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Abstract. Efficient subsumption checking, deciding whether a subscription or
publication is subsumed by a set of previously defined subscriptions, is of para-
mount importance for publish/subscribe systems. It provides the core system
functionality—matching of publications to subscriber needs expressed as sub-
scriptions—and additionally, reduces the overall system load and generated traffic
since the covered subscriptions are not propagated in distributed environments.
As the subsumption problem was shown previously to be co-NP complete and
existing solutions typically apply pairwise comparisons to detect the subsump-
tion relationship, we propose a ‘Monte Carlo type’ probabilistic algorithm for the
general subsumption problem. It determines whether a publication/subscription is
covered by a disjunction of subscriptions inO(k m d), wherek is the number of
subscriptions,m is the number of distinct attributes in subscriptions, andd is the
number of tests performed to answer a subsumption question. The probability of
error is problem specific and typically very small, and determines an upper bound
ond in polynomial time prior to the algorithm execution. Our experimental results
show significant gains in term of subscription set reduction which has favorable
impact on the overall system performance as it reduces the total computational
costs and networking traffic. Furthermore, the expected theoretical bounds under-
estimate algorithm performance because it performs much better in practice due
to introduced optimizations, and is adequate for fast forwarding of subscriptions,
especially in resource scarce environments.

1 Introduction

A large number of applications require, for performance or semantic considerations, de-
termining efficiently whether a logical expression subsumes another. These include, for
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example, stock tickers, RSS news feeds, network monitoring, traffic monitoring, elec-
tronic auctions, recommendation systems and user modeling in electronic commerce.
In turn, these applications fueled interest in the publish/subscribe communication par-
adigm [1] as a content-based selective information dissemination service that delivers
information to subscribers based on whether the content of the information, or publica-
tions, subsumes their subscriptions.

Content-based publish/subscribe systems aim at providing expressive means for
content filtering. Traditional systems usually employ high-performance servers to han-
dle high rates of publications and serve millions of subscribers in static environments.
They have been optimized for fast matching of publications to subscriptions [2–5] and
typically maintain a special subscription index that does not frequently change as the
rate of subscription changes is negligible compared to the publication rate. Distributed
systems traditionally assume static environments, and use a network of brokers to divide
the publication and subscription load. Brokers implement routing protocols to provide
a consistent service with a goal of reducing the networking costs generated by publi-
cations and subscriptions [6, 7]: Subscriptions are typically routed through the network
toward publishers to enable filtering of publications close to their sources. Subscription
traffic, on the other hand, is reduced by not propagating covered subscriptions as they
are redundant, or by merging subscriptions [8, 9].

Although the importance of subscription reduction has been stressed, e.g. in [9], ex-
isting deterministic algorithms [10, 11, 8] focus on efficient matching of publications
to subscriptions and use pair-wise comparisons to detect the subsumption relation-
ship between two subscriptions or to merge two similar subscriptions. Publications and
subscriptions are typically modeled as logical expressions–conjunctions of predicates–
where each predicate defines a linear constraint on an attribute. Geometrically, publica-
tions are points in a multi-dimensional space, while subscriptions can be viewed as con-
vex polyhedra. We consider publications also as convex polyhedra, to support environ-
ments with imprecise data sources, as it is advocated in recent publish/subscribe mod-
els with approximate matching [12]. In this context, the general subsumption checks
whether a disjunction of subscriptions covers a subscription/publication, and can geo-
metrically be interpreted as checking whether a convex polyhedron is contained within
a finite union of convex polyhedra. The problem was proven to be co-NP complete
in [13].

The importance of subscription set reduction becomes more significant in environ-
ments with highly-changeable subscriptions. Examples are MANETs, and sensor net-
works where the assumption of both network [14] and subscription stability no longer
holds. The rate of subscription changes may drastically increase as a consequence of
both changing user interests and context changes; therefore, novel indexing techniques
have been investigated that trade-off precision to performance [15], however it does not
tackle the essential problem of subscription set reduction.

In this paper we propose a probabilistic ‘Monte Carlo type’ algorithm for the gen-
eral subsumption problem. This is the first probabilistic approach to test the subscription
coverage by a union of subscriptions. The algorithm solves the subsumption problem
in O(k · m · d), wherek is the number of subscriptions,m is the number of distinct
attributes in subscriptions andd is the number of tests performed to answer the sub-



scription coverage question. The value of parameterd is dependent on an acceptable
predefined probability of error which is problem specific and can be computed in poly-
nomial time prior to the execution of the algorithm. Next, we define a minimal cover set
algorithm that reduces the problem complexity by identifying a minimal set of relevant
subscriptions sufficient to determine the subsumption relationship inO(m2 k3). As a
result, the process of subsumption checking is accelerated because a new subscription is
compared against a reduced set of subscriptions which also influencesd. Finally, we list
several sufficient conditions to quickly produce a deterministic answer to the coverage
question in specific subscription settings. Our experiments show that our algorithmic
approach performs much better in practice than the theoreticalO(k ·m · d), and can on
average efficiently produce an answer to a given coverage question.

As publish/subscribe systems typically target usage scenarios where a subscription
space is moderately populated, and subscriptions typically overlap due to similar but
not equal interest, there is a higher probability of a subscription being covered by a
set of subscriptions rather than a single one. Covered subscriptions are redundant and
not propagated which reduces the total number of subscriptions in the system saving
memory and reducing traffic, and in turn reduces computational costs for matching
publications to subscriptions as the set of subscriptions is reduced. The advantages of
the algorithm are in the following:

– It efficiently checks the coverage relationship between a subscription and a set of
subscriptions, and therefore

– reduces the set of active subscriptions in the overall system because covered sub-
scriptions are not further propagated, and finally

– provides gains in terms of publication matching because the tested subscription set
is reduced.

The algorithm introduces an error because it can assume a covering relationship
and prevent forwarding of a subscription which leads to loss of publications. This oc-
curs when the algorithm fails to detect a ‘point witness’, a point in a multidimensional
space proving the coverage relationship. The probability of error is problem specific and
becomes negligible for larged, as shown by our evaluations. Concerns about lost publi-
cations are legitimate in case of highly-reliable systems with delivery guarantees. Such
guarantees require costly mechanisms, especially in distributed environments where
publications may not reach a subscriber simply because its subscriptions have not prop-
agated through the system. However, most applications can accept potential loss of pub-
lications to gain on performance. An example are sensor networks where the published
content is often inaccurate or redundant.

To summarize, the algorithm has the potential to significantly decrease the costs
in terms of computation, memory, and bandwidth consumption in content-based and
distributed publish/subscribe systems. The main contributions are as follows:

1. We design a novel probabilistic algorithm for solving the general subsumption
problem, and introduce additional optimizations for efficient algorithm performance.

2. We test the performance of the proposed algorithmic approach in a number of sub-
scription generation scenarios where the pair-wise coverage cannot reduce the sub-
scription set, and show the algorithm can effectively reduce the number of subscrip-
tions with acceptable costs within required error bounds.



3. We compare the performance of the algorithms to the standard pair-wise coverage
algorithm in a realistic setting to investigate potential gains in terms of subscription
set reduction.

The remainder of the paper is structured in the following way. We review the ba-
sic principles of content-based publish/subscribe communication style in Section 2. To
motivate the presentation, Section 3 sketches a usage scenario and formally defines the
subsumption problem. Section 4 presents our novel probabilistic algorithm with specific
optimizations, and we investigate it’s properties in a distributed setting in Section 5.
Section 6 presents an evaluation of the algorithm using extensive experimentation, and
in Section 7 we compare it to the related work in the field. We complete the paper with
our conclusions in Section 8.

2 Distributed Publish/Subscribe Communication

The publish/subscribe interaction model enables asynchronous communication between
informationpublishersandsubscribers. Subscribers express interest in receiving publi-
cations that comply to specific criteria by definingsubscriptionswhich changes the set
of active subscriptions maintained by the publish/subscribe system. When a publisher
defines a newpublication, it is compared against all active subscriptions, and the system
notifies subscribers with a matching subscription about the published content. Thus, the
publish/subscribe service performs content filtering and enables push-style group com-
munication, where group members are determined dynamically per each publication.

The communication isevent-drivenwith a characteristicsubscribe-publish-notify
pattern:subscribeoccurs as a result of changed subscriber’s information needs, while
publishis caused by the availability of a new or modified information item, or by a pub-
lisher’s state change. Subscriptions and publications are typically generated at random,
while notify is a conditional event which always occurs as a consequence of a publica-
tion. The system performance is largely influenced by the rate of publications, and the
rate of subscription changes.

The simplest approach to route notifications in distributed is notification flooding:
each published notification is sent to all system brokers, and brokers perform the match-
ing of notifications to subscriptions of their local subscribers. This approach is an obvi-
ous solution for scenarios with a densely covered subscription space where most brokers
have interested subscribers for all published notifications, but it wastes a lot of band-
width in cases with few or no subscribers interested in a large fraction of published
notifications.

To minimize the notification traffic, the information about subscriptions is dissem-
inated through the network. Each broker receiving a new subscription informs other
brokers that are potential publishers of notifications matching the defined subscription
about its new subscription. A commonly used technique for subscription dissemination
is flooding: subscriptions is flooded to all potential information publishers, i.e. neigh-
boring brokers, that floods further to their neighbors. Published notifications will fol-
low the reverse direction of subscriptions. The technique is commonly known asreverse
path forwarding[6, 7], and is used to createdelivery treesconnecting publishers to a set
of potential subscribers. To further reduce the number of subscription/unsubscription



messages exchanged between the brokers, subscription covering and merging is ap-
plied [11, 8].

We explain the approach using an example graph modeling nine brokers and the
logical links between them in Figure 1. In this example network there are two publishers
and two subscribers:S1 is connected toB1, S2 is connected toB6, P1 is connected to
B9 andP2 is connected toB5. When a subscriber defines a new subscription, it is first
submitted to the connecting broker and then further on flooded through the network of
brokers, if not covered by another subscription. For example, whenS1 subscribes to
s1, this information is noted byB1. B1 sends a subscription request to its neighboring
brokerB3, B3 forwards it to its neighboring brokersB2 andB4, and so on, until the
information about the subscriptions1 reaches all available brokers. WhenS2 subscribes
to s2, s2 v s1, this information also needs to flood the network checking the coverage
relationship. Subscriptions2 reachesB4 throughB6. B4 will forward it to B3, but
not toB5 nor B7 becauseB4 has previously subscribed tos1 that coverss2. Flooding
the network with subscriptions enables the definition of delivery trees connecting a
publisher with all interested subscribers. For example, the delivery tree ofP1 when
publishing a notificationn1 that matchess2 and, therefore, alsos1 connects brokers
B9, B7, B4, B3, B1, andB6. The delivery tree forP2 when publishing a notificationn2

that matchess1 but nots2 connects brokersB5, B4, B3, andB1. Note that delivery trees
are computed using the local knowledge about subscriptions stored by each broker.

��

��

����

��

��

��

��

�	

�


��

��

��

��

��

��

��
��

�� ��

��

��

��

��

��

��

�������	
����
�
�
�� ����


����������
�� ����


�������
�� ���
���

�������	
����
�
�
�� ����


����������
�� ����


�������
�� ���
�
�
���

Fig. 1. Reverse path forwarding: Creating delivery trees fors1 ands2 (s2 v s1)

From the given example it is obvious that the covering relationship can significantly
reduce the subscription traffic, especially in usage scenarios with diverse subscriptions
that partly cover the subscription space. Although the rate of subscription changes is
typically lower than the publication rate, subscription dynamics can be significant if we



assume an extremely large number of subscribers. In addition, subscriber mobility in-
troduces significant changes of subscriptions because they are triggered additionally by
changes of location and network restructuring. Note that the publish/subscribe commu-
nication style is not suitable for the cases when the subscription space is either densely
or sparsely covered by active subscriptions. In case of sparse subscriptions the proba-
bility of coverage relationship is low, and all subscriptions can be forwarded without
checking the coverage relationship.

3 Problem Statement

Motivating scenarios.To illustrate the potential of publish/subscribe in resource con-
strained environments, we provide two motivating usage scenarios, asensor-enriched
bicycle rental systemandresource discovery in Grids.

The envisioned bicycle rental system has an infrastructure consisting of several
rental posts spread throughout a city offering various bicycles for rent. Each bicycle is
equipped with a sensor (e.g. an RFID tag) storing bicycle-related data, and each regis-
tered user has a membership card storing his/her profile. Rental posts represent meeting
places for bikes and people: They should enable the matching of available bikes to peo-
ple using rental post in their vicinity. We assume rental posts have the means to detect
bicycle sensors in their vicinity, they are equipped with card readers, and may even have
a connection to the Internet.

Registered users may specify their long-term rental preferences, such as weekend
bike rentals, or short-term needs when, for example, they decide to drop by a nearby su-
permarket during the lunch break. Long term rental preferences are part of user profiles
and may even be stored on a membership card, while special applications customized
for mobile phones may be used to define short-lived preferences. User profiles and pref-
erences, together with contextual information are used to generate subscriptions.

Let us examine two simple example subscriptions:

s1 Send an e-mail when a lady mountain bike size 19”, preferable brand X, becomes
available on Friday evenings within the area close to ‘home’.

s2 If today I have no appointments in my calendar between 12:00 and 2:00PM, send
an SMS when a bike (sizes 17” and 19”) is available in my current close vicinity
(up to 500 m).

A publish/subscribe system will need to interpret such verbose user preferences
extended by contextual information into machine understandable constraints over at-
tributes, where attribute values are elements from (ordered) finite sets. For example,
‘lady mountain bike’ specifies bicycle type which may be interpreted as a range of
unique bike identifiers (bID) that classify it in a particular category. Brand would be
given as an element from a finite set, while a range of rental post identifiers (rpID) may
encode the area in vicinity of home. A more formal representation of the two verbose
subscriptions and two publications is presented in Table 1.

Even in this simple example subscriptions have 5 different attributes. The number
of attributes used in real-world applications can be much larger. Contextual informa-
tion related to e.g. user location, state, and available means of communication, largely



Table 1.Subscription and publication examples

bID size brand rpID date

s1 [1000, 1999] 19 X [820, 840] [2006-03-31T16:00:00,
2006-03-31T20:00:00]

s2 [1, 1999] [17, 19] * [10,12] [2006-03-31T12:00:00,
2006-03-31T14:00:00 ]

p1 1036 19 X 825 2006-03-31T18:23:05
p2 1035 17 Y 11 2006-03-31T12:23:05

increase the number of constraints, and, at the same time, causes higher volatility of
subscriptions. For example,s1 should be activated only on Fridays to decrease the num-
ber of subscriptions in the system, and deactivated in the evening when a user browses
through the list of received mails and chooses a bike for the weekend rental. On the
other hand,s2 is activated at noon when user’s calendar is empty until 14:00, but will
change with each significant change of user’s geographical location asrpID must en-
code the current user position. It can be deactivated as soon as the user rents a bicycle.
Publicationsp1 andp2 are two example publications generated when a rental post de-
tects an available bicycle. Asp1 matchess1, andp2 matchess2, the publish/subscribe
system should deliver them to the user using the preferred means of communication.

The example shows that a potentially large number of bike rental users may gener-
ate a huge number of constantly changing subscriptions, possibly in high-dimensional
spaces. This can cause high update rate of subscription indexes maintained by the pub-
lish/subscribe service and consequently high subscription traffic. Therefore, we propose
a method for reducing the total number of active subscriptions in the system by means
of group coverage.

The second motivating scenario,resource discovery in Gridsassigns computation
requests (jobs) to available services. Current systems use server-based solutions and
recently P2P-based solutions have been investigated [16] to deal with the scalability
problem caused by a large number of jobs and services. Let us discuss the problem of
resource discovery in terms of publish/subscribe. Services offering computational re-
sources may announce their capabilities and availability through subscriptions to enable
efficient matching and scheduling of jobs searching for available services. Jobs define
their requirements from the services using publications. An example subscription with
two publications are presented in Table 2.

Table 2.Subscription and publication examples

CPUcycles disk memory service time

s1 [3000, 3500] [40, 50kB] 1GB a.service.org [2006-03-31T16:00:00,
2006-03-31T20:00:00]

p1 3500 45kB 1GB *.service.org 2006-03-31T16:00:00
p2 1035 45kB 0.5GB *.*.org 2006-03-31T12:23:05



The basic characteristic of this usage scenario are potentially large number of ser-
vices and jobs that generate huge amounts of both subscriptions and publications. Dy-
namic changes of subscriptions are significant because as the context changes, i.e. ser-
vices get allocated to new jobs, their subscriptions will consequently change. Therefore,
this scenario exemplifies a setting where context changes induce higher subscription
rate, as it can also be observed in mobile environments. Thus, a method for reducing
the total number of active subscriptions in the system is highly needed and we can do
it by taking advantage of group coverage. Due to large numbers and inherently distrib-
uted characteristics of Grid services, the publish/subscribe service for resource discov-
ery would be distributed. As in this paper we are focusing on the subsumption process
performed within a single node, we are not assuming neither an underlying network
topology nor stability of the broker network. It can be applied with various routing
protocols, and our goal is to point out potential impact of the proposed algorithm on
the performance of a distributed system regardless of its topology and applied routing
strategy.

Let us consider the following example of subscription coverage in a 2-dimensional
subscription space. Table 3 defines two existing subscriptions,s1 ands2, and new sub-
scriptions. We want to determine whethers1 ands2 jointly covers. As it is visible from
the graphical representation of subscriptions in Figure 2, the subsumption relationship
indeed exists. Even though neithers1 nor s2 cover s, their union entirely coverss.
Note that constraints in this example define ranges to simplify the presentation, and can
straightforwardly be extended to finite sets.

Table 3.Subsumption example:s v (s1 ∨ s2)

Subscription s
[x1 ≥ 830 ∧ x1 ≤ 870∧
x2 ≥ 1003 ∧ x2 ≤ 1006]

Subscription s1

[x1 ≥ 820 ∧ x1 ≤ 850∧
x2 ≥ 1001 ∧ x2 ≤ 1007]

Subscription s2

[x1 ≥ 840 ∧ x1 ≤ 880∧
x2 ≥ 1002 ∧ x2 ≤ 1009]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

x
1

x 2

 

 
s
s

1

s
2

Fig. 2. Graphical representation of subscriptions
in Table 3

Table 4 lists the notation used in the paper.
Definition 1. Subscriptionsi is a conjunction of predicatessi = s1

i ∧ s2
i ∧ . . .∧ sri

i

where eachsj
i is a simple predicate, andri ≥ 1, whereri is the number of simple

predicates forming subscriptionsi. Let us definem, as the number of distinct attributes
in the set ofk subscriptionssi, 1 ≤ i ≤ k.



Table 4.Notations

Symbol Meaning

s New subscription
p Publication
S Disjunction of existing subscriptionssi, 1 ≤ i ≤ k

k |S|
si Existing subscriptionsi ∈ S

sj
i jth predicate insi

xj Attribute j

m number of distinct attributes inS
T Conflict table
T j

i Value in rowi, columnj of T

ti Number of defined elements in rowi of T

fci Number of conflict-free elements in rowi of T

δ Error probability
ρw Probability of guessing a point witness

Without restricting the applicability of the algorithm and to simplify the analysis, we
consider that each simple predicate defines a constraint on an attributexj , 1 ≤ i ≤ m,
where eachxj has a lower (xj ≥ lowi) and upper limit (xj ≤ highi). Each attribute
is therefore defined as a range. Furthermore, we assume that all subscriptions define
constraints for the same number of attributesm1 = m2 = . . . = mk = m, and
since there is a lower and upper bound on eachxj , r = 2 ·m. Note that this in fact is
not a restriction as the bounds(−∞, +∞) mean the attributed is not significant for a
particular subscription, and remains undefined.

The general subsumptionproblem tests whether a subscriptions is covered by a
disjunction of subscriptions,s v (s1 ∨ s2 ∨ . . . ∨ sk), wherek is the total number of
existing subscriptions.

Definition 2. A conflict tableT is ak× (2 ·m) table relating a subscriptions to all
simple predicates defined byS = {s1 ∨ s2 ∨ . . . ∨ sk}. An element in tableT , T j

i is
¬sj

i if s ∧ ¬sj
i is satisfiable or is otherwiseundefined.

A conflict table points out conflicting and not covered intervals between a tested
subscription and a set of subscriptions. To construct the conflict table, we process each
subscriptionsi ∈ S to verify the satisfiability of the negation of each simple predicate
sj

i against subscriptions. If the condition is true,T j
i is assigned the value¬sj

i , otherwise
it is assigned theundefinedvalue. Thus, the decision whether a specificT j

i is defined is
done inO(1) and the construction of the table requiresO(m · k).

For the example in Table 3,s ∧ ¬s1
1 is not satisfiable, because the the intersection

betweens and¬s1
1 = {x1 < 820} is empty, whiles ∧ ¬s2

1 is satisfiablebecause the
intersection betweens and¬s2

1 = {x1 > 850} is non-empty. Boths∧¬s3
1 ands∧¬s4

1

are not satisfiableand thus the corresponding table cells areundefined. The same
procedure is performed to compares to s2.

The conflict table relating subscriptions from Table 3 to the set of subscriptionss1

ands2 is given in Table 5. The first presented row represents a template for the content



Table 5.Conflict table for the example in Figure 2

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

of the actual conflict table relatings to s1 ands2. The first line corresponding tos1 has
only one defined element,¬s2

1 = {x1 > 850} because, as it is visible in the graphical
representation,s1 does not covers for x1 > 850. Analogously, the only defined element
in the second line corresponding tos2 is¬s1

2 = {x1 < 840}.
Definition 3. A polyhedron witnessto non-cover is a set of elements from a conflict

tableT ,
{

T j1
1 , . . . , T jk

k

}
, such thats∧¬sj1

1 ∧ . . .∧¬sjk

k is satisfiable, defining a convex

polyhedron. In other words, a polyhedron witness is a convex polyhedron contained in
s, but not inS.

Let us consider the example graphically represented in Figure 3, defining two sub-
scriptionss1 ands2 that do not cover subscriptions. Thepolyhedron witnessto non-
cover is a rectangle in this case, and is defined by the intersection ofs and the element
¬s2

2 = {x1 > 870}. This rectangle is contained ins, but not ins1 nors2.

Table 6.Non cover example: subscriptions

Subscription s
[x1 ≥ 830 ∧ x1 ≤ 890∧
x2 ≥ 1003 ∧ x2 ≤ 1006]

Subscription s1

[x1 ≥ 820 ∧ x1 ≤ 850∧
x2 ≥ 1002 ∧ x2 ≤ 1009]

Subscription s2

[x1 ≥ 840 ∧ x1 ≤ 870∧
x2 ≥ 1001 ∧ x2 ≤ 1007]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

P

x
1

x 2
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polyhedron witness
point witness

Fig. 3. Non-cover example: graphical presenta-
tion of a polyhedron witness and point witness

Definition 4. A point witnessto non-cover is a point that satisfiess, but does not
satisfyS. A point witness is inside a polyhedron witness, but not insideS.

In the previous example, any point inside the polyhedron witness rectangle defined
by s∧¬s2

2 is a point witness. The following 2 corollaries are based on the properties of
the conflict table, polyhedron witness and point witness.

Corollary 1. If all T j
i for 1 ≤ j ≤ r are undefined, thens is covered bysi.

Proof. If all T 1
i , . . . , T r

i are undefined, then(s ∧ ¬s1
i , . . . , s ∧ ¬sr

i ) are all not sat-
isfiable, and thus(s v s1

i ) ∧ . . . ∧ (s v sr
i ), or alternatively,s v (s1

i ∧ . . . ∧ sr
i ). In



effect s is covered bysi. Thus, as a side-effect, the use of the conflict table provides
a sufficient condition, tested inO(m · k), to check whether s is covered by any of the
subscriptions individually.

Corollary 2. If all T j
i for 1 ≤ j ≤ r are defined, thens coverssi.

Proof sketch.If all T 1
i , . . . , T r

i are defined, then(s ∧ ¬s1
i , . . . , s ∧ ¬sr

i ) are all
satisfiable, and thuss includessi on all attributes.

Corollary 3. Let ti1 , ti2 . . . tik
be the list resulting from sortingt1, t2 . . . tk in as-

cending order, whereti represents the number of defined entries in rowi of the conflict
tableT . If tij

≥ j for 1 ≤ ij ≤ k, thens is not covered byS.
Proof sketch.If tij

≥ j for 1 ≤ ij ≤ k, then a polyhedron witness exists. It can be

constructed in the following way: Choose any elements
ji1
i1

to be part of a polyhedron
witness, and then eliminate any conflicting entries from other rows. Since each row will
have a maximum of one conflicting element withs

ji1
i1

, then at most one element in each
row will be eliminated. If this step is repeatedk times a polyhedron witness will be
derived. Thus,s is not covered byS.

4 Probabilistic Cover Algorithm

In this section we describe the probabilistic cover algorithm to solve the defined sub-
sumption problem. This algorithm has direct implications on the effectiveness of rout-
ing both publications and subscriptions in a distributed environment, and the reliability
of discovering the matching publications. The probabilistic core of the algorithm is the
‘Monte Carlo type’ Random-Simple-Predicates-Cover part. It runs in a fixed number
of iterations, but may produce an incorrect result with a certain pre-determined proba-
bility of error. The probability of error is problem specific, and we show that an upper
bound on this error is derived in polynomial time prior to the execution of the algorithm.
Thus, the performance of the algorithm can be decided in advance based on the relia-
bility desired. The Random-Simple-Predicates-Cover can be executed independently or
in conjunction with the minimal cover set algorithm which reduces the original set of
subscriptionsS to a minimal set of subscriptions against which a new subscriptions
has to be checked. We also introduce a number of optimizations used for making fast
decisions under specific conditions that can be detected from the conflict table.

4.1 Random Simple Predicates Cover

The Random Simple Predicates Cover (RSPC) algorithm exploits the property ofpoint
witnesses. If the algorithm guesses a point ins that is apoint witnessto non-cover for
the set of subscriptionsS, then the subsumption problem is solved with a definite NO,
i.e. s 6v S. On the other hand, in case a subsumption relationship exists, the algorithm
would try in vain to find such a witness. To prevent this situation, we define a threshold
d for the number of guesses, and the algorithm outputs a probabilistic YES, i.e.s v S
with a predefined probability of error.

Algorithm 1 defines the RSPC algorithm which executes a number of iterationsd
to randomly generate a point satisfying subscriptions and checks whether it is apoint
witness. To generate a point withins costsO(m), and verifying whether it lies inside



Algorithm 1 Random-Simple-Predicates-Cover
1: /* Decide whether a subscriptions is covered by the existing subscriptions setS */
2: for i = 1 to d do
3: GUESSa pointP insides
4: if P does not satisfysubscriptions setS then
5: RETURN false
6: end if
7: end for
8: RETURN true

any ofs1, s2, . . . sk can be done inO(m · k) steps. Overall, the algorithmic complexity
of RSPC isd(m + m · k), or O(d · m · k). However, our experiments in Section 6
show that this is a pessimistic upper bound since at any iteration, RSPC can output a
definite NO if the guessed point is indeed a point witness. In addition, the complexity
can greatly be reduced using the optimizations presented in Sections 4.2 and 4.3.

Proposition 1. RSPC returns NO whens is definitely not covered byS. It returns
YES with a probability errorδ upper bounded by

δ = (1− ρw)d, (1)

whereρw is the probability that a randomly generated pointP insides is a point witness.
Proof. If RSPC returns NO then a point witness was found, and thuss is definitely

not subsumed byS. Therefore, the answer is correct. Ifs is not subsumed then RSPC
returns YES only if none of the guessed points is a point witness. For each trial this
happens with probability less than1 − ρw, therefore ford trials the probability RSPC
returns YES is less than(1 − ρw)d, sinced trials are randomly generated and are thus
assumed to be independent.2

In problems with specific probability of errorδ, we can compute the necessary num-
ber of trials,d, to answer the subsumption question with the requiredδ, using Equation 1
beforehand in polynomial time. The number of trials increases with a decrease of the
error probability.

The value ofρw depends on the number of existing point witnesses for the particular
subscriptions related to the set of subscriptionsS, and the ‘size’ of subscriptions. Let
Nw be the number of existing point witnesses andI(s) the size ofs. Then,ρw =
Nw/I(s).

Proposition 2. If the subsumption relationship holds,Nw = 0. Otherwise, there
exists at least one polyhedron witnesssw andI(sw) ≤ Nw ≤ I(s). This implies that
I(sw)/I(s) ≤ ρw ≤ 1.

Proof.If there is union cover, then clearly all the points insides will also be insideS
and henceNw = 0. If there is no union cover, then there exists at least one polyhedron
witness. Ifsw is the witness with the smallest number of integer solutions thenNw ≥
I(sw), and henceρw ≥ I(sw)/I(s).2

Since the probabilistic algorithm may produce a wrong answer only ifs is not sub-
sumed byS, the worst situation is to assume thats is indeed not subsumed by the set.
To compute the upper bound ond, we need to determine the lower bound onρw which
is set by the lower bound onNw for the smallest polyhedron witness.



Algorithm 2 Computeρw

1: /* Compute the probability of guessing a point witness */
2: /* Construct and use the conflict tableT */
3: I(sw) = 1
4: I(s) = number of points ins
5: pw = 0
6: min = 0
7: for i = 1 to m do
8: aux = min = s(2∗i−1) − s(2∗i)

9: for j = 1 to k do
10: if T

(2∗i−1)
j is definedthen

11: aux = T
(2∗i−1)
j − s(2∗i−1)

12: end if
13: if aux < min then
14: min = aux
15: end if
16: if T

(2∗i)
j is definedthen

17: aux = s(2∗i) − T
(2∗i)
j

18: end if
19: if aux < min then
20: min = aux
21: end if
22: end for
23: I(sw) = I(sw) ∗min
24: end for
25: ρw = I(sw)/I(s)
26: RETURN ρw



Algorithm sketch for computing d. First, the algorithm computesρw, for which
the lower bound depends on the size of the smallest existing polyhedron witnesssw, (its
I(sw)), andI(s). I(sw) can be approximated by multiplying the minimum non-covered
ranges on each attribute over all subscriptions in the set. Then, we can determine the
upper bound ond by extracting it from the Eq. 1 using the computed value forρw and
δ.

4.2 Minimized cover set of subscriptions

To further reduce the number of subscriptions against whichs needs to be checked, we
introduce another algorithm, the minimized cover set algorithm (MCS). From the set of
subscriptionsS, MCS constructs a non-reducible set of subscriptions, by ignoring those
that are redundant for the covering detection problem. MCS selects a set of subscrip-
tions that could jointly covers and filters out duplicate subscriptions, those covering
the same parts ofs, and subscriptions that do not intersect withs. The remaining sub-
scriptions form the non-reducible setS′ against whichs is subsequently checked by
RSPC.

Definition 5. Two defined entries in the table,T
ji1
i1

andT
ji2
i2

are said to be con-

flicting if i1 6= i2, ands ∧ T
ji1
i1

∧ T
ji2
i2

is not satisfiable. A defined entryT j′i
i is said

to beconflict-freeif given any polyhedron witnessW1 = {sj1
1 , . . . , sji

i , . . . , sjk

k }, then

W2 = W1 − T ji

i

⋃
T

j′i
i is also a witness. Letfci denote the number of conflict free

entries in rowi.
Lemma 1.Given the setW = {T j1

1 , . . . T jk

k } of defined entries in the conflict table,
then,s∧T j1

1 ∧. . .∧T jk

k is not satisfiable if and only if there exists at least one conflicting
pair inW .

Proof. If W has a conflicting pair, sayT
ji1
i1

, T
ji2
i2

then(s ∧ ¬s
ji1
i1
∧ . . . ∧ ¬s

jik
ik

) is
not satisfiable. IfW does not contain any conflicting pair, then all range constraints in

(s∧¬s
ji1
i1
∧ . . .∧¬s

jik
ik

) are pairwise intersecting. Thus(s∧¬s
ji1
i1
∧ . . .∧¬s

jik
ik

) defines
a nonempty hyper rectangle and is satisfiable.2

Proposition 3. A conflict freeentry from a conflict tableT is any defined element
T

ji1
i1

that does not conflict with any other defined elementT
ji2
i2

, wherei1 6= i2.

Proof. AssumeW = {T j1
1 , . . . , T

ji1
i1

, . . . , T jk

k } is a witness. SinceW has no con-

flicting elements,T
ji2
i2

does not conflict with any element inW , thenW1 = W −
{T ji1

i1
}⋃{T ji2

i2
} has no conflicting pairs. From Lemma 1,W1 is a witness andT

ji2
i2

is
conflict free.2

Conflict free entries are determined by comparing entries from the conflict table for
different subscriptions. If a constraint on an attribute conflicts with any other constraint
defined by another subscription, the entry is conflicting. It is conflict free otherwise.

Figure 4 presents a set of 3 subscriptions,s1, s2 ands3, as well as the a subscription
s, and Table 8 the corresponding conflict table. We can observe that the defined entries
for s3 are conflict free: they are not conflicting with the entries froms1 ands2. On the
other hand,s1 ands2 have conflicting entries becausex1 cannot simultaneously satisfy
both conditions,x1 > 850 andx1 < 840.



Table 7.Conflict-free example: subscriptions

Subscription s
[x1 ≥ 830 ∧ x1 ≤ 870∧
x2 ≥ 1003 ∧ x2 ≤ 1006]

Subscription s1

[x1 ≥ 820 ∧ x1 ≤ 850∧
x2 ≥ 1001 ∧ x2 ≤ 1007]

Subscription s2

[x1 ≥ 840 ∧ x1 ≤ 880∧
x2 ≥ 1002 ∧ x2 ≤ 1009]

Subscription s3

[x1 ≥ 810 ∧ x1 ≤ 890∧
x2 ≥ 100 ∧ x2 ≤ 10054]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

x
1

x 2

 

 
s
s

1

s
2

s
3

Fig. 4. An example with conflict free entries

Table 8.Conflict table for the example in Figure 4

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

s3 undefined undefined x2 < 1004 x2 > 1005

Proposition 4. If fci ≥ 1, or ti ≥ k, thensi is redundant.
Proof. If s is subsumed by(s1 ∨ . . . ∨ si−1 ∨ si+1 ∨ . . . ∨ sk) then it is triv-

ially subsumed by(s1 ∨ . . . ∨ si−1 ∨ si ∨ si+1 ∨ . . . ∨ sk). For the reverse to be
true, some conditions must be satisfied. Let us assume thats is not subsumed by
(s1 ∨ . . . ∨ si−1 ∨ si+1 ∨ . . . ∨ sk), then there exists a polyhedron witnessW =
{T j1

1 , . . . , T
ji−1
i−1 , T

ji+1
i+1 , . . . , T jk

k }.

– fci ≥ 1. Let T ji

i be one of the conflict free elements insi. From the definition of
conflict free it follows thatW = {T j1

1 , . . . , T
ji−1
i−1 , T ji

i , T
ji+1
i+1 , . . . , T jk

k } is also a
witness, and hences is not subsumed by(s1 ∨ s2 ∨ . . . ∨ sk).

– mi ≥ k. Since each element inW conflicts at most with one element in rowi, there
exists at leastmi − (k − 1) elements in rowi which do not conflict with any of
W . Givenmi ≥ k, thenmi − (k − 1) ≥ 1, implying that there exists at least one
element in rowi not conflicting with any element inW . Let that element in rowi
beT ji

i . It follows that{T j1
1 , . . . , T

ji−1
i−1 , T ji

i , T
ji+1
i+1 , . . . , T jk

k } is also a witness, and
hences is not subsumed by(s1 ∨ s2 ∨ . . . ∨ sk). 2

The MSC algorithm consists of two main steps, as defined in Algorithm 3. First,
starting from the conflict tableT , it counts the number of defined elements for all sub-
scriptionssi in the corresponding rows,ti and computes the number of conflict free
elements,fci . Then, it removes from the set all subscriptions for whichti is equal to
or greater than the current number of subscriptions in the set. It also removes subscrip-
tions that have at least one conflict free element in the corresponding row of the conflict



table. These two steps are repeated until there are no more subscriptions that fulfill any
of the two conditions. The remaining subscriptions form the non-reducible cover setS′

for answering the union covering problem.

Algorithm 3 Minimized Cover Set
1: /* Find the minimized set of subscriptionsS′ relevant for subsumption detection */
2: /* Construct and use the conflict tableT */
3: repeat
4: S′ = S
5: for every rowi in T do
6: computefci /* number of conflict-free elements in rowi in T */
7: if fci ≥ 0 or ti ≥ k then
8: removerow i from T
9: removesubscriptionsi from S′

10: k = k − 1
11: end if
12: end for
13: until nosi can be removed
14: RETURN S′

Considering the conflict table from Table 8, in the first step, we can see that no
subscription has more defined entries than the total number of subscriptions (t1 = t2 =
1 andt3 = 2 which is smaller than 3), while onlys3 has conflict free entries. Based on
the elimination conditions (in this case,fc3 = 2 > 0), in the first iteration, MCS can
remove subscriptions3. In the second iteration, still no subscription has more defined
entries than the total number of subscriptions (t1 = t2 = 1 < 2) and there are no
conflict free entries, so the algorithm stops. The minimized cover set isS′ = {s1, s2}.

Determining if a table entry is conflict free isO(m · k). Therefore computing each
fci costsO(m2 k), and in turn steps 1 and 2 in each iteration of the minimized set cover
algorithm costsO(m2 k2). Steps 1 and 2 may be repeatedk times since each time step
2 is performed at least onesi is filtered out. As a result, the overall cost of the algorithm
reduction isO(m2 k3) in the worst case.

4.3 Fast decisions based on sufficient conditions

To summarize, in order to answer the subsumption problem, the algorithm first con-
structs the conflict table, runs the MSC algorithm to reduce the subscription set, and
then applies the probabilistic RSPC algorithm which produces a either definite NO or a
probabilistic YES. Nevertheless, for some specific cases, the algorithms can efficiently
give a deterministic answer. Here we briefly present three specific cases.

1. Pairwise subsumption: As stated in Corollary 1, it is possible to detect if a sub-
scriptions is entirely covered by another subscription and produce a definite YES
by analyzing the conflict table. If the row in the conflict table corresponding to sub-
scriptionsi contains onlyundefinedvalues, thensi covers the new subscription.



2. The outcome of the MCS algorithm can be an empty set, which means that there
are no candidate subscriptions that could jointly covers, and the algorithm will
produce a definite NO.

3. Polyhedron witness: Detecting the existence of a polyhedron witness suffices to
detect a non-cover relationship and output a definite NO as stated in Corollary 2.
Based on the definitions of the polyhedron witness and conflict free entries, we can
detect the presence of such a witness, depending on the number of defined entries
in the conflict table without using either RSPC or MSC. The rows of the conflict
table are sorted in ascending order of the number of defined table entries per row.
In the ordered conflict table, if for each row, the number of defined entries is greater
than the row number, the new subscription is not covered.

Algorithm 4 Fast decisions based on sufficient conditions
1: /* Check conditions for fast deterministic answers to the covering problem */
2: /* Construct and use the conflict tableT */
3: for i = 1 to k do
4: for j = 1 to p do
5: /* Setflag to true to determine pairwise coverage */
6: flag = true
7: if T j

i 6= undefined then
8: flag = false
9: end if

10: if flag == truethen
11: RETURN true
12: end if
13: end for
14: end for
15: SORT T into ascending order of defined entries per row
16: /* Setflag to true to detect the presence of a polyhedron witness */
17: flag = true
18: for i = 1 to k do
19: if ti < i then
20: flag = false
21: end if
22: end for
23: if flag == truethen
24: RETURN false
25: end if
26: S′ = MCS()
27: if S′ = ∅ then
28: RETURN false
29: end if
30: RUN RSPC



4.4 Matching publications to a set of active subscriptions

Definition 6. A publicationp is a point in the attribute space. It has values for all defined
attributes.

When a publicationp arrives, it has to be matched against the subscriptions in the
system. By checking only the uncovered subscriptions first, (the setS), we can avoid
checkingall existing subscriptions. If there is no matching to any of these subscriptions,
it cannot match any subscription that is covered and therefore removed from the setS.
If there is a match, the publication must also be checked against the set of covered
subscriptionsSS.

Algorithm 5 Matching Publications to Subscriptions
1: /* Match a publicationp to the set of uncovered subscriptionsS and covered subscriptions

SS*/
2: /* Setflag to true to remember any match */
3: flag = false
4: for every subscriptionsi in S do
5: if p is coveredby si then
6: flag = true
7: sendp to si

8: end if
9: end for

10: if flag == truethen
11: for every subscriptionsi in SS do
12: if p is coveredby si then
13: sendp to si

14: end if
15: end for
16: end if

Algorithm sketch. Check the publicationp against the uncovered subscriptions.
Whenever a subscriptionsi coversp, send a notification to the associated subscriber. If
there was a match, all covered subscriptions must be checked; otherwise, the publication
is ignored without checking the covered subscriptions.

The cost of checking a publication against a subscription isO(m), thus, the cost for
matching a publication to the set of subscriptions isO(m · k), wherek is the number of
uncovered subscriptions. If there was a match, the covered subscriptions must also be
checked, so the cost is at mostO(m ·N), whereN is the total number of subscriptions.

Optimization. The covered subscriptions set can be organized by remembering for
each element, the subscription(s) that cover it. This will create a (possible) multi-level
structure. Then, publications are checked against the next level of subscriptions only if
there was a match at the higher level. On the other hand, whenever a subscription is
matched, the other subscriptions coming from the same neighbor (broker) need not be
checked, as the publication will be forwarded to that broker anyway.



5 Subscription propagation in a distributed system

As in a distributed system subscription propagation affects the overall system perfor-
mance, here we analyze the implications of incorrectly declaring a subscription as cov-
ered. Equation 1 gives the upper bound for the probability of error in incorrectly with-
holding the forwarding of a subscription, and therefore, it represents the likelihood of
not finding a matching publication if it is available at the next broker. In a distributed
publish/subscribe system, data is routed throughout the system, and we need to analyze
the influence of our probabilistic algorithm on subscription propagation. We consider
in Figure 5 a simple and illustrative case, where the new subscriptions should be prop-
agated along a chain of brokersB1, B2, . . . , Bn.

s: Subscription s

B1 B2 B3 Bn

s

p p p p

Publication pp:

Bi Broker i

The probability p 

arrives at Bi

:

Fig. 5. New subscription propagation

We assume that the new subscriptions is issued at brokerB1, while subscriptions
s1, s2, . . . , sk have already been propagated down the path to all brokers. Letρ be
the probability that a matching publicationp (matchess but nosi) is issued at any of
the brokersBi. The overall performance of the probabilistic algorithm is given by the
probability of finding the matching publication, wherever it resides.

Proposition 5.The probability of finding the matching publicationp under the con-
dition thats is erroneously found to be covered bys1∧s2∧. . .∧sk, wheres1, s2, . . . , sk

have been propagated to all brokers along the path, and all brokers have equal probabil-
ity of ρ of receiving publicationp is:

n∑

i=1

ρ[(1− ρ)(1− (1− pw)d)]i−1, (2)

whereρ is determined by the network density and the communication distance of two
neighboring brokers, andn is the total number of brokers in the path.

Equation 2 gives the lower bound for the overall algorithm performance. However,
as we will show in the next chapter, the effective performance is much better in practice,
even for loose error probabilities.probabilities. On the other hand, the longer the broker



path, the more important is the reduction in the global subscription traffic along the
path, which reflects the local reduction at each broker, exponentially amplified in the
network diameter.

Note that we do not present in this paper the mechanism for dealing with subscrip-
tions cancelation. This issue can be tackled by explicit forwarding of unsubscriptions
between brokers or by associating an expiration time with each new subscription. Ac-
cording to our approach, the canceled subscription can either be covered, and then can-
celation has only the effect of removing it from the passive set, either be present in the
(active) subscription set, and then its covered subscription must be promoted to this set,
to replace it.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed probabilistic approach
using simulations. We investigate algorithm performance in terms ofefficiencyandef-
fectivenessfor a number of subscription generation scenarios. Efficiency is analyzed in
terms of the number of actual algorithm steps performed to answer the subsumption
question, and effectiveness as the ratio of recognized redundant subscriptions to the to-
tal number of redundant subscriptions. Especially, we are interested in potential gains
when using the MCS algorithm: We want to quantify both the costs and gains when
using MSC in specific subscription generation scenarios. Next, we analyze the number
of false decisions declaring a subsumption relationship when there was no subsump-
tion. Finally, we compare our approach with the existing one for pair-wise coverage
detection.

There are two specific categories of subscription settings, for which we want to
investigate the performance:

(1) Covering:s is covered by the set of subscriptions (with some ofsi ∈ S being
redundant).

(2) Non-cover:s is not covered by the setS (as such, all subscriptions are redundant).

In particular, we have analyzed the algorithm performance using the following sub-
scription generation scenarios:

(1.a) Pairwise covering scenario;s is entirely covered by at least one subscription from
the set of existing subscriptions.

(1.b) Redundant covering scenario;s is not covered by any single subscription, but is
covered by the set, with a lot of subscriptions being redundant.

(2.a) No intersection scenario;s does not intersect with any existing subscription.
(2.b) Non-cover scenario;s is not covered by the setS, but overlaps with existing

subscriptions over many attributes.
(2.c) Extreme non-cover scenario; similar to (2.b), buts has only a very small non

covered gap.
(1-2) Comparison scenario; generate incoming subscriptions randomly.



Scenario (1.a) is straightforward as the subsumption relationship is determined ef-
ficiently by applying Corollary 1 after the construction of the conflict table, therefore
the cost of detecting pairwise coverage isO(m · k) (equals the cost of constructing the
conflict table). Scenario (2.a) is also straightforward because the MCS algorithm deter-
mines non subsumption after the first iteration, which removes all subscriptions from
the setS′ because allsi ∈ S′ have conflict-free elements in the conflict table. The re-
maining three scenarios are difficult settings for checking the subsumption relationship,
as there are no pairwise subsumptions which could help to reduce the setS′, and the
classical approach cannot give an answer to the group covering problem.

We tested the scenarios (1.b), (2.b), and (2.c) using the following subscription gen-
eration principle: Existing subscriptions overlap with a new subscription and each other
for many attributes, but there are no pairwise subsumptions. In the experiments,s, as
well ass1, s2, . . . , sk were generated such that all of them are satisfiable (not empty),
eachsi intersects withs and finally allsi’s are pairwise intersecting for at least one
of the attributes. The last scenario (1-2) simulates a realistic setting assuming that user
interest are similar, and that the popularity of attributes appearing in subscriptions is
Zipfian. Additional restrictions to the selection ofsis were applied depending on the
simulation scenario.

In the redundant covering and non-cover scenarios, experiments were done with
an increasing number of subscriptions,k, from 10 to 310 in steps of 30, for different
number of attributesm: 10, 15, and 20. The probability of errorδ was very low,10−10.
For each measurement, 1000 algorithm runs were performed to compute the average
performance. The overall cost of the algorithms was measured as the number of trials
needed to answer the covering problem.

The extreme non-cover scenario aims at analyzing the importance of the probabil-
ity of error and the non-cover gap size. The extremeness of the scenario implies that
the new subscription is covered entirely, except for a narrow slice over one attribute,
where we enforce a gap. For the measurements were conducted for a fixed number of
subscriptions,k = 50, and fixed number of attributes per subscription,m = 5; the gap
over the non-cover attribute was increased from0.5% to 4.5% of the interval in steps of
0.5% and there were 3 probabilities of error,δ: 10−10, 10−6, and10−3. For each possi-
ble combination of tested parameters, 3000 algorithm runs were performed, to observe
the number of false decisions and the average number of trials performed.

The comparison scenario is performed in a single run by generating a sequence
of 5000 subscriptions and quantifying the sizes of the subscription sets for pair-wise
and group coverage checking. Different number of attributesm: 10, 15, and 20 were
analyzed and the probability of errorδ was set to10−6.

6.1 Redundant covering scenario

This simulation scenario investigates the algorithm performance when the subscription
setS subsumess. A high rate of redundant subscriptions is introduced to test the influ-
ence of the MCS algorithm on the overall performance and its efficiency.

The experimental setup was constructed such thats was covered by the first 20%
of the generated subscriptions formingS. The remaining 80% of subscriptions from



S were then generated to partly covers, and are actually redundant sinces is already
covered by the first 20% of subscriptions.
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Fig. 6. Reduction for the redundant covering
scenario
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Fig. 7. Theoretical number of iterations for the
redundant covering scenario

Figure 6 shows the efficiency of the MCS algorithm measured as the percentage
of removed redundant subscriptions. The degree of reduction is extremely high: the
algorithm successfully removed between 80% and 100% of redundant subscriptions.
The performance decreases for small number of attributes (10) when increasingk, but
increases for higher number of attributes. MSC removes almost all redundant subscrip-
tions for small number of subscriptions, then the performance drops, as more computa-
tions are needed, but it improves with increasing number of subscriptions and attributes.

Figure 7 shows the theoretically predicted number of iterationsd needed to answer
the subsumption question. Thelog(d) plot is shown as a function ofk, and is calcu-
lated using Equation 1. The plot is given for the initial set of subscriptionsS, and the
reduced set of subscriptionsS′ after running the MCS. Due to the low error probability,
d is extremely high if we use only the RSPC algorithm. However, MSC significantly
reduces the number of needed iterations and becomes practically feasible:d < 105 for
100 subscriptions with 10 attributes, and decreases significantly for larger number of
attributes.

6.2 Non-cover scenario

For the-non cover scenario, the experiment is constructed by forcing the non-covering
of s by leaving a small range overx1 uncovered. The values over the other attributes
are generated randomly. The whole set of subscriptionsS is actually redundant, ass is
not covered and there is no cover set fors. In this scenario, the algorithm has always
detected the non-coverage relationship due to optimizations and a low probability of
error.
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Fig. 8. Reduction for the non cover scenario
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Fig. 9. Theoretical number of iterations for the
non cover scenario

Figure 8 shows the efficiency of the MCS algorithm which performs even better
than for the redundant covering scenario because most of the subscriptions are removed
quickly due to the non covering relationship.

Figure 9 illustrates the theoretical number of iterationsd which decreases tremen-
dously after applying the MCS algorithm, proving that the algorithm needs few itera-
tions to discover the non covering relationship.
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Fig. 10.Actual iterations for non cover

Since non cover can be detected prior to performing alld theoretical iterations,
Figure 10 shows the actual number of iterations performed to discover a witness point.
As it is visible, the average number of performed iterations is extremely low(< 0.5).
This is due to the fact that in most of the cases, after running MCS there is no need to
employ the probabilistic part of the algorithm to determine the non cover relationship



(d = 0 because the reduced set is empty). There are some evident fluctuations in the
number ofd due to the probabilistic nature of the algorithm.

6.3 Extreme non-cover scenario

In the extreme non cover scenario, we generated the subscription setS such that it
does not covers over one attribute, for which we varied the size of a non covered
range, while coverings entirely on all other attributes. The subscriptions inS are all
intersecting withs; they are also pair-wise intersecting each-other, except at the bounds
of the non covered range.

As performance metrics we illustrate the average number of guesses over3000 runs
needed to answer the covering problem and the total number of false decisions (that
result in non forwarding of a non covered subscription) in3000 runs.
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Fig. 11.Actual iterations performed
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Fig. 12.Number of false negatives

Figure 11 shows that the average number of performed guesses is similar for all
probabilities of error, even though the theoretical number of guesses increases for smaller
error probabilities. This behavior is expected, as the chances of guessing a point wit-
ness depend on the ratio between the gap range size and the total range size of the non
covered attribute, but it does not depend on the error probability, which we can choose
arbitrarily low. Nevertheless, as the error probability is the same for covering and non
cover cases, it should offer a compromise for the performance in both situations.

In Figure 12 we can see the total number of cases when the algorithm falsely de-
cided, answering with a probabilistic YES, event though it analyzed a non cover situa-
tion. The number of false negatives increases with the error probability and decreases
with larger gap sizes. In fact, for probabilities of error lower than10−6 and gap range
sizes of more than1%, the algorithm always takes the right decision. Even for a higher
probability of error (10−3), the number of false negatives remains quite low, if the gap
is at least2%. The number of false negatives decreases fast with increasing number of
attributes and subscriptions. The small values ofk andm for this scenario are among



the largest that yield false negatives; for higher values, the algorithm is always right,
because the number of allowed guesses (the computed thresholdd) is also higher.

6.4 Comparison

Due to the lack of real-world subscription set, we have simulated a setting using power
law distributions that are considered as good approximations of popularity both for
the selection of attributes and attribute ranges. From the set ofm attributes popular
ones were chosen using a Zipf distribution (skew = 2.0). Attributes are generated in the
following way: The center of a range is generated with a Pareto distribution (skew = 1.0)
to simulate similar interests, while range sizes are generated with a normal distribution.
The experiment compares the growth of subscription set sizes in case of the pair-wise
and group subsumption reductions.
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Figure 13 shows the growth of the total number of active subscriptions when in-
creasing the number of incoming subscriptions. It is interesting to observe the power of
subscription set reduction using subscription coverage both for pair-wise and group cov-
erage in case of partly covered subscription space. The group coverage shows greater
reduction compared to the pair-wise algorithm for all values ofm. For m = 10 and
m = 15 group coverage has reduced the original set of 5000 subscriptions to less than
10%, and pair-wise coverage to approx. 15% of the entire set, while form = 20 the
reduction is still significant (around 33% for group and less than 50% for pair-wise
coverage). The set reduction is very important for subscriptions with a large number
of attributes which increases complexity because of the absolute subscription set size,
e.g. some brokers have limited resources and may not handle more than 1000 active
subscriptions. When increasingm, the actual number of active subscriptions is also
larger, and this is due to the fact that the probability of subsumption generally decreases
in the applied subscription generation scenario when increasing subscription space di-
mensionality.



Figure 14 quantifies the actual gain of group coverage compared to the pair-wise
coverage by showing the ratio between the respective set sizes. The obtained results
show the extreme reduction potential when increasing the number of incoming sub-
scriptions. In case of 1000 received subscriptions, the ratio is between 70 and 80%, and
keeps decreasing with new incoming subscriptions showing a stabilization tendency af-
ter 5000 subscriptions. The ratio is larger for largem, but still significant, and is almost
similar for 15 and 20 attributes because the actual number of defined attributes does not
significantly differ. Of course, the obtained results are highly dependent on subscription
generation, but since our distributions follow a realistic popularity-based setting, it can
be concluded that group coverage can greatly reduce the subscription set compared to
the pair-wise approach.

6.5 Discussion

RSPC without MCS. The difference between the performances of RSPC in both set-
tings, cover and non-cover, is statistically insignificant without applying MCS. The fact
that the performance is similar in both cases indicates that the behavior of SPC is inde-
pendent of the covering relationship. Our experimental results refer to three values of
m, namelym = 10, 15 and 20. The results, however, can be readily extrapolated to all
the intermediate values ofm.

The following conclusions can be drawn:

1. The performance of the probabilistic algorithm deteriorates in both cases asm in-
creases.

2. For both scenarios, the theoretical thresholdd stabilizes whenk > r. A possible
explanation is that for a fixed value ofm, as the value ofk increases, the probability
that the additional new predicates provide a smaller polyhedron witness is quite
small.

RSPC with MCS. The reduction algorithm performs in general very well, and sig-
nificantly reduces the size of the subscription set with which a new subscriptions has to
be compared. Note that even after the reduction the subsumption cannot be tested effi-
ciently by a deterministic algorithm as the problem is still co-NP complete. The main
conclusion is that neither the reduction algorithm, nor the probabilistic algorithm alone
can be an efficient solution for the large class of problems we are considering. How-
ever, the combination of the two provides an efficient solution to both covering and non
covering cases. The algorithm performs extremely well in cases with a large number of
subscriptions, especially fork >> m, when a lot of subscriptions are redundant. Even
if the theoreticald is high in some cases, it is usually overestimated. As Figures 10
and 11 show, the actual number of iterations for the non cover case is much lower than
the expectedd value and this scenario may frequently happen in real-world applica-
tions. Finally, the comparison shows the supremacy of the group coverage algorithm
over the classical pair-wise approach that will in general largely decrease the number
of subscriptions in different distributed publish/ subscribe systems.



7 Related Work

Most of the research efforts in publish/subscribe systems have so far focused on the
problem of efficient matching and forwarding of publications [17, 10, 8]. Pairwise cov-
ering and merging of subscriptions are typically used to reduce the set of active sub-
scriptions, and all algorithms rely on some version of thecounting algorithm, originally
defined in [18]. In [10], the authors use an index calledselectivity tablerelating attribute
name to lists of constraints, which are related to the set of subscriptions. This approach
supports pairwise subsumption, while the list of constrains resembles our conflict table.
Modified binary decision diagrams are employed in [8], to achieve pairwise covering
and merging of subscriptions. The merging operation is a precursor of group covering,
merging two subscriptions having at most one mismatch in their predicates. None of
these techniques supports group subsumption, and therefore can filter out far fewer sub-
scriptions than our probabilistic algorithm. The RAPIDMatch algorithm defined in [17]
is designed for a simplified data model where subscriptions and publications signal the
presence or absence of an attribute. It discriminates subscriptions against a notification,
similar to our comparison of a subscription against a set of subscriptions.

The importance of reducing the number of subscriptions in a distributed environ-
ment is stressed in [9]. The authors are dealing with a complementary problem - merg-
ing a set of subscriptions to reduce their number. As in [8], the trade-off is that the new
subscription might contain parts of the subscription space not covered originally by the
set, which leads to false positives (unrequested publications). A recently proposed so-
lution relies on clustering of subscriptions based on a proximity metric in subscription
space [19], and would greatly benefit from global subscription set reduction for both
the total number of subscriptions and the generated traffic.

In [20], the publish/subscribe paradigm is enhanced by a DHT (Distributed Hash
Table), ensuring fast matching. Subscriptions and publications are dispatched (through
a hashing method) in a small number of steps to the corresponding responsible nodes,
where the actual matching takes place. Other publish/subscribe approaches have con-
centrated on efficient routing and flexible expressiveness. The authors designed in [3,
21] an architecture which improves the subscription expressiveness and data semantic
by exploring XML-based query filtering and transformation. Approximate information
is introduced into publish/subscribe systems in [12], allowing users to formulate data
in less precise terms, thus integrating uncertainties. Relevance based matching, char-
acteristic of information retrieval systems is devised in [22], pairing publications to
subscriptions based on some similarity metrics. The same trade-off apply for all these
methods, as they forward publications in the system even in the absence of a covering
subscription.

Sensor networks deal with resource scarce devices, in terms of memory, transmis-
sion and computational power, and transmitted data can be lost due to traffic congestion
and link failure ([23, 24]). Publish/subscribe has been recognized as an efficient com-
munication paradigm in such a setting ([25, 24, 26]). The solution presented in [25]
employs topic-based publish/subscribe, on the account that sensors have well defined
attributes, modeled as topics. It does not support more expressive content-based com-
munication, and data is aggregated only over one topic. In [24] the authors aim at re-



ducing the communication traffic through the use of content-based publish/subscribe
over a reduced number of paths inside the system, identified by an augmented distance
vector protocol. A semi-probabilistic approach, defined in [26], combines deterministic
forwarding of publications (matching subscription which are propagated only in a small
vicinity) with probabilistic forwarding to a random number of neighbors (when there is
no match). This approach cannot guarantee100% delivery; to achieve better reliability,
it must increase publication traffic (and, consequently, the number of false positives).
With our solution we have good reliability, while totally minimizing the publication
traffic (only required publications are forwarded).

8 Conclusion

The paper presents a novel probabilistic algorithm for determining whether a sub-
scription is covered by a set of subscriptions. Theoretically it solves the problem in
O(k · m · d). The probability of error is problem specific and very small, and an up-
per bound on the thresholdd is determined in polynomial time prior to the execution
of the algorithm. Our experiments have shown that the algorithm performs even better
in practice with the introduced optimizations. When combing the probabilistic algo-
rithm with the reduction algorithm that removes redundant subscriptions against which
a new subscription needs to be checked, the number of needed iterations for the prob-
abilistic algorithm becomes reasonable. Even more, in case of the non covering rela-
tionship, it is possible to give a deterministic answer without applying the probabilistic
tests. Therefore, we can conclude that the proposed algorithms can efficiently solve the
subsumption problem which is important for fast subscription forwarding and network
congestion control in distributed publish/subscribe systems.
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