
Probabilistic Multicast

Patrick Th. Eugster∗ Rachid Guerraoui
Distributed Programming Laboratory

Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

Abstract

Gossip-based broadcast algorithms have been consid-
ered as a viable alternative to traditional deterministic re-
liable broadcast algorithms in large scale environments.
However, these algorithms focus on broadcasting events in-
side a large group of processes, while the multicasting of
events to a subset of processes in a group only, potentially
varying for every event, has not been considered. We pro-
pose a scalable gossip-based multicast algorithm which en-
sures, with a high probability, that (1) a process interested
in a multicast event delivers that event (just like in typical
gossip-based broadcast algorithms), and that (2) a process
not interested in that event does not receive it (unlike in
broadcast algorithms).

1 Introduction

Context. Many content-based publish/subscribe (cf. [2])
applications require scalable and reliable dissemination of
events inside a large process group (e.g., 10 000 processes).
In such applications, processes publish events and subscribe
to events. Each subscriber describes its individual interests
through specific criteria based on properties of events (e.g.,
an attribute b of events must be of value b0). The desti-
nation subset for a given event is hence defined individu-
ally and implicitly by the interests associated with the pro-
cesses in the group. The motivation of our work is to de-
vise algorithms to disseminate events in such applications
with reasonable reliability guarantees despite crash failures
of processes. To scale, such algorithms must clearly have a
“selective” dissemination flavor, and can hardly assume any
global membership or subscription knowledge.

Gossip-based algorithms. While “traditional” Reliable
Broadcast (à la [6]) and also network-level protocols de-
riving from IP Multicast have turned out to scale insuffi-

∗Current affiliation: Distributed Computing and Systems Research
Group, Chalmers University of Technology, S-412 96 Göteborg, Sweden

ciently for many of the various applications requiring reli-
able dissemination of events [9], gossip-based algorithms (a
class of probabilistic algorithms) seem more appealing for
large scale settings, by trading the strong reliability guaran-
tees offered by deterministic approaches against very good
scalability properties, yet still achieving a “high degree of
reliability”. Following the example given by Probabilistic
Broadcast (pbcast) [1], the design of many recent general-
purpose broadcast algorithms has been based on gossips,
e.g., Reliable Probabilistic Broadcast (rpbcast) [11], Di-
rectional Gossip [8], Lightweight Probabilistic Broadcast
(lpbcast) [3].

From broadcast to multicast. To our knowledge, these
gossip-based algorithms implicitly assume that all pro-
cesses in a group are interested in all events. Of course,
filtering (i.e., verifying the contents of these events for their
conformance with the interests of processes) can be per-
formed upon reception before a possible delivery. Though
events might very well be delivered with a high probabil-
ity to all interested processes, they are received with the
same probability by, potentially numerous, non-interested
processes. Clearly, such a flooding technique is not ade-
quate when many events are only of interest for say half the
processes in the overall group.

Alternatively, one can also modify an existing gossip-
based broadcast algorithm to perform the filtering before
gossiping, i.e., when gossiping, a process forwards an event
only to interested processes. This leads indeed to a more
scalable solution, where only concerned processes are in-
volved in an algorithm run. However, such a genuine mul-
ticast [4], would clearly offer a limited reliability. Indeed,
a crucial intermediate process might not be interested in an
event, leading to the isolation of interested processes, un-
less we make the (rather unrealistic) assumption that every
process knows every other process and also its precise in-
terests.

A third alternative consists in using broadcast algorithms
by mapping possible destination subsets of a large group
to smaller, possibly overlapping, broadcast groups [7] (e.g.,
all processes interested in an event whose attribute b has

value b0 are contained in a broadcast group Gb0
b). By doing

so, and especially when supporting interests which are not
restricted to discrete values (e.g., a floating point attribute
c > c0), one can however end up with a large number of
groups (2n at maximum in an application involving n pro-
cesses in total). But, above all, establishing these individual
broadcast groups requires a global knowledge of the inter-
ests of processes, and might have to be repeated every time
the composition of the overall group (interests, processes)
varies.

Contributions. We present here a gossip-based multicast
algorithm, called Probabilistic Multicast (pmcast), which
deals with the case of multicasting events only to subsets
of the processes in a large group. Our pmcast algorithm
relies on a specific orchestration of processes in the group,
which can be viewed as a “superimposition” of spanning
trees. The resulting compound “tree” exploits (1) the topol-
ogy of the network, and at the same time (2) commonalities
in the interests of processes, and adapts easily to variations
in the composition of the group. The scalability in terms of
network resources, inherent to gossip-based algorithms, is
combined with (3) a notion of membership scalability, and
further improved by (4) mainly involving those processes in
the dissemination of an event that are effectively interested
in that event.

We present an analysis which accounts for all four fac-
tors, and illustrate our claims of reliability and scalability
through simulation results. We exhibit limits of pmcast in
extreme cases of a multicast setting (very small destination
subsets), and we discuss the compromises that were made
when tuning pmcast to remedy possible performance losses
in these extreme cases.

Roadmap. The remainder of this paper is organized as
follows. Section 2 introduces the membership scheme un-
derlying pmcast. Section 3 presents the main pmcast al-
gorithm. Section 4 describes an analysis of our pmcast al-
gorithm, and Section 5 presents simulation results and dis-
cusses tuning techniques. Section 6 concludes this paper
with some final remarks.

2 Membership

This section first gives an intuitive description of the
membership scheme underlying the tree-based multicasting
in pmcast. Then we model the “tree” more rigorously for
the analysis presented in Section 4.

2.1 Overview

A pmcast group is split into subgroups (e.g., subnet-
works), and for each such subroup a set of processes, called

delegates, is selected to represent that subgroup. The parent
node of such a subgroup is populated by these delegates,
and merged with the parent nodes of a set of neighbor sub-
groups. From this “compound node”, a set of delegates
is again chosen. This select/merge-procedure is performed
recursively, leading to a form of compound spanning tree.
Figure 1 illustrates a simple example.

In such a graph, which we henceforth simply refer to
as “tree”, scalability is improved by having every process
only know processes corresponding to the nodes on its path
up to the root, and reliability is improved by having each
node encompass a set of processes, which remain all in their
child nodes as well.1 This is illustrated in Figure 1, where
the “view” of the processes sharing prefix x0 is limited to
the shaded processes, while the complete tree can expand
arbitrarily to the right.

Interactions between processes vary by their “distance”,
and processes have a complete knowledge of their respec-
tive immediate neighbors, but only a decreasing knowledge
about more “distant” processes (e.g., processes in distant
LANs). Delegates that appear closer at the root are known
by more processes in the group than processes at an in-
creased depth. Nevertheless, all processes have member-
ship views of comparable sizes, since every process has a
view of its subgroup for every tree depth.

Depth d

Depth d-1

Depth d-2

...

...

...

1 x0
...

x(d) x(d)...
1 x0

Elect Delegate
Prefix:
x0=x0(1).x0(2).

....x0(d-1), e.g., 128.178.73

Figure 1. Electing Delegates; R = 3

2.2 Membership Model

The tree scheme underlying our approach relies strongly
on a notion of “distance” between any two processes. In-

1In classic graph theory, one would rather use the term pseudograph
for such a graph with loops, i.e., nodes connected to themselves.

tuitively, a distance approximates the communication delay
between two processes.

Distances and addresses. An approach to measure the
“distance” between two processes in an asynchronous sys-
tem could consist in using an average communication delay
between these processes. However, in unstable phases, such
values are difficult to determine. We thus base the decision
of which processes out of a subgroup are to be considered
as neighbors, and also as prioritized (to become delegates),
on the addresses of those processes, more precisely, on the
distances between those addresses.

This notion of “distance” can be approximated by net-
work addresses (since these do not always reflect the effec-
tive topology of the network), but can as well be simulated
by associating logical addresses with processes. Irrespec-
tive of how these addresses are determined, we will in the
following simply consider such addresses as sequences of
values, of the following form:

x(1). · · · .x(d),

∀i 1 ≤ i ≤ d, 0 ≤ x(i) ≤ ai − 1
(1)

This notation can represent different kinds of addresses,
like IP or DNS addresses (in the latter case, the order would
have to be inverted). The maximum number of different
addresses, and thus the maximum number of processes, is
given by

∏

1≤i≤d ai.
Though processes can be colocated on the same host, or

even in the same process, we will consider here, for the
sake of simplicity, that there is one process per host in a
considered group. Indeed, the last components of an ad-
dress could easily be used to express a port number. For in-
stance, to cover all possible IP addresses, one could choose
d = 4 and ai = 28 ∀i; or d = 11 and ai = 24 ∀i to in-
clude 212 port numbers (without considering IP addresses
and port numbers reserved for special purposes, e.g., IP ad-
dresses 224.0.0.0 to 239.255.255.255 reserved for IP Mul-
ticast groups).

Prefixes. A “partial” address, like x(1). · · · .x(i − 1)
(1 < i ≤ d; ∅ for i = 1) is called a prefix (following the
terminology adopted for the Internet) of depth i. Such a pre-
fix denotes a subgroup (e.g., a subnetwork). All processes
sharing a prefix belong to the corresponding subgroup (see
Figure 1). In other terms, there might be several addresses
x(i). · · · .x(d) that can be appended to a same prefix to de-
note concrete processes in the group.

The distance between two processes is inverse propor-
tional to the length of their longest common prefix: if the
longest prefix that two processes share is of depth i, then
their distance is given by d− i+1. Also, they belong to the
same subgroup of depth i of the tree. A distance of 0 would

mean that the two processes share the same address and are
thus equivalent.

Electing delegates. All processes which share a given
prefix x0 = x0(1). · · · .x0(d − 1) form a group of depth
d. The number of such processes, i.e., the branch factor for
the corresponding node in the tree, at the moment of ob-
servation, is denoted |x0(1). · · · .x0(d− 1)|. For any given
prefix x(1). · · · .x(d − 1), |x(1). · · · .x(d − 1)| ≤ ad.

Of the |x0| processes, R delegates are chosen determin-
istically by all processes sharing x0, e.g., by taking the
R processes with the smallest addresses (we assume that
∀ x(1). · · · .x(d− 1), |x(1). · · · .x(d − 1)| ≥ R, i.e., every
populated group of depth d contains at least R processes.

R represents a redundancy factor, which has no relation-
ship with the notion of redundancy observed in interests of
processes. R represents the number of delegates that are
elected to represent a subgroup, and is best chosen such that
R > 1, in order to improve the reliability of the member-
ship.

In general, ∀x = x(1). · · · .x(i− 1), |x| ≤ ai represents
the number of different x(i) that can be appended to x to
denote an existing prefix, or in other words, the number of
populated subgroups of x.

Together with R delegates for each other of the
|x0(1). · · · .x0(d − 2)| neighbor trees, the R delegates of
|x0| form a group of depth d-1. Recursively, any pre-
fix x0(1). · · · .x0(i − 1) (1 ≤ i ≤ d) is shared by
|x0(1). · · · .x0(i − 1)| ≤ ai subgroups with a different
x(i), each represented by R delegates. Together, these
form a group of depth i. At depth 1 of the tree, there are
|∅| = |x0(1). · · · .x0(i − 1)|i=1 subgroups, each of these
again being represented by R processes.

Individual knowledge. A process characterized by an ad-
dress x0 = x0(1). · · · .x0(d) knows for each of its prefixes
x0(1). · · · .x0(i − 1) (1 ≤ i ≤ d) a number of subgroups
equal to |x0(1). · · · .x0(i − 1)|, and for each of those sub-
groups, R delegates. Furthermore, at depth d, that process
knows all |x0(1). · · · .x0(d − 1)| immediate neighbor pro-
cesses. Thus, the total number of processes known by a
given process x0(1). · · · .x0(d) is

|x0(1). · · · .x0(d− 1)|+
d−1
∑

i=1

R |x0(1). · · · .x0(i− 1)|

(2)
where a delegate of a given depth i is also taken into ac-
count at any depth i + 1 (since it appears in all successive
depths). Also, the knowledge of the process itself is con-
sidered (depending on the depth of the considered process,
between 1 and d occurrences). By promoting a process as
delegate, the knowledge of that process does not increase,
but it becomes known by more processes.

2.3 Membership Management

The membership views are loosely coordinated between
processes. Every process periodically sends information
about its view of the tree to a subset of the group.

Membership information. To that end, each process
maintains a table for each depth, representing the view
(mainly processes and their interests) of the process at that
depth. Figure 2 gives a possible composition of the views
of a set of processes represented by IP addresses sharing
the prefix 128.178.73 (e.g., corresponding to the subgroup
of depth d in Figure 1). Interests are described for a single
type of events, encompassing attributes b (integer), c (float),
e (string), and z (integer). The absence of a criterion for a
given attribute is interpreted as a wildcard.

Membership information updating is based on gossip
pull. Every line in every table has an associated timestamp
(omitted in Figure 2 for presentation simplicity), represent-
ing the last time the corresponding line was updated. Peri-
odically, a process randomly selects processes of a table and
gossips to those processes. A gossip carries a list of tuples
(line, timestamp) for every line in every table. The receiver
compares all the timestamps to its own timestamps, and up-
dates the gossiper for all lines in which the gossiper’s times-
tamps are smaller. Membership information can be piggy-
backed when gossiping events, or in the absence of such
events, can be propagated with dedicated gossips.

Joining. When a process decides to join a group, it needs
to know at least one process that is already in that group.
Latter process contacts the “lowest” delegates it knows that
the joining process will have. This is made recursively, until
the most immediate delegates of the new process have been
contacted. Once these neighbors have been contacted, they
transmit their views of the group to the new process. An a
priori knowledge of a range for the expected size of the tree
can be very useful to adjust parameters of the tree, such as
its depth d.

Leaving and Failures. The same immediate neighbors
are also involved when a process leaves. A process wish-
ing to leave informs a subset of its closest neighbors. These
remove the leaving process from their views, and this infor-
mation successively propagates throughout the concerned
subgroup through subsequent gossips.

For the purpose of detecting the failure of processes, ev-
ery process keeps track of the last time it was contacted by
its most immediate neighbor processes.

Interests. A line of a table of depth i + 1 is constructed
by compacting the table of depth i corresponding to that

View of Depth 1
Infix Interests Postfixes

3 2.230.23, 18.2.78, 188.203.99
18 z > 10000 12.2.183, 12.34.24, 180.37.217
128 b > 0 3.2.230, 18.120.2, 56.12.234

View of Depth 2 (Prefix = 128)
Infix Interests Postfixes

3 b > 3, 10.0 < c < 220.0 2.230, 18.2, 188.203
18 b = 2, e =“Bob” ∨ “Tom” 120.4, 122.2, 180.37
56 b > 1, c > 155.6 12.24, 18.220, 173.3
178 b > 0 41.21, 73.3, 88.10

View of Depth 3 (Prefix = 128.178)
Infix Interests Postfixes

41 b = 3, z = 42000 21, 23, 24
73 b > 0, c > 20.0, 3, 17, 19
88 b > 5, e =“Tom” 10, 13, 78
98 b > 4, 20.0 < c < 35.0, z < 23002 15, 17, 128
110 b > 6, z > 45320 1, 6, 7

View of Depth 4 (Prefix = 128.178.73)
Infix Interests

3 b = 2, c > 40.0, z = 20000

17 b = 5, c > 53.5

19 b > 1, 20.0 < c < 30.0, z ≤ 50000

116 b > 0, c > 20.0

119 b = 4, 2000 < z < 30000

124 b = 3, c ≥ 35.997

223 b = 2

Figure 2. View of a Tree of Depth 4

subgroup (see Figure 2), by performing the following oper-
ations:

Interest regrouping: To represent the interests of all pro-
cesses in a table, the interests of the respective processes
must be regrouped. This is done in a way which avoids
redundancies, i.e., not just by simply forming a conjunc-
tion of the individual interests, but by reducing the com-
plexity of the interests both in terms of memory space
and in terms of evaluation time.

Process count: The total number of processes at any depth
is very useful for several kinds of heuristics. In particular,
the number of processes at a given depth enables the es-
timation of the number of gossip rounds necessary such
that all concerned processes at that depth have received
the considered event.

Delegate selection: Delegates have to be chosen based on a
deterministic characteristic, since all processes in a sub-
group of depth i must decide on the same set of delegates
without explicit agreement. Currently, delegates with the

smallest addresses are chosen. Alternatively, one could
take into consideration other criteria associated with pro-
cesses, like their resources in terms of computing power
or memory, or also the nature of their interests, to reduce
the amount of “pure forwarding” of delegates.

3 Probabilistic Multicast

This section presents pmcast, our gossip-based multicast
algorithm which is based on the tree described in the previ-
ous section. We first overview below some characteristics
of our pmcast algorithm before describing it in more detail.

3.1 Overview

As opposed to many gossip-based broadcast algorithms
(e.g., pbcast [1], rpbcast [11]), in which events are first
broadcast by a “conventional” deterministic best-effort al-
gorithm and gossips are used to exchange digests of re-
ceived events, pmcast uses gossips primarily to propagate
the events themselves. This avoids the systematic sending
of events to uninterested processes.

More precisely, when multicasting an event, pmcast fol-
lows the underlying tree, by gossiping depth-wise, starting
at the root. By mapping tree depths to the network topol-
ogy, the expensive crossing of boundaries between remote
(sub)networks only occurs a “reasonable” number of times,
and if necessary. Indeed, at each depth, a given event is only
gossiped about among interested processes (or delegates of
interested processes). Hence, at each depth of the tree, only
interested subgroups are infected with that event, i.e., they
receive the event.

Note that by considering delegates, which represent in-
terested processes yet are themselves not interested, as sus-
ceptible (i.e., to be infected), pmcast is not a genuine multi-
cast in the sense of [4]. In most cases however, the fraction
of infected processes comes close to the fraction of inter-
ested processes.

3.2 Algorithm

Figure 3 presents our pmcast algorithm. Since events
are first propagated at the root of the tree, from where they
move down to increased depths, an effective gossip, besides
conveying an event, also includes the depth at which the
event is currently being multicast, as well as the computed
matching rate (i.e., the rate of interested processes) at that
depth with respect to the considered subgroup.

Receiving: Upon reception of a gossip, the information
about the depth is used to place the event in the corre-
sponding gossip buffer. The event is only delivered by
the receiving process if it is effectively of interest for that

process (reflected by /). To ensure that the event passes
from one depth to the next, it is crucial that a process at
depth i gossips a received event in any depth i′ > i, and
thus also remains in the view of any of these subsequent
depths.

Multicasting: A process would only be involved in the gos-
siping, and hence only require gossip buffers, from the
“upmost” depth in the tree at which it appears down to
its subgroup of depth d. However, when PMCAST-ing,
a process takes part in the entire gossip procedure at all
depths, especially at the root. This increases the probabil-
ity that an event is well propagated in contrast to a simple
scheme where a new event would simply be sent once to
a subset of the delegates forming the root. Also, since the
membership is dynamic, a process can be “bumped up”
at any moment, or conversely, can be “dropped”.

Note however, that if an event is only of more “local” in-
terest, which manifests when the only processes at the root
of the tree who are interested in that event are delegates of
the same subtree, (possibly the PMCAST-ing process’ own
delegates), the event can then be immediately passed to the
next depth, until a depth has been found where not only a
single subtree is interested.

3.3 Parameters

Our pmcast algorithm relies on a set of parameters, in
particular the number of processes effectively interested in a
given gossiped event at a given depth of the tree. We below
describe how the algorithm obtains these parameters.

Bound gossiping. Our pmcast algorithm strongly relies
on a “passive” form of garbage collection, achieved by lim-
iting the number of rounds that an event is gossiped about in
a given subgroup at a considered depth of the tree. To that
end, the expected number of rounds necessary to infect all
interested processes in a given subgroup at any depth of the
tree, represented by the function T (#processes, fanout)
in the algorithm in Figure 3, is approximated to inherently
limit the life-time of an event. The estimation of the num-
ber of rounds is necessary at every depth of the tree, since
this number depends on the number of interested processes
at the considered depth.

Expected number of rounds. According to Pittel [10],
the total number of rounds necessary to infect an entire
group of size n (large), in which every infected process tries
to infect F > 0 other processes at every round, is given by
the following expression:

T (n, F) = log n

(

1

F
+

1

log (F + 1)

)

+ c + O(1) (3)

1: initialization
2: view[1-..d]
3: gossips[1..d]← ∅

4: task GOSSIP {every P milliseconds}
5: for all depth ∈ [1..d] do
6: for all (event, rate, round) ∈ gossips[depth] do
7: if round < T (|view[depth]| · R · rate, F ·rate) then
8: round← round + 1
9: dests[1..F]← ∅

10: repeat F times {choose potential destinations}
11: dest← RANDOM(view[depth]-dests)
12: dests← dests ∪ {dest}
13: if event / dest then
14: SEND(event, rate, round, depth) to dest
15: else
16: gossips[depth]← gossips[depth] \ {(event, rate, round)}
17: if depth < d then
18: gossips[depth+1]← gossips[depth+1] ∪ {(event,

GETRATE(depth+1, event), 0)}

19: upon RECEIVE(event, rate, round, depth): do
20: if 6 ∃ depth ∈ [1..d] ∃ (event, ..., ...) ∈ gossips[depth] then
21: gossips[depth]← gossips[depth] ∪ {(event, rate, round)}
22: if event / thisprocess then
23: HPDELIVER(event)

24: upon PMCAST(event): do
25: gossips[d]← gossips[d] ∪ {(event, GETRATE(d, event), 0)}

26: function RANDOM(from) {choose random processes}
27: return dest ∈ from

28: function GETRATE(depth, event) {event matching rate at this depth}
29: hits← 0
30: for all dest ∈ view[depth] do
31: if event / dest then
32: hits← hits + 1
33: return hits

|view[depth]| R

Figure 3. Probabilistic Multicast Algorithm

In the case of pmcast, this formula is used to estimate the
number of gossip rounds in every subgroup at every depth i.
Hence, the number of processes and the fanout for the above
expression are both conditioned by the matching rate, which
can be obtained by a process by dividing (1) the number of
processes interested in the considered event by (2) the total
number of processes at that depth.

Number of interested processes: The number of processes
interested in a particular event at a given depth i can be
measured by matching that given event against all the in-
terests of the processes for the respective subgroup at that
given depth i. This is a costly operation, but is only per-
formed by a maximum of R processes at each depth w.r.t.
that subgroup, since this is the maximum number of pro-
cesses infected initially in a subgroup (the matching rate
is propagated with the event). The root represents an ex-
ception, in that only the process effectively PMCAST-ing
the event will perform this matching.

Total number of processes: The size of a subgroup at a con-
sidered depth i is given by the number of delegates form-
ing that depth (with respect to the subgroup of the consid-
ered process), which is given by multiplying the number
of different subgroups of depth i+ 1 in the view of depth
i, i.e., the number of lines in the corresponding view table
(noted |view[i]| in Figure 3), by the number of delegates
for each subgroup, R.

Environmental parameters. Environmental parameters,
such as the probability of message loss, or the probability of
a crash failure of a process, are to be considered when com-
puting the expected number of rounds necessary to spread
an event. These are however more difficult to approximate.
Like in most gossip-based algorithms, where simulations
or analytical expressions enable the computing of “reason-
able” values for parameters such as the number of times a
gossiped event is forwarded, choosing conservative values
is the best way of ensuring a good performance. For sim-
plicity, these parameters have not been added (in Figure 3
or Expression 3), but will appear in the analysis presented
in the next section.

4 Analysis

In this section, we give an analysis of pmcast, describing
the spreading of a multicast event over gossip rounds. This
analysis characterizes the reliability of pmcast.

4.1 Analysis Model

For our formal analysis, we consider a group composed
of n processes, and we observe the propagation of a sin-
gle event, in which every process in the group is interested
with a probability of pd. We assume that the composition of
the group does not vary during the run (consequently n is
constant).

Assumptions. The stochastic analysis presented below
is based on the assumption that processes gossip in syn-
chronous rounds, and there is an upper bound on the net-
work latency which is smaller than a gossip period P . Note
however that this analysis does not rely on the assumption
that the underlying system is synchronous, nor does the al-
gorithm force the system to behave so.

P is furthermore constant and identical for each process,
just like the fanout F . We assume furthermore that failures
are stochastically independent. The probability of a net-
work message loss is ε > 0, and the probability of a process
crashing during a run is considered to be τ = f / n, where
f is the number of processes crashing during that run. We
do not take into account the recovery of crashed processes,
nor do we consider Byzantine (or arbitrary) failures.

Joint interest. The processes in the considered group are
orchestrated in a tree as presented in Section 2. In such
a tree, the total number of processes that a delegate at a
particular depth i with address x0(1). · · · .x0(d) represents
(provided that it is delegate at that level, of course) is given
by

‖ x0(1). · · · .x0(i− 1) ‖ =
∑

x(i).··· .x(d−1)

|x0(1). · · · .x0(i− 1).x(i). · · · .x(d − 1)|

(4)
We consider an event as being significant only for a frac-

tion pd (matching rate) of processes in the entire group.
In other terms, there is a probability pd that a considered
event (pd varying potentially for each event) is of interest
to any given process, and when considering a group of n
processes, only n pd participants are expected to be inter-
ested in the observed event. Hence, a delegate of depth i,
on behalf of the represented processes, is expected to be in-
terested in a given event with the following probability:

pi = 1− (1− pd)
‖x0(1).··· .x0(i−1)‖ (5)

It is easy to see that, besides the special case where pd =
1, pi is always strictly bigger than pd for any depth below.

Regular tree. For our analysis, we presuppose a “regular”
tree, i.e., for any process in the group, all prefixes derived
from the address x = x(1). · · · .x(d) of that process have
the same number of subgroups, which we denote by a. This
does not presuppose that our algorithm only works for reg-
ular trees (any tree can however be captured by a bigger
regular tree).

∀x, i x = x(1). · · · .x(d), 1 ≤ i ≤ d

|x(1). · · · .x(i− 1)| = a ≤ ai

(6)

The total number of processes in the group is straight-
forwardly given by n = ad. Furthermore, we consider that,
with respect to a given event, the processes interested in that
event are uniformly distributed over the entire group (which
is of course not required by the algorithm itself). Hence, the
probability pi that a process at depth i manifests interest in
a given event, possibly on behalf of processes it represents,
is given by:

pi = 1− (1− pd)
ad−i

(7)

4.2 Event Propagation in a “Flat” Group

We first analyze the spreading of an event in a “flat”
group of processes, i.e., a group of processes in a tree of
depth 1. We then show how the established Markov chain
can be used to compute the expected number of infected
processes in a subgroup of depth i (1 ≤ i ≤ d) after gossip-
ing at that given depth.

Fraction of infected processes. The probability p that a
considered gossiped event is received by a given process, is
a conjunction of several conditions, namely that (1) the con-
sidered process is effectively chosen as target, (2) the gos-
siped event is not lost in transit, and (3) the target process
does not crash. In the expression given below, according to
the algorithm presented in Figure 3, the effective group size
and the effective fanout are both conditioned by pd:

p(n pd, F pd) =

(

F pd

n pd − 1

)

(1− ε)(1− τ) (8)

Accordingly, q(n pd, F pd) = 1− p(n pd, F pd) repre-
sents the probability that a given process is not reached by
a given infected process.

We denote the number of processes infected with a given
event at round t by st, 1 ≤ st ≤ n pd. Note that when the
event is injected into the group at round t = 0, we have
st|t=0 = 1. Given a number j of currently infected pro-
cesses, we are now able to define the probability that exactly
k processes will be infected at the next round (k−j suscep-
tible processes are infected during the current round). The
resulting homogenous Markov chain is characterized by the
following probability pjk of transiting from state j to state
k (1 ≤ j ≤ k ≤ n pd, 0 if j > k):

pjk(n pd, F pd) = P (n pd, F pd)[st+1 = k|st = j] =
(

n pd − j

k − j

)

(1− q(n pd, F pd)
j)k−jq(n pd, F pd)

j(n pd−k)

(9)
The distribution of st, t > 0 (s0 = 1 if k = 1, 0 other-

wise) can then be computed recursively (1 ≤ k ≤ n pd):

P (n pd, F pd)[st = k] =

k
∑

j=k/(1+F)

P (n pd, F pd)[st−1 = j]pjk(n pd, F pd)
(10)

Expected number of rounds. Pittel’s model [10] does
not consider the possibility of losing events between a
gossiper and a (potential) destination. In our case, only
F pd(1 − ε)(1 − τ) processes among n pd are expected
to be infected at a given round by a gossiper, leading to the
following expression:

Tf (n pd, F pd) =

T (n pd(1− ε)(1− τ), F pd(1− ε)(1− τ))
(11)

Note however that since Pittel’s formula is valid for large
groups, it only offers useful results as long as n pd is still
large (see Section 5.3).

4.3 Event Propagation in a Tree

The above result can be used to express at each depth, for
an infected node, the probability of having a certain number
of child nodes infected after gossiping at that depth.

View sizes. Every process must know the delegates of ev-
ery depth along its path from the root, as shown in Fig-
ure 1. According to Equation 2, every process in a regular
tree knows the same number of processes for the different
depths of the tree. More precisely, a process characterized
by x(1). · · · .x(d), knows:

mi =

{

R |x(1). · · · .x(i− 1)| = R a 1 ≤ i < d

|x(1). · · · .x(i− 1)| = a i = d

(12)

This adds up to m =
∑d

i=1 mi = R a (d − 1) + a
∈ O(d R n1/d) ∀ d ≥ 2. This value decreases as d in-
creases, and finds a minimum in d = log n, which is
however not reached as long as R ≥ 3 [2].

Expected number of rounds. Based on Expression 7 and
Expression 11, the expected number of rounds necesssary
for pmcast to infect all interested processes in a regular tree
can be approximated by the sum of the rounds spent at each
depth of the tree:

Ttot =

d
∑

i=1

Ti =

d
∑

i=1

Tf (mi pi, F pi) (13)

This expression is pessimistic, by neglecting the very
fact that every interested subgroup, except the topmost one,
starts with an expected number of infected processes which
is bigger than 1. In fact, in most cases, all delegates are
already infected, and we can obtain a more precise expres-
sion by subtracting at each depth the rounds necessary to get
from 1 to R infected processes. Based on this, the number
of rounds necessary to infect an entire group can be shown
to be the same without a tree, as in an arbitrary-depth tree
[2]; namely Tf (n, F). In terms of rounds necessary to mul-
ticast events, the tree does not have a considerable impact
on the event dissemination procedure.

Fraction of infected processes. The expected number of
infected processes after gossiping at depth i is hence given
by the following, again pessimistic (we do not consider the
possibility that the subgroup initially comprised more than
one infected process) expression:

E[sTi
] =

mi pi
∑

j=0

P (mi pi, F pi)[sTi
= j]j (14)

We are now able to compute the probability that a “node”
(i.e., a set of processes, e.g., delegates representing the same
subtree) of depth i is infected after gossiping at that depth
(provided the corresponding subgroup of depth i − 1 was
initially infected):

ri = 1−

(

1−
E[sTi

]

mi pi

)

mi

a

(15)

For all depths, except the lowest one, a “node” of depth
i means a subgroup of depth i (that is, its R delegates for
that depth). At the leaves of the tree, a “node” refers to a
single process. ri|i=d simply resumes to E[sTd

]/a pd, the
expected fraction of processes infected when gossiping in a
group of depth d.

Provided that gi−1 = j ≤ ai pi−1 entities were infected
at depth i − 1 (in total), the probability of ending up with
gi = k entities infected at depth i (1 ≤ i ≤ d) is given by
recursion as follows (for k ≤ j a pi, 0 otherwise):

pijk = P [gi = k|gi−1 = j] =

(

j a pi

k

)

rk
i (1− ri)

j a pi−k

(16)

Finally, we can compute the probability of having k in-
fected entities at depth i (0 < i ≤ d, g0 = 1 if k = 1, 0
otherwise):

P [gi = k] =

ai pi−1
∑

j=k/(a pi)

P [gi−1 = j]pijk (17)

Expected number of infected processes. We are able to
express the expected number of totally infected processes in
the group based on the expected number of infected entities
E[gi] after gossiping in a subgroup at depth i (1 ≤ i ≤ d):

d
∏

i=1

E[gi] =

d
∏

i=1

ri a pi (18)

The expected reliability degree can be simply obtained
by dividing the upper expression by the number of effec-
tively interested processes, n pd.

5 Simulation Results

We have simulated pmcast through successive rounds,
and have observed the spreading of a single event. We give
some of these results below to illustrate the good scalability
and reliability properties of pmcast, before discussing its
behavior in extreme cases, as well as a simple way of tuning
the algorithm for these cases. More results are given in [2].

5.1 Reliability

Figure 4 conveys the high probability with which a pro-
cess interested in a multicast event delivers that event. Fig-
ure 5 on the other hand, shows the low probability with
which a process that is not interested in a multicast event
receives that event.

Figure 4 however also illustrates the limitations of
stochastic approaches underlying epidemiology, and hence
gossip-based algorithms, which namely reflect the interest

in very large populations. Indeed, Pittel’s asymptote gives
extremely good results for events which are of interest for
a large fraction of processes in the group. On the other
hand, “very small” values for pd, are less well captured by
this asymptote. In fact, the computed expected number of
rounds increases first with a decreasing pd, before becoming
0 for pd = 1

n . Accordingly, the reliability degree decreases
with a decrasing pd, since the asymptote gives less accurate
information towards such “small” values. Even with an ap-
proximation which performs better for such small values,
this problem can be observed. This loss in reliability was
expected, and there are several ways of counteracting it (see
Section 5.3).

Note that the interpretation of “very small” depends on
the considered subgroup size, mi pi. Since pi becomes big-
ger for a depth i closer to the root, and hence, the number of
potentially interested processes increases, making smaller
depths less prone to this type of undesired effect.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f D
el

iv
er

y

Fraction of Interested Processes

Figure 4. Infected Interested Processes;
n ≈ 10000 (a = 22), d = 3, R = 3, F = 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 o

f R
ec

ep
tio

n

Fraction of Interested Processes

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 o

f R
ec

ep
tio

n

Fraction of Interested Processes

Figure 5. Infected Uninterested Processes;
n ≈ 10000 (a = 22), d = 3, R = 3, F = 2

5.2 Scalability

It is not immediately visible from the analysis whether,
and how, the performance of pmcast is impacted when in-
creasing the scale of the group. As conveyed by Figure 6,
pmcast has very good scalability properties when increas-
ing a in a tree of fixed depth (note that the group size in-
creases following ad). The scalability however depends on
the proportion of interested processes. With a small pd,
the above-mentioned problem manifests through a slightly
stronger decreasing reliability despite the increased group
size.

0.9

0.92

0.94

0.96

0.98

1

10 15 20 25 30 35 40

Pr
ob

ab
ili

ty
 o

f D
el

iv
er

y

Subgroup Size

Matching Rate 0.5
Matching Rate 0.2

Figure 6. Scalability; d = 3, R = 4, F = 3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f D
el

iv
er

y

Fraction of Interested Processes

Original
Improved

Figure 7. Tuned vs Untuned Algorithm;
n ≈ 10000 (a = 22), d = 3, R = 3, F = 2

5.3 Tuning for Small Matching Rates

Basically, one can distinguish two ways of improving
the performance of pmcast for small matching rates, i.e.,
with small values for pd, namely (1) increasing artificially
the number of interested processes to obtain a better ap-
proximation of the necessary number of rounds with Pit-
tel’s asymptote, and (2) applying another approximation for

the number of necessary rounds. The second approach can
for instance be achieved using a more rough approximation
of the number of rounds for large matching rates, yielding
however more precise values for small matching rates.

Aiming at applications in which critically small values
for pd are seldom (typically, half the processes are inter-
ested in a given multicast event), we have adopted the ap-
proach of artificially increasing the “audience” by adding
processes to the set of interested processes. To that end, we
have modified the algorithm presented in Figure 3 to gossip
to non-interested processes if the number of interested pro-
cesses in the group drops below a threshold h. In that case,
every involved process decides that the h first processes in
its view of the corresponding depth are interested, in addi-
tion to the remaining effectively interested processes out-
side of the first h processes in the corresponding view. By
fixing a lower bound on the desired reliability degree, h can
be obtained through analysis or simulation. The result of
such a tuning is illustrated by Figure 7, which compares the
original degree of reliability with the improved one. Note
however, that this tuning leads to a compromise, in the sense
that the rate of infected non-interested processes increases
with respect to Figure 5.

6 Concluding Remarks

The strong scalability and reliability guarantees offered
by our Probabilistic Multicast (pmcast) algorithm are a con-
sequence of its underlying tree-like orchestration of pro-
cesses.

The idea of arranging processes according to a specific
tree-like scheme is not new. A typical example is Capt’n
Cook [12], a gossip-based resource location algorithm for
the Internet, which can in that sense be seen as a member-
ship algorithm without broadcasting of events. The hierar-
chy underlying Capt’n Cook has been reused as the Grid
Box [5] for the means of computing an aggregate func-
tion on outputs (e.g., sensor values) of all processes in a
large group, or in Astrolabe [13], which, similarly to our
approach, supports the multicasting of events to a subset
of processes. The multicasting in Astrolabe is however
not based on gossips but performed deterministically, with
higher throughput than pmcast in “stable” phases of the sys-
tem, yet a reduced robustness in “unstable” phases. The Di-
rectional Gossip algorithm [8] also describes a simple two-
level hierarchy in which events are however again broad-
cast, i.e., all processes in the group are invariably addressed.

The tree underlying pmcast can be further exploited by
making use of different mechanisms at different depths con-
cerning (1) the spreading of events (e.g., flooding the leaf
subgroups if there is a high density of interests), (2) the fil-
tering of events (approximating the filters applied by del-
egates closer to the root to reduce computation), but also

(3) the monitoring of processes (e.g., processes in leaf sub-
groups actively ping each other, and possibly even perform
a form of agreement before excluding a suspected process
from their views).

Acknowledgements

We are very grateful to Boris Pittel for his highly valu-
able comments and suggestions concerning the epidemio-
logic aspects of our algorithm. We would also like to thank
Robbert van Renesse and Luis Rodrigues for commenting
on an early version of this work.

References

[1] K. Birman, M. Hayden, O.Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal Multicast. ACM Transactions on Com-
puter Systems, 17(2):41–88, May 1999.

[2] P.Th. Eugster. Type-Based Publish/Subscribe. PhD thesis,
Swiss Federal Institute of Technology, Lausanne, Dec. 2001.

[3] P.Th. Eugster, R. Guerraoui, S. Handurukande, A.-M. Ker-
marrec, and P. Kouznetsov. Lightweight Probabilistic
Broadcast. In Proceedings of the 2001 IEEE International
Conference on Dependable Systems and Networks, June
2001.

[4] R. Guerraoui and A. Schiper. Genuine Atomic Multicast in
Asynchronous Distributed Systems. Theoretical Computer
Science, 254(1–2):297–316, Mar. 2001.

[5] I. Gupta, R. van Renesse, and K. Birman. Scalable Fault-
Tolerant Aggregation in Large Process Groups. In Proceed-
ings of the 2001 IEEE International Conference on Depend-
able Systems and Networks, June 2001.

[6] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and
Related Problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5. Addison-Wesley, 1993.

[7] K. Jenkins, K. Hopkinson, and K. Birman. A Gossip Pro-
tocol for Subgroup Multicast. In International Workshop on
Applied Reliable Group Communication, Apr. 2001.

[8] M.-J. Lin and K. Marzullo. Directional Gossip: Gossip in
a Wide Area Network. In Proceedings of the 3rd European
Dependable Computing Conference, Sept. 1999.

[9] R. Piantoni and C. Stancescu. Implementing the Swiss Ex-
change Trading System. In Proceedings of the 27rd IEEE In-
ternational Symposium on Fault-Tolerant Computing, June
1997.

[10] B. Pittel. On Spreading of a Rumor. SIAM Journal of Ap-
plied Mathematics, 47:213–223, 1987.

[11] Q. Sun and D. Sturman. A Gossip-Based Reliable Multicast
for Large-Scale High-Throughput Applications. In Proceed-
ings of the 2000 IEEE International Conference on Depend-
able Systems and Networks, July 2000.

[12] R. van Renesse. Scalable and Secure Resource Location. In
Proceedings of the 33rd IEEE Hawaii International Confer-
ence on System Sciences, January 2000.

[13] ”R. van Renesse and K. Birman” Scalable Management and
Data Mining Using Astrolabe. In Proceedings of the 1st In-
ternational Workshop on Peer-to-Peer Systems, March 2002.

