
A Realistic Look At Failure Detectors

C. Delporte-Gallet †, H. Fauconnier †, R. Guerraoui ‡
†Laboratoire d’Informatique Algorithmique: Fondements et Applications,

Université Paris VII - Denis Diderot

‡Distributed Programming Laboratory,

Swiss Federal Institute of Technology in Lausanne

Abstract

This paper shows that, in an environment where we
do not bound the number of faulty processes, the class
P of Perfect failure detectors is the weakest (among
realistic failure detectors) to solve fundamental agree-
ment problems like uniform consensus, atomic broad-
cast, and terminating reliable broadcast (also called
Byzantine Generals).

Roughly speaking, in this environment, we collapse the
Chandra-Toueg failure detector hierarchy, by showing
that P ends up being the only class to solve those agree-
ment problems. This contributes in explaining why
most reliable distributed systems we know of do rely
on some group membership service that precisely aims
at emulating P.

As an interesting side effect of our work, we show
that, in our general environment, uniform consensus
is strictly harder than consensus, and we revisit the
view that uniform consensus and atomic broadcast are
strictly weaker than terminating reliable broadcast.

1 Introduction

1.1 Motivation

It is well known that agreement is at the heart of re-
liable distributed computing, but is rather difficult to
achieve in a failure-prone environment. In particu-
lar, without any synchrony assumptions (i.e., assump-
tions on process relative speeds and communication
delays), agreement is impossible even among a set of
distributed processes that communicate through reli-
able channels and at most one of them might fail (and
it can do so only by crashing) [5]. In fact, synchrony
assumptions are needed to provide processes with in-

formation about failures, and this information is the
key to reaching agreement in the presence of failures.
The motivation of our work is to determine the exact
information about failures needed to achieve agree-
ment in an environment where we do not bound the
number of failures (we focus here on process crash-
failures). Roughly speaking, determining that infor-
mation comes down to providing an abstract metric
that helps measure whether a set of synchrony as-
sumptions are necessary and sufficient to reach agree-
ment [3].
We consider in this paper two fundamental agreement
problems: consensus and terminating reliable broad-
cast. In the consensus problem, processes need to de-
cide on a common value among one of the proposed
values.1 Solving this problem is known to be equiva-
lent to solving the atomic broadcast problem [1], in any
system where only a finite number of messages can be
lost, e.g., with reliable channels. This problem consists
in delivering messages to processes in a reliable and to-
tally ordered manner. Solving this problem is a key to
building highly available and consistent replicated ser-
vices. Terminating reliable broadcast is a strong and
convenient form of reliable broadcast: the processes
should deliver the same sequence of messages, just like
with reliable broadcast but, in addition, should deliver
a specific nil value for every message that was broad-
cast by a faulty process and not delivered by any cor-
rect process [11]. This problem is a rephrasing, in the
crash-stop model, of the famous Byzantine Generals
problem [13].

1By default, we consider the uniform variant of the con-
sensus problem, which precludes any disagreement among two
processes, even if one of them ends up being faulty [10]. In
Section 6, we discuss the impact of going back to the correct-

restricted variant of consensus, which is solely of theoretical
interest.

1.2 Background: the failure detector
hierarchy

In a seminal paper [1], Chandra and Toueg proposed
a precise way to measure the information about fail-
ures needed to solve agreement problems within the
abstraction of a failure detector. A failure detector
is represented by a distributed oracle that provides
processes with hints about process failures, and this
oracle can be viewed as an abstraction hiding lower
level synchrony assumptions such as message commu-
nication delays and process relative speeds, i.e., as-
sumptions that underly any useful form of information
about process failures.
Chandra and Toueg established a hierarchy of failure
detector classes. Basically, a class gathers a set of
failure detectors that capture the same information
about failures. In short, a class A is stronger than
a class B in the hierarchy if the information about
failures captured by A encompasses the information
about failures captured by B. In other words, the
synchrony assumptions underlying A are stronger than
those underlying B. In particular, three interesting
classes were identified: the class 3S, of Eventually
Strong failure detectors, the class S of Strong failure
detectors, and the class P of Perfect failure detectors.
Among these classes, P is the strongest whereas 3S
is the weakest. The following results were proved [1]:

• Any failure detector of class 3S solves consensus
(and hence atomic broadcast) if a majority of
processes are correct.

• Any failure detector of class S solves consensus
(and hence atomic broadcast) even if the number
of faulty processes is not bounded. 2

• Any failure detector of classP solves terminating
reliable broadcast even if the number of faulty
processes is not bounded.

Interestingly, each of these results conveys the fact
that a certain information about failures is sufficient to
solve some agreement problem (possibly under a spe-
cific assumption on the maximum number of faulty
processes [1]). A natural question follows: is that
information about failures also necessary? Together
with Hadzilacos, Chandra and Toueg addressed the
question for the case of consensus with a majority of
correct processes. They proved that 3S is actually
the weakest for consensus if a majority of processes

2In fact, the actual definition of S assumes that at least one
process does not crash but the definition can easily be adapted
to the more general case where any number of processes can
crash.

are correct [2]. In a precise sense, this goes through
proving that there is an algorithm A that transforms
any failure detector D that solves consensus into a
failure detector of class 3S. In short, the very exis-
tence of A means that D provides at least as much
information about failures as 3S: this information is
hence minimal. Chandra and Toueg also pointed out
the very fact that if we do not bound the number of
failures, 3S is neither sufficient for consensus nor for
terminating reliable broadcast.

1.3 Contributions

In an environment where we do not restrict the num-
ber of possible failures, determining the weakest failure
detector classes for problems like consensus (thus for
atomic broadcast) and terminating reliable broadcast
have been open for almost a decade now. We show
here that there is one answer to these questions: P .
More precisely, if any number of processes can fail, P
is the weakest failure detector class to solve consen-
sus (hence atomic broadcast) and terminating reliable
broadcast.
We state and prove our result using simple algorithm
reductions (as in [2]) and following the original fail-
ure detector formalism of [1], with one exception how-
ever. We exclude from the original failure detector
space of [1], failure detectors that can guess the fu-
ture (these cannot be implemented even in a perfectly
synchronous system), and we focus only on realistic
failures detectors that indeed encapsulate synchrony
assumptions.
At first glance, our result seems to introduce a contra-
diction. As we recalled above, it was shown in [1] that
S solves consensus even if we do not restrict the num-
ber of faulty processes, and S is strictly weaker than
P . How can P be the weakest? Interestingly, and as
we show in the paper, within the space of realistic fail-
ure detectors, S and P have the same computational
power. As observed in [12], this means that the dif-
ference between these classes is rather artificial in our
general environment.
To summarise, our paper shows that, in an environ-
ment where we do not bound the number of faulty pro-
cesses, the exact information about failures needed to
solve consensus (hence atomic broadcast) and termi-
nating reliable broadcast is captured by P . In short,
we collapse the failure detector hierarchy: P ends up
being the only useful class in the hierarchy to solve
agreement problems. A posteriori, this is not that sur-
prising and our results might explain why developers
of reliable distributed systems have been considering,
as a basic building block [14], a group membership

service, which precisely aims at emulating a Perfect
failure detector, i.e., when a process is suspected, i.e.,
timed-out, it is excluded from the group: every suspi-
cion hence turns out to be accurate [4, 6, 16].
As a side effect of our work, we point out two inter-
esting results in our general environment. First, if
we consider the correct-restricted variant of consen-
sus (i.e., non-uniform consensus), P is clearly not the
weakest. A simple corollary of this observation is that
(uniform) consensus is strictly harder than the correct-
restricted variant of consensus. Second, we also re-
visit the view that consensus and atomic broadcast
are strictly weaker problems than terminating reliable
broadcast.

2 System model

Our model of asynchronous computation with failure
detection is the FLP model [5] augmented with the
failure detector abstraction [1, 2]. A discrete global
clock is assumed, and Φ, the range of the clock’s ticks,
is the set of natural numbers. The global clock is used
for presentation simplicity and is not accessible to the
processes. We sketch here the fundamentals of the
model. The reader interested in specific details about
the model should consult [2].

2.1 Failure patterns and environments

We consider a distributed system composed of a finite
set of n processes Ω = {p1, p2, . . . , pn} (|Ω| = n > 3).
A process pi is said to crash at time t if pi does not
perform any action after time t (the notion of action
is recalled below). Failures are permanent, i.e., no
process recovers after a crash. A correct process is
a process that does not crash. A failure pattern is a
function F from Φ to 2Ω, where F (t) denotes the set
of processes that have crashed through time t. The
set of correct processes in a failure pattern F is noted
correct(F).
An environment E is a set of failure patterns. En-
vironments describe the crashes that can occur in a
system. In this paper, we consider the environment
that contains all possible failure patterns. That is, we
do not bound the number of processes that can crash.

2.2 Failure detectors

Roughly speaking, a failure detector D is a distributed
oracle which gives hints about failure patterns. Each
process pi has a local failure detector module of D,

denoted by Di. Associated with each failure detec-
tor D is a range RD

3 of values output by the failure
detector. A failure detector history H with range R

is a function H from Ω × Φ to R. For every process
pi ∈ Ω, for every time t ∈ Φ, H(pi, t) denotes the value
of the failure detector module of process pi at time t,
i.e., H(pi, t) denotes the value output by Di at time
t. A failure detector D is a function that maps each
failure pattern F to a set of failure detector histories
with range RD. D(F) denotes the set of possible fail-
ure detector histories permitted for the failure pattern
F , i.e., each history represents a possible behaviour
of D for the failure pattern F . The failure detectors
introduced in [1] do all have a range R = 2Ω. For
any such failure detector D, any failure pattern F and
any history H in D(F), H(pi, t) is the set of processes
suspected by process pi at time t.

2.3 Algorithms

An algorithm using a failure detector D is a collection
A of n deterministic automata Ai (one per process
pi). Computation proceeds in steps of the algorithm.
In each step of an algorithm A, a process pi atomically
performs the following three actions: (1) pi receives a
message from some process pj , or a “null” message
λ; (2) pi queries and receives a value d from its fail-
ure detector module Di (d ∈ RD is said to be seen
by pi); (3) pi changes its state and sends a message
(possibly null) to some process. This third action is
performed according to (a) the automaton Ai, (b) the
state of pi at the beginning of the step, (c) the mes-
sage received in action 1, and (d) the value d seen by
pi in action 2. The message received by a process is
chosen non-deterministically among the messages in
the message buffer destined to pi, and the null mes-
sage λ. A configuration is a pair (I, M) where I is
a function mapping each process pi to its local state,
and M is a set of messages currently in the message
buffer. A configuration (I, M) is an initial configura-
tion if M = ∅ (no message is initially in the buffer):
in this case, the states to which I maps the processes
are called initial states. A step of an algorithm A is
a tuple e = (pi, m, d, A), uniquely defined by the al-
gorithm A, the identity of the process pi that takes
the step, the message m received by pi, and the fail-
ure detector value d seen by pi during the step. A
step e = (pi, m, d, A) is applicable to a configuration
(I, M) if and only if m ∈ M ∪{λ}. The unique config-
uration that results from applying e to configuration
C = (I, M) is noted e(C).

3When the context is clear we omit the subscript.

2.4 Schedules and runs

A schedule of an algorithm A is a (possibly infinite)
sequence S = S[1]; S[2]; . . . S[k]; . . . of steps of A. A
schedule S is applicable to a configuration C if (1) S is
the empty schedule, or (2) S[1] is applicable to C, S[2]
is applicable to S[1](C) (the configuration obtained
from applying S[1] to C), etc.
Let A be any algorithm and D any failure detec-
tor. A partial run of A using D is a tuple R =<

F, H, C, S, T > where H is a failure detector history
such that H ∈ D(F), C is an initial configuration of
A, T is a finite sequence of increasing time values, and
S is a finite schedule of A such that, (1) |S| = |T |,
(2) S is applicable to C, and (3) for all k ≤ |S|
where S[k] = (pi, m, d, A), we have pi 6∈ F (T [k]) and
d = H(pi, T [k]).
A run of of A using D is a tuple R =< F, H, C, S, T >

where H is a failure detector history and H ∈ D(F), C

is an initial configuration of A, S is an infinite sched-
ule of A, T is an infinite sequence of increasing time
values, and in addition to the conditions above of a
partial run ((1), (2) and (3)), the two following condi-
tions are satisfied: (4) every correct process takes an
infinite number of steps, and (5) every message sent
to a correct process pj is eventually received by pj .

2.5 Solvability

An algorithm A solves a problem B using a failure
detector D if every run of A using D satisfies the spec-
ification of B. We say that D solves B if there is
an algorithm that solves B using D. We say that
a failure detector D1 is stronger than a failure de-
tector D2 (D2 � D1) if there is an algorithm that
transforms D1 into D2, i.e., that can emulate D2 with
D1 [1]. The algorithm does not need to emulate all
histories of D2. It is required however that for every
run R =< F, H, C, S, T > where H ∈ D1(F), the out-
put of the algorithm with R is a history of D2(F). We
say that D1 is strictly stronger than D2 (D2 ≺ D1) if
D2 � D1 and D1 6� D2. Finally, we say that a failure
detector D is the weakest to solve a problem B if (a)
D solves B and (b) any failure detector that solves B

is stronger than D.

3 Realistic failure detectors

Stating that failure detector class D is the weakest to
solve a problem X hides an implicit assumption: the
set of failure detectors among which D is the weak-
est. Without precisely defining that set, the state-
ment is simply meaningless. In [2], 3S is shown to

be the weakest class for consensus (with a majority of
correct processes) among all possible failure detectors
that comply with the original definition of a failure
detector in [1]. According to that definition (recalled
in Section 2.2), a failure detector is precisely defined
as a function of the failure pattern. Any function of
the failure pattern is a failure detector, including a
function that provides information about future fail-
ures. Such a failure detector does not really factor
out synchrony assumptions of the system: it cannot
be implemented even in a perfectly synchronous sys-
tem - remember that the motivation of introducing
failure detectors was basically to factor out synchrony
assumptions within an abstract formalism.
In this paper, we restrict our space to failure detec-
tors as functions of the “past” failure pattern. In the
following, we first define the class R of realistic failure
detectors (those that cannot guess the future), which
include among others, Eventually Perfect and Strong
failure detectors. In other words, class R intersects
with both classes S and 3P . We then illustrate this
notion through two simple examples.

3.1 Definition

Roughly speaking, we say that a failure detector is
realistic if it cannot guess the future. In other words,
there is no time t and no failure pattern F at which the
failure detector can provide exact information about
crashes that will hold after t in F . More precisely,
we define the class of realistic failure detector R, as
the set of failure detectors D that satisfy the following
property:

• ∀(F, F ′) ∈ E ∀t ∈ Φ s.t. ∀t1 ≤ t, F (t1) = F ′(t1),
we have:

– ∀H ∈ D(F), ∃H ′ ∈ D(F ′) s.t.: ∀t1 ≤
t, ∀pi ∈ Ω : H(pi, t1) = H ′(pi, t1).

Basically, a failure detector D is realistic if for any pair
of failure patterns F and F ′ that are similar up to a
given time t, whenever D outputs some information
at a time t − k in F , D could output the very same
information at t− k in F ′. In other words, a realistic
failure detector cannot distinguish two failure patterns
according to what will happen in the future.
Note that if a failure detector D is realistic, then, for
any failure pattern F , the output of D at time t is a
function of F up to time t.

3.2 Examples

We illustrate below our notion through two failure de-
tector examples: a realistic and a non-realistic one.

3.2.1 The Scribe

We describe here the Scribe failure detector C. This
failure detector outputs a list of processes. In short,
failure detector C sees what happens at all processes
at real time and takes notes of what it sees. More
precisely, in any failure pattern F , failure detector C
outputs, at any time t, the list of values of F up to
time t: we denote this list by F [t]. (Remember that
a failure pattern is a function that associates to ev-
ery positive integer, representing time, a subset of the
processes in the system Ω). More precisely, for each
failure pattern F , C(F) is the singleton that contains
the failure detector history H such that:

• ∀t ∈ Φ, ∀pi ∈ Ω, H(pi, t) = F [t].

It is obvious to see that failure detector C is realistic:
it actually belongs to P .

3.2.2 The Marabout

Consider failure detectorM (Marabout), defined in [9].
This failure detector outputs a list of processes. For
any failure pattern F and at any process pi, the output
of the failure detector M is constant: it is the list
of faulty processes in F , i.e., M outputs the list of
processes that have crashed or will crash in F . Failure
detector M belongs both to class 3P and S of [1].
Clearly,M is not realistic. To see why, consider failure
patterns F and F ′ such that:

1. In F1, all processes are correct, except p1 which
crashes at time 10.

2. In F2, all processes are correct.

Consider H2, any history in M(F2). By the defini-
tion of M, the output at any process and any time of
H2 is ∅. Consider time T = 9. Up to this time, F1

and F2 are the same. If M was realistic, M would
have had a failure detector history H1 in M(F1) such
that H2 and H1 are the same (at any process) up to
time 9. This is clearly impossible since for any history
H1 ∈ M(F1), for any process pi, and any time t ∈ Φ,
H1(pi, t) = {p1}. As observed in [9], the class M and
the class P are incomparable. In short, M is accurate
about the future whereas P is accurate about the past.

In the following, we restrict ourselves to algorithms
using realistic failure detectors. We shall come back
to this in Section 6.

4 The weakest failure detector for

consensus

In the consensus problem, the processes propose an
initial value and must agree on one of these values.
The following properties must be satisfied: 1. termi-
nation. every correct process eventually decides; 2.
agreement. no two processes decide differently; 3. va-
lidity. the value decided must have been proposed by
some process.
We show here that if we do not restrict the number
of faulty processes, the weakest failure detector class
(among realistic ones) to solve consensus is P . Ob-
viously, any failure detector of class P solves consen-
sus no matter how many processes may fail. In other
words, we show here that if we do not restrict the
number of faulty processes, any realistic failure detec-
tor that solves consensus can be transformed into a
failure detector of class P . We first give an intuition
of this lower bound proof and then we give the proof
itself.

4.1 Intuitions

We prove our lower bound result in two steps: we
show that (a) any consensus algorithm is total: the
causal chain of any decision event contains a message
from every process that has not crashed at the time
of the decision; and then (b) if a failure detector D
implements a total consensus algorithm, then D can
be transformed into a Perfect failure detector.

• (a) The first part of the proof (i.e., in the first
lemma below) uses the fact that we do not re-
strict the number of faulty processes. Intuitively,
we show here that no process can reach a con-
sensus decision without having “consulted” ev-
ery correct process. This is to prevent the case
where, after the decision, all processes crash ex-
cept the process that was not “consulted” and
this process decides later differently. If all pro-
cesses that have not crashed are consulted before
every decision, we say that the algorithm is to-
tal. (Our notion of total is a generalisation of
the notion of total initially defined in [15] for the
failure-free case.)4

• (b) In the second part of the proof (i.e., in the
second lemma below), we use the fact that D

4Typically, algorithms like the consensus algorithm of [1]
based on 3S is not total because only a majority needs to be
consulted, even if all processes are correct. On the contrary,
the S-based consensus algorithm of [1] would be total with a
realistic failure detector.

is realistic. We show that if a realistic failure
detector D implements a total consensus algo-
rithm, then D can be transformed into a Per-
fect failure detector. Roughly speaking, we use
the fact that the algorithm is total, and hence
no decision is taken without “consulting” every
correct process, to accurately track process fail-
ures. We run a sequence of consensus instances
and we suspect a process to have crashed if and
only if a decision is reached and the process was
not consulted in the decision.

4.2 Total consensus

Let A be any algorithm that solves consensus. We call
decision events in A, the events by which processes
decide a consensus value. We say that A is total if
any decision event in A at time t contains, in its causal
chain [11], a message sent by every process that has
not crashed by time t.

Lemma 4.1 Consider the environment where we do
not bound the number of processes that can crash. Ev-
ery consensus algorithm using a realistic failure detec-
tor in this environment is total.

Proof (sketch): Assume by contradiction that
there is a consensus algorithm A that is not total.
This means that there is a run R0 of A such that,
in R0, some process pi has a decision event e executed
at some time t (e is the event by which pi decides some
value v), and a process pj that has not crashed by t,
such that no message from pj is in the causal chain of
e. Assume without loss of generality that the decision
v is 0. As there is no message from pj in the causal
past of e, we can assume that the value proposed by
pj is 1. Now consider the following runs:

• R1: R1 is similar to R0, except that pj does not
receive any message from any other process be-
fore time t, i.e., we delay in R1 the reception
of all messages by pj . Moreover, no process pk,
k 6= i, j, takes any step after its last step in the
causal past of e, until time t. Since pj does not
participate in the decision e of R0, then pi exe-
cutes event e in R1 and also decides 0 at some
time t (as in R0).

• R2: in R2, the failure pattern is the same as in
R1 until time t, and all processes crash at time
t, except pj which is correct. Moreover, no pro-
cess take steps until time t. By the termination
property of consensus, pj decides at some time t′

in R2, and by the validity property of consensus,
pj actually decides 1 at t′.

• R3: the failure pattern of R3 is exactly the same
as in R2, but, until time t, all processes are
scheduled exactly as in R1 and all messages be-
tween are sent and received as in R1. Moreover,
pj is scheduled as in R2 and all messages from
and to pj are delayed after time t2.

As the failure detector is realistic, it can behave in
R3 as in R1 until time t. In this way, pi behaves in
R3 as in R1 and decides 0. But, pj behaves in R3 as
in R2 and pj decides 1: contradicting the agreement
property of consensus. 2

4.3 Reduction

Let A be any total consensus algorithm using D. We
build a transformation algorithm TD⇒P , that emu-
lates the behaviour of a Perfect failure detector within
a variable denoted by output(P). This variable is dis-
tributed and every process pi has a copy of this vari-
able denoted by output(P)i. Algorithm TD⇒P consists
in an infinite sequence of executions of A (i.e., a se-
quence of total consensus instances) plus the following
additions:

1. Whenever pi sends a message m, pi attaches to
m the information [pi is alive].

2. Whenever a process pj receives a message m

from a process pi, pj extracts from m any infor-
mation [pk is alive] and attaches that informa-
tion to every event executed as a consequence of
the reception of m.

3. Whenever a process pj executes a decision event
e (i.e., pj decides some value), pj adds to
output(P)j every process pi such that [pi is alive]
is not attached to e.

Lemma 4.2 The algorithm TD⇒P emulates in
output(P) the behaviour of a Perfect failure detector.

Proof: We prove that the failure detector emulated
in output(P) ensures strong completeness and strong
accuracy. Consider first completeness. Let pi be any
process that crashes and pj a correct process. There
is a time after which pi does not send any message.
By the termination property of consensus, pj eventu-
ally decides in that execution, i.e., by executing some
decision event e. Given that the information [pi is
alive] is not attached to e, pj adds to output(P)j pi

and never removes it, i.e., pj permanently suspects pi.
Strong completeness is thus ensured. Consider now

accuracy. Assume that pj suspects pi, i.e., pj adds pi

to output(P)j . This can only happen if pj executes a
decision event e in some execution of A, and the in-
formation [pi is alive] is not attached to e. Given that
A is a total algorithm, this can only happen if pi has
crashed. Strong accuracy is hence ensured too. 2

Proposition 4.3 Consider the environment where
we do not bound the number of processes that can
crash. In this environment, among realistic failure de-
tectors, the weakest class for consensus is P.

Proof: (1. Sufficient condition.) In [1], Chandra
and Toueg presented a S-based algorithm that solves
consensus. Obviously, the algorithm works with any
failure detector in both R and P even if we do not
bound the number of faulty processes. (2. Necessary
condition.) By Lemma 4.1 and Lemma 4.2, any failure
detector inR that solves consensus can be transformed
into a failure detector in P . 2

5 The weakest failure detector for

terminating reliable broadcast

We consider here a strong form of reliable broad-
cast called terminating reliable broadcast [11]. In this
problem, processes must deliver a specific value nil

if the sender process has crashed [11]: otherwise, the
processes must deliver the message m broadcast by
sender(m). We actually consider a general variant of
the problem where every process is a potential initiator
of the broadcast. We denote by (i, k) the k’th instance
of the problem where the initiator of the broadcast is
pi. Instance (i, ∗) is defined with the following prop-
erties: (1) validity if a correct process pi broadcasts a
message m, then pi eventually delivers m, (2) agree-
ment if a process delivers a message m, then every cor-
rect process delivers m; and (3) integrity if a process
delivers a message m and pi is correct, then sender(m)
= pi.
We state and show here that if we do not restrict the
number of faulty processes and consider realistic fail-
ure detectors, the weakest failure detector class to solve
terminating reliable broadcast is P . This result was
already stated in [7] and proved implicitly assuming
realistic failure detectors. The proof below makes that
assumption explicit.

Proposition 5.1 Consider the environment where
we do not bound the number of processes that can

crash. In this environment, among realistic failure de-
tectors, the weakest class for for terminating reliable
broadcast is P.

Proof (sketch): (1. Sufficient condition.) It is easy
to see that any Perfect failure detector, including real-
istic failure detectors, solves the terminating reliable
broadcast problem. When executing instance (k, k′)
of the problem, each process waits until it receives the
value from pk or it suspects pk. In the first case it
proposes this value to a consensus else it proposes nil.
The value delivered is the consensus value. (2. Nec-
essary condition.) Let A be any terminating reliable
broadcast algorithm using D. It is easy to see how
we can emulate the output of D a failure detector of
class P in a distributed variable output(P). When-
ever a process pj delivers nil for an instance (i, ∗) of
the problem, pj adds pi to output(P)j . Any process
that crashes will eventually be permanently added to
output(P) at every correct process: strong complete-
ness will hence be ensured. Let pi be any process that
is added to output(P)j at some time t. This can only
be possible if pi is faulty. Since we assume here that
D is realistic, then pi must have crashed by time t. 2

6 Concluding Remarks

6.1 The impact of realism

As we pointed out in the introduction, our lower bound
results do not hold if we also consider failure detec-
tors that can guess the future. To see why, consider
the class M of Marabout failure detectors introduced
in [9], and recalled in Section 3.
There is an obvious algorithm A that solves consen-
sus using M even if we do not restrict the number of
faulty processes. Every process pi consults its failure
detector and selects the process pj such that (a) pj is
not suspected and (b) there is no process pk such that
(b.1) k < j and (b.2) pk is not suspected. If i = j,
then pj sends its value to all and decides it. Other-
wise, pj waits for pj ’s proposed value and decides that
value. Similarly, there is an obvious algorithm that
solves terminating reliable broadcast using M [9].

6.2 Consensus vs uniform consensus

We considered in this paper the uniform variant of the
consensus problem. In this variant, no two processes
should decide differently, whether they are correct or
not [10]. Does our result apply to the correct-restricted
variant of consensus where agreement is only required

among correct processes? Addressing this question is
appealing from a theoretical point of view (even if this
form of consensus is rather meaningless in practice).
The answer is “no”.
Even if we consider only realistic failure detectors and
we do not bound the number of failures, the weakest
failure detector class for consensus is not P . There is
an algorithm given in [8] that solves correct-restricted
consensus with a strictly weaker class, which we de-
note by P< (the class of Partially Perfect failure detec-
tors). Class P< is defined through the strong accuracy
property of P and the following partial completeness
property: If a process pi crashes, then eventually ev-
ery correct process pj such that j > i permanently
suspects pi. It is easy to see that if we do not restrict
the number of faulty processes, P< is strictly weaker
than P : roughly speaking, this is because a process
pi has no knowledge about any process pj such that
j > i. Interestingly, this actually means that uniform
consensus is strictly harder than consensus.

6.3 Strength vs perfection

It was shown in [1] that the class S of Strong failure de-
tectors solves (uniform) consensus even if we do not re-
strict the number of faulty processes. This might seem
to contradict our result because S is strictly weaker
than P in the original model of [1]. In fact, if we con-
sider only realistic failure detectors, the classes S and
P collapse. That is, S∩R ⊂ P . To see why, assume by
contradiction that D is a realistic failure detector that
is Strong but not Perfect. This means that D violates
strong accuracy: some process pi is falsely suspected.
Because D is realistic, it cannot guess the future and
hence it can very much be the case that all processes
but pi crashes. Weak accuracy would also be violated:
a contradiction.
It is important to notice that the observation above
has already been made by Halpern and Ricciardi
in [12]. In fact, they have expressed our notion
of realism as a desirable property, among other de-
sirable properties, of a failure detector model using
knowledge theory and they proved that in this “new”
model, Strong failure detectors turn out to be Perfect.
Our definition of realism can be viewed as a simpler
rephrasing of a similar concept introduced in [12]. (It
is simpler because we do not introduce any knowledge
theory construct and we stick to the original formalism
of [1].)

Acknowledgements

We are very grateful to Michel Raynal for his com-
ments on earlier versions of this paper.

References

[1] T. Chandra and S. Toueg. Unreliable Failure Detectors

for Reliable Distributed Systems. Journal of the ACM,
43(2), March 1996.

[2] T. Chandra, V. Hadzilacos and S. Toueg. The Weakest

Failure Detector for Solving Consensus. Journal of the
ACM, 43(4), July 1996.

[3] C. Dwork, N. Lynch and L. Stockmeyer. Consensus in

the presence of partial synchrony. Journal of the ACM,
35 (2), 1988.

[4] C. Fetzer and F. Cristian. Fail-aware failure detectors.

Proceedings of the 15th IEEE Symposium on Reliable
Distributed Systems, Niagara-on-the-Lake, Canada,
Oct 1996.

[5] M. Fischer, N. Lynch and M. Paterson. Impossibility of

distributed consensus with one faulty process. Journal
of the ACM, 32(2), 1985.

[6] F. Greve, M. Hurfin, M. Raynal and F. Tronel. Pri-

mary Component Asynchronous Group Membership as

an Instance of a Generic Agreement Framework. Pro-
ceedings of the IEEE International Symposium on Au-
tonomous Decentralized Systems (ISADS), 2001.

[7] E. Fromentin, M. Raynal, and F. Tronel. About Classes

of Problems in Asynchronous Distributed Systems with

Process Crashes. Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), 1999.

[8] R. Guerraoui. Revisiting the relationship between the

atomic commitment and consensus problems. Proceed-
ings of the Workshop on Distributed Algorithms,
Springer Verlag (LNCS 972), 1995.

[9] R. Guerraoui. On the Hardness of Failure Sensitive

Agreement Problems. Information Processing Letters,
79, 2001.

[10] V. Hadzilacos. On the relationship between the atomic

commitment and consensus problems. Proceedings of
the Workshop on Fault-Tolerant Distributed Comput-
ing, Springer Verlag (LNCS 448), 1986.

[11] V. Hadzilacos and S. Toueg. Fault-Tolerant Broad-

casts and Related Problems. Cornell University, Tech-
nical Report (TR 94-1425), 1994. Also in Distributed

Systems, S. Mullender (ed), Addison-Wesley, 1993.

[12] J. Halpern and A. Ricciardi. A Knowledge-Theoretic

Analysis of Uniform Distributed Coordination and Fail-

ure Detectors. Proceedings of the ACM Symposium on
Principles of Distributed Computing, 1999.

[13] L. Lamport, M. Pease and R. Shostak. The Byzantine

Generals Problem. ACM Transactions on Programming
Languages and Systems 4 (3), July 1982.

[14] D. Powell (editor). Special issue on Group Communi-

cations. Communications of the ACM, 39 (4), 1996.

[15] G. Tel. Topics in Distributed Algorithms. Cambridge
International Series, 1991.

[16] P. Verissimo, A. Casimiro and C. Fetzer. The Timely

Computing Base: Timely Actions in the Presence of

Uncertain Timeliness. Proceedings of the IEEE Inter-
national Symposium on Dependable Systems and Net-
works (DSN), 2000.

