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Abstract

This paper presents a novel adaptation mechanism that
allows every node of a gossip-based broadcast algorithm
to adjust the rate of message emission 1) to the amount
of resources available to the nodes within the same broad-
cast group and 2) to the global level of congestion in the
system. The adaptation mechanism can be applied to all
gossip-based broadcast algorithms we know of and makes
their use more realistic in practical situations where nodes
have limited resources whose quantity changes dynamically
with time without decreasing the reliability.

1 Introduction

Gossip-based broadcast algorithms [1], also called “epi-
demic” or “probabilistic” broadcast algorithms, do have in-
herent scalability properties that make them very appeal-
ing for disseminating information among a large number of
nodes. The underlying idea is very intuitive: every node
that receives a message, buffers it, and then forwards it (i.e.,
gossips it) a certain number of times, each time to a ran-
domly selected subset of processes.

Nevertheless, the applicability of gossip-based broadcast
algorithms in a practical setting is limited by their assump-
tion that enough buffering resources exist on all nodes. In-
deed, in order to operate in a reliable manner, the nodes par-
ticipating in the broadcast must be equipped with enough
resources to ensure that messages are gossiped a sufficient
number of times. If a node does not have enough resources,
it may drop a large number of messages that are being for-
warded. If several nodes do not have enough resources, reli-
ability might end up being drastically impacted. One might
consider calibrating, a priori, the transmission rate of the
senders according to the resources available at every node.
The static flavor of this naive solution makes it unrealistic
in a practical scheme, as we explain below.
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A large scale publish-subscribe application illustrates the
above problem. Nodes may assume one of two roles: pub-
lishers which broadcast information and subscribers which
register interest in receiving certain types of information.t
Gossip-based broadcast is typically used here to dissemi-
nate the information from the publishers to the interested
subscribers. Since different nodes are interested in different
types of information, avoiding the delivery of unwanted in-
formation usually goes through mapping different types of
information to different broadcast groups. Any node may
belong to more than one broadcast group, and this number
varies as nodes dynamically subscribe to new types or can-
cel previous subscriptions. Given that the resources at each
node are limited, every node has to dynamically divide the
available resources among the groups it belongs to.

Gossip-based broadcast algorithms must be able here to
adapt to situations where each node has different and vary-
ing amounts of resources. To our knowledge, none of the
gossip-based algorithms we knew [1, 3, 4, 9, 8, 6] of in-
cludes any form of dynamic feedback mechanism. They
typically discard messages in overload conditions, without
providing to the source (the sender) any feedback regarding
the reliability of the operation. In fact, even with the simple
setting of a single broadcast group with persistent and uni-
form buffer resources at each node, the message emission
rate might vary, in particular with several senders. The rate
of new messages in the system is unpredictable and depends
on the sum of the individual emission rates. It is non trivial
to estimate the global congestion and control the message
emission at each sender accordingly. As we show in the pa-
per, without such a control scheme, the reliability decreases
significantly.

This paper proposes a novel adaptive mechanism for
gossip-based broadcast algorithms. The idea is to dissemi-
nate and gather information about the resources available in
a broadcast group such that every sender can adjust its emis-
sion accordingly. The challenge consists in ensuring that
senders are able to perceive the quality of the algorithm op-

1Using one of the several paradigms proposed for this sort of systems,
such as subject-based [12], content-based [13] or type-based [2] subscrip-
tions.



eration, in terms of reliability with the current system con-
figuration, without interacting explicitly with other nodes of
the system; such interaction would hamper the distinctive
scalability of gossip-based broadcast algorithms.

The intuitive idea underlying our mechanism is the fol-
lowing. We periodically evaluate the available resources in
every broadcast group. In each period, nodes gossip the
minimum buffer size in the group for that period. They do
so by maintaining and gossiping the minimum of their own
buffer size with the value received in gossip messages for
that period. The value computed at the end of a period is
used as the estimation for that period and maintained for a
predefined number of periods A. Then, during the normal
operation of the gossiping protocol, each sender computes
the average age of messages stored locally that would be
discarded if the local buffer was the smallest in the group.
The age of a message is the number of times it has been
forwarded from one node to another and is directly related
with the level of dissemination among nodes. If the average
age of messages that would be discarded by members with
low buffers is lower than the required age to ensure reliabil-
ity, the sender decreases its transmission rate. If the average
age of discarded messages is higher than needed, then the
sender is allowed to increase its transmission rate.

This adaptation mechanism is highly scalable as it does
not require nodes to maintain information about every other
node in the system. It also does not require additional
messages to be exchanged: it relies on a small amount of
control information that is included in the header of nor-
mal data messages. The mechanism takes into account the
dynamic nature of the system and continuously adapts to
changing operational conditions. As conveyed by our per-
formance measures, without such a mechanism, the reliabil-
ity of message dissemination in a large scale gossip-based
setting can hardly be sufficient in a practical setting. To
evaluate the reliability benefits of using our mechanism, we
consider a specific gossip-based algorithm but the idea is
general and can be similarly applied to other gossip-based
algorithms [1, 3, 4, 9, 8, 6], as we discuss in Section 5.

The rest of the paper is organized as follows. Section 2
presents a brief overview of existing gossip-based broadcast
algorithms and discusses the limitations of these algorithm
when nodes have limited, heterogeneous and dynamic re-
sources. Section 3 introduces our adaptive algorithm and
Section 4 presents its experimental evaluation. Section 5
gives some related work. Section 6 concludes the paper.

2 Background

In gossip-based broadcast algorithms, messages are not
disseminated in a deterministic manner. Instead, each group
member participates in message propagation by forwarding
received messages to a random subset of other group mem-

bers (i.e., gossiping). Different variants of these algorithms
exist[1, 3, 11] and differ in the concrete strategies used to
select gossip targets and to bound the number of times each
message is forwarded. It can be shown that, given adequate
resources, gossiping can be configured to obtain high relia-
bility such that a message is delivered to all processes with
a high probability. Basically, both the probability that (i) a
message is delivered to some but not all processes and that
(i) a message that is broadcast by a correct process is never
delivered by any process, can be made as small as required,
providing almost as much reliability as any deterministic
approach.

The decentralized nature of gossip-based dissemination
results in algorithms that are scalable to a large number of
nodes without overloading any member of the group. The
algorithms sustain stable high throughput in large groups,
despite node failures, performance perturbations, and lost
packets. However, the probabilistic reliability guarantees
stand on the assumption that enough buffering resources are
available and that message loss in the network is indepen-
dently distributed. If not, reliability guarantees can be sig-
nificantly compromised.

2.1 Gossip-based Broadcast

Although our discussion and proposals apply to gossip-
based algorithms in general, we use here a concrete algo-
rithm, to motivate the need for the adaptation and to illus-
trate our idea. We have selected the one of [3] which is
depicted in Figure 1 and works as follows.

Received events are buffered in events buffer. Periodi-
cally, at every interval T', a node forwards all stored events
to a subset with size f of randomly selected nodes. The
gossip period 7', fanout f and buffer size |events|,, are con-
figuration parameters of the algorithm?2. Upon receiving a
gossip message, a hode buffers each newly received event in
events buffer and locally delivers it. Duplicates are avoided
by keeping a set of identifiers of already received events in
eventIds. To prevent exhaustion of local resources, the size
of events is kept bound by some constant |events|, that
is a configuration parameter (in the original algorithm, re-
sources allocated to the algorithm are constant). Therefore,
if events is full, some old events need to be discarded to
make room for new events. In this case, the age of the event
is used as the criteria to select which event to discard. Age
represents how many times a message has been forwarded
among nodes [7].

To achieve the desired reliability, each member of the
group should be able to store the events it receives for
sufficiently long to be retransmitted. The size of avail-
able buffers indirectly determines the number of times each

2The selection of values for these parameters is out of the scope of this
paper and addressed in [3].



Initially:
events, eventlds = ()
every T' ms:
{Update ages}
for all e € events do
e.age < e.age +1
for all e € events: e.age > k do
events < events \ {e}
{Gossip}
gossip.events < events
Choose f random members target; . . . targety
for all j € [1..f] do
SEND(target;,gossip)
upon RECEIVE(gossip):
{Update events and ages}
for all e € gossip.events
if e.id € eventlds then
events < events U {e}
eventlds < eventlds U {e.id}
DELIVER(e)
if & € events such that
e.id = ¢’.id and e’.age<e.age then
¢’.age < e.age
{Garbage collect eventlds}
while |eventlds| > |eventlds|,, do
remove oldest element from eventlds
{Garbage collect events}
while |events| > |events|,, do
remove oldest element from events

Figure 1. Gossip-based broadcast algorithm.

event is included in a gossip message before being garbage
collected and thus becomes a key factor in determining the
maximum rate that can be reliably transmitted. Figure 2
shows how the reliability degradation occurs as the mes-
sage rate increases (experimental conditions are described
in detail in Section 4). Given a static configuration of re-
sources, as the message emission rate increases the reliabil-
ity decreases significantly. The loss of reliability is the con-
sequence of messages being dropped sooner. In fact, from
approximately 8.5 hops at 10 msg/s, the average age of mes-
sages dropped quickly falls to 3.7 at 30 msg/s and 2.7 hops
at 60 msg/s. Correct operation of the algorithm thus requires
that a process broadcasts messages only up to a safe rate [1].
This can be done by limiting messages broadcast by each
process. Figure 3 illustrates a token-bucket interface that
can be used to bound the load imposed on the system.

2.2 Dynamic Flow Control

In systems where the number of nodes is fixed and re-
sources (buffer sizes) are statically allocated, it is possible
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Figure 2. Reliability degradation.

Initially:
tokens = max
every 1/rate ms:
{Restore tokens}
if tokens < max then
tokens « tokens + 1
upon BROADCAST (event):
{W&it for available tokens}
wait until tokens > 0
tokens < tokens — 1
{Buffer event}
events < events U {e}
eventlds < eventlds U {e.id}

Figure 3. Bounding the input rate.

to configure the application to prevent its load from exceed-
ing the system capacity. However, this approach is not pos-
sible when resources change dynamically. Even if resources
are fixed, a static configuration of the admissible load is not
feasible when the number of senders may change in run-
time. Configuring each node for the worst-case (when the
maximum number of senders is active) would result in poor
resource allocation in all other scenarios.

There are many reasons that may cause the available re-
sources or number of nodes to change at run-time. For in-
stance, a node may dynamically join and leave a group. It
is also possible that the capacity of each node changes as it
has to split its resources dynamically between multiple ap-
plications. For instance, with partially overlapping groups
(e.g., subscription to different topics), resources of nodes
participating in more than a single group have to be shared.

In a dynamic system, congestion can be avoided by eval-
uating the capacity of the system and adjusting the allowed
emission rate in order not to exceed available resources.
Two types of flow control techniques are used with de-
terministic broadcast algorithms: window-based and rate-
based. We examine the applicability of each technique to
gossip-based algorithms.

Window based flow control is based on imposing a fixed
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Figure 4. Maximum input rate.

limit on the number of messages that can be in transit in
any given moment. Rate is implicitly controlled by block-
ing senders which attempt to go over the limit. Progress
depends on detecting stability and garbage collecting mes-
sages. Notice that even highly scalable stability tracking
mechanisms [5] require feedback from all processes. This
means that a full membership has to be known and state is
proportional to group size.

Rate based flow control is more flexible, by explicitly ad-
justing the maximum rate of the sender according an evalu-
ation of the system capacity. The challenge is thus to eval-
uate system capacity without feedback from each of the re-
ceivers. For instance, the desired rate could be calculated by
observing the message rate that is being delivered to each
receiver and propagating it back to senders, but this would
not scale and would be sensitive to local performance per-
turbations unrelated to resource availability.

2.3 Intuition

Our proposal stems from the observation that the age of
messages that are discarded is lower when the system is
congested and that this can be observed without additional
overhead by all nodes. Consider the following simulation
results. For each buffer configuration in our test system,
we experimentally determine the maximum input rate that
results in good reliability guarantees (more precisely, the
buffer configuration that was able to deliver messages to
at least an average of 95% of participant processes). The
results are presented in Figure 4. For each of these con-
figurations, we record the average age of messages being
dropped. Interestingly, the average age of messages being
dropped when the system is about to become congested is
the same for all buffer sizes and equals 5.3 hops in this sys-
tem configuration. This can be observed independently by
each participant node with no additional protocol overhead.
Our proposal is thus to use the average age of messages be-
ing dropped as a measure of congestion.

Notice that this is effective only when buffer availability
is the same at all processes. If a node has a much larger
buffer, it will observe a higher average age of dropped mes-

sages and thus will be unable to observe the actual state of
the system. To obtain useful mechanism, it is required that
a node estimates the age of messages being dropped at the
node in the system with less available resources. A scalable
mechanism to achieve this goal is presented and evaluated
in the following sections.

3 Adaptive M echanism

Since reliability can be compromised in case of buffer
overflow, our goal is to provide each node with enough in-
formation such that the nodes can estimate the resource con-
straints of other nodes and adjust the rate of messages be-
ing broadcast accordingly. This is a challenging problem
with gossip-based algorithms since there is no centralized
control or global knowledge. Imposing explicit feedback
on gossip-based algorithms would endanger both scalabil-
ity and throughput stability.

There are two possible classes of mechanisms to com-
pute the necessary information about remote resources
without relying on a feedback mechanism: 1) distributed
computation of resource availability using the gossip al-
gorithm itself and 2) local estimation of resource usage
by observing the traffic. Although distributed computation
can accurately collect information from heterogeneous re-
mote nodes, the latency induced to gather this information
in a scalable fashion might imply long delays to react to
changes. On the other hand, local observation of traffic al-
lows low latency in evaluating resource usage. But sym-
metry between nodes in gossip-based algorithms makes lo-
cal observations of traffic a good estimate of resource usage
in distant nodes only when resource availability is homo-
geneous. In Figure 5, we present an adaptation algorithm
obtained by integrating our flow control technique in the al-
gorithm of Figure 1. The new algorithm embodies the two
types of mechanisms discussed in the previous paragraph: It
uses a distributed mechanism to determine resource avail-
ability (i.e. the size of buffers), which changes only upon
reconfiguration of nodes. A local mechanism is then used
to determine resource usage (i.e. buffer occupancy), whose
variation is far more being frequent and unpredictable as
it is affected by the timing of senders and network delays.
The resulting information from the combined mechanisms
can then be used to adjust the rate at which each node is
allowed to send messages. We examine each of these issues
in the following sections.

3.1 Estimating Buffer Availability

Our approach uses a distributed mechanism to estimate
the size of buffers available in remote nodes. Since we are
interested in preserving the resilience of the protocol, we



Initially:

s=A

minbuff}, = |events|,, forall1 <r < A
every T' ms:

{Add information to gossip message}
gossip.s < S
gossip.minBuff <— minBuff;

upon RECEIVE(gossip):

{Compute new known minimum}
if gossip.s=s A gossip.minBuff < minBuff;, then
minBuff;, < gossip.minBuff
every S ms:
emph{Enter new period}
s+s+1
minBuff; < |events|,,
minBuff = min(minBuffs,... minBuffs~4+1)

(a) Distributed discovery of resource availability.

Initially:
avgAge = (H + L)/2
lost= 0

upon RECEIVE(Qossip):

{Update congestion estimate}

while |events\lost| > minBuff do
select oldest element e fromevents \ lost
avgAge = a avgAge +(1 — a) e.age
lost — lost U {e}

{Garbage collect events}

while |events| > |events|,, do

remove oldest element e from events

(b) Local estimation of congestion.

every T ms:

{Throttle sender }

if avgAge > H A avgTokens<max/2 A
Arand > W then
rate « ratex (1 + rg)

if avgAge < L V avgTokens>max/2 then
rate < ratex (1 — rz.)

(c) Rate adaptation.

Figure 5. Adaptive gossip-based broadcast.

aim at the node that has less resources. Notice that the in-
herent redundancy in gossiping could overcome some mes-
sage loss that results from a single node with less resources.
This redundancy should however be used to cope with tran-
sient perturbations and thus preserved as a safety margin.

We denote the estimate of the size of the smallest buffer
in the group by minBuff. Estimation of minBuff could be
achieved by letting each node disseminate its own available
resources and let every node in the group collect all these
values and select the minimum of the set of collected values.
However, such solution would not be scalable as it would
require each node to gather values from every other node
in the system. To circumvent this, we compute the value
of minBuff in a decentralized manner using the same gos-
sip messages used for data.® In detail, each process keeps
a current known minimum value and adds it to all outgoing
gossip messages. Upon reception of a gossip message, if the
value received is lower than the currently known minimum,
the local minimum is updated. Eventually, all processes dis-
cover the absolute minimum in the group.

Additionally, the algorithm must be able to cope with dy-
namic changes in the available resources at each node. For
instance, if the process with less resources leaves the group,
the estimate of resource availability becomes obsolete and
should be forgotten to allowing full utilization of current re-
sources. This is achieved by keeping a separate estimate of
minBuff for each period of time, that depends only on the
actual buffer sizes in that period.

The algorithm is presented in Figure 5(a) and works as
follows. The interval for each estimate is called the sam-
ple period S. For each sample period s and in each process
p, the algorithm computes minBuff ;. Each minBuff } is ini-
tially the size of the buffers available locally in p. In ev-
ery gossip round, values s and minBuff  are included in the
message header. Every time a node ¢ receives a message
from another process p, updates its own estimate of minBuff
for period s, simply by setting minBuff 7 to min(minBuff},
minBuff?). Notice that, using this approach, at the start of
each period, nodes have an inaccurate estimate of remote
resources in minBuff ;. The immediate use of this estimate
would lead to fluctuations of the allowed input rate. In
our algorithm, undesirable fluctuations are avoided by se-
lecting the minimum from a series recent values minBuff 2,
minBuff $=1, ..., minBuff $=4+!. This ensures that while a
proper value is being computed for period s, the value in
use takes into account the values in a pre-defined number of
the previous periods. The value for A, as well as for S, are
selected when configuring the algorithm.

This algorithm depends on loosely synchronized clocks
to determine the sample period s. The required synchro-
nization can easily be achieved by making each process
advance s to gossip.s upon reception of a gossip message

S3This is similar to an aggregation function [6].



from a later sample period.
3.2 Estimating Buffer Congestion

Given the estimate of the size of the smallest buffer in
minBuff, it becomes possible to estimate congestion in re-
mote nodes using only local information. This is done by
accounting the age of messages which would have to be
discarded in a buffer with size minBuff. The algorithm for
this is presented in Figure 5(b) and works as follows. Upon
receiving each gossip message, after storing events and up-
dating their ages, minBuff is used as a threshold to select
which events would have to be discarded. The age of such
events is used to update a moving average avgAge which
estimates the average age of messages being discarded by
a process with exactly minBuff buffers. Events already ac-
counted for are stored in lost to avoid using them twice in
the calculation. The resulting value for avgAge can then be
used whenever the process wants to adjust the sending rate.

Notice that although the average age is computed accord-
ing to minBuff, the full size of the local buffer is used to
store events, thus improving overall reliability. The sensi-
tivity of avgAge to transient perturbations depends on the
a parameter used to update the moving average which must
be chosen when configuring the algorithm (see Figure 5(b)).

3.3 Adjusting the Sender’s Rate

The input rate allowed to each sender can be adjusted by
comparing the estimate of the age of messages being dis-
carded, measured in avgAge, with the ideal age a,, obtained
analytically or experimentally (for instance, Section 2.3 de-
scribes how the critical age required to deliver messages to
at least an average of 95% of participant processes in our
system is calculated). Basically, the goal of the flow con-
trol mechanism is to have the senders decrease their rate if
the estimated average age is less than the critical age value,
and increase their rate otherwise. Senders can make this de-
cision locally, by comparing their estimate of avgAge with
the target critical age a.

The adjustment should also depend on the actual usage
of the allowed rate by the application. If not, an applica-
tion could temporarily reduce its sending rate below the al-
lowed rate, causing avgAgeto increase and its allowed rate
to increase unbounded. Then, by suddenly increasing its
sending rate to match the artificially inflated allowed rate, it
would be able to congest the system. The usage of the al-
lowed input rate can be estimated by observing the average
number of tokens avgTokens.

To avoid that each sender changes its rate with every mi-
nor oscillation of avgAge, causing a continuous oscillation
in the system, the algorithm presented in Figure 5(c) uses
two threshold values: a low-age mark, L < a, and a high-

age mark, H > a,. A sender decreases its rate if the av-
erage age goes below the low-age mark L or if the allowed
input rate has been unused as indicated by a high value in
avgTokens. The allowed rate increases again when the aver-
age age becomes higher than the high-age mark H and the
previous allowed input rate has been fully used as indicated
by a low value in avgTokens.

When the system is congested (i.e., the average age is
below L), the sender reduces its rate by some amount de-
noted rr. Similarly, when new resources are released in
the system, and the rate can be increased (i.e., the average
age is above H), the sender increases by an amount denoted
ry. Both the decrease and increase are relative to the actual
sender rate at the moment the adjustment is performed.

Furthermore, in a group with a large number of senders,
if all sources increase their rate at the same time, even if
just by some small amount, it may happen that the load in-
creases abruptly, causing the system to move from the low-
age mark to the high-age mark very quickly and causing
oscillations as a result of the adaptation mechanism. There-
fore, we introduce some randomization in the rate increase
procedure. In each round, if there are resources available to
increase the rate, each sender uses randomization to decide
if it increases its rate immediately or if it should wait for the
next round (this is controlled by constant W).

3.4 System configuration

The configuration of parameters f, T, |events|,,,
|eventlds|,,, and & used in the original algorithm of Figure 1,
as well as determining the value for a are out of the scope
of this paper and described elsewhere [3]. The configuration
of minBuff computation parameters S and A, the parame-
ter « used in computing moving averages, and of adaptation
parameters L, H, rr,, rg and W are discussed here.

Determining a value for the sample period S. For a
message to propagate to all members it can take up to a,
gossip periods. Hence if a node with the minimum buffer
size in the group gossips about it’s buffer size, it takes as
periods this message to be propagated to all other nodes.
When every node comes to know about this minimum buffer
size, all the nodes can set their buffer size appropriately.
Therefore, setting S to a value not less than a; x T ensures
with high probability that in every sample period the mini-
mum buffer size of a single node reaches all others. If it is
known that the minimum value is shared by several nodes,
a lower value for S can be used. Therefore, in our experi-
mentswe used S = 2 x T'.

Determiningavaluefor A. The A represents asize of a
time duration in which the values of minBuff are taken into
account when deciding the actual buffer size by a process.
A too high value (i.e. a bigger time duration) will cause
under-utilization of the bandwidth in the broadcast group.



A lower value might cause the global minimum buffer size
to be changed abruptly. The value of A depends on the
operation environment of the algorithm. For example in an
environment where communication links and nodes become
faulty and recover quickly, a higher value for A is suitable.
In our experiments we have used A = 2.

Determining a value for a. The parameter « is used to
weight the computation of moving averages. To avoid sud-
den oscillations of avgAge and avgTokens when the inter-
arrival time of messages has high variance, this should be
set close to 1. If the traffic is strictly periodic, this value
can be lowered in order to improve reaction time. In the
experiments presented in this paper we have used a = 0.8.

Determining valuesfor L and H. For emission rate to
be stable without any oscillations, there should be a consid-
erable difference between L and H values. For quick reac-
tions to decrease in resources or global increase in emission
rate, L should be close to as. On the other hand for better
responsiveness in terms of increasing the emission rate, H
should be also close to as. According to Section 2.3 we set
H=7and L =5.

Determining the value of rg, rr, and W. Nodes re-
act quickly for congestion by reducing their emission rate
when the value of rg is high. The nodes recover quickly
and increase their emission rate when the r, is high. As
the nodes use local knowledge available to them to estimate
congestion levels, it is possible that they mis-estimate the
global congestion level for an instantaneous time duration.
Though these cases are infrequent, having rg and r, closer
to each other is more forgiving in terms of mis-estimations.
In our experiments we have used rg = 5% and r;, = 5%.
Also, we have set W = 0.5 (that is, on average only 50%
of the nodes increase their rate).

Notice that the values chosen for the parameters dis-
cussed in the previous paragraphs are not independent. By
setting A higher, one can reduce the value for S, as even if
a minimum does not reach all nodes in a single period, it is
unlikely that this happens for the same nodes in two con-
secutive periods. On the other hand, by setting the value of
«a higher, thus reducing the oscillations in avgAge one can
make L and H closer to a;. On the other hand, increasing
both « and the distance of thresholds L and H to as, one
can increase both rg and ry,.

4 Experimental Results

In this section we evaluate our algorithm using simula-
tions and experimental results obtained from our prototype
implementation.

Experimental Settings. For the evaluation, we used a
simple event-based simulation model as well as a full im-
plementation. The simulation model allowed us to experi-
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ment with parameters of the algorithm and to obtain a de-
tailed analysis of the behavior of the algorithm. The im-
plementation, based on Java 2 Standard Edition, is used to
validate simulation results in a real setting. Experimental
results presented in this section were obtained using 60 pro-
cesses which implement the gossip-based algorithm. These
processes are deployed on 60 workstations which are con-
nected by an Ethernet local area network. For the gossip-
based algorithm, we use a fanout of 4 and a gossip period
of 5 seconds, i.e., each process gossips to 4 other members
in every 5 seconds. To compare the behavior of a conven-
tional gossip-based algorithm with an adaptive variant of
the algorithm, we run these two algorithms for a sufficiently
long period of time with multiple senders.

Effectiveness of Rate Adaptation. In Section 2, we have
shown that, for a given system and a given buffer availabil-
ity, there is a maximum load above which high reliability
cannot be ensured. To promote reliability and a maximum
resource utilization, our adaptive mechanism should allow
the senders to approximate that “ideal” target load (note that
the target load depends on the desired degree of reliability;
we our case we have configured the system to allow mes-
sages to be delivered, on average, to 95% of the partici-
pants).

To show that our algorithm converges to the desired val-
ues, we have run a series of simulations with all processes
using the same and progressively smaller buffer size. The
offered load is constant and set to 30 msg/s. This was done
both with the original algorithm as well as with the adaptive
algorithm. Figure 6 shows the maximum load (the same as
in Figure 4), the load being offered and the maximum al-
lowed rate as dynamically computed by our algorithm in a
configuration. When the intended load exceeds the system
capacity (i.e. buffer size is less than 120 messages), the al-
gorithm successfully approximates the “ideal” rate. When
the load does not exceed system capacity (i.e. buffer size is
greater than 120 messages), the offered load is accepted.
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Rate Adaptation and Atomicity. To show the impact on
reliability of our adaptive algorithm we use the same series
of simulations with progressively smaller buffers sizes and a
constant offered load of 30 msg/s. The results are presented
in Figure 7.

As shown in Figure 7(a), the original Ipbcast algorithm
does not bound its input rate and thus it equals the offered
load of 30 msg/s. As this is higher than the maximum rate
that can be transmitted reliably, many messages are lost, as
can be seen in Figure 7(b) (in the case of Ipbcast). It can also
be observed in Figure 7(c) that the average age of dropped
messages decreases significantly. In contrast, when using
the adaptive algorithm the input rate equals the output rate,
indicating that no messages are being lost. The impact of
messages lost when no adaptation is being done is presented
in Figure 8(a). Notice that the average number of receivers
of each message remains constant when using the adaptive
algorithm but degrades with low buffer sizes with the orig-
inal algorithm. A better measurement of atomicity is pre-
sented in Figure 8(b), which shows that the percentage of
messages delivered to almost all nodes drops sharply when
using the original algorithm thus failing to meet bimodal
guarantees.

Adaptation to Dynamic Buffer Size. The previous sim-
ulation results only show the behavior of the algorithm after
convergence of the adaptive mechanisms. It is also interest-
ing to study the dynamic behavior of the algorithm, i.e, how
fast it reacts to changes in the system resources. It is also
fundamental to validate the algorithm in a scenario where
nodes have different resources. Finally, it is important to
verify if a concrete implementation behaves as the simula-
tion results predict.

To validate these points, we have subject the implemen-
tation to an experimental scenario where buffer resources
change in run-time. The system is started in a configuration
where the input load does not exceed the system capacity.

Then, at a given point, 20 nodes (i.e., 1/3 of the nodes) re-
duce their buffer availability; more precisely, in these pro-
cesses the buffer space is reduced from 90 to 45 messages.
Later on, these nodes increase again their buffer availability
but to a value still lower than the initial value (from 45 to 60
messages), and therefore unable to sustain the input load. In
this scenario, senders try to impose the same input load but
the adaptive mechanism adjusts their rate to a value close to
the “ideal” value. Note that this scenario illustrates the be-
havior of the algorithm both in the case where the resources
decrease and increase.

The results are illustrated in Figure 9. The decrease of
buffer availability occurs at round ¢ = 100 from a value
90 to 45 and then increase at ¢ = 300 to a value of 60.
The horizontal dotted lines depict, for each system config-
uration, the “ideal” maximum input load that preserves the
target reliability measure. As it can be seen, the adaptive
mechanism quickly moves the allowed input to value that is
close to the target and then smoothly stabilizes until no in-
stability can be observed around 60s after the configuration
change.

Figure 9(b) shows the atomicity figures for the original
Ipbcast algorithm and for our adaptive algorithm in equiv-
alent experimental runs. As expected, the atomicity fig-
ure of Ipbcast drops when the resources cannot sustain the
input load while the adaptive mechanisms allows to pre-
serve a satisfactory atomicity figure. It is also interesting to
note that, as expected, the atomicity values are here slightly
higher than in the simulations where all nodes decrease their
buffer space. Namely, with buffers available for 60 mes-
sages we obtain an atomicity of 87% with simulation and of
92% with experiment. This illustrates that the algorithm
effectively uses all the buffers available locally, thus the
atomicity values benefit from the buffer capacity available
at nodes that did not have their resources decreased.
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5 Reated Work

Gossip-based algorithm have recently been an active
area of research [3, 4, 9, 8, 6] and several optimizations
have been proposed. These optimizations target different
goals and could be combined with our proposal, as we dis-
cuss below.

An efficient buffering technique has been proposed in
[10] in the context of Bimodal multicast [1] to determine
which group member should buffer messages on a long-
term for recovery purposes. Each message, is associated
with a fixed number of bufferers (this number depends on
the size of the system and the probability of node failure)
responsible for buffering a message for recovery purposes.
The bufferers can be easily identified by hashing the mes-
sage identifier. Nodes which need to recover from a mes-
sage loss contact directly bufferers. Although this technique
limits the amount of buffering required for a message, it tar-
gets recovery phases of gossip-based algorithms. Moreover,
it assumes that each node has a full knowledge of the group
membership since it might need to contact any node. In-
stead, our approach targets the buffering requirements and
adaptation for the gossip-based algorithms to succeed in the
first place. Moreover, our mechanisms could be applied to
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Figure 9. Dynamic Buffer Size

a gossip-based algorithm relying on a partial membership
knowledge on each node.

Buffering management has also been addressed in [7] to
efficiently purge gossip buffers and garbage collect mes-
sages. This approach purges messages according to their
age, which is determined by the number of gossip rounds
each instance of a message has been gossiped. The age of
a message proves to be a good estimate of level of prop-
agation of a message. The goal of the work in [7] is to
provide a good heuristic to efficiently manage buffers but
no adaptation to varying resources availability is used there.
However, in the approach described in this paper, we use an
age-based heuristic to purge buffers.

Instead of reducing the sender’s rate, if slower senders
are expected to eventually recover, it is possible to repair
lost messages from a log [14]. This has the inconvenient of
requiring possibly very large buffers at logging servers and
to deliver some messages much later to some processes.

Network congestion also results in correlated message
loss thus degrading reliability. This is a potential weakness
of the approach since, with gossip-based algorithms, the
network usage is notably high in comparison with determin-
istic reliable broadcast algorithms. The usage of message
semantics to discard obsolete messages in order to ensure
reliability for recent messages has also been proposed [11].



Recognizing that the probability of the message being deliv-
ered to all processes grows with the size of the initial set of
processes receiving the message, it has been suggested that
an initial optimistic broadcast phase is used [1]. The gos-
sip phase is then done by negative acknowledgments thus
saving network bandwidth. Finally, given some knowledge
about the network topology, it is possible to better spread
network traffic across physical links, thus optimizing the us-
age of wide area networks [9].

6 Concluding Remarks

This paper presents a novel adaptation mechanism for
gossip-based algorithms.  This mechanism allows every
node to adjust its gossiping rate according to the resources
available within other nodes of the system and also to ad-
just the message emission rate according to the global con-
gestion. As a result, the reliability properties of the broad-
cast service is increased. Our scheme allows gossip-based
broadcast algorithms to be adapted to settings where nodes
have heterogeneous resources that may change dynami-
cally. In such settings, it is impossible to adjust the parame-
ters of the gossip algorithm off-line, before the algorithm is
deployed. Our mechanism is scalable, as it does not require
any node to explicitly interact with or collect information
about other nodes in the system. Instead, the dissemination
of the information required to perform adaptation is embed-
ded in the normal gossip of data messages. Our mechanism
was validated experimentally, using both simulations and an
implementation executing in a network of 60 workstations.

It is important to notice that the goal of our adaptation
mechanism is not to recover from past message omissions
but prevent future ones. That is why we advocate the need
for quick adjustment of senders rate. Additional techniques
have to be deployed to recover from lost messages.

Furthermore, our mechanism adapts to the node with the
smallest amount of resources. It could also be extended to
consider alternative criteria. For instance, the algorithm can
be easily extended to compute not only the smallest, but the
n smaller buffers in the system (or the n smaller buffers
above a minimum threshold) to prevent a single node from
affecting the performance of the whole group.
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