On the Consistency Problem in
Mobile Distributed Computing-

Rachid Guerraoui
rachid.guerraoui@epfl.ch

Corine Hari
corine.hari@epfl.ch

Distributed Programming Laboratory
Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne

ABSTRACT

This paper describes some preliminary steps towards defin-
ing a consistency criteria for mobile replicated systems us-
ing operational transformations. Our criterion lies between
traditional strong criteria, preventing divergence, and tra-
ditional weak criteria, not enforcing any eventual form of
convergence. We give a precise definition of our criterion
and discuss its use to state the correctness and incorrect-
ness of some existing practical algorithms.

Categoriesand Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

General Terms
Algorithms, Theory

Keywords

Consistency, Distributed, Operational Transformations

1. INTRODUCTION

1.1 Motivation

Several algorithms have been devised to ensure some form
of consistency among replicas in a mobile environment. Many
of these algorithms share a common flavor [4, 11, 13, 6, 12,
3]: they seek to allow replica divergence during disconnec-
tion and enforce convergence after reconnection. In short,
during disconnection periods, operations on the same object
might be executed concurrently on replicas of the object and
this might typically lead to replicas with different states if
the operations conflict (say updates). After reconnection,

*This work is partially supported by the Swiss National Sci-
ence Foundation(project no 21-64994.01)

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

POMC' 02, October30-31,2002, Toulouse France.

Copyright 2002ACM 1-58113-511-4/02/0010.$5.00.

and provided that the processes hosting the replicas are con-
nected for long enough, it is expected that these replicas
eventually converge to the same state.

The problem that these algorithms seek to solve is indeed
intuitive but, to our knowledge, it has never been precisely
defined for algorithms such as [4] or [13]. This makes it
impossible to draw any precise conclusion about their cor-
rectness. Having no precise clue about the actual problem
also makes any performance comparison potentially unfair
between any two algorithms that might be solving different
problems.

It is very tempting to explore the possibility of coming up
with a precise specification of the problem. This would en-
able us to understand it better and measure the correctness
of the algorithms presumabely solving it. It might also lead
to invent new alternative algorithms and possibly state and
prove lower bound results on these algorithms.

1.2 Background

Giving a precise specification of the consistency problem
in mobile computing comes down to defining a consistency
criterion that captures exactly the desired behavior of ob-
jects shared by mobile processes.

Basically, traditional consistency criteria can be classified
in two classes:

The first class consists of strong consistency criteria which
prevent replicas from diverging. These include for instance
sequential consistency [7] or linearizability [5]. Roughly speak-
ing, these ensure that any process accessing the shared ob-
ject has the illusion that operations, even from different pro-
cesses, are performed on the object one at a time, according
to some global order. This is captured by the guarantee
that there must be a (imaginary) global serialization of all
operations that no process, as far as the results it got from
invoking operations on the object, can distinguish from the
actual execution of the operations. To ensure such a con-
sistency criterion, no algorithm can enable operations that
are conflicting, such as for instance enqueue operations on
the same queue object, to be performed concurrently. This
is clearly not adapted to a practical mobile setting where
disconnection is the normal case.

The second class consists of weak consistency criteria that
allow divergence but might never enforce convergence. A
representative of this class is causal consistency [1]. In this
case, only operations that are related by a causal prece-
dence are globally ordered. Concurrent operations that are
unrelated from a causal perspective do not need to obey

any global ordering. So even after a reconnection period,
and even if the processes hosting the replicas remain per-
manently connected, every process might end up with its
own view of the object state.

In short, for many mobile applications, neither strong con-
sistency nor weak consistency criteria are adapted. One
might indeed implement strong consistency in a mobile envi-
ronment if the shared objects have a very simple type (e.g.,
read-write semantics), or sometimes live with weak consis-
tency [9]. In general however, some intermediate level of
consistency is achieved by algorithms that control the shar-
ing of a document in a mobile environment (e.g., [4, 6, 12,
3]): they indeed enable divergence in disconnected periods
but also enforce convergence after reconnection. But what is
the actual consistency criterion ensured by these algorithms?

1.3 Approach

A careful look at these algorithms leads to an interest-
ing observation. During the reconnection period, operations
previously executed locally on every replica are exchanged
and then merged. One can achieve the merging by a sim-
ple state transfer primitive as provided by group communi-
cation systems [2]: such a primitive is however inherently
asymmetric and makes the work performed by all but one
process useless. Some algorithms use less drastic schemes to
achieve the merging. After identifying the conflicting oper-
ations, they might either (a) leave it up to the user of the
system to decide, e.g., [3], possibly after attempting to re-
order the operations, e.g., [6], or (b) perform some roll-back
operations to resolve the conflict [12], or (¢) even transform
some of the operations into non-conflicting ones, e.g., [4,
11, 13]. In the context of this paper, we are interested in
precisely capturing the latter semantics, i.e., (c¢), where no
roll-back or manual intervention is needed, but where opera-
tion transformations (called transpositions) must have been
planned in advance.

In this case, after a reconnection, a process p might get
an operation op previously executed during disconnection
by some other process ¢ on a replica of the same object.
Process p does not necessarily incorporate op by executing
it as is on its replica. Instead, it might execute a variant
of op, op’ (called a transposition [4] of op), that intuitively
intends to achieve the same effect as op, if executed after all
operations that p had executed concurrently to op. This ba-
sically means that the global serialization order that indeed
ensures convergence (i.e., that leads to the common conver-
gent state) does not necessarily integrate the original oper-
ations executed by the processes, but potentially variants of
these operations (the transpositions). This observation was
the key to our contribution.

1.4 Contribution

This paper describes some preliminary steps towards defin-
ing a consistency criterion for mobile replicated systems us-
ing operational transformations. We call this criteria < consis-
tency. Basically, Oconsistency allows processes to perform
(possibly conflicting) operations on different replicas of the
same object, even during disconnection periods, i.e., when
every process accesses its own replica without communicat-
ing with other processes. Nevertheless, <consistency en-
forces all replicas to eventually converge to the same com-
mon state provided that the processes reconnect for suffi-
ciently long. This common state would indeed correspond

to a state produced by a global serialization. Interestingly,
this state is obtained by preserving, in a precise sense, the
intentions of all the operations executed during disconnec-
tions.

Unlike for a traditional strong consistency criterion how-
ever, our global serialization might not incorporate the exact
operations executed by the processes having accessed the ob-
ject, but some variants of these operations: their transposi-
tions. These are typically defined in advance by the applica-
tion programmer. We present the semantics of these trans-
positions and accordingly define a new notion of serialization
and the resulting consistency criterion: <consistency. We
use this criterion to discuss the correctness (vs incorrectness)
of some practical replication algorithms devised for a mobile
computing environment. Maybe even more interestingly, we
open some research directions that might help bridge the
gap between current practices in mobile environments and
more traditional aspects of distributed computing.

2. MODEL
2.1 Shared Objects

We consider the model introduced in [5]. A distributed
system consists of a set of processes, each communicating
with one another through shared objects. Objects have an
associated set of operations, which can modify their state.
Operation executions are defined by an invocation and an
associated response. When there is no ambiguity, we use
the term operation for operation executions. Processes are
sequential: no process invokes a second operation without
having received the response to the first one.

An execution is represented by a finite sequence of opera-
tions, called a history. A process subhistory H|p of a history
H is the subsequence of operations of H executed at a pro-
cess p. Note that a sequence of operations is simply a set of
operations with an order relation.

The sequential specification of an object defines the be-
havior of the object by identifying the set of executions that
are valid according to its semantics, when processes access
the object in a sequential and failure-free way.

2.2 ConsistencyCriteria

Roughly speaking, a consistency criterion defines which
executions of a distributed system are considered correct.

A consistency criterion is typically defined in terms of
equivalence to a legal sequential history [10]. Two histories
are equivalent if they are made of the same operations and
one is a permutation of the other. A permutation of a set
of operations is a serialization.

A serialization is legal if it belongs to the sequential spec-
ification of the objects involved in the history. Legal se-
rializations of a valid history are for instance obtained by
restricting permutations to interchanges of commutative op-
erations [14].

We recall here the definition of a well known strong con-
sistency criterion: sequential consistency [7].

e A history H is sequentially consistent if there exists a
legal serialization S of H such that for each process p,
Hlp = Slp.

With sequential consistency, operations from different pro-
cesses can be interleaved, but operations from the same pro-
cess must appear in the same order.

Now we recall the definition of a well known weak consis-
tency criterion: causal consistency [1].

Operations can have a causal dependency between them.
Let ~*2. be the partial order induced by a causal depen-
dency between operations of type t; and type ta! for a his-
tory H. Let Ale be the subhistory composed of H|p and
all operations of type t1 in H.

e A history H is causal if for each process p there exists
a legal serialization =y of Agﬂ_tl that respects 02 and
Hlp = ~|p.

In the case of sequential consistency, there exists a single
serialization of the history for all processes, whereas with
causal consistency, there may be a different serialization for
each process. Causal consistency therefore does not guaran-
tee that all processes will have the same convergent state,
contrarily to sequential consistency which does not allow any
divergence.

3. CURRENT PRACTICES

In this section, we give an intuitive example of an algo-
rithm [11] which ensures the reconciliation of diverging repli-
cas in a mobile computing environment. The idea is that
operations which were executed on another replica must be
transformed to account for operations which were executed
concurrently on the current replica. Then we define the no-
tion of transposition which allows for such specific kinds of
permutations.

3.1 Example

Figure 1 gives an example of an execution of the algorithm
after reconnection. The application modeled is a collabora-
tive text editor, represented by shared String objects with
two basic operations: insert and delete. We will use this sim-
ple intuitive object type throughout the paper to illustrate
the different concepts.

Two processes concurrently execute the operations op: :
ins(x,1) and ops : del(3), which respectively insert x at po-
sition 1 and delete the third character, on their respective
replicas. They then broadcast their operations to all pro-
cesses. If each process executes the operations as it receives
them, we will end up in divergent states. If process 1 had
transformed opa to oph : del(4), however, convergence could
have been preserved. Intuitively, oph would have included
the effect of op1, which was to insert a preceding character.

3.2 Operational Transformations

The algorithm briefly introduced above relies on the tech-
nique of operational transformations [4], which originated
in the context of collaborative environments. It consists in
transforming operations to execute them at a different point
in the history. Intuitively, it transforms an operation to in-
clude or exclude the effect of other operations. There are
two types of transformations:

e Forward transposition (sometimes called inclusion trans-

formation) modifies the operation to include the effect
of other operations, effectively allowing to move it for-
ward in the history by including the effect of later op-
erations.

"The “write-into” relation from [1] is a dependency between
write and read operations

o] [aec] wc] [aec]
ins(z,)8 +del(3) ins(z,)8 + del(3)
and [| nd [
del(3)+ +ins(x, 1) del(4) + S sy 1)
‘XAC‘ ‘XAB‘ ‘XAB‘ ‘XAB‘
P, P P, P,

Incorrect execution Correct execution

® : generated operation
O : remote operation

Figure 1: After Reconnection

More precisely: fwd(op1,o0p2) = op5 such that: VO, :
Effect(O;.op1, oph) = Effect(O;, op2)

e Backward transposition (sometimes called ezclusion trans-

formation) modifies the operation to exclude the ef-
fect of other operations, effectively allowing to move
it backward in the history by excluding the effect of
earlier operations.

More precisely: bkwd(op1,0p2) = op3 such that: ops =
fwd(op1, oph)

The effect of an operation is interpreted by the program-
mer, who must define the transpositions for the shared ob-
ject type. Note that to “realize the same effect” does not
mean “lead to the same state”. For instance, the effect of
the operations ins(z,2) on the string bc could be to insert
the x between b and c, yielding the string bxc. On a string
abc, the operation that realizes the same effect would lead
to abxc, obviously different from bxc.

Following our earlier example (Figure 1), consider two op-
erations op; = ins(a,2) and ops = del(3) which respectively
insert a at the second position and delete the third charac-
ter. The forward transposition of op2 with regard to opi,
fwd(op1,0p2), is del(4). It is the operation which translates
the effect of op2 (deleting the third character) after the exe-
cution of op1 which inserts a preceding character: to delete
what used to be the third character, the operation now has
to delete the fourth character.

In the same way, the backward transposition of ops with
op1, bkwd(op1,op2), is del(2). It excludes the effect of op1
(inserting a preceding character) from the definition of opz:
to delete what would have been the third character if a pre-
ceding character had been inserted, the operation now has
to delete the second character.

Defining transpositions for the insert and delete operations
comes down to testing all different combinations of inser-
tions and deletions of preceding and following characters.
The complete definitions of transpositions for text editors
can for instance be found in [11] or [13].

Operations are defined on a state. Transpositions, such as
they are defined above, modify them to include or exclude
the effect of other operations that are defined on the same
state. Any transposition of operations that are not defined
on the same state is invalid?.

2Commutativity [14] is the particular case where transpo-

4. oSERIALIZA TION

Operation transpositions provide a way to extend the tra-
ditional notion of serialization. As seen in Section 2, the
precise definition of consistency criteria relies on this no-
tion. In this section we redefine serialization of histories for
a setting augmented with operation transformations, which
will be used to define a new consistency criterion in this
context. We first introduce some definitions and notations
to capture various notions around operations and transposi-
tions. Then we define the notion of equivalence between sets
of operations. Finally, we define our notion of Cserialization.

4.1 Notations and Definitions

We introduce here the notations and definitions underly-
ing our new notion of serialization. The complete notation
for an operation execution is % op;fi (¢;). We denote by c¢;
the set of operations executed before the generation of op;
and by f; and b; the sets of operations that op; was trans-
posed forward, resp. backward, with. Finally, (op;) denotes
an operation based on op;.

The context c¢; refers to the defining context, which is the
set of operations that were executed by the process locally
before invoking op;.

If the operations are transposed and re-arranged to pro-
duce a new sequence S, then the operations preceding op;
in S are not necessarily the same as the defining context
c;. We call this context the execution context of op; in S,
which is noted exec(op;)s. Note that the defining context
of an operation is determined once and for all, whereas the
execution context changes.

For instance, consider the operation sequence at process
P1 in Figure 2. Operation op2’s defining context is equal
to its execution context, i.e., ca = exec(op2)p, = {op1}. At
process Pa, however, op2’s execution context is {opl ops},
whereas its defining context stays the same (as it is defined
by its generating process, P1).

op1 op2 op3
Pq: . . .
P,: RN N T
op1 op3 op2

Figure 2: Defining and execution contexts

A base operation is one that has not been transposed, i.e.,
mop? (cs). As ¢; does not vary, this notation is often abridged
to op;.

Any operation that is obtained by a transformation of
op; is called a form of op; and is denoted by (op;). It is
obtained from the base operation op; by transposing it with
a sequence of operations. Note that op; € {(op:)}, i.e., that
op; itself is a form of op;, as it is simply the particular case
where f; = b; = 0.

4.2 Operation Equivalence

sitions are restricted to those that do not actually modify
the operation. In other words, op2 commutes forward with
op1 if fwd(op1,op2) = op2. In the same way, op2 commutes
backward with op1 if bkwd(op1,0p2) = op2. Note that this
does not mean commutativity restricts operations to those
that do not modify the state: it restricts transpositions to
those that do not modify the operations.

When considering transpositions, operations do not exist
solely under a single form anymore. Therefore notions that
rely on equivalence of operations have to be redefined.

Two forms of the same operation can produce the same
operation. Transposing an operation op; forward with an
operation op; means that we are including op;’s effect in op;.
This is the same as if op; figured in op;’s context. The same
way, if op; is transposed backwards with an operation opy,
this excludes opy’s effect from op;’s context. Therefore we
can establish the following equivalence relationships between
forms of the same operation:

o opi(op;) = op;" (0)

® “Pkopi(opk) = opi(0)
From which we deduce that: °PLop{P!(0) = op; (D)

Moreover, two operations that are two forms of the same

base operation must now be considered equivalent in certain
cases. This leads us to redefine the notion of equivalence
between two sets of operations. Two sets of operations S and
S’ are said to be equivalent iff the three following conditions
are satisfied:

L |S| =S|
2. Yop € S,3(op) € S
3. Yop' € S',3op € S s.t. op’ = (op)

Through our notion of equivalence, we define a bijective
mapping between the two sets of operations, where each
operation of a set has a corresponding form in the other set.

4.3 oSerialization

A serialization is a permutation of operations. Opera-
tional transformations provide a way to permute operations
in a history which otherwise could not have been permuted,
therefore producing more legal serializations for a given his-
tory than with a strong consistency criterion like sequential
consistency.

Intuitively, we want a <serialization to be permutations
and tranpositions of operations that preserve the effect of
the individual operations and lead to the same final state.
To do so, we must restrict the permutations and transpo-
sitions in the following manner. We say that a sequence
T is a Oserialization of a sequence S iff the two following
conditions are satisfied:

1. The sets of operations of S and T are equivalent (as
defined in 4.2).

2. T is obtained by transposing and permuting the oper-
ations of S, subject to the following constraint:
Yop; € T, exec(op;)r must equal ¢; U f; \ bs, with ¢;
defined by S, and b; C ¢; U fi.

The first condition (1) guarantees that all operations ap-

pear in the execution, though not necessarily in their original
form.
The second condition (2) translates the fact that an opera-
tion must be modified to realize the same effect on a possibly
different state. It specifies in what form an operation must
exist, depending on its position in the sequence, for the se-
quence to be a serialization of the other.

S determines the defining context of the operations. That
is, ¢; is made up of the operations preceding op; in S. To be
a Oserialization of S, the operations in T can be transposed
and re-arranged, but the permutations must obey certain
rules with regard to this given context.

If the execution context of an operation contains oper-
ations that do not appear in its defining context, the op-
eration must be transposed forward to include their effect.
Similarly, if the defining context of the operation contains
operations that are not in the execution context, it must be
backward transposed to exclude their effect. In other words,
exec(op;)T must equal ¢; U f; \ b;.

Moreover, we must not exclude the effet of operations
which were not taken into account in the first place. There-
fore we must have: b; C ¢; U fi.

For example, consider the following operation sequences:

e S:op1 . op2 . Op3
e S': op1 . ops . op2

e S": op1 . “P2ops3 . opéomom}

S’ is not a Cserialization of S, as exec(ops)s: = {op1} #
{op1,0p2} = c3 U f3\ bs.

For S” we have: exec(ops)s» = {op1} = cs3 U f3 \ bs and
exec(op2)sr = {op1,°P2 op3} = ca U fa \ ba. Therefore S” is
a <Oserialization of S.

5. ©CONSISTENCY

Intuitively, we want to define a criterion which will al-
low replicas to diverge, but ensure that they will eventually
converge. To guarantee this, the transpositions must satisfy
certain conditions, introduced below. We then give a few
definitions and state the conditions which the algorithms
must satisfy, i.e., the consistency criterion itself.

5.1 Conditions on transpositions

Any transpositions used in this context must inevitably
satisfy the following condition:

o CL: Yop;, op; : opi.opy?' = opj.op;’?

This is necessary to ensure convergence. This states that
the order in which the effects of the operations are realized
must not matter, allowing processes to execute operations
locally during disconnections and have them integrated later
by other processes. The sum of all effects must invariably
lead to the same state, expected to be a state compatible
with the effects of all the operations. Without this condi-
tion, no algorithm could ensure that a system having di-
verged would eventually converge, as shown in the very sim-
ple counter-example in Figure 3.

Opl Opgpl
P12 . -
Sl T
-7 - ~a
E— -
op2 opSP?
Figure 3: opi.ops?* must equal ops.opiP? for conver-
gence

Likewise, if no other restriction is to be placed on opera-
tion order, the following condition must be satisfied.

i0p T o P
e C2: Yopi,opj,opx Opiop or; '} _ Opl{copg,opl }

Consider the case in Figure 3, and suppose both processes
now receive a third operation ops defined on the same state
as op1 and opa, i.e., the situation depicted in Figure 4.

op1 op1,0pgtt
op1 op; Opgupl, Py}

Pi: .

T

e N

P @
ops opP2
Op2 op] Opgopz opy %}
op1 op2
. op1,0p: op2,0p
Figure 4: opg 1oP2 st equal opé 2P0 for con-

vergence

Some algorithms do not require this condition by ensuring
a global order on all operations, e.g. SOCT4, which will be
presented later.

5.2 Definition

We first introduce the notion of similarity between se-
quences of operations. Two sequences S and T are similar
(S~ 1T) iff:

e S and T are equivalent (as defined in 4.2).

e The forms of the operations appear in the same order
in S asin T.

For example, op1.opa ~ opP=.op3P=, but op1.opa = op2.op:.

Note that if S and T contain the same forms for each oper-
ations, this defines equality between sequences.

We now use our notion of <serialization and similarity to
define a new consistency criterion: < consistency.

e A history H is < consistent iff there exists a legal Oserial-
ization S of H such that for each process p, H|p ~ S|p.

e An algorithm ensures < consistency iff it produces only
Oconsistent histories.

We present here a simple example to illustrate how the
different conditions work together to ensure that different
Oserializations of the same base operations lead to the same
state. Consider the execution in Figure 5.

op1 opsPt ops

P12 ‘ ‘

PQ: '

op2 op7P? op3
Figure 5: Execution

As the order of the forms of operations in a valid serializa-
tion must be the same for each process, and all operations
must appear in some form, the possible Oserializations are
A:(op1)(op2)(ops), B:(op2)(op1)(ops), and C:(op1)(ops)(op2).

Condition 2 of $serilization specifies what the exact form
of the operations must be, when belonging to those partic-
ular sequences. This gives us:

e A:opr . opoPt . ops
e B:ops . opP? . ops
° ° op1
e C:op: . op2P10p3) Opgom, P2 " op3}
Given that Yop;,op; : opi.opi” = opj.op;"?, sequence B

is equal to sequence A, as op2.0piP? = opi.opsPt. In the
Opl}

. op1 {opoz)l} {op2
same way, sequence C is equal to op1.ops¥t . 1P2 " Jopg

which in turn is equal to A.

5.3 A CorrectAlgorithm

We now use <consistency to state the correctness of an
existing algorithm. Namely, we will consider SOCT4 [13]
which was designed in the context of collaborative group
editors. This algorithm ensures two properties: convergence
and causality.

The notion of causality used in this algorithm states that
an operation causally depends on all operations that were
previously executed by the generating process. As this is
even stronger than ensuring that operations generated by
the same process appear in the same order, the second con-
dition for <consistency is necessarily ensured.

The algorithm guarantees that all operations will even-
tually be executed on all processes, though not necessarily
in the same form. The first condition for Oserialization is
therefore satisfied and we need only consider the second con-
dition.

SOCTH4 ensures that all processes eventually execute the
operations in the same global order, consistent with the
causal order described above. This means that each process
eventually ends up with the <serialization we are looking
for. During disconnections, however, the individual pro-
cesses may still execute operations locally. When receiv-
ing new operations, they must integrate it with potentially
concurrent operations on the local process, as illustrated in
Figure 6. This is handled by transposing the new operation
forward with all concurrent operations to be able to execute
it on the current state, then transposing all the concurrent
operations with this new operation to incorporate its effect.
This integrates the remote operation in its corresponding
place in the global order. Note that the operation to be in-
tegrated is executed under a different form (5" in the figure),
to be compatible with the current state at the process, but
finally integrated in the history in the form it was received
(5 in the figure).

As the global order guarantees that all preceding opera-
tions are already executed, all operations in the new opera-
tion’s defining context are already in the execution context.
The backward transposition is therefore not needed. There
might be concurrent operations already executed on the lo-
cal process, however, which are in the execution context and
not in the defining context. The new operation is transposed
forward with them, and therefore the condition that states
that the execution context must be equal to ¢; U f; \ b; is
satisfied.

This algorithm therefore satisfies <$consistency.

)

5.4 An Incorr ect Algorithm

We now study dOPT, which was the first algorithm de-
signed for operational transformations [4]. It uses only for-
ward transpositions to integrate the remote operations as

@ : operation to be integrated
© : integrated operation

(O : operation executed locally

Figure 6: Operation integration in SOCT4

they are received from other processes. It has previously
been shown to produce incorrect executions. We show that

the dOPT algorithm is not correct with respect to Gconsistency

by exhibiting the execution shown in Figure 7, which does
not have a legal <serialization.

op1 op2 opaPh P2 op4
Py @ ® O—
P ,/—"’/ ‘ a N
2 @
op3 op?Ps ops’® Op4

Figure 7: Execution produced by dOPT

Looking at the defining context of the different opera-
tions, we see that ops has op5P? in its context. As op2 and
ops are not defined on the same context, this transposition
is not valid. There is therefore no way this transposition
can belong to op4’s execution context, nor can it be trans-
posed backward with it. No serialization can then satisfy

the condition exec(ops) = ca U fa \ ba.

6. CONCLUDING REMARKS

The contribution of this paper is to have taken some pre-
liminary steps towards precisely defining the replica consis-
tency problem in mobile computing. Our motivation was to
address the following question: what do practical algorithms
that tackle the replication problem in a mobile environment
ensure exactly? We propose a partial answer to this question
through our new notion of <consistency which we tried to
define with the same level of rigour as traditional consistency
criteria like sequential consistency [7] and causality [1].

Our answer is partial in various senses. We were mainly
inspired by algorithms devised in the collaborative world
and more precisely algorithms that control the replication
of shared documents. These algorithms ensure a desirable
eventual convergence property after reconnection while, at
the same time and in a rather subtle sense, preserving the
initial intention of the processes having accessed the ob-
ject during disconnections. Other inspirations might lead

to different formulations of < consistency and an abstract
generalization that would abstract away from our notion of
operation of transpositions seems very challenging. An ex-
act characterization of algorithms that ensure $consistency,
that would allow simple correctness and lower bound proofs,
is another challenging issue.

Addressing such questions could, we believe, lead to a
fruitful interaction between the rather theoretical world of
distributed algorithms and the practitioners of mobile com-
puting. It would also be interesting to implement system
support for ensuring such consistency, in various mobiles
network architectures (e.g., cellular or ad hoc), along the
lines of [8] for instance.

7. REFERENCES

[1] M. Ahamad, J. Burns, P. Hutto, and G. Neiger.
Causal memory. In Proceedings of the International
Workshop on Distributed Algorithms (WDAG),
number 579 in LNCS, pages 9-30. Springer-Verlag,
1991.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis:
A communication sub-system for high availability. In
Proceedings of the IEEE International Symposium on
Fault-Tolerant Computing (FTCS), pages 76-84, July
1992.

[3] P. Cederqvist. Version management with CVS. 1992.

[4] C. Ellis and S. Gibbs. Concurrency control in
groupware systems. In Proceedings of the ACM
International Conference on Management of Data
(SIGMOD), pages 399-407, Seattle, Washington,
USA, May 1989.

[6] M. Herlihy and J. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems,
12(3):463-492, July 1990.

[6] A. Kermarrec, A. Rowstron, M. Shapiro, and
P. Druschel. The Icecube approach to the
reconciliation of divergent replicas. In Proceedings of
the ACM Symposium on Principles of Distributed
Computing (PODC), Aug. 2001.

[7]

8]

[10]

[11]

[12]

[14]

L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690-691, 1979.
R. Prakash and R. Baldoni. Architecture for group
communication in mobile systems. In Proceedings of
the IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 235-242, 1998.

R. Prakash, M. Raynal, and M. Singhal. An adaptive
causal ordering algorithm suited to mobile computing
environments. IEEE Transactions on Parallel and
Distributed Systems, 41(2):190 204, Mar. 1997.

M. Raynal and A. Schiper. A suite of formal
definitions for consistency criteria in distributed
shared memories. Technical report, IRISA, 1995.

C. Sun and C. Ellis. Operation transformation in
real-time group editors: Issues, algorithms and
achievements. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work (CSCW),
pages 59-68, Seattle, Washington, USA, Nov. 1998.
D. Terry, M. Theimer, K. Peterson, A. Demers,

M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly conneccted replication
storage system. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP), Dec. 1995.
N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
convergence in a distributed real-time collaborative
environment. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work (CSCW),
Philadelphia, Pennsylvania, USA, December 2000.
ACM Press.

W. Weihl. Commutativity-based concurrency control
for abstract data types. IEEE Transactions on
Computers, 37(12):1488-1505, Dec. 1988.

