 7, Figure 2), to determine whether
it can skip the writeback procedure. The fast(c) holds if c
appears in at least b+1 server vw fields or 2b+t+1 servers’
pw fields. If the READ rd is lucky and at most fr servers
are faulty, the rd is guaranteed to terminate after only one
round of the READ invocation, and, hence, rd will be fast.

Indeed, if a last complete WRITE that preceded rd was
a fast WRITE wr (resp., if wr is slow), wr has written pw
(resp., vw) fields of at least S − fw = t + 2b + fr + 1
servers (resp., S− t = t+ b+1). If a READ is lucky and at
most fr servers are faulty, out of these S−fw servers at least
S−fw−fr = t+2b+1 (resp., S−t−fr ≥ S−2t = b+1)
are correct and will send the READ ACK message con-
taining pw (resp., vw) (no new values are written after



wr until rd completes, since rd is contention-free) in the
first round of READ. Since rd is synchronous, the reader
receives all the responses from all correct servers before
the expiration of timer. Hence, the predicate fastpw(pw)
(resp., fastvw(vw)) holds, as well as predicates safe()
and highCand() and rd returns pw.val (resp., vw.val)
without writing it back.

Otherwise, if rd is not lucky, or more than fr servers fail,
the reader may have to write back the value to servers. The
writeback follows the communication pattern of the WRITE
algorithm (lines 26-28, Fig. 2).

4 Upper Bound

Our upper bound fw + fr ≤ t − b limits the number of
actual server failures that fast lucky read/write operations
can tolerate, in any optimally resilient atomic storage
implementation. In short, the principle lying behind
this bound is that the system is asynchronous in general
and since malicious servers may change their state to an
arbitrary one, they can impose on readers a value that was
never written, in case the fast operations skip too many
servers. In the following, we first precisely state our upper
bound and then proceed by proving it.

Proposition 2. Let I be any optimally resilient imple-
mentation of a SWMR atomic wait-free storage, with the
following properties: (1) in any partial run in which at most
fw servers fail, every lucky WRITE operation is fast, and
(2) in any partial run in which at most fr servers fail, every
lucky READ operation is fast. Then, fw + fr ≤ t− b.

Proof. Let I be any implementation that satisfies properties
(1) and (2) of Proposition 2, such that fw + fr > t − b.
We prove the case where b > 0 (the case b = 0 is sim-
ilar and is omitted; see full paper [13] for details). Since
I uses 2t + b + 1 servers we can divide the set of servers
into five distinct sets: B1 that contains at least one and at
most b servers, B2 (resp., T1) that contains at most b (resp.,
t) servers, and Fr (resp., Fw) that contains exactly fr ≤ t5

(resp., fw ≤ t) servers. Without loss of generality, assume
that each of these sets contains only one server. If a set has
more than one server, we simply modify the runs in a way
that all processes inside a set receive the same set of mes-
sages, and if they fail, they fail at the same time, in the same
way; the proof also holds if any of the sets B2, T1, Fr and
Fw are empty, as long as |Fw|+ |Fr| > t− b.

Let r1 be the run in which all servers are correct except
Fw, which fails by crashing at the beginning of the run. Fur-
thermore, let wr1 be the lucky WRITE operation invoked by
the correct writer in r1 to write a value v1 6= ⊥ (where ⊥ is

5Recall that, in our model, at most t servers can be faulty in any run.

the initial value of the storage) in the storage and no other
operation is invoked in r1. By our assumption on I , wr1

completes in tr1, say at time t1, and, moreover, wr1 is fast.
According to the proposition, wr1 completes after receiving
responses to the first message sent to correct servers (B1,
B2, T1 and Fr). Note that the messages that the writer sends
to servers during the first round of wr1 must not contain au-
thenticated data. In r1, depending on the implementation I
correct servers are allowed to exchange arbitrary number of
messages after sending the replies to the writer. We denote
the set of messages servers exchange among themselves ex-
ecuting some operation op as Xop.

Let r′1 be the partial run that ends at t1, such that r′1 is
identical to r1 up to time t1, except that in r′1: (1) server
Fw does not fail, but, due to asynchrony, all messages ex-
changed during wr1 between Fw and the writer remain in
transit, and (2) all messages from Xwr1 remain in transit.
Since the writer cannot distinguish r1 from r′1, wr1 com-
pletes in r′1 at time t1.

Let r2 be the partial run that extends partial run r′1 such
that: (1) Fr fails by crashing at t1, (2) rd1 is a lucky READ
operation invoked by the correct reader reader1 after t1,
(3) rd1 is fast and completes at time t2

6, (4) no additional
operation is invoked in r2, (5) r2 ends at t2, (6) all messages
that were in transit in r′1 remain in transit in r2.

Let r′2 be the partial run, identical to r2, except that in r′2:
(1) server Fr does not fail, but, due to asynchrony, all mes-
sages exchanged during rd1 between Fr and the reader1

remain in transit, and (2) all the messages from Xrd1 are
in transit in r′2. Since the reader1 and all servers, except
Fr, cannot distinguish r2 from r′2, rd1 completes in r′2 at
time t2 (note that, both in r2 and r′2, reader1 and all other
servers do not receive any message from Fr).

Let r′′2 be the partial run, identical to r′2, except that in
r′′2 : (1) the writer fails during wr1 and its messages are
never delivered to Fr. Since reader1 and all servers, ex-
cept Fr, cannot distinguish r′2 from r′′2 , rd1 completes in
r′2 at time t2 (note that, both in r′2 and r′′2 , reader1 and all
other servers do not receive any message from Fr).

Consider now a partial run r3, slightly different from
r′′2 , in which the writer (resp., reader1) fails during wr1

(resp., rd1) such that the messages sent by the writer (resp.,
reader1) in wr1 (resp., rd1) are delivered only to B1 (resp.,
B1 and Fw) - other servers do not receive any message from
the writer (resp., reader1). We refer to the state of B1 right
after the reception of the message from the writer as to σ1.
In r3, T1 crashes at the beginning of the partial run. Assume
that the writer fails at time tfailw and that reader1 fails at
time tfailr > tfailw . In r3, by the time tfailr , servers B2

and Fr did not send nor receive any message. Let rd2 be a
READ operation invoked by the correct reader reader2 at

6Note that rd1, according to the proposition, must be fast, even if mes-
sages that were in transit in r′

1 are not delivered by t2.



time t′3 > max(tfailr , t2). Since the only faulty server in r3

is T1, rd2 eventually completes, possibly after the messages
in Xwr1 and Xrd1 are delivered. Assume rd2 completes at
time t3 and returns vR.

Let r4 be the partial run, identical to r′′2 , except that in r4:
(1) a READ operation rd2 is invoked by the correct reader
reader2 at t′3 (as in r3), (2) due to asynchrony all messages
sent by T1 to reader2 and other servers are delayed un-
til after t3 and (3) at the beginning of r4, B2 fails mali-
ciously: B2 plays according to the protocol with respect to
the writer and reader1, but to all other servers and reader2,
B2 plays like it never received any message from the writer
or reader1; otherwise, B2 respects the protocol. Note that
reader2 and the servers Fw, Fr and B1 cannot distinguish
r4 from r3 and, hence, rd2 terminates in r4 at time t3 (as
in r3) and returns vR. On the other hand, reader1 cannot
distinguish r4 from r′′2 and, hence, rd1 is fast and returns
v1. By atomicity, as rd1 precedes rd2, vR must equal v1.

Consider now partial run r5, identical to r3, except that
in r5: (1) wr1 is never invoked, (2) B1 fails maliciously at
the beginning of r5 and forges its state to σ1; otherwise, B1

sends the same messages as in r3, and (3) T1 is not faulty
in r5, but, due to asynchrony, all messages sent by T1 to
reader2 and the other servers are delayed until after t3. The
reader reader2 and the servers Fw, Fr and B2 cannot dis-
tinguish r5 from r3, so rd2 completes at time t3 and returns
vR, i.e., v1. However, by atomicity, in r5 rd2 must return
⊥. Since v1 6= ⊥, r5 violates atomicity.

5 Discussion

Our tight bound on the best-case complexity of an atomic
storage raises several questions, which we discuss below.

Tolerating malicious readers. While it is pretty obvious
that a malicious writer can always corrupt the storage, it
is appealing to figure out whether it is feasible to tolerate
malicious readers.

The problem is basically the following: consider a com-
plete write followed by a read from a malicious reader that
writes back the value to the servers, which itself is followed
by a read from a correct reader. Our algorithm does not en-
sure that the malicious reader will not write back a value
that was never written by the writer. Hence, a correct reader
might return the value written back by the malicious reader
instead of the last written value (thus violating atomicity).

In fact, we are not aware of any optimally resilient
atomic implementation that tolerates malicious readers
without using data authentication or intercommunication
among servers. It would be interesting to devise an algo-
rithm that allows fast lucky operations and tolerates mali-
cious readers, in a model where server intercommunication
is possible.

Authentication. Our upper bound fw +fr ≤ t−b of Sec-
tion 4 is based on the possibility for malicious servers to get
to an arbitrary state. If we relax the guarantees of an atomic
storage, and accept violations of atomicity with a very small
probability, we could benefit from data authentication prim-
itives, such as digital signatures [22] or message authentica-
tion codes (MACs). Roughly speaking, this would prevent
malicious servers from impersonating the writer (run r5,
Section 4), and hence circumvent our upper bound. How-
ever, since the generation of digital signatures is (computa-
tionally) expensive, it may impair the benefits of expediting
operations in a single communication round (besides, ma-
licious servers would have to be assumed computationally
bounded).

On the other hand, (computationally less expensive [7])
MACs might appear to circumvent our upper bound: since
clients are non-malicious, they could share a symmetric
key (unknown to servers) to prevent malicious servers from
forging values (with a very high probability). However,
our upper bound requires every lucky operation to be fast
(provided at most fw/fr server failures): it is not clear
how clients can distribute the secret key while preserving
this requirement (recall that any number of clients can fail,
and hence clients would have to establish the key through
servers). Moreover, MACs are not suitable for solving the
malicious readers issue, since in this case, roughly, com-
putational overhead of MACs grows proportionally to the
number of readers. In the following, we discuss an alter-
native approach to boosting thresholds fw and fr, without
relying on any data authentication.

Trading (few) reads. Our upper bound proof of fw +
fr ≤ t − b heavily relies on the fact that we require every
lucky operation (in particular, every lucky read operation)
to be fast. In fact, if we allow a certain number, yet just a
small fraction, of lucky read operations to be slow, we can
drastically increase the sum of the thresholds fw and fr:
fw ≤ t − b and fr ≤ t. Basically, our very same atomic
implementation also ensures that: (1) every lucky write can
be fast given that at most fw = t− b servers are faulty, and
(2) in any sequence of n (0 < n <∝) consecutive lucky
reads, there is at most one slow lucky read (regardless of the
number of server failures, i.e., fr = t).7

These bounds (fw ≤ t − b and fr ≤ t) are also tight
in the following sense. No optimally resilient safe storage
algorithm can have every lucky write be fast despite the fail-
ure of fw > t− b servers.8

Trading writes. In our algorithm, unlucky writes execute
in three communication round-trips. In this sense, our al-
gorithm does not degrade gracefully as it is known that

7More details can be found in the full paper [13].
8The proof can be found in the full paper [13].



an atomic storage implementation (for b = t) can be op-
timally resilient with two communication-round trips for
every write. In the full paper [13], we show that the three
communication round-trips worst-case complexity of the
write operation is inherent in the general case where b 6= t,
to optimally resilient algorithms where every lucky read is
fast despite the failure of at least one server.

It is also natural to ask if our upper bound can be circum-
vented for the lucky reads, if we are willing to trade certain,
or even all writes. In fact it is easy to modify our algorithm
such that writes are slow (by removing line 7, Fig. 1) and
ensure that every lucky read is fast (i.e., fr = t).

Regularity vs Atomicity. The problem of malicious read-
ers can easily be solved by weakening the guarantees of the
storage implementation. Namely, our algorithm can easily
be modified such that: (1) it tolerates malicious readers and
(2) the number of actual server failures every lucky write
(resp., read) operation tolerate fw (resp., fr) is t− b (resp.,
t). This can be achieved by simple modifications of our al-
gorithm, most notably by removing the writeback procedure
in the read implementation. The key idea in achieving op-
timally resilient wait-free implementation while tolerating
malicious readers is to allow readers to modify the state of
servers without impacting other readers (by using our freez-
ing mechanism). The price for these improvements is to
trade atomicity for regularity.9

Contending with the ghost. If the writer fails without
completing a write wr, every subsequent read operation rd
is, according to our definition, considered under contention.
Therefore, no rd is lucky and no rd is guaranteed to be fast.
Interestingly, in our algorithm, at most three synchronous
read operations by some reader rj , invoked after the failure
of the writer, need to be slow. Hence, our algorithm quickly
overcomes the issues of the writer failure and restores its
optimal performance.10

6 Related Work

The area of robust shared storage over unreliable com-
ponents is not new. Original work considered tolerating
crash failures of the servers [2]. More recent work con-
sidered tolerating arbitrary [16, 19] server failures. We re-
call here several results about such implementations that are
close to ours. We discuss the implementations that do not
use data authentication and implement fast read/write op-
erations, and we compare those to our algorithm. For an
accurate comparison of algorithm performance, unless ex-
plicitly stated otherwise, we assume a SWMR setting.

9More details can be found in the full paper [13].
10More details can be found in the full paper [13].

In [21], Martin et al. proved that no safe [17]11 stor-
age implementation is possible if the available number of
servers is S ≤ 3t, considering the case where b = t. When
b 6= t, it is not difficult to extend [21] and show that any safe
storage implementation requires at least 2t + b + 1 servers,
establishing an optimal resilience lower bound for any stor-
age implementation in an asynchronous system. Further-
more, Martin et al. presented in [21] a MWMR optimally
resilient atomic storage implementation, called SBQ-L, that
uses 3t + 1 servers to tolerate b = t arbitrary server fail-
ures without using data authentication, that is not wait-free.
In contrast, we present a wait-free optimally resilient im-
plementation that enables fast reads and fast writes under
best-case conditions without using data authentication.

The relationship between resilience and fast operations,
in the case where b = t, was analyzed by Abraham et al.
in [1]. They showed that, in order for every write opera-
tion to be fast, at least 4t + 1 servers (actually based shared
objects) are required even for the case of a single-writer-
single-reader (SWSR) safe storage. Furthermore, they used
3t + 1 passive discs to implement a SWMR wait-free safe
and a FW-terminating12 regular implementations without
using data authentication. In their algorithms, writes are
never fast, but every contention-free and synchronous (i.e.,
lucky) read operation is fast despite the actual failure of t
shared discs. In contrast, we provide stronger, atomic wait-
free, semantics and achieve fast synchronous writes, in ad-
dition to achieving fast lucky reads. To achieve this, besides
using some novel techniques (e.g., the “freezing” mecha-
nism as well as the fast writing), our algorithm makes use
of some techniques established by [1].

In [12], Goodson et al. described an implementation of
a wait-free MWMR atomic storage, assuming 2t + 2b + 1
servers (thus not being optimally resilient). In [12], lucky
reads are fast, in the case there are no server failures fr = 0.
In our SWMR setting, this implementation can trivially be
modified to allow every write operation to be fast. The
wait-freedom of the atomic storage of [12] relies on the
fact that servers store the entire history of the shared data
structure, which is not the case with our algorithm. More-
over, our implementation is optimally resilient and achieves
fast lucky read/write operations while maximizing the num-
ber of server failures that fast atomic operations can toler-
ate in optimally resilient implementations. The algorithm
of [12] tolerates poisonous writes [21] performed by mali-
cious clients to write inconsistent data into servers, but does
not solve the issue of malicious readers that we pointed out
in Section 5. The algorithm of [12] uses erasure coding
in which servers store data fragments, instead of full repli-

11Roughly, in a safe storage, a read must return the last value written, or
any value if it is concurrent with a write.

12Roughly, FW-termination requires only that read operations terminate
when a finite number of writes are invoked.



cation, to improve bandwidth consumption and storage re-
quirements. Our algorithm can easily be modified to sup-
port erasure coding, along the lines of [8, 12].

In [5], Bazzi and Ding presented a MWMR atomic im-
plementation that used 4t + 1 servers (b = t case), and that
can trivially be modified, in the SWMR setting, to achieve
fast writes whenever there is no concurrency. However, in
[5] reads are never fast and the implementation is not wait-
free.13 Bazzi and Ding also suggested in [6], an improved,
wait-free, version of their algorithm, that still uses 4t + 1
servers, and ensures fast writes when there is no contention;
fast reads are not considered.

In [11], Dutta et al. considered atomic storage imple-
mentations that implement fast operations (even in unlucky
situations). They derived a tight resilience bound that limits
the number of readers that can be supported by such an im-
plementation. Namely, to support R readers, any such em-
ulation must make use of at least (R + 2)t + (R + 1)b + 1
servers. The implementation presented in [11] uses data
authentication and is clearly not optimally resilient. In this
paper, we focus only on optimally resilient implementations
that (1) support any number of readers, (2) do not use data
authentication and (3) are optimized for lucky operations.
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