The Weakest Failure Detectors to Boost
Obstruction-Freedom*

Rachid Guerraouil?

Michat Kapatka?

Petr Kouznetsov®

! Computer Science and Artificial Intelligence Laboratory, MIT

2 School of Computer and Communication Sciences, EPFL

3 Max Planck Institute for Software Systems

13th July 2006

Abstract

This paper determines necessary and sufficient
conditions to implement wait-free and non-blocking
contention managers in a shared memory system.
The necessary conditions hold even when univer-
sal objects (like compare-and-swap) or random or-
acles are available, whereas the sufficient ones as-
sume only registers.

We show that failure detector {P is the weak-
est to convert any obstruction-free algorithm into
a wait-free one, and)", a new failure detector
which we introduce in this paper, and which is
strictly weaker than OP but strictly stronger than
(), is the weakest to convert any obstruction-free
algorithm into a non-blocking one.

1 Introduction

Multiprocessor systems are becoming more and
more common nowadays. Multithreading thus be-
comes the norm and studying scalable and effi-
cient synchronization methods is essential, for tra-
ditional locking-based techniques do not scale and
may induce priority inversion, deadlock and fault-
tolerance issues when a large number of threads is
involved.

Wait-free synchronization algorithms [13] cir-
cumvent the issues of locking and guarantee in-
dividual progress even in presence of high con-
tention. Wait-freedom is a liveness property which
stipulates that every process completes every op-

*EPFL Technical Report LPD-REPORT-2006-007. Elements
of this work are to appear in a paper with the same title in
the Proceedings of the 20th International Symposium on Dis-
tributed Computing (DISC’06).

eration in a finite number of its own steps, regard-
less of the status of other processes, i.e., contend-
ing or even crashed. Ideal synchronization algo-
rithms would ensure linearizability [16, 2], a safety
property which provides the illusion of instanta-
neous operation executions, together with wait-
freedom.

Alternatively, a liveness property called non-
blockingness'! may be considered instead of wait-
freedom. Non-blockingness guarantees global
progress, i.e., that some process will complete an
operation in a finite number of steps, regardless of
the behavior of other processes. Non-blockingness
is weaker than wait-freedom as it does not prevent
some processes from starvation.

Wait-free and non-blocking algorithms are,
however, notoriously difficult to design [18, 3], es-
pecially with the practical goal to be fast in low
contention scenarios, which are usually consid-
ered the most common in practice. An appeal-
ing principle to reduce this difficulty consists in
separating two concerns of a synchronization al-
gorithm: (1) ensuring linearizability with a mini-
mal conditional progress guarantee, and (2) boost-
ing progress. More specifically, the idea is to focus
on algorithms that ensure linearizability together
with a weak liveness property called obstruction-
freedom [15], and then combine these algorithms
with separate generic oracles that boost progress,
called contention managers [14, 20, 21, 9]. This sep-
aration lies at the heart of modern (obstruction-

IThe term non-blocking is defined here in the traditional
way [13]: “some process will complete its operation in a finite
number of steps, regardless of the relative execution speeds of
the processes.” This term is sometimes confused with the term
lock-free. Note that non-blocking implementations provide a
weaker liveness guarantee than wait-free implementations.

free) software transactional memory (STM) frame-
works [14].

With obstruction-free (or OF, for short) algo-
rithms, progress is ensured only for every process
that executes in isolation for sufficiently long time.
In presence of high contention, however, OF algo-
rithms can livelock, preventing any process from
terminating. Contention managers are used pre-
cisely to cope with such scenarios. When queried
by a process executing an OF algorithm, a con-
tention manager can delay the process for some
time in order to boost the progress of other pro-
cesses. The contention manager can neither share
objects with the OF algorithm, nor return results
on its behalf. If it did, the contention manager
could peril the safety of the OF algorithm, hamper-
ing the overall separation of concerns principle.

In short, the goal of a contention manager is to
provide processes with enough time without con-
tention so that they can complete their operations.
In its simplest form, a contention manager can be a
randomized back-off protocol. More sophisticated
contention management strategies have been ex-
perimented in practice [20, 21, 10]. Precisely be-
cause they are entirely devoted to progress, they
can be combined or changed on the fly [9]. Most
previous strategies were pragmatic, with no aim
to provide worst case guarantees. In this paper
we focus on contention managers that provide
such guarantees. More specifically, we study con-
tention managers that convert any OF algorithm
into a non-blocking or wait-free one, and which
we call, respectively, non-blocking or wait-free con-
tention managers.

Two wait-free contention managers have re-
cently been proposed [6, 8]. Both rely on tim-
ing assumptions to detect processes that fail in
the middle of their operations. This suggests that
some information about failures might inherently
be needed by any wait-free contention manager.
But this is not entirely clear because, in principle, a
contention manager could also use randomization
to schedule processes, or even powerful synchro-
nization primitives like compare-and-swap, which
is known to be universal, i.e., able to wait-free im-
plement any other object [13]. In the parlance
of [5], we would like to determine whether a fail-
ure detector is actually needed to implement a con-
tention manager with worst case guarantees, and
if it is, what is the weakest one [4]. Besides the the-
oretical interest, determining the minimal condi-
tions under which a contention manager can en-
sure certain guarantees is, we believe, of practical

relevance, for this might help portability and opti-
mization.

We show that the eventually perfect failure de-
tector QP [5] is the weakest to implement a wait-
free contention manager.> We also introduce a fail-
ure detector ()*, which we show is the weakest
to implement a non-blocking contention manager.
Failure detector (}* is strictly weaker than P, and
strictly stronger than failure detector () [4], known
to be the weakest to wait-free implement the (uni-
versal) consensus object [13].3

It might be surprising that () is not sufficient to
implement a wait-free or even a non-blocking con-
tention manager. For example, the seminal Paxos
algorithm [19] uses () to transform an OF imple-
mentation of consensus into a wait-free one. Each
process that is eventually elected a leader by Q)
is given enough time to run alone, reach a deci-
sion and communicate it to the others. This ap-
proach does not help, however, if we want to make
sure that processes make progress regardless of
the actual (possibly long-lived) object and its OF
implementation. Intuitively, the leader elected by
() may have no operation to perform while other
processes may livelock forever. Because a con-
tention manager cannot make processes help each
other, the output of () is not sufficient: this is so
even if randomized oracles or universal objects are
available. Intuitively, wait-free contention man-
agers need a failure detector that would take care
of every non-crashed process with a pending op-
eration so that the process can run alone for suffi-
ciently long time. As for non-blocking contention
managers, at least one process that never crashes,
among the ones with pending operations, should
be given enough time to run alone.

The paper is organized as follows. Section 2
presents our system model and formally defines
wait-free and non-blocking contention managers.
These definitions are, we believe, contributions in
their own rights, for they capture precisely the in-
teraction between a contention manager and an
obstruction-free algorithm. In Sect. 3 and 4, we
prove our weakest failure detector results. In each
case, we first present (necessary part) a reduction
algorithm [4] that extracts the output of failure de-
tector ()* (respectively OP) using a non-blocking
(respectively wait-free) contention manager im-

2P ensures that eventually: (1) every failure is detected by
every correct (i.e., non-faulty) process and (2) there is no false
detection.

3Q) ensures that eventually all correct (i.e., non-faulty) pro-
cesses elect the same correct process as their leader.

plementation. When devising our reduction algo-
rithms, we do not restrict what objects (or random
oracles) can be used by the contention manager
or the OF algorithm. Then (sufficient part), we
present algorithms that implement the contention
managers using the failure detectors and registers.
These algorithms are devised with the sole pur-
pose of proving our sufficiency claims. We do
not seek to minimize the overhead of the interac-
tion between the OF algorithm and the contention
manager, nor do we discuss how the failure de-
tector can itself be implemented with little syn-
chrony assumptions and minimal overhead, un-
like the transformations presented in [6]. How-
ever, as we show in [11], our algorithms can be
easily extended to meet these challenges.

2 Preliminaries

Processes and Failure Detectors. We consider a
set of n processes Il = {pj,...,pxn} in a shared
memory system [13, 17]. A process executes the
(possibly randomized) algorithm assigned to it,
until the process crashes (fails) and stops executing
any action. We assume the existence of a global
discrete clock that is, however, inaccessible to the
processes. We say that a process is correct if it never
crashes. We say that process p; is alive at time ¢ if
pi has not crashed by time ¢.

A failure detector [5, 4] is a distributed oracle
that provides every process with some informa-
tion about failures. The output of a failure detector
depends only on which and when processes fail,
and not on computations being performed by the
processes. A process p; queries a failure detector D
by accessing local variable D-output,.—the output
of the module of D at process p;. Failure detectors
can be partially ordered according to the amount
of information about failures they provide. A fail-
ure detector D is weaker than a failure detector D',
and we write D < D/, if there exists an algorithm
(called a reduction algorithm) that transforms D’
into D. If D < D' but D' £ D, we say that D is
strictly weaker than D', and we write D < D'.

Base and High-Level Objects. Processes com-
municate by invoking primitive operations (which
we will call instructions) on base shared objects
and seek to implement the operations of a high-level
shared object O. Object O is in turn used by an
application, as a high-level inter-process commu-
nication mechanism. We call invocation and re-

sponse events of a high-level operation op on the
implemented object O application events and de-
note them by, respectively, inv(op) and ret(op) (or
inv;(op) and ret;(op) at a process p;).

An implementation of O is a distributed algo-
rithm that specifies, for every process p; and ev-
ery operation op of O, the sequences of steps that
p; should take in order to complete op. Process
pi completes operation op when p; returns from op.
Every process p; may complete any number of op-
erations but, at any point in time, at most one op-
eration op can be pending (started and not yet com-
pleted) at p;.

We consider implementations of O that com-
bine a sub-protocol that ensures a minimal live-
ness property, called obstruction-freedom, with a
sub-protocol that boosts this liveness guarantee.
The former is called an obstruction-free (OF) algo-
rithm A and the latter a contention manager CM. We
focus on linearizable [16, 2] implementations of O:
every operation appears to the application as if it
took effect instantaneously between its invocation
and its return. An implementation of O involves
two categories of steps executed by any process p;:
those (executed on behalf) of CM and those (exe-
cuted on behalf) of A. In each step, a process p;
either executes an instruction on a base shared ob-
ject or (in case p; executes a step on behalf of CM)
queries a failure detector.

Obstruction-freedom [15, 14] stipulates that if a
process that invokes an operation op on object O
and from some point in time executes steps of
A alone?, then it eventually completes op. Non-
blockingness stipulates that if some correct pro-
cess never completes an invoked operation, then
some other process completes infinitely many op-
erations. Wait-freedom [13] ensures that every cor-
rect process that invokes an operation eventually
returns from the operation.

Interaction Between Modules. OF algorithm A,
executed by any process p;, communicates with
contention manager CM via calls try; and resign;
implemented by CM (see Fig. 1). Process p; in-
vokes try; just after p; starts an operation, and also
later (even several times before p; completes the
operation) to signal possible contention. Process
pi invokes resign; just before returning from an op-
eration, and always eventually returns from this
call (or crashes). Both calls, try; and resign;, return
ok.

41.e., without encountering step contention [1].

An example OF algorithm that uses this model
of interaction with a contention manager is pre-
sented in Algorithm 1. The algorithm implements
a timestamping mechanism and is based on the
implementation of a splitter. It is not meant to be
practical or efficient—it just shows how calls try
and resign should be used.

A discussion about overhead of wait-free/non-
blocking contention managers that explains when
calls to try /resign can be omitted for efficiency rea-
sons can be found in [11].

Algorithm 1: An example OF algorithm imple-
menting a timestamping mechanism

uses: A[l,...]—unbounded array of registers,
B[1,...]—unbounded array of single-bit
registers, L—a register

initially: A[1,...] «— L, B[1,...] < false, L — 1

11 upon of-getTimestamp do

12 CM.try;

13 j— L

14 while true do

15 Aljl < i

16 if B[j] = false then
17 B[j] < true

18 if A[j] =ithen
19 L—j

1.10 CM.resign;
111 return j
112 CM.try;

113 je—j+1

We denote by B(A) and B(CM) the sets of base
shared objects, always disjoint, that can be possi-
bly accessed by steps of, respectively, A and CM,
in every execution, by every process. Calls try and
resign are thus the only means by which A and CM
interact. The events corresponding to invocations
of, and responses from, try and resign are called
cm-events. We denote by tryi™V and resign?“’ an
invocation of call try; and resign;, respectively (at
process p;), and by try™* and resign}*'—the corre-
sponding responses.

Executions and Histories. An execution of an OF
algorithm A combined with a contention manager
CM is a sequence of events that include steps of
A, steps of CM, cm-events and application events.
Every event in an execution is associated with a
unique time at which the event took place. Ev-
ery execution e induces a history H(e) that in-

cludes only application events (invocations and re-
sponses of high-level operations). The correspond-
ing CM-history Hcp (e) is the subsequence of e con-
taining only application events and cm-events of
the execution, and the corresponding OF-history
Hor(e) is the subsequence of e containing only ap-
plication events, cm-events, and steps of A. For a
sequence s of events, s|i denotes the subsequence
of s containing only events at process p;.

We say that a process p; is blocked at time f in
an execution e if (1) p; is alive at time ¢, and (2)
the latest event in Hcys(e)|i that occurred before ¢
is tryl™v or resign%nv. A process p; is busy at time
tin e if (1) p; is alive at time ¢, and (2) the latest
event in Hep(e)|i that occurred before t is tryfe!.
We say that a process p; is active at t in e if p; is
either busy or blocked at time ¢ in e. We say that a
process p; is idle at time ¢ in e if p; is not active at ¢
in e.> A process resigns when it invokes resign on a
contention manager.

We say that p; is obstruction-free in an interval
[t,#'] in an execution e, if p; is the only process that
takes steps of A in [t,#'] in e and p; is not blocked
infinitely long in [t,#'] (if ¥/ = o0). We say that
process p; is eventually obstruction-free at time ¢ in
e if p; is active at ¢ or later and p; either resigns
after t or is obstruction-free in the interval [#, c0)
for some t' > t. Note that, since algorithm A
is obstruction-free, if an active process p; is even-
tually obstruction-free, then p; eventually resigns
and completes its operation.

Well-Formed Executions. We impose certain re-
strictions on the way an OF algorithm A and a con-
tention manager CM interact. In particular, we as-
sume that no process takes steps of A while be-
ing blocked by CM or idle, and no process takes
infinitely many steps of A without calling CM in-
finitely many times. Further, a process must in-
form CM that an operation is completed by calling
resign before returning the response to the applica-
tion.

Formally, we assume that every execution e is
well-formed, i.e., H(e) is linearizable [16, 2], and,
for every process p;, (1) Hem(e)|i is a prefix of
a sequence [opi]lopz),..., where each [opi] has
the form inv;(opy) try™, try™t, ..., trynv, try'et,
resigni™, resign'ret; (opy); (2) in Hog(e) i, no step
of A is executed when p; is blocked or idle, (3) in

Hog(e)|i, inv; can only be followed by try™V, and

SNote that every process that has crashed is permanently
idle.

inv; | ret;

inv; /| ret;

1

1

1

1

1 1
! ! i
T B TRl SRR 1o-o-- R il Sk -
\ try; | resign; | ! try; | resign; .
[N RS e e pupupp—— e R e R Fos

1 1
E ! Contention Manager Contention Manager CM Contention Manager ' i
o Module . , Module b
v k----- k- - tommmoo-ooo-- 1----- k----- F-
| | ! I
(R . e — oo | JEEE E— Fos
[. 1
V! Failure Detector Failure Failure Detector v
o Module Detector Module h
1 g | ————— JI- ————————————————————————— Fr-- :
| B(CM) |
| B(A) |

Base shared objects

Figure 1: The OF algorithm/contention manager interface

ret,

ret; can only be preceded by resign;*; (4) if p; is
busy at time f in ¢, then at some t >t process
pi is idle or blocked. The last condition implies
that every busy process p; eventually invokes try;
(and becomes blocked), resigns or crashes. Clearly,
in a well-formed execution, every process goes
through the following cyclical order of modes:
idle, active, idle, . .., where each active period con-
sists itself of a sequence blocked, busy, blocked,

Non-blocking Contention Manager. We say
that a contention manager CM gquarantees non-
blockingness for an OF algorithm A if in each execu-
tion e of A combined with CM the following prop-
erty is satisfied: if some correct process is active
at a time ¢, then at some time ¢ > t some process
resigns.

A non-blocking contention manager guarantees
non-blockingness for every OF algorithm. Intu-
itively, this will happen if the contention manager
allows at least one active process to be obstruction-
free (and busy) for sufficiently long time, so that
the process can complete its operation. More pre-
cisely, we say that a contention manager CM is
non-blocking if, for every OF algorithm A, in every
execution of A combined with CM the following
property is ensured at every time ¢:

Global Progress. If some correct process is active
at ¢, then some correct process is eventually
obstruction-free at t.

Theorem 1 A contention manager CM guarantees
non-blockingness for every OF algorithm if and only if
CM is non-blocking.

Proof. (=) Consider a contention manager CM that
guarantees non-blockingness for every OF algo-
rithm. Let A be any OF algorithm and e be any ex-
ecution of A combined with CM. Let some correct
process be active at time ¢ in e. Since CM guaran-
tees non-blockingness, some active process resigns
at some future time, and the Global Progress prop-
erty is trivially ensured.

(«) By contradiction, assume that there exists
a non-blocking contention manager CM such that,
for some OF algorithm A, there is an execution e of
A combined with CM, such that some correct pro-
cess is active at t, and no active process resigns af-
ter t. By Global Progress, some correct active pro-
cess p; is eventually obstruction-free at t. Since A is
obstruction-free and p; takes infinitely many steps
of A in isolation, p; must complete its operation
and resign—a contradiction. U

Wait-Free Contention Manager. We say that a
contention manager CM guarantees wait-freedom for
an OF algorithm A if in every execution e of A com-
bined with CM, the following property is satisfied:
if a process p; is active at a time ¢, then at some
time t' > t, p; becomes idle. In other words, every
operation executed by a correct process eventually
returns.

A wait-free contention manager guarantees wait-

freedom for every OF algorithm. Intuitively, this
will happen if the contention manager makes sure
that every correct active process is given “enough”
time to complete its operation, regardless of how
other processes behave. More precisely, a con-
tention manager CM is wait-free if, for every OF
algorithm A, in every execution of A combined
with CM, the following property is ensured at ev-
ery time #:°

Fairness. If a correct process p; is active at ¢, then
pi is eventually obstruction-free at f.

Theorem 2 A contention manager CM guarantees
wait-freedom for every OF algorithm if and only if CM
is wait-free.

Proof. (=) Consider a contention manager CM
that guarantees wait-freedom for every OF algo-
rithm. Let A be any OF algorithm and e be any
execution of A combined with CM. Since in e ev-
ery active process is eventually idle, every correct
active process eventually resigns in ¢, and so the
Fairness property is trivially satisfied.

(«=) Let CM be a wait-free contention manager,
and A be any OF algorithm. Consider any execu-
tion e of A combined with CM.

Suppose, by contradiction, that some correct
process p; is active at time f and never completes
its operation thereafter. But then, by Fairness,
pi is eventually obstruction-free at t and so p; is
obstruction-free in period [t/,c0) for some ¢ > t.
Therefore, since A is obstruction-free and p; takes
infinitely many steps of A in isolation, p; must
eventually resign and complete its operation—a
contradiction. O

In the following, we seek to determine the weak-
est [4] failure detector D to implement a non-
blocking (resp. wait-free) contention manager CM.
This means that (1) D implements such a con-
tention manager, i.e., there is an algorithm that im-
plements CM using D, and (2) D is necessary to im-
plement such a contention manager, i.e., if a fail-
ure detector D’ implements CM, then D < D'. In
our context, a reduction algorithm that transforms
D' into D uses the D’-based implementation of
the corresponding contention manager as a “black
box” and read-write registers.

®This property is ensured by wait-free contention managers
from the literature [6, 8].

3 Non-blocking Contention
Managers

Let S C Il be a non-empty set of processes. Failure
detector ()g outputs, at every process, an identifier
of a process (called a leader), such that all correct
processes in S eventually agree on the identifier of
the same correct process in S.”

Failure detector * is the composition
{Qs}scrs+p: at every process p;, (Y*-output;
is a tuple consisting of the outputs of failure
detectors ()s. We position ()* in the hierarchy of
failure detectors of [5] by proving the following
theorem:

Theorem 3 Q) < O* < OP.

Proof. It is immediate that () is weaker than Q*:
Qq is equivalent to (). In a system of three or
more processes, () is strictly weaker than (). In-
deed, consider a system of three processes, p1, p2,
and p3, and assume, by contradiction, that Q* is
weaker than (), i.e., that there exists a reduction
algorithm T _,n+ which extracts the output of ()*
using (). Take an execution e of T .+ in which
p3 is correct, p is faulty, () always outputs p3 at
every process and consider the emulated output
of Oy, »,y- Since py is the only correct process
in {p1, p2}, there is a finite prefix ¢’ of e in which
Qyp, p,} outputs p1 at p;. But this finite execu-
tion is indistinguishable from a finite execution e”
in which p; is correct but slow. Now consider a
finite extension of ¢’ in which p; fails, and thus
eventually Oy, ,,} outputs p; at po. But this finite
execution is indistinguishable from a finite execu-
tion in which p; is correct but slow. By repeating
this argument, we obtain an infinite execution of
Ta—.q+ in which both p; and p, are correct, and
the output (3y;, ,,,} never stabilizes at a single cor-
rect process—a contradiction.

It is immediate that O)* is weaker than {’P: even-
tually each correct process p; has complete and ac-
curate information about failures of all other pro-
cesses, so p; can perform an eventually perfect
leader election in each subset of processes p; be-
longs to.

To show that) is strictly weaker than 0P, con-
sider a system of two processes, p; and pp, and
assume, by contradiction, that ¢'P is weaker than

7Q)5 can be seen as a restriction of the eventual leader elec-
tion failure detector Q2 [4] to processes in S. The definition of Qg
resembles the notion of I'-accurate failure detectors introduced
in [12]. Clearly, Oy is Q.

), ie., that there exists a reduction algorithm
Tq+—¢p which extracts the output of ¢P using Q*.

Using T« _¢p, we implement (P in the
asynchronous system, establishing a contradiction
with [7, 5]. In the implementation, the processes
run two parallel algorithms, T; and T. The algo-
rithm T; (i = 1,2) is identical to T«_,¢p, except
that, instead of querying (), it assumes that ()*
always outputs p; at every process. Note that ev-
ery finite execution of T; is also a finite execution of
Ta+—¢p- If p; is correct, then every (even infinite)
execution of T; is also an execution of Tn«_¢p.
Thus, in both cases, p; obtains a valid output of
OP.

Hence, we obtain an implementation of P, in
an asynchronous system of two processes, contra-
dicting [7, 5]. [l

To show that ()" is necessary to implement a
non-blocking contention manager, it suffices to
prove that, for every non-empty S C II, Qg is
necessary to implement a non-blocking contention
manager. Let CM be a non-blocking contention
manager using failure detector D. We show that
()" < D by presenting an algorithm Tp_. (Algo-
rithm 2) that, using CM and D, emulates the out-
put of Q.

The algorithm works as follows. Every process
pi € S runs two parallel tasks T; and F;. In task
T;, process p; periodically (1) gets blocked by CM
after invoking try; (line 2.5), and (2) once p; gets
busy again, announces itself a leader for set S by
writing its id in L (line 2.6). In task F;, process p;
periodically determines its leader by reading reg-
ister L (line 2.2).8

Thus, no process ever resigns and every cor-
rect process in S is permanently active from some
point in time. Intuitively, this signals a possi-
ble livelock to CM which has to eventually block
all active processes except for one that should
run obstruction-free for sufficiently long time. By
Global Progress, CM cannot block all active pro-
cesses forever and so if the elected process crashes
(and so becomes idle), CM lets another active pro-
cess run obstruction-free. Eventually, all correct
processes in S agree on the same process in S. Pro-
cesses outside S are permanently idle and perma-
nently output their own ids: they do not access
CM.

This approach contains a subtlety. To make sure
that there is a time after which the same correct
leader in S is permanently elected by the correct

81f a process is blocked in one task, it continues executing
steps in parallel tasks.

processes in S, we do not allow the elected leader
to resign (the output of Qg has to be eventually sta-
ble). This violates the assumption that processes
using CM run an obstruction-free algorithm, and,
thus, a priori, CM is not obliged to preserve Global
Progress. However, as we show below, since CM
does not “know” how much time a process execut-
ing an OF algorithm requires to complete its op-
eration, CM has to provide some correct process
with unbounded time to run in isolation.

Theorem 4 Every non-blocking contention manager
can be used to implement failure detector (3*.

Proof. Let S C I1, S # @ and consider any ex-
ecution of Algorithm 2. If S contains no correct
process, then Qg-output; (for every process p; € S)
trivially satisfies the property of (5. Now assume
that there is a correct process in S. We claim that
CM eventually lets exactly one correct process in S
run obstruction-free while blocking forever all the
other processes in S.

Suppose not. =~ We obtain an execution in
which every correct process in S is allowed to be
obstruction-free only for bounded periods of time.
But the CM-history of this execution corresponds
to an execution of some OF algorithm A combined
with CM in which no active process ever com-
pletes its operation because no active process ever
obtains enough time to run in isolation. Thus, no
active process is eventually obstruction-free in that
execution. This contradicts the assumption that
CM is non-blocking.

Therefore, there is a time after which exactly one
correct process p; € S is periodically busy (oth-
ers are blocked or idle forever) and, respectively,
register L permanently stores the identifier of p;.
Thus, eventually, every correct process in S out-
puts p;: the output of Q)g is extracted. O

We describe an implementation of a non-
blocking contention manager using (2* and regis-
ters in Algorithm 3. The algorithm works as fol-
lows. All active processes, upon calling try, partic-
ipate in the leader election mechanism using ()* in
lines 3.3-3.5. The active process p; that is elected a
leader returns from try and is (eventually) allowed
to run obstruction-free until p; resigns. Once p; re-
signs, the processes elect another leader. Failure
detector ()* guarantees that if an active process is
elected and crashes before resigning, another ac-
tive process is eventually elected.

Lemma 5 Contention manager shown in Algorithm 3
guarantees non-blockingness for every OF algorithm.

Algorithm 2: Extracting ()g from a non-blocking contention manager (code for processes from set

S; others are permanently idle)

uses: L—register

initially: Qg-output; < p;, L + some process in S

Launch two parallel tasks: T; and F;
21 parallel task F;
2.2 L Qg-output; « L

2.3 parallel task T;
24 while true do

2.5
2.6

issue try; and wait until busy (i.e., until call try; returns)
L <« p; // announce yourself a leader

Algorithm 3: A non-blocking contention man-
ager using 0" = {Qs}scrs40
uses: T[1,...,n]—array of single-bit registers
initially: T[1,...,n] < false

31 upon try; do

3.2 T[i] « true
33 repeat
34 ‘ S—{pj e 1| T[j] = true}

35 until Og-output;, = p;

3.6 upon resign; do
3.7 L T[i] « false

Proof. Assume, by contradiction that there exists
an OF algorithm A for which contention manager
CM implemented by Algorithm 3 does not guaran-
tee non-blockingness, i.e., there exists an execution
e of A combined with CM in which there are a cor-
rect process p; and a time ¢, such that p; is active at
t but for all ' > t, no active process resigns at t'.

Take any time ¢ > t. Let us denote by S(') the
set of all processes p; such that T[j] = true at time
t' in e. Since no active process resigns after ¢, there
is a time t* > t and a set S, such that for all ¢ > t*,
S(t') = S. By the algorithm, p; eventually sets T|[j]
to true. Thus, p; isin S, i.e., S includes at least one
correct process. At every correct process in S, ()g
eventually outputs the same correct process p; in
set S (a leader).

Since every active process eventually invokes
try, resigns or crashes (by the properties of OF al-
gorithms), and no process resigns after t*, there is
a time ' > t* after which every correct process ex-
cept for p; gets permanently blocked in lines 3.3—
3.5. That is because p; does not resign after f and so
pj does not reset T|j] to false thereafter and remains

the leader for set S forever. Thus, p; is eventually
obstruction-free at f. Since p; runs an obstruction-
free algorithm A, it eventually resigns and com-
pletes its operation—a contradiction. O

From Theorem 1 and Lemma 5 we immediately
obtain a proof of the following theorem:

Theorem 6 Algorithm 3 implements a non-blocking
contention manager.

4 Wait-Free Contention
Managers

We prove here that the weakest failure detector to
implement a wait-free contention manager is OP.
Failure detector ¢P [5] outputs, at each time and
every process, a set of suspected processes. There is
a time after which (1) every crashed process is per-
manently suspected by every correct process and
(2) no correct process is ever suspected by any cor-
rect process.

We first consider a wait-free contention manager
CM using a failure detector D, and we exhibit a re-
duction algorithm Tp_,¢p (Algorithm 4) that, us-
ing CM and D, emulates the output of OP.

We run several instances of CM. These instances
use disjoint sets of base shared objects and do
not directly interact. Basically, in each instance,
only two processes are active and all other pro-
cesses are idle. One of the two processes, say p;,
gets active and never resigns thereafter, while the
other, say p;, permanently alternates between be-
ing active and idle. To CM it looks like p; is al-
ways obstructed by p;. Thus, to guarantee wait-
freedom, the instance of CM has to eventually
block p; and let p; run obstruction-free until p; re-
signs or crashes. Therefore, when p; is blocked, p;

Algorithm 4: Extracting (P from a wait-free contention manager

uses: R[1,...,n]—array of registers

initially: OP-output; — IT1— {p;},k — 0, R[i] < 0

Launch n(n — 1) parallel instances of CM: C]-k, jke{l,...,n},j#k
Launch 2n — 1 parallel tasks: T,-]-, Tji,j e{l,...,n},i#j,and F;

41 parallel task F;

42 L while true do R[i] < R[i]+1 // ‘‘heartbeat’’ signal

43 parallel task Tijj=1,...,i-Li+1,...n

44 while true do

4.5 X]' — R[]]

46 OP-output; «— OP-output; — {p;} // stop suspecting p;

47 issue tryéj (in C;j) and wait until busy

48 issue resi gn? (in Cjj) and wait until idle

49 OP-output; « OP-output; U{p;} // start suspecting p;
410 | wait until R[j] > x; // wait until p; takes a new step

411 parallel task Tiyj=1,...,i—-Li+1,...n

4.12

L while true do issue try? (in Cj;) and wait until busy

can assume that p; is alive and when p; is busy, p;
can suspect p; of having crashed, until p; eventu-
ally observes p;’s “heartbeat” signal, which p; pe-
riodically broadcasts using a register. This ensures
the properties of OP at process p;, provided that p;
never resigns.

As in Sect. 3, we face the following issue. If
p; is correct, p; will be eventually blocked for-
ever and p; will thus be eventually obstruction-
free. Hence, in the corresponding execution,
obstruction-freedom is violated, i.e., the execution
cannot be produced by any OF algorithm com-
bined with CM. One might argue then that CM
is not obliged to preserve Fairness with respect to
pj- However, we show that, since CM does not
“know” how much time a process executing an OF
algorithm requires to complete its operation, CM
has to provide p; with unbounded time to run in
isolation.

More precisely, the processes in Algorithm 4 run
n(n — 1) parallel instances of CM, denoted each
CMj, where j,k € {1,...,n}, j # k. We denote
the events that process p; issues in instance CM

by try{k and resignf:k. Besides, every process p; runs
2n — 1 parallel tasks: Tij, Tji, where j € {1,...,n},
i # j, and F;. Every task T;; executed by p; is re-
sponsible for detecting failures of process p;. Ev-
ery task Tj; executed by p; is responsible for pre-
venting p; from falsely suspecting p;. In task F;,
pi periodically writes ever-increasing “heartbeat”

values in a shared register R[i].

In every instance CM;;, there can be only two
active processes: p; and p;. Process p; cyclically
gets active (line 4.7) and resigns (line 4.8), and pro-
cess p; gets active once and keeps getting blocked
(line 4.12). Each time before p; gets active, p;
removes p; from the list of suspected processes
(line 4.6). Each time p; stops being blocked, p;
starts suspecting p; (line 4.9) and waits until p; ob-
serves a “new” step of p; (line 4.10). Once such a
step of p; is observed, p; stops suspecting p; and
gets active again.

Theorem 7 Every wait-free contention manager can
be used to implement failure detector OP.

Proof. Consider any execution e of Tp_.op, and
let p; be any correct process. We show that, in
e, OP-output; satisfies the properties of OP, ie.,
pi eventually permanently suspects every non-
correct process and stops suspecting every correct
process. (Note that if a process p; is not correct,
then OP-output; trivially satisfies the properties of
OP)

Let p; be any process distinct from p;. Assume
pj is not correct. Thus p; is the only correct active
process in instance CM;;. By the Fairness property
of CM, p; is eventually obstruction-free every time
pi becomes active, and so p; cannot be blocked in-
finitely long in line 4.7. Since there is a time af-
ter which p; stops taking steps, eventually p; starts

suspecting p; (line 4.9) and suspends in line 4.10,
waiting until p; takes a new step. Thus, p; eventu-
ally suspects p; forever.

Assume now that p; is correct. We claim that p;
must eventually get permanently blocked so that
p;j would run obstruction-free from some point in
time forever. Suppose not. But then we obtain
an execution in which p; alternates between active
and idle modes infinitely many times, and p; stays
active and runs obstruction-free only for bounded
periods of time. But the CM-history of this ex-
ecution could be produced by an execution ¢’ of
some OF algorithm combined with CM in which
p; never completes its operation because p; never
runs long enough in isolation. Thus, Fairness is
violated in execution ¢’ and this contradicts the as-
sumption that CM is wait-free. Hence, eventually
pi gets permanently blocked in line 4.7. Since each
time p; is about to get blocked, p; stops suspecting
p; in line 4.6, there is a time after which p; never
suspects p;.

Thus, there is a time after which, if p; is correct,
then p; stops being suspected by every correct pro-
cess, and if pj is non-correct, then every correct
process permanently suspects p;. g

We describe an implementation of a wait-free
contention manager using (P and registers in Al-
gorithm 5. The algorithm relies on a (wait-free)
primitive GetTimestamp() that generates unique, lo-
cally increasing timestamps and makes sure that
if a process gets a timestamp fs, then no process
can get timestamps lower than fs infinitely many
times (this primitive can be implemented in an
asynchronous system using read-write registers).
The idea of the algorithm is the following. Every
process p; that gets active receives a timestamp in
line 5.2 and announces the timestamp in register
T[i]. Every active process that invokes try repeat-
edly runs a leader election mechanism (lines 5.3
5.6): the non-suspected (by OP) process that an-
nounced the lowest (non-_1) timestamp is elected
a leader. If a process p; is elected, p; returns from
try; and becomes busy. (P guarantees that even-
tually the same correct active process is elected
by all active processes. All other active processes
stay blocked until the process resigns and resets
its timestamp in line 5.8. The leader executes steps
obstruction-free then. Since the leader runs an OF
algorithm, the leader eventually resigns and resets
its timestamp in line 5.8 so that another active pro-
cess, which now has the lowest timestamp in T,
can become a leader.

10

Lemma 8 Contention manager implemented by Algo-
rithm 5 guarantees wait-freedom for all OF algorithms.

Proof. Consider an execution e of any OF algorithm
A combined with contention manager CM imple-
mented by Algorithm 5. By contradiction, assume
that in e, some correct process is active at some
time f, and never resigns after t. Let V denote the
non-empty set of correct processes that are active
at t but never resign (in line 5.8) and complete their
operations thereafter, i.e., that remain active after ¢
forever. Recall that every process in V either in-
vokes try infinitely many times or invokes try and
stays blocked forever (by the properties of OF al-
gorithms). Let t* > t be time at which every pro-
cess in V invoked try and reached line 5.3 at least

once. For every p; € V, let ts; denote the value of

T[j] at time t*. Note that since every ts; # L and
no process in V resigns after time t*, T[j] = ts; at
all times t’ > t*.

Let p; be the process in V having the lowest
timestamp in { ts; | px € V } (there is exactly one
such process since timestamps are unique). We es-
tablish a contradiction by showing that p; has to
eventually resign.

Let us consider time t' > t* after which:

e at every correct process, failure detector P
outputs the list of all non-correct processes
(by the properties of (P, this eventually hap-
pens),

e all non-correct processes have crashed,

e for every correct process p; # p;, if T[j] # L,
then T[j] > ts;.

The last condition eventually holds, because
timestamps are unique, no process can receive a
timestamp lower that ts} infinitely many times
and p; has the lowest timestamp among processes
in V (that retain their timestamps infinitely long).

Thus, after ', p; is always elected a leader,
and every correct process p; other than p; that
gets blocked after time t' will remain blocked in
lines 3.3-3.5, as long as p; does not resign.

Hence, eventually p; will be the only active pro-
cess that is not blocked and thus p; will be given
unbounded time to perform steps of A in isolation.
Since A is obstruction-free, p; eventually resigns
and completes its operation—a contradiction. [

From Theorem 2 and Lemma 8 we immediately
obtain a proof of the following theorem:

Theorem 9 Algorithm 5 implements a wait-free con-
tention manager.

Algorithm 5: A wait-free contention manager using ¢'P

uses: T[1,..., N]—array of registers (other variables are local)

initially: TT1, ...

,N] — L

51 upon try; do

5.2
5.3
5.4
5.5
5.6

if T[i] = L then T[i] < GetTimestamp()
repeat
sact; — {j | T[j] # L A p; & OP-output; }
leader; «— argminjesactiT[j]
until leader; = i

57 upon resign; do
L Tli] « L

5.8

Acknowledgements.

We are very grateful to Hagit Attiya, Maurice Her-
lihy, Bastian Pochon, Faith Fich, Victor Luchangco,
Mark Moir and Nir Shavit for interesting discus-
sions on the topic of this paper. We would also
like to thank the anonymous reviewers of DISC’06
for helpful comments.

References

(1]

(2]

(3]

[4]

[5]

(6]

H. Attiya, R. Guerraoui, and P. Kouznetsov.
Computing with reads and writes in the ab-
sence of step contention. In Proceedings of
the 19th International Symposium on Distributed
Computing (DISC’05), 2005.

H. Attiya and]. L. Welch. Distributed Comput-
ing: Fundamentals, Simulations and Advanced
Topics (2nd edition). Wiley, 2004.

B. N. Bershad. Practical considerations for
non-blocking concurrent objects. In Proceed-
ings of the 14th IEEE International Conference
on Distributed Computing Systems (ICDCS’93),
pages 264-273, 1993.

T. D. Chandra, V. Hadzilacos, and S. Toueg.
The weakest failure detector for solving con-
sensus. Journal of the ACM, 43(4):685-722, July
1996.

T. D. Chandra and S. Toueg. Unreliable fail-
ure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

F. Fich, V. Luchangco, M. Moir, and N. Shavit.
Obstruction-free algorithms can be practi-
cally wait-free. In Proceedings of the 19th Inter-

11

[7]

(8]

[9]

national Symposium on Distributed Computing
(DISC’05), 2005.

M. J. Fischer, N. A. Lynch, and M. S. Pater-
son. Impossibility of distributed consensus
with one faulty process. Journal of the ACM,
32(3):374-382, April 1985.

R. Guerraoui, M. Herlihy, M. Kapatka, and
B. Pochon. Robust contention management
in software transactional memory. In Pro-
ceedings of the Workshop on Synchronization
and Concurrency in Object-Oriented Languages
(SCOOL); in conjunction with the ACM Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’05), Oc-
tober 2005.

R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic contention management. In Pro-
ceedings of the 19th International Symposium on
Distributed Computing (DISC’05), pages 303
323. LNCS, Springer, September 2005.

R. Guerraoui, M. Herlihy, and B. Pochon.
Toward a theory of transactional contention
managers. In Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed
Computing (PODC’05), 2005.

R. Guerraoui, M. Kapatka, and P. Kouznetsov.
Boosting obstruction-freedom with low over-
head. Technical report, EPFL, 2006. Submit-
ted for publication.

R. Guerraoui and A. Schiper. “TI'-accurate”
failure detectors. In Proceedings of the 10th In-
ternational Workshop on Distributed Algorithms
(WDAG'96). Springer-Verlag, 1996.

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124-149, January 1991.

M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software transactional memory
for dynamic-sized data structures. In Proceed-
ings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (PODC’03),
pages 92-101, 2003.

M. Herlihy, V. Luchango, and M. Moir.
Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings
of the 23rd IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’93), pages
522-529, 2003.

M. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects.
ACM Transactions on Programming Languages
and Systems, 12(3):463-492, June 1990.

P. Jayanti. Robust wait-free hierarchies. Jour-
nal of the ACM, 44(4):592-614, 1997.

A. LaMarca. A performance evaluation of
lock-free synchronization protocols. In Pro-
ceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing (PODC’94),
pages 130-140, 1994.

L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133—
169, May 1998.

W. N. Scherer IIl and M. L. Scott. Contention
management in dynamic software transac-
tional memory. In PODC Workshop on Con-
currency and Synchronization in Java Programs,
July 2004.

W. N. Scherer III and M. L. Scott. Ad-
vanced contention management for dynamic
software transactional memory. In Proceedings
of the 24th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC’05), 2005.

12

