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Abstract

This thesis presents the coherence properties of polaritons in semiconductor microcav-
ities. Semiconductor microcavities are microstructures in which the exciton ground
state of a semiconductor quantum well is coupled to a photonic mode of a microres-
onator. The strong coupling mixes the character of excitons and photons, giving rise
to the lower and upper polariton branches, quasiparticles with an unusual energetic
dispersion relation due to the extreme mass difference between exciton and photon.
Particularly special is the dispersion of the lower polariton, which forms a dip in the
2-dimensional k-space around the lowest energy state with zero in-plane momentum. In
this dip, which can be seen as a trap in momentum space, the polaritons are efficiently
isolated from dephasing mechanisms involving phonons. Polaritons can be resonantly
excited at desired points on the polariton dispersion by shining on the microcavity
laser light at the appropriate angle and wavelength. Polaritons can interact and scatter
pairwise with each other conserving energy and in plane momentum k, a process similar
to parametric scattering of photons in a nonlinear crystal. One polariton from a pump
reservoir scatters down to the signal state at k = 0 (corresponding to normal incidence)
and a second takes away the excess energy and momentum of the first and scatters up
to the idler position ({kp,kp} — {0,2kp}). This process can be stimulated by a small
amount of signal polaritons injected with a probe laser beam at normal incidence.

Here the coherence properties of the polariton parametric scattering have been in-
vestigated using spectroscopy techniques sensitive to the optical phase, for example
coherent control with phase-locked femtosecond probe pulses. Just above the threshold
for the stimulated parametric scattering, the parametric amplification process is given
by the linear superposition of the individual amplification processes of each probe pulse.
The emission of signal, pump, and idler can be controlled by tuning the relative phase of
the 150fs-long probe pulses, which are separated by a few picoseconds in time. Experi-
ments are presented that deal with the real-time dynamics of the parametric scattering
in the spontaneous and the stimulated regime. It is shown, that in the spontaneous
regime the scattering is started by a small amount of polaritons which have relaxed
to the band bottom by emitting phonons. In the regime where polariton scattering is
stimulated by an external probe, the rise of the signal intensity is delayed with respect
to the arrival time of both pump and probe, a feature that can be attributed to the
complex phase-matching mechanism for the parametric scattering.

In the second part of the thesis, the spontaneous build up of a macroscopic co-
herence in a CdTe microcavity under non-resonant laser excitation is analysed. The
build up of a long-range spatial coherence easily exceeding the thermal wavelength of



the polaritons is shown. This is the hallmark of Bose-Einstein condensation and the
proof of a macroscopic wavefunction. Experimental data on the statistical distribution
of the polaritons in time, the polarisation of the non-linear emission, and the quantum
transition from a thermal to a coherent state' confirm that Bose-Einstein condensation
of microcavity polaritons has been observed. We regard these observations as the first
bullet-proof evidence for spontaneous Bose-Einstein condensation in a solid state sys-
tem, a phenomenon that has been the subject to many investigations and controversies
during the past four decades.

keywords: microcavity polaritons, excitons, parametric amplification, parametric
oscillator, coherent control, Bose-Einstein condensation, interferometry

The data about the statistical distribution, the polarisation, and the transition from a thermal to
a coherent state is by courtesy of Jacek Kasprzak of the University of Grenoble.



Version abrégée

Cette thése présente une investigation des propriétés cohérentes des polaritons dans des
microcavités semiconductrices. Les microcavités semiconductrices sont des microstruc-
tures dans lesquelles on observe un régime de couplage fort entre I’état fondamental de
I’'exciton dans un puits quantique et un mode photonique du microrésonateur. Le cou-
plage fort mélange les propriétés de I’exciton et du photon et donne naissance a deux
branches de polaritons. Ces quasi-particules ont une dispersion énergétique inusuelle
due a la grande différence de masse effective entre exciton et photon. La dispersion de la
branche basse de polariton forme une sorte de piege dans I’espace réciproque bidimen-
sionel autour de l'état de plus basse énergie, a k = 0. Dans ce piege les polaritons sont
isolés efficacement des processus de déphasage impliquant des phonons. Il est possible
de créer optiquement des polaritons dans un état spécifique a 'aide de faisceaux laser
d’énergie et d’angle d’incidence adéquats. Les polaritons peuvent interagir entre eux
en conservant ’énergie et la quantité de mouvement, de maniere similaire & la diffu-
sion paramétrique de photons dans un cristal non-linéaire. Un polariton du réservoir de
pompe diffuse alors vers ’état du signal & k = 0 (ce qui correspond a incidence normale)
alors qu’un deuxiéme gagne son énergie et sa quantité du mouvement excédentaires et
diffuse vers I’état du complémentaire ({kp,kp} — {0,2kp}). Il est possible de stimuler
ce processus en injectant une petite quantité de polaritons dans ’état signal avec un
faisceau laser de sonde.

Les propriétés de cohérence de la diffusion paramétrique ont été étudiées a ’aide de
techniques spectroscopiques sensibles a la phase optique, comme le controle cohérent
utilisant des impulsions femtosecondes de phase relative bien définie. Juste en-dessous
du seuil de diffusion paramétrique stimulée, le processus d’amplification est dii a la
superposition des processus d’amplification de chaque impulsions sonde. L’émission
provenant du signal, de la pompe et du complémentaire peut-étre controlée en ajustant
la phase relative entre les deux impulsion sonde de 150 fs de durée, séparées dans le
temps de quelques picosecondes. D’autre part, nous avons réalisé des mesures de la
dynamique en temps réel de la diffusion paramétrique en régimes spontané et stimulé.
Nous avons démontré que dans le régime spontané la diffusion paramétrique est initiée
par les quelques polaritons qui ont relaxé vers le bas de la bande par émission de
phonons. Dans le régime ou la diffusion est stimulée par une sonde externe, la montée
du signal est retardée par rapport a l'instant ou arrivent la pompe et la sonde, une
propriété qui peut-étre attribuée a un processus complexe 1ié a I’accord de phase de la
diffusion paramétrique.

Dans une deuxieéme partie nous nous intéressons a l’apparition d’une cohérence



macroscopique spontanée dans les microcavités CdTe sous excitation non-résonante.
Nous observons la formation d’une cohérence spatiale dont la portée excede largement
la longueur de corrélation thermique. Cette observation démontre ’existence d’une
fonction d’onde macroscopique, et constitue ainsi une preuve essentielle de la formation
d’un condensat de Bose-Einstein. D’autre parts des résultats concernant la thermody-
namique des polaritons, la polarisation de ’émission non-linéaire, et la transition d’un
état thermique vers un état cohérent? confirment la validité de notre conclusion. Ces
observations apportent ainsi la premiere preuve indiscutable de la formation d’un con-
densat de Bose en milieu solide, un phénomeéne qui a été sujet de nombreuses études
et controverses ces derniers 40 ans.

2Les données experimentales sur la distribution, la polarisation et la transition d’un état thermique
vers un état cohérent sont des données pas encore publiés de Jacek Kasprzak de I’Université de Grenoble
qui, par amabilité, ont été mis & disposition pour la discussion dans cette these.



Zusammenfassung

Die vorliegende Dissertation beschéftigt sich mit den Kohéarenzeigenschaften von Polari-
tonen in Halbleiter-Mikroresonatoren. Halbleiter-Mikroresonatoren sind Mikrostruk-
turen, in denen der Exzitonen-Grundzustand eines Halbleiter-Quantentopfes mit einer
photonischen Mode eines Mikroresonators stark koppelt. Durch die starke Kopplung
von Exziton und Photon entstehen die neuen Eigenzustinde des Systems, die Polarito-
nen. Aufgrund der extremen Massendifferenz haben diese Quasiteilchen eine uniibliche
energetische Dispersionsrelation. Von besonderer Bedeutung ist die Dispersion des un-
teren Polaritonen-Niveaus, die eine Vertiefung im 2-dimensionalen k-Raum um den
Zustand mit verschwindendem Impuls in der Resonatorebene aufweist. Innerhalb
dieser Vertiefung, die als eine Art Falle angesehen werden kann, sind die Polarito-
nen wirkungsvoll von Dephasierungsmechanismen mit Phononen isoliert. Polaritonen
konnen durch resonante Laserstrahlung an gewiinschten Stellen der Dispersionskurve
durch die Anpassung des Einfallswinkels und der Laserwellenldnge angeregt werden.
Innerhalb der Vertiefung konnen die Polaritonen unter Einhaltung von Energie- und
Impulserhaltung paarweise streuen. Kin Polariton vom Pumpreservoir streut in den
energetisch niedrigeren Zustand bei £ = 0 (entsprechend normaler Einfallsrichtung)
und ein zweites iibernimmt tiberschiissige Energie und Impuls des ersten und streut in
den energetisch hoheren Idler-Zustand ({kp,kp} — {0,2kp}). Der Prozess kann mit-
tels einer kleinen Menge von Signal-Polaritonen, die durch einen schwachen Priifimpuls
angeregt werden, stimuliert werden.

Durch optisch phasensensitive spektroskopische Methoden wie koharente Kontrolle
mit Femtosekunden-Laserimpulsen, die eine feste Phasenbeziehung aufweisen. Knapp
oberhalb der Schwelle fiir die stimulierte parametrische Polaritonen-Streuung, ergibt
sich der parametrische Verstirkungsprozess als lineare Uberlagerung der jeweiligen
Verstarkungsprozesse der jeweiligen Prifimpulse. Die Emission von Signal-, Pump-
und Idler-Zustanden kann durch das Verdndern der relativen Phase zweier Prifimpulse
mit 150 fs Zeitdauer, die in einem Zeitabstand von mehreren Pikosekunden auftreffen,
gesteuert werden. Es werden Experimente vorgestellt, die sich mit dem Realzeitverhal-
ten der parametrischen Streuung im spontanen und stimulierten Regime beschéftigen.
Es wird gezeigt, dass die spontane parametrische Streuung von einer kleinen Menge
von Polaritonen gestartet wird, die aufgrund Emission von Phononen im untersten
Polaritonenzustand angekommen sind. Im stimulierten Regime ist der Anstieg der
Signal Emissions-Intensitat im Vergleich zur Ankunftszeit von Pump- und Priifimpuls
verzogert, was einem komplizierten Phasenanpassungs-Mechanismus zuzuordnen ist.

Im zweiten Teil der Arbeit wird das spontane Auftreten einer makroskopischen



Kohérenz, die in einem Cadmium-Tellurit-Mikroresonator unter nicht-resonanter Anre-
gung auftritt, untersucht. Das Auftreten einer rdumlichen Weitbereichs-Kohérenz, die
mehrfach die thermische Wellenlange der Polaritonen tiberschreitet, wird gezeigt, eine
Schliisseleigenschaft von Bose-Einstein Kondensation und der Beweis fiir die Existenz
einer makroskopischen Wellenfunktion. Aufgrund weiterer experimenteller Daten iiber
die statistische Verteilung der Polaritonen, die Polarisation der nicht-linearen Emission
und dem quantenstatistischen Ubergang von einem thermischen in einen kohérenten
Zustand?®, kann geschlussfolgert werden, dass Bose-Einstein Kondensation von Polari-
tonen beobachtet wurde. Wir betrachten die gezeigten Ergebnisse als einen eindeutigen
Beleg fiir spontane Bose-Einstein Kondensation in eimem Festkorper, ein Phénomen,
das in den vergangenen 40 Jahren Gegenstand vieler Untersuchungen und kontroverser
Diskussionen war.

3Die Daten iiber Verteilung, Polarisation und ﬁbergang von einem thermischen in einen kohérenten
Zustand sind unveroffentlichte Ergebnisse von Jacek Kasprzak von der Universitdt Grenoble, und wur-
den freundlicherweise zur Diskussion in der vorliegenden Arbeit zur Verfiigung gestellt.



Riassunto

Questa tesi studia le proprieta di coerenza dei polaritoni nelle microcavita a semicondut-
tore. Le microcavita sono microstrutture in cui lo stato fondamentale dell’eccitone in
un pozzo quantico € accoppiato al modo fotonico del microrisonatore. L’accoppiamento
forte mescola le caratteristiche di eccitoni e fotoni, generando i polaritoni, quasiparti-
celle con una dispersione energetica molto inusuale a causa della differenza tra la massa
dell’eccitone e quella del fotone. In particolare, la dispersione del polaritone inferiore
forma una buca nello spazio k reciproco attorno agli stati con minore energia. In questa
buca, che puo’ essere considerata una buca nello spazio degli impulsi, i polaritoni non
risentono della decoerenza indotta dai fononi. I polaritoni possono essere eccitati in
risonanza nei punti desiderati della dispersione illuminando la microcavita con luce laser
proveniente da un appropriato angolo e di appropriata frequenza. I polaritoni possono
interagire tra loro e diffondere due a due conservando energia e impulso k (nel piano del
pozzo quantico), un processo simile alla diffusione parametrica dei fotoni in un cristallo
nonlineare. Un polaritone diffonde da un serbatoio creato dal fascio di pompa verso lo
stato del segnale a k=0 (che corresponde ad una eccitazione ad incidenza normale) e
un secondo polaritone porta via la quantita di moto e ’energia che il primo polaritone
ha in eccesso, diffondendo verso lo stato dell’idler ({kp,kp} — {0,2kp}). Il processo
puo essere stimolato da una piccola quantita di polaritoni iniettata dal fascio di sonda
ad incidenza normale.

Le proprieta di coerenza dei polaritoni sono state studiate con tecniche spettro-
scopiche sensibili alla fase, come il controllo coerente con impulsi al femtosecondo. Ap-
pena al di sopra della soglia per la diffusione parametrica, il processo di amplificazione
parametrica € la sovrapposizione lineare dell’amplificazione di ciascuno dei due impulsi
di sonda. L’emissione del segnale, della pompa e dell’idler possono essere controllate
dalla fase relativa dei due impulsi di sonda, che durano 150 fs, ma sono separati da di-
versi picosecondi. Sono presentati anche degli esperimenti sulla dinamica in tempo reale
della diffusione parametrica nel regime spontaneo e nel regime stimolato. Si mostra che
nel regime di diffusione spontanea la diffusione & iniziata da un piccolo numero di po-
laritoni che rilassano al fondo della banda emettendo dei fononi. Nel regime in cui
invece la diffusione e stimolata da una sonda esterna, la crescita dell’intensita del seg-
nale e ritardata rispetto all’arrivo degli impulsi di pompa e di sonda, una caratteristica
che puo essere attribuita al complesso meccanismo di ” phase matching” della diffusione
parametrica.

In una seconda parte della tesi si analizza la coerenza spontanea in una microcavita
di CdTe sottoposta ad eccitazione non risonante. Si mette in evidenza ’apparire di una
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coerenza spaziale a lungo raggio su distanze che eccedono di gran lunga la lunghezza
d’onda termica dei polaritoni, il marchio ufficiale della condensazione di Bose-Einstein
e la prova dell’esistenza di una funzione d’onda macroscopica. Dati sperimentali sulla
distribuzione statistica dei polaritoni, la polarizzazione dell’emissione nonlineare e la
transizione da uno stato termico ad uno stato coerente* confermano la conclusione che la
condensazione di Bose-Einstein dei polaritoni e stata osservata. Consideriamo queste
osservazioni come la prima prova inattaccabile della condensazione di Bose-Einstein
spontanea nello stato solido, un fenomeno che ¢ stato oggetto di innumerevoli studi e
controversie negli scorsi quarant’anni.

41 dati sperimentali sulla distribuzione statistica dei polaritoni, la polarizzazione e la transizione da
uno stato termico ad uno stato coerente e una cortesia di Jacek Kasprzak dell’Universita di Grenoble.

11



Chapter 1

Introduction

The epoch of quantum physics started in 1900, when Max Planck presented his work
on the spectrum of black-body radiation, later known as Planck’s law of radiation. His
work broke with the largely accepted mechanistic point of view in physics at that time
which can be characterised by the Leibnitz statement ” Natura non facit saltus”, nature
does not make jumps. In order to derive his law for black-body radiation, Planck
had to introduce that electromagnetic radiation is exchanged by small quanta and not
in a continuous way. The introduction of this concept marks the birth of quantum
physics. At the time of the publication of his work, Planck essentially thought about
his concept basically as a mathematical tool rather than an epoch-making new concept.
Five years later, Albert Einstein found in his works about the photoelectric-effect, that
these quanta of the electromagnetic field - photons - are real particles and not simply
a mathematical construct. It was in 1924 that S. N. Bose managed to derive Planck’s
formula considering photons a gas of indistinguishable particles. His concept of treating
photons as indistinguishable particles was generalised by Einstein to any gas of bosons.
An important consequence of the concept of indistinguishability is, that bosons have an
enhanced probability to be in the same quantum state with respect to distinguishable
particles. This statistical property is the bases of effects such as laser stimulation,
superfluidity, Bose-Einstein condensation, and superconductivity.

Laser stimulation is the phenomenon with the largest impact on our everyday life,
since we are frequently using semiconductor lasers in CD-players, DVD-players, and in
telecommunications. It was in 1962 that the first semiconductor laser was demonstrated
by Hall [50] using a GaAs pn-junction. These first semiconductor lasers only worked
at liquid nitrogen temperature in the pulsed regime. The breakthrough for a broad
application was achieved in 1970 independently by Alferov in the Soviet Union [20] and
Panish at Bell Labs in the US [82, 54] using a heterojunction structure. During the 70s
new crystal growth technologies were developed such as molecular beam epitaxy (MBE)
and metal-organic chemical vapour deposition (MOCVD). These new technologies al-
lowed stacking of almost defect free thin layers of different semiconductor materials in
a very precise and controlled manner. In such ultra thin so-called quantum wells, the
carriers are quasi-confined in the growth direction. In such a 2-dimensional structure,
the number of electronic states is strongly reduced compared with that in 3D and a
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much lower threshold current for quantum-well lasers was anticipated. In 1975 Van der
Ziel and co-workers built the first optically pumped laser with a quantum well as an
active region [113] and an electrically pumped quantum well laser was demonstrated
two years later by Dupuis et al. [42]. The advancement of the MBE technology allowed
the stacking of hundreds of layers of top quality semiconductor material and it was in
1979 that the first vertical cavity surface emitting laser (VCSEL) using Bragg reflectors
to form the cavity was built [107]. All of these developments paved the way for the
application of semiconductor lasers in consumer electronics and telecommunication.

In a laser a large number of photons are in the same state and the resulting light field
is coherent. According to the fundamentals of quantum mechanics, matter particles can
accumulate in the same state and acquire a macroscopic coherence. A consequence of
which is the superfluidity of helium at low temperature or Bose-Einstein condensation
of dilute atomic gases. For a long time it has been a dream to realise such phenomena in
a solid state system. One promising candidate to achieve this goal has been the exciton
quasiparticle in a semiconductor: particularly suited for the effect of Bose-Einstein
condensation it was proposed as early as 1962 by Blatt [11]. The problem of excitons is
that at a certain density their wavefunctions start to mutually penetrate and a plasma
of electrons and holes forms, i.e. the picture of an exciton as a composite boson is no
more valid.

An attempt to overcome this problem was made in the early 90s. A quantum well
was embedded in a microresonator placed at the antinodes of the electric field of its
resonant photon mode. The energy of the resonator mode was fixed around the 1s-
excitonic resonance of the quantum well. Due to the high finesse of the microcavity
and the homogeneity of the quantum well, the strong coupling regime of exciton and
photon mode could be achieved [117]. In this regime, exciton and photon wavefunctions
mix and give rise to new eigenstates of the system, the microcavity polaritons. These
eigenmodes exhibit properties of both exciton and photon mode. The polariton mode
at lower energy, the lower polariton, features a unique dispersion relation. For very
small in-plane wavevector, the dispersion is very steep due to the steep dispersion
relation of the photon mode. At higher in-plane momentum, it recovers the very flat
dispersion relation of the uncoupled 2-dimensional quantum well exciton. The very
steep dispersion of the polaritons around zero in-plane momentum implies that the
polaritons have a very low mass, about 10* to 10° times lower than the exciton mass.
Collective bosonic effects for polaritons can be expected when their spatial separation
is of the order of their de Broglie wavelength. The thermal de Broglie wavelength of the
polaritons is about 100 times larger than the one of excitons (about 0.1um for excitons
and 10um for polaritons at 7" ~ 10 K). This feature makes microcavity polaritons
promising candidates for the achievement of quantum degenerate effects, especially
Bose-Einstein condensation.

After the first demonstration of a microcavity working in the strong coupling regime,
the research focussed on the characterisation of the linear properties such as the in-
plane dispersion [57] and the improvement of the cavity structures. In 1996 a first series
of measurements claimed the observation of the spontaneous transition to a coherent
state in the polariton system. It turned out that the observed transition occured in the
weak coupling regime and a conventional photon-laser transition had been observed.

13



Further works tried to evidence such a transition under non-resonant excitation using
microcavities in the GaAs material system, but a non-linear transition occuring in the
strong-coupling regime could not be reported. Later on the idea was risen to cool
the polaritons using electrons as scattering partners and to overcome the relaxation
bottleneck for the polaritons [74], but the experimental investigation could not demon-
strate a spontaneous coherent phase transition in such a structure [65]. A conclusive
spontaneous phase transition occurring in the strong coupling regime in GaAs based
microcavities has not been evidenced up to now.

However it has been possible to demonstrate the achievement of quantum degen-
eracy of polaritons by the direct resonant excitation of a few polariton modes, when
the coherence of the incident laser beam is transferred to the polariton system. This
coherence is efficiently preserved in a microcavity because pure dephasing mechanisms
are not efficient and the relaxation time is comparable to the population lifetime of the
polaritons. The absence of efficient pure dephasing mechanisms enables the transfer of
the injected polariton excitation to other states preserving the initial coherence. Based
on this property it has been possible to demonstrate a parametric polariton wavemix-
ing, in which the coherence of the incident laser is transferred to a signal and an idler
polariton mode, satisfying energy and in-plane momentum conservation [99]. This
process is highly efficient and presents potential for technical application in ultrafast
amplification devices [93]. A large variety of features observed in optical parametric
oscillators and amplifiers can also be observed in the polariton parametric oscillator
such as, the possibility to create entangled photons [77, 96] and phase coherence [64].
Furthermore, it has been demonstrated, that the polaritons in the parametric scat-
tering regime can indeed accumulate in one single quantum state, demonstrating the
quantum degeneracy of the polaritons [7].

The appearance of a spontaneously driven coherent transition in GaAs based micro-
cavities could not be demonstrated. The relaxation of the polaritons appears to be too
inefficient to achieve a condensation in the lowest energy state as the strong coupling
regime breaks down due to the very high exciton densities needed. In 1996 the first
strongly coupled microcavity in the CdTe material system was realised. The advantage
of this system is the larger oscillator strength of the exciton. Two years later Dang
et al. demonstrated a non-linear stimulation effect occurring in the strong coupling
regime under non-resonant excitation[33]. Up to now this is the only appearance of
a non-linear spontaneous stimulation effect in a microcavity occurring in the strong
coupling regime under non-resonant excitation.

The present thesis investigates the coherence and dynamics properties of microcav-
ity polaritons. Two processes are considered:

e Parametric scattering of polaritons. Here the coherence of the laser field
is transferred to the polariton field and the coherence measured is induced by
the exciting laser. The sample used here is a single quantum well GaAs based
microcavity.

e Incoherent relaxation of polaritons and stimulated emission from the
bottom of the lower polariton band. In this process, the incident coherence
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of the exciting laser is lost. For the experiments a multi quantum well CdTe based
microcavity has been employed.

The basic properties of the microcavity polaritons and the polariton parametric
scattering are described in chapter 2. In a first set of experiments the phase coherent
properties of polariton parametric scattering are investigatated using a coherent con-
trol technique in chapter 3. Chapter 4 is devoted to the rich dynamical phenomena
which can be observed for the polariton parametric scattering in the spontaneous as
well as in the stimulated case. Chapter 5 discusses the coherence properties of the
polaritons spontaneously relaxing to the bottom of the polariton band when a CdTe
cavity is excited non-resonantly. It is discussed whether the appearance of the sponta-
neous coherence can be attributed to the phenomenon of Bose-Einstein condensation
of polaritons. Chapter 6 concludes this work and gives an outlook on the future of
polariton physics.
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Chapter 2

Fundamentals of Polaritons

Polaritons are the elementary excitations of microcavities. In this chapter we develop
the fundamental properties of microcavity polaritons and their interaction at high in-
tensity. We start with the description of excitons in quantum wells and the dispersion
relation of a planar Fabry-Pérot resonator. In section 2.3, the strong coupling of res-
onator photons and excitons is described, the dispersion relation of the polaritons is
presented, and the linear Hamiltonian shown. In section 2.4 the employed microcavity
samples are described. 2.5 introduces polariton parametric oscillation and amplifi-
cation starting with the desription of standard optical parametric amplification and
oscillation in transparent crystals exhibiting a x(®-type non-linearity. Furthermore the
experimental data on parametric scattering is presented. In 2.5.3, the full non-linear
Hamiltonian of the system is described and the Heisenberg equations of motion for
the polarisation in the three parametric modes are developped. A classification of the
different phenomena observed in standard optical amplification and in the microcavity
polariton system is given in 2.6.1.

2.1 Excitons in a Quantum Well

A quantum well consists of a thin layer of a semiconductor material, sandwiched be-
tween a material with a larger band-gap. Consequently the free carriers in the well,
i.e. electrons in the conduction band and holes in the valence band are confined in the
z-direction (the direction normal to the quantum well layer). An electron-hole pair can
be created by the absorption of a photon. In this case an electron is excited from the
valence band into the conduction band and the energy of this excited state amounts to

21.2 21.2
Wkj. Wk
2m 2m;

Ec(k”) — Ev(k”) = Egap + (21)

where m} and m} correspond to the effective mass of the electron and the hole.
k| is the in-plane wavevector of electron and hole in the plane of the quantum well
(they are confined in the z-direction). Electrons and holes have opposite charge and
thus experience an attractive Coulomb interaction. Eq. 2.1 has to be modified in order
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cavity n

Figure 2.1: Schematic of a planar Fabry-Pérot resonator. The two planar mirrors are sepa-
rated by a spacer of some dielectric material with refractive index n and thickness L..

to account for this interaction. In the framework of the Wannier theory of excitons,
the exciton problem reduces to the well known hydrogen problem and its solution are
easily described:

1 et 1
Bo= Ry 5= ~igp 22)
The influence of the crystal ions on the electron-hole pair is accounted for by the
dielectric constant, i.e. the Coulomb interaction of electron and hole is screened by the
dielectric surrounding. The binding energy of the exciton ground state (its Rydberg
constant R,) is of the order of a few meV. As a consequence, the excitons are ionised
at room-temperature in common materials used in semiconductor optics such as GaAs,
InGaAs, and AlGaAs.
The energy dispersion £ (k‘”) of an exciton moving in a quantum well can be written
as follows:

h2k’ﬁ h2k’ﬁ
A Ey+ %, (2.3)

Eén) (k||) = Egap -E,+

Excitons in quantum wells can be excited by resonant light. At normal incidence,
excitons are created by photons of energy Fy = hwy. The effective mass of excitons in
GaAs is approximately one fourth the mass of a free electron (M* = 0.25 - 10731 kg),
or equivalently about 4-5 orders of magnitude heavier than the mass attributed to the
photon mode in a microcavity. As a consequence its energy E;") (kH) varies much slower
than the energy of the photon mode.

2.2 Photon modes in a microresonator

The semiconductor microcavity consists of a bottom distributed Bragg reflector (DBR)
mirror grown on a substrate, a cavity which contains the active medium (the quantum
well) and a top DBR mirror. A schematic of a planar Fabry-Pérot resonator consisting
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Energy

Figure 2.2: Photon energy of the resonant Fabry-Pérot mode versus k. The dashed line
indicates the dispersion of the photon mode which is guided inside the cavity. The N=1, 2, 3
modes are shown.

w

in a cavity with cavity length L. is depicted in fig.2.1. The wavevector ky = % -
a photon mode inside the cavity can be split into its component in the plane of the
cavity (k:”) and its component perpendicular to the plane in the z-direction (kz), where
k3 = k2 + k‘2| The resonator quantises the wavevector of the resonant mode in the
z-direction, such that

n of

2
koL, = %n%cw ~ kL, = Nn (2.4)

w is the photon frequency and n.q, the refraction index of the spacer inside the
cavity.

Using 2.4 the dispersion relation of the resonator E(k|) can be drawn (fig. 2.2). The
photon energies of the resonant Fabry-Pérot modes for N=1, 2, 3 are depicted versus
ky. For small k| the dispersion is parabolic, whereas for high in-plane momenta the
curve joins the dispersion of the 2-dimensional photon mode propagating in the plane
of the resonator (dashed line in fig. 2.2).

For small in-plane momentum equation 2.4 can be approximated by a Taylor series:

he 1 hic kj
Eo(k)) = ——k + z—— (2.5)

z
Neav 2 Neap k2

The first term of 2.5 is the energy of the photon mode in the normal direction of
the cavity. The second can be considered to be the "kinetic energy” of the photon in
the plane of the cavity. Thus we can extract from it a parameter which corresponds
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2k2
to the mass of the resonant photon mode according to Ey;, = 2m” . In order to relate
the mass to the incident vacuum photon wavelength also the resonance condition 2.4

is put into 2.6:

hncay hncayNT ANT
mn c cL. cA\g (2:6)

N is the order of the Fabry-Pérot-resonance and Ag the relevant vacuum wavelength.
For a wavelength of 800nm the photon mass for N=1 (the lowest resonant mode) is
1.4-10730kg - 5 orders of magnitude lower than the mass of an exciton which is typically
of the order of 10% of the free electron mass.

2.3 Strong coupling regime

We have discussed the properties of a quantum well exciton and a Fabry-Pérot resonator
in the previous sections. If we place a quantum well in a microcavity at the antinodes
of the electric field of the photon mode, excitons and confined photons can interact. In
the strong coupling regime, excitons and photons exchange their energy several times,
before the energy leaves the cavity as a photon, or the exciton scatters with a phonon
into a high momentum state. Thus the strong coupling regime requires that the cavity
photon is transformed into an exciton before it decays into an external photon, and
that the exciton transforms into a resonator photon before it experiences dephasing,
in other words the energy splitting 2h2r between the polariton modes is larger than
the respective broadening of the exciton and photon mode. In this case, exciton and
photon are no longer the normal modes of the system and the new eigenmodes of the
system, the microcavity polaritons, form.

Linear Hamiltonian of the system

The linear Hamiltonian of the strongly coupled exciton photon system reads

Hy = Z Ec(k;”)a;[{ak + Z Ex(k”)b;[{bk + Z hQR(aLbk + bLCLk), (27)
k k k

where aL, ax and bl , b are the creation and annihilation operators of photon and

exciton with in-plane wavevector k respectively, and A describes the coupling energy.
The dispersion of the coupled polariton modes can be calculated using the expressions
found in section 2.2 and 2.1 can be written as follows [97]:

Ec(k”) + Ex (k‘”
2

ELP,UP(k‘H) = ) + %\/(EC(]&‘H) — EX(k||))2 + 4‘ﬁQR‘2 (2.8)

The in-plane dispersion of the polaritons and the uncoupled photons and excitons
is shown in figure 2.3. The uncoupled exciton shows almost no dispersion due to its
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Figure 2.3: Angular dispersion of lower and upper polariton when exciton and cavity photon
are in resonance. The uncoupled dispersion of exciton and cavity photon is also drawn.

large effective mass. In contrast, the cavity modes show a very steep dispersion, which
has a parabola-like shape around k£ = 0. The lower polariton dispersion exhibits a dip
around k = 0 and joins the dispersion of the bare exciton for high in-plane momentum.
The shape of the upper polariton mode dispersion is similar to the dispersion of the
cavity modes.

Since exciton and photon are no longer the stationary states of the system, it is
convenient to diagonalise the Hamiltonian by the following unitary transformation:

<5i> B < —Xckk )(?Z > <21;> (2.9)

X}, and Cy, being the Hopfield factors introduced in his pioneering work [56] in 1958
described by

1 1
Cy = (2.10)

Epp(k))—Ec(k
\/1 Erp(ky) Ec(ku))2 \/1—1— Le( H C( H))

We end up with the linear Hamiltonian describing the system in the polariton basis:

H() = Z ELP(kH)prk + Z EUp(k”)uLuk. (2.11)
k k

pL, pk and uL, uy are the creation and annihilation operatrors for lower and upper

polaritons at wavevector k respectively.
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Figure 2.4: Structure of the III-V microcavity sample.

2.4 Microcavity samples

In the experimental work two different microcavity samples were investigated. For the
work on parametric scattering of polaritons, a very high quality GaAs-based cavity
sample has been employed. The very narrow linewidth of the sample allowed for the
coherence and dynamics studies presented in chapter 3 and 4. The CdTe-based II-VI
microcavity was used to study the condensation phenomena of the polaritons described
in chapter 5. In the following we present the linear properties of both cavities.

2.4.1 1III-V GaAs microcavity

The ITI-V microcavity was grown in the group of M. Ilegems by U. Oesterle at EPFL.
It is the product of an intense study in optimising the linewidth of the exciton and the
cavity resonance [110]. The sample structure is depicted in figure 2.4.

The sample was grown on a GaAs-substrate. The GaAs A-cavity is sandwiched
between a pair of Bragg-reflectors being composed of alternated \/4-layers of AlGaAs
and AlAs. The bottom mirror contains 26.5 pairs, whereas the top reflector is made
out of 20 pairs. This asymmetry allows an efficient coupling of the laser light into the
cavity. Whilst the very high reflectivity of the bottom mirror assures a high finesse
of the resonator (the finesse in a similar bare cavity without quantum well and 20/29
pair mirrors amounts to 5530 [110]). The cavity contains an 8 nm quantum well (QW)
of IngosGagogAs. The emission energy of the 1s level of the heavy hole exciton level
is within the band-gap of GaAs and thus the sample can be studied in reflection and
transmission. The linear characterisation of the cavity at normal incidence is shown in
fig. 2.5.

The cavity spacer layer has a wedge and thus the resonance frequency of the res-
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Figure 2.5: Linear characterisation of the III-V cavity sample. The energies of the lower (LP)
and upper polariton (UP) have been carried out on different points in the direction of the cavity
wedge in transmission experiments. The corresponding energy of the cavity and of the exciton
have been calculated using eq. 2.8.

onator can be varied by moving the laser spot over the sample. The quantum well
properties are the same all over the sample. The solid dots show the lower and the
upper polariton resonance at k = 0, whereas the open circles and squares indicate the
bare exciton and cavity energy. At zero detuning of cavity and exciton the polariton
curves show their minimum energy splitting of 2AQ0r = 3.6 meV. The linewidth (not
determined here) is of the order of 0.1 meV [110] giving a splitting to linewidth ratio
of more than 30.

2.4.2 1II-VI CdTe microcavity

The CdTe microcavity consists of a 2\-cavity containing 4 stacks of 4 CdTe quantum
wells at the antinodes of the electric field. The cavity material is C'dygqMngoyTe
and the Bragg mirrors consist of \/4-layers of CdygyMnegoyTe and Cdqsy M gosy Te.
The cavity is characterised in reflectivity measurements. The energy of the polariton
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Figure 2.6: Linear characterisation of the II-VI cavity sample. The energies of the lower (LP)
and upper polariton (UP) have been carried out on different points in the direction of the cavity
wedge. The data is by courtesy of Jacek Kasprzak of the University of Grenoble.

resonances is depicted versus the sample position in fig. 2.6. The lower-upper polariton
minimum energy splitting is 2Adr = 26 meV. The upper polariton curve displays
another anticrossing involving the 2S-exciton level with a minimum splitting of 7.5 meV'.
The width of the upper and lower polariton resonance at the minimum energy splitting
amount to 0.5 meV and 1.46 meV respectively [88].

2.5 Polariton parametric oscillation and amplification

2.5.1 Parametric amplification and oscillation in transparent crystals

Parametric amplification was demonstrated almost 40 years ago [51, 23] using a Li NbOs-
crystal with a non-linear susceptibility X(z)' In the experiment [51], the parametric
amplification of a He-Ne laser beam in a LiINbOs-crystal pumped by an argon ion laser
is observed. Parametric amplification can be obtained straight-forwardly if we have a
medium with a non-vanishing second order susceptibility y(? [18]. In this case, the
polarisation in the medium due to x(? is
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P =@ E@#)2. (2.12)

As input wave we consider a field with two distinct frequency components

E(t)=FEy-e ™ 4 By e e (2.13)

If we precisely calculate the different terms of the second order polarisation we get
five different processes: second harmonic generation of wy, second harmonic generation
of we, sum-frequency generation wy + ws, difference-frequency generation w; — wo, and
optical rectification. In a concrete experiment, usually only one of the processes is ob-
served with an apreciable intensity, since a complex phase-matching! has to be satisfied
in the crystal. We want to focus on the difference frequency generation. In this case,
the non-linear interaction of the incident waves wy and wy (w1 > w9) create a photon
at frequency ws = wy — wy (see fig.2.7). To conserve energy, for each photon created
at ws, a second photon at wy is formed. Fig.2.7 shows the input and the output of
the y(@-process as well as the energy level diagram. At the input, we have one photon
at w1 (a pump photon) and a second one at wy (a probe photon), and at the output
we obtain one photon at ws = w; — we (an idler photon) and two photons at wo (the
amplified signal with one photon from the input, the other one generated due to energy
conservation). The term "difference frequency generation” stands for the fact that a
photon at the frequency difference between the initial two photons is generated. It is
popular as well to name this process parametric amplification, since the photons at fre-
quency wo are amplified. The process w; — ws 4+ w3 can even occur when no ws-field is
applied, which is known as parametric fluorescence [23]. In this case the frequencies wy
and ws are determined by the phase-matching in the crystal. When such a non-linear
crystal is placed in an optical cavity, wy and/or ws can build up to very large values,
when the cavity is resonant with one, two, or all three frequencies involved. Such a
device is known as an optical parametric oscillator. It corresponds qualitatively to the
microcavity, since here the active medium - the quantum well - is placed inside the
cavity.

lenergy and wavevector conservation
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Figure 2.8: On panel (a) the angular dispersion of the lower polariton is shown. The polariton
parametric scattering involves two pump polaritons scattering into a signal idler pair. On panel
(b) transmission spectra are depicted showing signal, pump, and idler emissions. The bottom
axis is the emission angle and the left axis the transmission intensity on a logarithmic scale.

2.5.2 Polariton parametric amplification

As in an optical parametric oscillator with a X(2)' crystal, the signal, pump, and idler
states are resonant with the resonator, which is in our case the microcavity. Since the
states of the active medium (the excitons) are real and not virtual states, and strongly
coupled to the cavity, the dispersion of the resonant cavity is modified by the excitons
as explained in section 2.3. In contrast to a X(z)_ crystal oscillator, polariton parametric
amplification is a x®)- process, since it involves two pump polaritons instead of one.
As stated before, the lower polariton dispersion is the modified exciton dispersion with
a dip around k=0 induced by the photon dispersion. Polaritons inside the dip are effi-
ciently isolated from scattering with phonons. Inside the dip a stimulated parametric
polariton-polariton scattering process conserving energy and in-plane momentum, is
possible [99, 93, 111]. Indeed the particular shape of the lower polariton dispersion al-
lows for such a scattering. The dispersion in the radiative region is depicted in Fig. 2.8.
Polaritons with different in-plane wave vectors can be generated by illuminating the
sample with resonant laser light impinging from different directions. At normal inci-
dence polaritons with zero in-plane momentum are generated whereas for off-normal
angles polaritons with finite in-plane momentum appear. For a special point near the
inflection point of the dispersion called magic wave vector or magic angle, polaritons
can be generated by a resonant pump laser beam and then scatter into a pair of signal
and idler polaritons conserving energy and momentum. The polaritons scattering to
the higher energy state - called the idler polaritons - take away the excess energy e
and momentum Ak of the signal polaritons scattering down to the band bottom. The
phase-matching condition for the scattering reads:

ZELP(kp) = ELp(k‘” =0)+ ELP(Zk‘p), 2k, = ks + k; (2.14)

The process can be stimulated creating a small amount of polaritons at k = 0 using

25



a weak probe beam at normal incidence.

This is shown on the right of fig. 2.8, where the angular resolved detection of the
polariton emission is shown. If the pump beam alone hits the sample at the magic
angle (~ 10° for the employed sample) we observe an emission around k=0 and also
a broadly distributed angular emission at the higher angle idler states. When the
probe is switched on, the signal and idler emission become strongly enhanced and the
angular emission distribution of signal and idler become much sharper. At the same
time the pump polariton reservoir is depleted as the emission from the pump polaritons
is weakened in presence of the probe.

In general the phase-matching condition defined in equation 2.14 allows for an
infinite number of signal-idler modes situated on an eight shaped region in k-space
[30, 68]. Here we don’t concentrate on this feature since all the experiments of the
present thesis have been performed for the above configuration with the pump laser
beam at the magic angle.

2.5.3 Theory of the parametric amplifier

As we have seen, in a standard OPO exploiting the x(?) non-linearity of a transparent
non-linear crystal gives rise to parametric oscillation. In this section we want to derive
the evolution equations for the polariton parametric amplifier [29] starting from the
microscopic Coulomb interaction of the polaritons. In section 2.3 we introduced the
linear Hamiltonian in the polariton basis (equation 2.11). We now want to develop the
full Hamiltonian including the Coulomb interaction of the polaritons and the coupling
to the external photon modes. After that we will draw the Heisenberg equations of
motion for the signal, pump, and idler mode.

Hamiltonian of the system

To obtain the full Hamiltonian for the polaritons we need to add the coupling of the
polaritons to external photons and their mutual interaction due to Coulomb interaction
and the saturation of the exciton oscillator strength. The interaction of the polaritons
and external photon modes will be described in the framework of the so-called quasi-
mode approximation as described in reference [31]. According to the finite finesse of
the cavity, the polaritons are coupled to a continuum of external radiation modes. The
coupling is described by

qu = /dQ {Zg(Q)C’kaak,Q + hc} , (2.15)
k

where ozL q and ay o are the creation and annihilation operators for an extracavity

photon with in-plane wavevector k and frequency Q. ¢(Q2) is a slowly varying function
of €, and describes the coupling between the cavity photon mode and the external
photons [97]. When an external classical field is applied, ay o can be replaced by its
mean value, which corresponds to the classical value of the field.
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The second ingredient needed for the full Hamiltonian is the interaction between the
polaritons due to the Coulomb interaction and the saturation of the excitonic transition
as described in reference [92]. In the experiments, we want to study, the pump only
excites the lower polariton branch. The interaction Hamiltonian is thus written in the
polariton basis, neglecting all terms containing the upper polariton operators uL and

k [31]. The corresponding interaction Hamiltonian reads

Hpp =5 Z ;f Vil Phetq Plo—q Pic Pic- (2.16)
kk’,q

The effective interaction potential Vk K.q reads

6e2 hQR
Viia = Ay ~ Xkt a X X —q Xk +2——-

P (|Ck+q| X + | O [ Xt q) Xiw—q Xk (2:17)

e, €, A\x, and ngy being the elementary charge, the dielectric constant of the cavity,
the exciton Bohr radius, and the saturation density of the excitonic transition. The first
term in 2.17 describes the contribution of the Coulomb interaction between excitons,
whereas the second accounts for the saturation of the exciton oscillator strength. It is
important to point out, that both terms are always positive, i.e. the interaction poten-
tial is repulsive. The saturation density for the excitons can be obtained corresponding
to [92]

7 1 0.139
Nsat = 1_6@ = W (2.18)
and amounts to 8 - 10'%ezcitons/cm? for GaAs with Ax = 13nm.

We have now described all of the components needed to express the full Hamiltonian

H =" Epp(k)plpx + Hpp + Hym. (2.19)
k

Equations of motion for signal, pump, and idler polarisation

In principle, the Hamiltonian permits the deviation of the equations of motion for the
polariton field operators. The next step towards obtaining the equations of motion is
to make some approximations so the set of equations can be solved numerically. Most
of the experiments on parametric scattering of polaritons are made in the stimulated
regime. As stated before, the operator describing the external photon modes, can be
replaced by their mean values. Furthermore we are working above the stimulation
threshold. In this case, the contribution of the incoherent populations and the number
correlations between signal, pump, and idler are negligible with respect to the coherent
polarisation building up in the three modes [98, 102]. Thus, it is sufficient to inves-
tigate the mean values of the lower polariton operators at signal, pump, and idler.
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Furthermore, the interaction of the polaritons is treated only to the first order. This
is justified by the fact, that the pump mode is strongly occupied, and the signal and
idler polarisation can be neglected compared to the pump. It is convenient to write the
polarisation in terms of the rescaled polarisation P which is given by

Py = A—\/‘%@k% (2.20)

where A is the quantisation area.
The equations of motion in terms of P read:

. _OP .
Signal: zha—to = (Bo — iv0)Po + EimPsy, P2, + Folt) (2.21)
0Py - . .
Pump: A atp = (Ekp — Z’Ykp),Pkp + 2Eintpkp7)0p2kp + ka (t) (2.22)
0Py ~ . .
Idier: ih—22" = (B, — ivau,)Pox, + Bine PoPR, (2.23)

where Iy, Py,, P, are the mean lower polariton fields for signal, pump, and idler
wave-vectors respectively and F;,; is the coupling energy due to polariton-polariton
scattering potential. On the RHS of each of the three equations, the first term is the
'free term’, i.e. the evolution of the polarization of signal, pump, and idler mode in
absence of interaction with the other modes. The homogeneous k-dependent linewidth
vk determines an exponential decay rate of the signal (v is determined by the losses of
polaritons through the cavity mirrors and non-radiative losses). Note that the energy
E(k) includes a renormalization due to the polariton-polariton interaction and therefore
it is slightly higher than the energy F(k) calculated in the absence of pump polaritons.
The second term is the parametric scattering rate: for the signal (idler) it is proportional
to the square of the pump polarization (i.e., proportional to the pump intensity) and
to the conjugate of the idler (signal) polarization. The symmetry between signal and
idler equations reflects the fact that for each polariton scattering from the pump down
to the signal there is another one scattering up to the idler and vice versa. This reflects
the mutual classical correlation of the creation of signal and idler polaritons. The last
term in the first two equations (Fp,(t)) corresponds to the external driving electric
field, i.e., the temporal evolution of the pump and probe laser pulses.

Other models of parametric amplification

Since the first model presented by Ciuti, different models have been developed starting
from the Hamiltonian equation 2.19. The model presented contains the evolution of
the polarisations of signal, pump, and idler and works in a regime, where a strong laser
field is present at the pump and a weak laser field stimulates the scattering, i.e. it is
applicable above the threshold for parametric amplification. When pump and/or probe
intensity are adjusted far above threshold, second order scattering processes become
important, i.e. for example the process {0,k} — {—k, 2k} occurs. In [101] experimen-
tal data evidencing such processes are shown and a steady state model describing the
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data is developed. Another problem arises, when the pump intensity is strong: The
first order polariton interaction reaches values, which are of the order of the splitting
of the polariton modes. Savasta et al. have proposed a model addressing this problem,
describing the polaritons interaction including second order interaction of excitons, i.e.
the two exciton correlations [95, 94]. To model the spontaneous parametric scattering,
it is not sufficient to look only at the mean polarisation in the system. The polari-
ton field operators can be written in terms of the mean polarisation and an operator
describing the quantum fluctuations around the classical value. Accounting for all pos-
sible correlations and polarisations, a system of 12 coupled equations of motion is found
[98]. The model can be used to study the behaviour of the system when starting at very
low pump intensity below threshold and successively passing the stimulation threshold
for the scattering. It is indeed a challenging task to solve these 12 coupled equations.
A similar, slightly less complex model is used to evaluate the quantum statistical prop-
erties of polaritons in spontaneous parametric scattering just below threshold [102]. In
[30], a 2D-space of wavevectors is used to obtain the shape of parametric luminescence
in k-space. The parametric process in [30] is seeded by extracavity photon modes.

2.5.4 Phase-relation between signal, pump, and idler

We want to study the phase relation between signal, pump, and idler. The parametric
interaction of the polaritons is found in the second term of eq.2.21. If we set the
polarisation of the signal, pump, and idler to

Pi(t) = A;(t) - e wit+95) (2.24)

with A;(t) being the slowly varying real amplitude of the polarisation P;(t), the
second term in eq.2.21 gives

—Ao(t)iw . e—z(wot+¢0) = ﬁAﬂsp (t)Akp (t)2 . e+z(w2kpt+¢2kp)e—2z(wkpt+¢kp)' (2.25)
To satisfy 2.25 for any time ¢, the condition —Ay(t)iw = E;gf Aoy, (1) A, (t)? has to
be satisfied and we obtain

e~ wot+eo) _ oFi(waky t+dary) o —2i(why t+dk,) (2.26)

Separating the frequency terms and the phase-factors ¢; we obtain

1 = e (2wky—wak, —wo)t | —=i(2¢k, P2k, —¢0) (2.27)

Due to the phase-matching discussed in section 2.5.2 the first factor equals 1 and
we get the phase relation between signal, pump, and idler

20k, — ¢k, — 90 = 0. (2.28)
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This phase relation has been derived from the equations 2.21 - 2.23 for the paramet-
ric amplifier. It is also valid for the spontaneous parametric scattering above threshold,
when the signal and idler beams are coherent.

2.6 Definition of terms

2.6.1 Classification of processes

We want to define briefly the terms for the processes related to parametric amplification
in transparent (@ crystals and in a strongly coupled microcavity:

1.

parametric amplification in transparent, Y non-linear crystals, also
known as difference frequency generation. A pump wave with frequency w; hits
a x@ non-linear crystal in its transparency region together with a probe at fre-
quency we. The probe stimulates the creation of a pair of photons at wy and
w3 = w1 — wso. wo and ws are called signal and idler waves. At the output of
the crystal an idler beam (ws) is obtained. The probe beam at wy is amplified,
explaining the term parametric amplification.

. parametric fluorescence in a transparent, X(2) non-linear crystal: In

principle a similar process to the parametric amplification (1), but not stimulated
by a probe beam. A pump photon at wq decays spontaneously into two photons
of frequencies wy and ws, where wy + w3 = wy. Signal and idler photons are
entangled.

. parametric oscillation in a resonator containing a transparent y(?) non-

linear crystal: The spontaneous creation of a signal-idler photon pairs as in
(2), when the x(® non-linear crystal is placed in a resonator being resonant with
one, two, or all three parametric modes. Below the threshold for the parametric
oscillation correlated signal-idler pairs are created, whereas above threshold signal
and idler are coherent beams.

seeded parametric oscillation in a resonator containing a transparent
X(2) non-linear crystal: The same process as (3) with an applied probe beam
seeding the parametric oscillation. There is parametric amplification of the probe.

. polariton parametric oscillation in a semiconductor microcavity: Semi-

conductor microcavity resonantly excited by a pump laser beam. Signal and idler
polariton pairs form corresponding to the phase-matching relation 2Erp(k,) =
Erp(ky = 0) + ELp(2ky). The analogy of this process is the optical parametric
oscillator (3).

. polariton parametric amplification in a semiconductor microcavity:

Same as (5), but the polariton parametric scattering process is stimulated by
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a weak probe beam 2. The analogy of this process is the seeded optical paramet-
ric oscillator (4).

2.6.2 Characteristic times

All the processes investigated in this work have a characteristic timescale of the order
of a few up to a few hundred picoseconds. We have to carefully define the different time
parameters characterising the properties of polaritons and their interactions. In this
work, the terms used in the framework of the formalism of optical and semiconductor
Bloch equations [103, 53] will be employed:

e T3 accounting for the population decay (diagonal elements of the density matrix).

e T4 accounting for the coherence decay (off-diagonal elements of the density ma-
trix)

® [’y is the homogeneous linewidth of the resonance accessible by spectroscopic
measurements:

Thom 1 1 1

_ - 1 2.2
oh T, 20 T (2.29)

Ty will be referred to as the coherence time in this manuscript.

The coherence time T contains a contribution from the population decay time 77 (or
lifetime) for the given resonance, and the pure dephasing time 7%, which characterises
pure dephasing mechanisms like interaction with phonons or carrier-carrier scattering.
The microcavity polariton states, specially the lower polaritons are efficiently isolated
from such pure dephasing mechanisms so that generally the pure dephasing time is very
long compared to the population lifetime and the coherence time 75 thus almost equals
twice the population lifetime. The spectral linewidth of a resonance is proportional to
the inverse of its coherence time.

In the present work we usually speak about the decay of intensities. If we speak in
this case about a coherence time, we mean the coherence decay time of the intensity
which equals half the coherence time of the polarisation. When the considered reso-
nance is inhomogeneously broadened, the coherence time is the apparently measured

coherence time T3, which is shorter than T according to % = Tiz + F”&%
2

2The term seeded parametric oscillation in a semiconductor microcavity would be more appropri-
ate in analogy to the nomenclature for transparent non-linear crystals. The established term in the
polariton community is however ”polariton parametric ammplificaton”.
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Chapter 3

Coherent Control of Polariton
Parametric Scattering

In this and the following chapter, we will study the coherence and dynamical properties
of polariton parametric scattering. This chapter will focus on the coherence properties
of polariton parametric amplification when the parametric scattering is stimulated by a
weak probe. It is a well known property of seeded parametric oscillation in transparent
X(z)—crystals, that the signal, pump, and idler emission have a mutual phase relation,
i.e. they are phase-coherent. The coherence of the polaritons during a stimulated
parametric scattering process is conserved in the sense of equations 2.21-2.23 of the
polariton parametric amplifier [29], and illustrated in equation 2.28.

The aim of this chapter is to show experimentally the phase coherence of signal,
idler, and pump during the parametric polariton amplification process, using a coherent
control technique.

The idea of coherent control pulse shaping techniques was first raised in the domain
of physical chemistry [114]. Such techniques have allowed for the control of chemical
reactions [6] and even for the control of the shape of electronic wavefunctions [116].
Coherent control of exciton dynamics in quantum wells [55] and quantum dots [14]
have been demonstrated. The coherent manipulation of microcavity polaritons has
been shown in [76] and [69], and the coherence time of the polaritons was measured
[76].

3.1 Experimental Setup

The sample described in section 2.4.1 is cooled down in a cold finger cryostat or a
helium bath cryostat to temperatures of ~ 10 K or ~ 2 K respectively. The experimental
setup is an ultrafast pump double probe experiment and depicted in fig.3.1. The
excitation pulses are emitted by a mode-locked Ti:sapphire laser working with an 80
MHz repetition rate and a 150 fs pulse duration. The beam is divided into the pump
and the probe. The pump beam passes a ~1meV wide band pass filter and therefore
has a duration of >~ 1 ps. The pulses impinging on the sample at the off-normal angle
of ~ 10°, which corresponds to the magic angle for our cavity. The probe pulses pass a
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Figure 3.1: Experimental setup.

stabilized Michelson interferometer, and arrive at the sample at normal incidence. The
relative delay and phase of the two probe pulses can be varied (see appendix A and
[115]). The emission emitted at the rear of the sample was imaged onto a CCD camera
with angular resolution to image the signal pump, and idler emission at the same time.
The signal emission is also detected in time integration with spectral resolution.

3.2 Quantitative analysis

To study the coherence properties of the scattering, two kinds of measurements have
been made in order to obtain information about the dynamics and the coherence of the
scattering. First the experiment was performed using a single probe pulse by blocking
one of the interferometer arms (see fig. 3.1). The transmission spectrum of the probe is
shown in fig. 3.2 (a). If only the probe excites the sample we observe two transmission
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peaks at the lower and upper polariton resonance. The lower polariton peak is at
1484.7 meV and the upper polariton at 1488.5 meV. The peak width corresponds to the
0.3 meV resolution of the spectrometer. The upper polariton peak is much less intense
since the chosen position on the sample corresponds to a negative detuning between
the photon and the exciton resonance of ~-1meV (see fig.2.5). When the pump beam
is switched on and tuned to a ~ 10° incidence angle, the probe transmission is greatly
amplified. The spectral position of the gain peak (0.1 meV blue-shifted with respect
to the unperturbed lower polariton energy), the pump angle for maximum efficiency
(~ 10°) and the threshold on the pump power (not shown) are in agreement with the
model of the polariton parametric amplifier [29].

To get information about the dynamical behavior of the system the probe to pump
delay has been scanned. The measurements are presented in fig. 3.2 (b). The pump
hits the sample at time zero and the probe is delayed. The emission intensity has been
normalized to the transmission intensity of a single probe pulse, whereas Iy, = Io is
the approximate threshold intensity for the parametric amplification at delay 0. This
measurement is sensitive to the temporal evolution of the pump polaritons since the
amount of scattered polaritons is related to the number of pump polaritons remaining
available for the scattering when the probe excites the sample. The decay of the time-
integrated signal intensity with the probe delay becomes quicker with increasing pump
density which can be attributed to the stronger spontaneous parametric scattering and
stronger dephasing of the pump polaritons at high pump intensity.

With the pump-single probe experiments the dynamics of the scattering have been
probed. In a second step we employ pump-double probe coherent control measurements
which are sensitive to the coherence properties of the scattering. Finally we compare
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Figure 3.2: (a) Probe-Transmission spectra with (full line) and without (dashed line) pump
excitation; one probe pulse only hits the sample. At the chosen position on the sample, the
energy of the empty-cavity mode (1486.0 meV) is slightly lower than the bare exciton energy
(1487.0 meV). (b) Evolution of the time integrated signal emission as the probe to pump delay
is scanned for different pump density (Ip is the pump density at which threshold for parametric
amplification is reached, i.e. the probe intensity is amplified by a factor of 2. It corresponds to
~ 4 -10hotons/(cm?pulse)). The intensity has been integrated over the whole signal peak
width of the LP emission and normalized to the transmitted signal intensity obtained with a
single probe in absence of the pump.
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the two measurements. In the coherent control pump-double probe measurements the
excitation geometry is as follows (see also fig. 3.1): the pump and a first probe hit the
sample at the same time and the second probe excites the sample at a delay time 7
relative to the first one. The relative phase between the two pulses is stabilized and
scanned using the interferometer. In fig. 3.3 the transmitted intensity normalized to the
intensity of a single probe is depicted versus the relative phase of the two probes. The
contrast of the interference fringes is defined as C' = (Ijhax — Imin)/(Imaz + Imin) where
Lnaz and I, are the respective maximum and minimum intensities of the oscillations.
On panel (a) and (b) the pump density is 71y whereas in (c) and (d) the density is 201j.
The second probe pulse is delayed with respect to the first one by 7=0 (a), 8 ps (b), 1 ps
(c), and 7ps (d). At zero delay and low pump power (panel (a)), when the two probes
perfectly overlap, the coherent control is complete and the emission goes to zero for
destructive interference of the probes. This is due to optical interference of the probes
before reaching the cavity. When the second probe is delayed by 8 ps (panel (b)) the
oscillations nearly go to zero and the contrast is around 80 %. The phase imprinted
onto the polaritons by the first probe is conserved until the second probe enters the
cavity and until the scattering process is completed. When the pump power is risen to
201y, the shape of the oscillations becomes slightly asymmetric especially for 7 = 1ps
(panel (¢)). The minimum of the oscillaton is much sharper than the maximum. When
the delay between the probes is 7 = 7ps (panel (d)) the asymmetry of the oscillations
is much weaker. The contrast is only about 40 % which is only half of the contrast
measured in panel (b).

To map out the coherence properties in detail the coherent control experiment has
been performed for various delays and pump powers. The measurements are shown in
fig. 3.4. The total coherence time of the lower polariton at k=0 has been determined
using only the two probe pulses in the coherent control configuration without the pump.
The coherence time, which can be extracted from fitting a calculation for the contrast
of the interference oscillations of two probe pulses without pump, is 10 ps!. When the
pump is switched on and the power is adjusted to approximately 7 times the threshold
intensity Iy for the scattering, the contrast decays even more slowly than for the probes
alone, evidencing a long lasting coherence of the polaritons [41].

Finally, in order to quantify the degree of coherence and to estimate the influence
of non-radiative dephasing we now compare coherent control experiments, sensitive to
the coherence, and single probe experiments sensitive to the dynamics of the scattering.
We calculate the interference contrast as if the amplification dynamics of the scattering
were completely independent?. This calculated contrast is shown together with the
measured contrast in fig. 3.4.

1Under the condition of low excitation density and a homogeneous polariton linewidth, the polariton
coherence time can be evaluated. The coherence time is then obtained by fitting the following expression
to the lower polariton contrast at & = 0:

Tt ot _t
C = ‘;mawlﬁmén — Qe 7)7-(-e 7)7 _ 2 >+, where t is the delay of the second probe and 7 the
maztImin (14e~ 7)24(1—e 7)2 14+e 7

polariton coherence time.
2We evaluate the mean amplitude A(T) of the polarization at k=0 as the square root of the time
integrated signal intensity I(7) in a single probe experiment. The calculated contrast is then equal to

C = (JA(0) + A(T)]* = |A(0) — A(7)[*)/(|A(0) + A(T)[* + | A(0) — A(7)[*)
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Figure 3.4: Contrast of coherent control oscillations versus the delay between the two probe
pulses; the first probe pulse is synchronous with the pump. If 1,4, and I,,;, are the maximum
and minimum values observed in the coherent-control oscillations, the contrast C is defined
as C = (Imaz — Imin)/(Imaz + Imin). The incident pump photon densities are normalized to
Io = 4 -10%hotons/(cm?pulse) which is the density at which the stimulation threshold is
reached. Each curve is measured for a different pump density, as indicated in the legend. The
calculated contrast has been obtained from the experimental data shown in fig. 3.2 as explained
in the text.
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Figure 3.5: Signal contrast for the experiment (a) and the simulation (b) and simulated
contrast of the pump (c). The left axes depict the pump power and the bottom axes the
relative delay of the two probe pulses. The contrast is shown on a false color scale.

For the contrast at I = 71y we observe that the measured and calculated contrast
curves overlap and it can be concluded that in this low pump power regime the co-
herent control experiment can be understood in terms of two independent parametric
scattering processes interfering with each other. This behavior occurs only if we assume
that the signal polaritons have conserved their phase until the second probe arrives;
i.e., the dynamics of the polaritons is purely coherent and limited only by the radiative
dephasing.

When pump power rises to 14 and 20[y the measured coherent control contrast
presents a fast initial decay and deviates from the calculated contrast curve. The
corresponding calculated contrast remains near the values of the bare lower polariton
contrast. This demonstrates that for a pump power far above threshold the scattering
processes are no longer independent. This can be interpreted in terms of excitation
induced dephasing [26] or in terms of a depletion of the initial pump reservoir. Indeed
the scattering rate into the signal and idler states is proportional to the square of the
pump density (see eq.2.21-2.23 and ref. [29]), and the amplification of the first probe
depletes the pump polariton supply.

3.3 Modelling of the contrast behaviour

To understand the behaviour of the contrast, simulations using the model of the micro-
cavity parametric amplifier [29] described in section 2.5.3 were performed. Correspond-
ing to the double-probe coherent control experiment, in the modelling a pump and a
first probe excite the sample at ¢ = 0, whereas a second probe excites at a delay time 7.
Equations 2.21-2.23 are integrated numerically to obtain the intensities versus time of
signal, pump, and idler. To obtain their time-integrated values, which permit a com-
parison with the experiment, the three intensities have been integrated over time again
and - as in the experiment - the maxima and minima of the oscillations are extracted
to calculate the contrast. To fit the decay of the contrast (fig. 3.4 solid line) at zero
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pump excitation density, a homogeneous exciton and cavity linewidth of 98 ueV has
been inserted into the calculation. Fig. 3.5 shows the same contrast data as in fig. 3.4,
but depicted on a contour plot (panel (a)). The simulated contrast is depicted on panel
(b). As in the experiment, below threshold the contrast immediately decreases, then
reaches a maximum above threshold and finally decays with rising pump power. How
can these phenomena be explained? To obtain more information we examine the evolu-
tion of the pump polariton reservoir, which is the supply of the system. At high pump
power we can expect that the pump polariton supply is significantly depleted. A good
measure for this is the contrast of the fringes at the pump caused by the pump de-
pletion. For high scattering rates the intensity arising from the pump transmission for
constructive signal interference can be expected to be weaker than for the destructive
interference (i.e. the oscillations at the pump are in anti phase). Also the contrast of
the pump oscillations can be calculated putting the respective maximum and minimum
emission intensities from the pump. The pump contrast is depicted in fig. 3.5 (c). At
high pump power there is some significant contrast for small delays which means that
in this regime the pump polariton reservoir is depleted. The contrast at the pump
appears at the same time as when the signal contrast starts to decay more quickly
above the contrast maximum. This evidences two things: first, the contrast decays
very rapidly in the beginning because the scattering starts to saturate (the pump reser-
voir is depleted) and thus the scattering processes due to the two respective probes
are no longer independent. Second, the poor contrast at longer delays indicates that
the process is practically finished before the second probe pulse reaches the cavity at
high pump power. If we locate the oscillations shown in fig. 3.3 in the contour plot
of the signal and pump contrast we can explain this saturation effect stated earlier.
Panel (c) in fig. 3.3 exhibits the highest degree of asymmetry between maximum and
minimum and is located at a point in the contour plot where the pump contrast is
about 0.07 (see fig. 3.5). Panel 3.3 (d) with the weaker asymmetry is at a point where
the contrast is only 0.01. The shape of the two other oscillation plots (fig. 3.3 (a) and
(b)) is symmetric and located at points on the pump contrast contour plot where the
contrast is approximately zero.

3.4 Coherent control of signal, pump, and idler

For energy and momentum conservation, the parametric process has to involve both
signal and idler polaritons [29], i.e. two polaritons from the pump being scattered into
a signal-idler pair. The effects of the coherent control should therefore appear for sig-
nal, pump, and idler and not only in the normal direction, where the signal intensity
is detected. Fig. 3.6 shows the angular pattern of the emission of the microcavity from
the substrate side, opposite to the excitation side (all the spectrally-integrated emission
is collected). The measurements are taken in the coherent control configuration, as a
function of the relative phase between the two pulses. The pump power was approx-
imately I, = 14Iy. The coarse delay between the two phase-locked probe pulses is 2
ps. The incidence angle 6 is measured with respect to the normal direction, so that the
probe is transmitted around zero angle, while the pump is at # ~ 9° The idler branch is
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Figure 3.6: Angular pattern of the emission in transmission geometry as a function of the
control phase. The delay between the two phase-locked probe pulses is 2 ps. The lower panel
shows two sections of the surface plot corresponding to a constructive and a destructive control
phase. The signal and pump emissions were attenuated (up to 14 deg) by four orders of
magnitude with a neutral density filter in order to show the whole angular pattern on the same
picture. In order to illustrate the effects of the coherent control on the pump beam, the probe
density employed here was higher (5-10%polaritons/(cm?pulse)) than that in the measurements
in fig. 2, while the pump density was lower (~ 10'polaritons/(cm?pulse)).
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also visible at an angle slightly larger than twice the pump angle. This is because the
parametric scattering conserves the in-plane momentum of polaritons, which is propor-
tional to sinf. Two sections of the surface plot are also shown to quantitatively compare
the angular patterns obtained when the two probe pulses are in phase and out of phase.
Signal and idler oscillations are in phase, i.e., when the coherent control maximises the
emission in the probe direction, the idler also is maximized. Emission from the idler
states is thus correlated to the signal emission. Simultaneously, the antiphase with the
pump beam is clearly seen on fig. 3.6, as, for energy conservation, the polaritons which
are not found in signal and idler branches have to be at the pump angle.

When the two probe pulses are in antiphase, the emission in the probe direction
is strongly reduced and the polaritons at the pump angle decay spontaneously (see
also fig. 2.8, right panel, dotted line), as in the absence of an external seed, when the
parametric scattering can be started by the few pump polaritons that relax into the
band bottom, generating an emission around the normal direction [111, 10, 100, 30].
For the measurements in fig. 3.6, the incidence angles of pump (~ 9°, instead of the
optimal ~ 10° of fig. 3.2) and probe (~ —1°) have been chosen in order to distinguish
the emission stimulated by the probe (occurring at ~ —1°) from that occurring at
~ 1.5° after the ”spontaneous” parametric scattering of the pump polaritons. The
”spontaneous” parametric emission of the pump has a broad angular pattern and is
correlated to an idler emission at ~ 17.5° Remarkably, when the second probe interferes
constructively, the emission generated by the pump alone is strongly reduced. This
directly confirms the pump depletion at I = 141, which has also been shown in fig. 3.5.

3.5 Conclusions

In conclusion, we have demonstrated the coherent control of the polariton parametric
scattering in a semiconductor microcavity. Thanks to the coherence and the stimulation
effects in the parametric scattering of polaritons, weak sub-picosecond laser pulses may
be used to control a very intense optical emission. Using simulations of the signal and
pump contrast it has been shown that the decrease of the contrast at high pump power
is due to the depletion of the pump polariton reservoir. The parametric scattering
involves polaritons with three different wavevectors, so that the control pulse exciting
the sample at normal incidence is able to control the occupation of polariton states
with different momentum all over the dispersion. Microcavity polaritons are therefore
a model system for studying Coulomb quantum kinetics, as they combine a very efficient
interaction, needed for fast manipulation, with a low decoherence.
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Chapter 4

Dynamics of polariton
parametric scattering

In the previous chapter we presented time integrated measurements demonstrating the
coherent control of parametric polariton scattering. It was shown that the employed
probe pulses could serve to control the signal, pump, and idler emission. As an impor-
tant feature of the parametric polariton emission it has been demonstrated, that the
signal and idler emissions are correlated. In this chapter, we again use our resonant
pump-probe setup to measure the emission dynamics of the signal in real time. In par-
ticular, we want to investigate the influence of the parametric nature of the scattering
on its dynamics.

In the past, there have been studies on the dynamics of parametric polariton scat-
tering both in the stimulated [46] and in the spontaneous regime [46, 68, 59|, using
momentum resolved streak camera detection [46, 68] or four-wave-mixing [59]. In the
present study, we use an angle resolved streak camera setup to get an overview of the
pump and signal dynamics and an ultrafast upconversion technique to investigate very
fast features of the signal dynamics.

The chapter begins by discussing a measurement of the temporal emission pattern
from the microcavity between signal and pump using a streak camera. The dynamical
behaviour is monitored for a varying pump intensity. In section 4.2, the dynamical
mechanisms in the polariton parametric scattering are discussed using the model [29]
introduced in section 2.5.3. The simulations are compared to the measurements pre-
sented in section 4.1.

In section 4.3 the following fast dynamics features are investigated using an ultrafast
upconversion setup: delayed build-up of the scattering (4.3.1), behaviour with pump
and probe intensity (4.3.2), influence of the pump incidence angle (4.3.3), transient
de-amplification (4.3.4), and the influence of the shape of the probe pulses (4.3.5). In
section 4.4, the dynamics properties of the parametric oscillation in the spontaneous
regime (without applied probe pulse) is analysed using an interferometer autocorrela-
tion setup.
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4.1 Experimental overview: Dynamics in k-space

To obtain an overview of the dynamics happening in k-space, we employed an angle
resolved streak camera setup, as depicted in fig. 4.1. The sample is held in a cold finger
cryostat at a temperature of 10 K. The sample is excited by the pump and probe pulses,
the pump hitting the sample at the magic angle, the probe is at normal incidence at
k = 0. The angular emission is collected in transmission by an objective at its focal
distance f. The k-space we want to investigate, is located in the conjugated plane at
distance f behind the objective. This plane is imaged onto the entrance slit of the
streak camera using a second lens. The angular range of the detection covers angles
encompassing both the signal and the pump (—5° to 15° ). The idler emission could
not be time resolved as the idler intensity is about 10* times weaker than the one of
signal and pump (see fig. 2.8 in section 2.5.2). The time-resolution of the streak camera
setup is approximately 5 ps.

Panel (a) of figure4.2 shows the time-evolution of the signal and the pump in the
spontaneous regime on panel (a) and (b). The pump impinges onto the sample at an
angle of 10°, which corresponds to the magic angle of the microcavity. For a delay of
10— 16 ps, we observe a trace of polaritons emitting between the pump and k = 0. This
can be attributed to pump polaritons which relax down the lower polariton dispersion
by the emission of phonons. The polariton trace starts at about 10 ps at an angle of 8°
and reaches the signal state at t ~ 16 ps. The broad emission around the signal state
reaches its maximum at t ~ 20ps. The emission intensity then decays corresponding
to the polariton lifetime. The pump polariton emission shows a somewhat strange
behaviour: During the decay of the pump intensity, the pump emission shifts from 10°
at t = 0 to around 8° at t > 30ps. The whole angular peak shifts whilst conserving
its angular width. Thus this cannot be explained by phonon interaction as for the
polaritons scattering down to k = 0 implying that the shift must be due to a mechanism
acting on the whole pump occupation. Such a mechanism could be for example a shift of
the polariton dispersion [30] due to the excitonic blueshift or a reduction of the exciton
oscillator strength. In both cases, the pump polariton states shift to higher angles (see
fig. 4.3 and its caption), which is the opposite behaviour. The reason for the observed
behaviour is probably that the pump polaritons relax under the emission of a second
phonon species. This process must be less efficient than the one being responsible for
the polariton trace between pump and k£ = 0.

On panel (b) of fig.4.2 the temporal angular behaviour for the parametric am-
plification in the pump probe experiment is displayed. The probe hits the cavity at
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Figure 4.1: Streak camera setup.
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Figure 4.2: Images taken with the streak camera showing the evolution of k-space in time.
The horizontal scale displays the emission angle, whereas the vertical shows the emission delay.
The false colour intensity scales are the same for both panels. Panel (a) shows the angular and
time-resolved emission when only the pump hits the sample. The lower panel (b) displays the
evolution for the stimulated parametric amplification in the pump probe experiment. The time
scale is consistent for all the streak camera measurements (fig. 4.2, 4.4, and 4.5). The zero of the
scale has been set to the maximum of the transmitted probe curve in fig. 4.4 (no pump). The
pump polariton density is 4 - 10!! /em?, and the probe polariton density to 3 - 10%/cm?. Panel
(c) and (d) display the time-integrated signal intensity at k& = 0, when the pump intensity is
varied. The data has been obtained analysing streak camera measurements for different pump
intensity.
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Figure 4.3: Schematic illustrating the polariton dispersion shift due to the excitonic blue-
shift and the saturation of the exciton oscillator strength (the energy shift is exagerated). The
blue-shift shifts the whole polariton dispersion to higher energy. It further increases the depth
of the lower polariton dispersion around k& = 0, since the Hopefield factor of the polaritons
around k = 0 is smaller than the one for higher in-plane momentum states. The saturation of
the exciton oscillator strength tends to decrease the lower-upper polariton splitting and should
thus also shift the states inside the dip of the dispersion to higher energies. At ¢ = 0 the
re-normalisation is strongest. The pump polaritons are generated at the laser incidence angle.
As the density decays, the dispersion shifts back to its linear value. The pump polaritons
should thus shift to higher angles. This is the opposite behaviour to the one observed in the
experiment.

normal incidence at zero delay. The pump-probe delay has been adjusted to obtain a
maximum time-integrated signal intensity. The probe is immediately amplified. The
emission intensity peaks around t = 5ps. The probe intensity then decays, since the
pump polariton mode has been strongly depleted by the amplification (compare the
intensity with panel (a)). The pump peaks at t ~ 4ps, 3ps earlier than in the spon-
taneous case (panel (a)), where no probe is applied. This indicates, that a strong
amplification takes place even before the pump reaches its maximum. This observation
is similar to what has been observed in reference [46]. For the spontaneous parametric
scattering (panel (a)), an appreciable emission from polaritons relaxing from the pump
mode is observed. In the stimulated case (panel (b)), the contribution of the phonon
mediated relaxation of pump polaritons is much weaker (almost no emission between
the pump and signal emission angle is observed), since a large amount of polaritons
have already left the pump.

The angle and time-resolved measurements have been performed for a large number
of pump intensities. The time integrated signal intensity obtained from the respective
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time-resolved measurements are displayed on panel (c) for the spontaneous case and
panel (d) for the stimulated case. To measure the time integrated signal emission, the
emission intensity is summed for an angular range of § = 0 + 0.5° and integrated in
time. The blue squares on the time-integrated graphs are the data points correspond-
ing to panel (a) and (b). The dependence of the time-integrated signal intensity on
pump intensity depicted on panel (c) is quadratic. A quadratic dependence of the time-
integrated signal intensity on the pump intensity indicates, that the signal is populated
from a process involving two pump plaritons, in our case parametric scattering. The
emission around k£ = 0 in the signal, initially started by the pump polaritons which
have relaxed to the bottom of the dispersion, is weakly amplified due to the paramet-
ric scattering (the dependence of the time-integrated signal intensity on panel (c) is
quadratic). On panel (d), we observe an exponential dependence of the signal intensity
on the pump intensity, showing that the parametric scattering is stimulated by the
polaritons generated by the probe. The measurement presented on panel (b) corre-
sponds to a pump intensity far above threshold, where the signal intensity saturates.
From the data presented on panel (c) and (d), we can thus conclude, that the threshold
for self stimulated spontaneous parametric polariton scattering is much higher than
for the stimulated amplification of a coherent signal polarisation excited by a weak
probe pulse. The feature of the two different thresholds for the spontaneous and the
stimulated parametric scattering will be addressed again in section 4.4.

In the following section, we analyse in quantitative detail the temporal behaviour
of the stimulated signal emission at & = 0 when the probe is applied. To enable us to
do this, the experiment presented here has been performed for series of different pump
intensities.

4.1.1 Dynamics of the signal at k£ =0

Images in the delay-wavevector plane similar to the ones shown in fig. 4.2, lower
panel, have been analysed for different pump intensities. To obtain quantitative data,
the emission at 8 = 0 4+ 0.5° has been summed to obtain time-resolved signal intensity
curves. Some examples of the obtained intensity versus time traces are shown in fig. 4.4.
The black curve shows the signal intensity measured when the probe only excites the
sample. The probe pulses excite the sample at ¢ = 0. Due to the amplification, the
signal starts to rise until a maximum is reached. After a maximum, the intensity of the
signal decreases and the decay time finally approaches an exponential decay determined
by the linear lifetime of ~ 7ps of the polaritons at k = 0. At Ipymp = 41y, the signal
peaks at ¢ = 10 ps whereas for higher pump intensities, at Ip,mp = 141y, for instance,
the signal peaks at t ~ 6 ps. To enable a more complete analysis, a number of temporal
traces have been stacked together to form a contour plot.

Figure 4.5 shows the temporal evolution of the parametric scattering when the pump
intensity is varied. The peak of the signal emission remains constant from 1 — 7 Iy,
at a delay of ~ 11ps. Above 71, the delay decreases slowly from 11 ps to ~ 4ps at
19 I,p,. This behaviour already reported in [59] is due to the fact that the scattering rate
into the signal becomes non-linear with rising pump intensity. At the same time the
scattering depletes the pump reservoir and the maximum is reached at earlier times.
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Figure 4.4: Time resolved signal emission for three different pump intensities (41;p, 91zp,
141;1,), and for the probe alone. The threshold pump intensity Iy, is the pump intensity, where
the time integrated probe polariton intensity is amplified by a factor of 2. The zero of the
timescale has been set to the moment when the transmitted probe intensity (without pump)
reaches its maximum. The pump probe delay is zero. For the highest employed pump intensities
the signal emission seems to start at negative delays. This is an experimental artefact and due
to the time-resolution of ~ 5 ps of the streak camera. The pump polariton density at threshold
is ~ 2-10'%/em?, and the probe polariton density is ~ 3 - 108 /cm?.

The termination of the parametric scattering is reached at t ~ 20 ps, when the polariton
intensity obeys an exponential decay governed by the lifetime of the polaritons at k = 0,
and no more parametric stimulation occurs. The right panel of figure 4.5 shows the
dependence of the time integrated signal intensity on the pump intensity, also shown
in fig. 4.2, panel (d). The signal of the time-integrated intensity is normalised to the
intensity when only the probe pulse is present. The dashed line is an exponential fit
to the intensity curve which fits well for pump intensities up to 71;,. In fact, this
coincides with the pump intensity, where the peak of the timeresolved signal intensity
starts to shift to earlier delays because of the pump depletion. The pump depletion is
thus attributed to gain saturation.

Thus far a number of dynamical features have been investigated. Having demon-
strated and discussed a number of dynamical features of the cavity polaritons, in the
following section we will place these results within a theoretical framework. In order
to do this we will qualitatively compare the measured data with the temporal curves
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Figure 4.5: Evolution of the dynamics of the signal intensity with pump intensity. The image
shows a contour plot of the temporal shape of the signal emission intensity versus the incident
pump intensity (vertical axis). The pump intensity is normalised to the threshold intensity of
the parametric amplification, where the threshold is defined, as the pump intensity where the
signal is amplified by a factor of 2: This definition is used for all the pump probe experiments
in this thesis. The signal intensity given by a false colour scale is normalised to the intensity of
the probe at ¢ = 0. The green points display the delay where the time-resolved curves used to
build the image have reached their maximum. The red dashed line shows t = 0. For the highest
pump intensities employed the signal emission seems to start at negative delays. This is an
experimental artefact and due to the time-resolution of the streak camera (~ 5ps). The right
hand panel of the figure shows the dependence of the time integrated signal intensity together
with an exponential fit. The pump polariton density at threshold is ~ 2 - 10!°/cm?, and the
probe polariton density is 3 - 10%/cm?.

obtained using the rate equation model [29], and carry out the dynamical properties of
the parametric polariton scattering.
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4.2 Modelling of the parametric scattering

In section 2.5.3 we have introduced a model [29] which describes the parametric inter-
action of the signal, pump, and idler polaritons with three coupled equations describing
the evolution of signal, pump, and idler (see equations 2.21-2.23). This simple model
has already shown a good fit with the behaviour of the signal contrast, as shown in
section 2.5.3. The idea of the modelling in this section is to obtain a qualitative under-
standing of the dynamics of the parametric scattering. For all the simulations shown
in this chapter, the pump excites with a wavevector k, corresponding to the magic
angle of 9.5°. The signal is at k = 0 and the idler at k = 2k,. To enable an easy
comparison of the decay of the intensity, the linewidth of signal, pump, and idler are
all set to 0.05meV (y0 = Ykp = Yorp = 0.05 meV)!. All the intensities in the simu-
lation are intensive quantities normalised per unit surface for an infinitely large spot.
The pump intensity, which determines Fj,,, is given in terms of Iy, the intensity at
which the time integrated signal intensity is amplified by a factor of 2. The probe
intensity governing F, o is adjusted to give an intra-cavity intensity of ~ %Ipump at
Ipump = Iip.

4.2.1 Dynamics of Signal, Pump, and Idler

Figure 4.6 shows the calculated temporal evolution of signal, pump, and idler together
with the non-amplified probe. The pump and probe pulses excite the sample at t ~ 0 to
give a maximum polariton intensity inside the cavity at ¢ = 0. The black curve displays
the dynamics of the signal, when only the weak probe hits the cavity (no parametric
interaction). It peaks at ¢ = 0 and decays with a 7 = 6.6 ps decay time corresponding
to its linewidth of 279 = 0.1meV. The signal (red) decays until ¢ = 0.9 ps and rises
until its emission maximum at ¢ = 7.6 ps. The idler, initially having zero intensity,
rises until its maximum intensity at ¢ = 9 ps, note this is slightly later than the signal
maximum. From ¢ ~ 15ps, the shapes of both signal and idler are very similar and
from t > 20 ps the signal, pump, and idler curves are parallel since they decay both
with their lifetime of 79 = 795, = 6.6 ps. This indicates, that at that time the scattering
is concluded and no more parametric interaction occurs.

We now want to focus on the early time behaviour of the amplified signal. After the
probe excitation, the signal intensity diminishes, and then rises together with the idler.
As discussed in section 2.5, the creation of signal and idler polaritons by parametric
scattering from the pump is correlated. A polariton at the signal necessitates a polariton
at the idler and vice versa. We now want to check this correlation property of parametric
amplification in the modelling. To do this, we subtract the time resolved intensity of the
probe from that of the amplified signal (curve ”(Signal)-(Probe)”). What we observe
is that the curve fits the evolution of the idler perfectly, showing that the stimulated
part of the signal emission is perfectly correlated. This correlation indicates that the
system goes from the initial state of two pump polaritons into the final state of a signal
plus an idler polariton. The initial decay of the signal intensity curve is attributed to

n a real cavity, the linewidth is different for signal, pump, and idler, since the cavity and exciton
linewidths are different.
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Figure 4.6: Modelled signal, pump, and idler real-time dynamics at a pump intensity I, =

V21, Pump and probe excite the sample at delays, such that the polariton intensity peaks at
t = 0 (The temporal shape of pump and probe is Gaussian. Since the polariton intensity is the
integral of the pulse decaying with a decay rate v (third and first term in eq. 2.21 and 2.22), the
maximum polariton intensity is reached after the pulse maximum. The excitation is temporally
the same for all the simulations presented in this chapter.). The linewidth of the exciton and
the cavity resonance are both set to 0.05meV, so that vysignai = YPump = Yrdier = 0.05 meV.
The non-amplified probe is depicted in black. All intensities are the polariton intensities inside
the cavity, so that the signal, pump, and idler intensities can be directly compared.

the fact that we only stimulate ”one half” of the final state. The signal intensity decays
until the loss rate is compensated by the polaritons scattering from the pump into the
signal state.

To complete our understanding of the parametric short time phenomena, we discuss
directly the coherent parametric interaction contained in equations 2.21-2.23. The
scattering rate into the signal (second term in equation 2.21) reads:

OPO _ Eint * 2
(5) = Sra, L0, (1)

The scattering rate into the idler corresponds to
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0Py, Eint 9
= Py (t)Py (t)°. 4.2
(%) = Trson, (42

The dynamical equation 2.23 for the idler polariton field can be formally integrated,
giving the following analytical result [31]:

t

Ein * _i(Fk ) o
Por, (1) = =25 [ i B (#) P, (1) i (B, ~ 02k, (=) (4.3)

where E%,g; is the renormalised idler polariton energy and 7o, the corresponding
broadening. By inserting Eq.4.3 into Eq.4.1, we obtain the expression for the signal
parametric scattering rate in terms of the signal and pump polariton fields, i.e.:

N2t
<%> _ (Ezgt> / At K par (£, ) Po (1), (4.4)
par —00

where the parametric memory kernel K, reads

Rypar(t,) = P2 HER F 02 0 p2 (), (45)

Equation 4.4 shows that the rate of pump scattering into the signal mode is propor-
tional to the signal field itself, i.e. the scattering is stimulated. However, the stimulation
is not instantaneous, because the stimulated scattering rate depends on the value of the
signal field at all times ¢’ < ¢t. This memory effect takes place because the parametric
stimulation requires the coherent and correlated build-up of the signal and idler fields
[31]. The initial decay of the signal intensity is the manifestation of the parametric
memory in our modelling. An instantaneous exponential rise of the signal could only
be achieved if the parametric memory kernel were to be [81] Kpq,(¢,t') o §(t —t), i.e.
not dependent on its history.

We now want to study the influence of a changing pump intensity on the dynamics.
Signal, pump, and idler evolutions are displayed on panel A-C of fig.4.7. The pump
intensity is changed between 0.51;, and 41I;,. The pump intensity has the folowing
influence on the signal, pump, and idler dynamics:

o At Ipymp = 0.51y,, the signal is weakly amplified (panel A) and it is difficult to
distinguish it from the probe, as displayed in fig. 4.6. At higher pump intensity (2
and 4Iy,), the signal shows a peak, which shifts to earlier times with increasing
pump intensity.

e Theidler (panel C) has less than 10 % of the signal intensity at Iyymp = 0.513,. For
increasing pump intensity, it approaches the signal intensity. The temporal shapes
of signal and idler also become similar. In fact, the higher the pump intensity, the
larger the number of scattered polaritons and the smaller the relative contribution
of the external probe to the signal intensity.
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Figure 4.7: Signal, pump, and idler real-time evolution for different pump intensities (panel
A, B, and C). All the intensities are normalised to the signal intensity at ¢ = 0 without
pump. Panel D displays the evolution for signal, pump, and idler at a pump intensity of
2141, when probes are applied at both the signal and the idler. Since the scattering is phase-
coherent, the relative phases of the two probes have to be adjusted to obtain a constructive
or destructive interference. The upper pump curve, d, depicts the destructive case, whereas
the lower one corresponds to the constructive interference of signal and idler probe, where the
pump is depleted.

e The pump mode (panel B) shows a mono-exponential decay at low intensity
governed by the polariton lifetime. At higher pump intensities, the pump is
strongly depleted, as already discussed in section 3.3. The depletion of the pump
is clearly demonstrated in the experiment and displayed in fig. 4.2, lower panel,
and it has also been reported in references [59, 46].

The signal and idler equations 2.21 and 2.23 are symmetric with respect to the
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pump equation 2.22. In the previous simulation and in the experiments we apply a
probe only to the signal but not to the idler. As a consequence, the signal and the idler
are unbalanced (see panel A and C). On panel D, a simulation is shown, where probes
are applied to both signal and idler. The parametric amplification is phase coherent,
which is shown in section 2.5.4, equation 2.28.

To obtain constructive interference in the simulation in fig. 4.7, panel D, eq. 2.28
must be satisfied and for destructive interference, a phase factor of m was added to
the signal or the idler probe to obtain 2¢y, — ¢ar, — ¢o = m. When the two probes
are constructive, i.e. the final signal-idler state is stimulated symmetrically, the signal
immediately rises exponentially demonstrating instantaneous final state stimulation.
The simulation shows, that indeed the final state is a signal-idler polariton pair, a
fact which is of the same origin as the entanglement of signal-idler pairs below the
stimulation threshold demonstrated in references [96, 77]. The signal idler curves for
the case of destructive interference clearly shows that signal and idler can almost be
completely de-amplified due to the parametric interaction. The whole process can
be interpreted as superposition of two independent parametric scattering processes,
stimulated by the signal and the idler probe respectively. It demonstrates a coherent
control in theory with phase-locked probe pulses at signal and idler. It is somehow
similar to the coherent control discussed in chapter 3, with the difference that one of
the probes is at the idler. Putting one probe at the signal and another at the idler
would be a complex experimental task. This experiment has been performed for a y(?
non-linear crystal parametric amplifier in reference [63].

4.2.2 Behaviour with the pump intensity

The previous section discussed the fundamental features of the time resolved emission
as calculated theoretically. In the following, we compare the calculated signal dynamics
to the measurements presented in fig. 4.5. The simulation was done for varying pump
intensities between I,ymp = 0 and Ipymp = 61y, for the same simulation parameters as
before and the results are shown in fig. 4.8.

The left panel shows an image plot of the signal intensity dynamics, when the pump
intensity is varied. The right panel displays the time-integrated signal intensity. We
observe the following features:

e Just above threshold, the delay of the emission maximum in the signal curves
grows from 4.9ps to about 9.4 ps at approximately 2[;,. This is in contrast to
the measurement (fig.4.5), where the delay of the maximum remains constant
up to 7ly,. From I,ump = 21, the delay diminishes to 6.2ps at 8Iy,. The
initial augmentation of the delay can be understood as follows. For rising pump
intensity, the time at which the pump density becomes too small to maintain the
scattering increases. Consequently, the signal intensity peaks later. From about
Ipump = 21y, a new behaviour sets in. As displayed in fig. 4.7, panel B from this
intensity an appreciable depletion of the pump starts. The maximum of the signal
intensity curves indicate the point, where the rate of scattered polaritons from
the pump to the signal equals the cavity loss rate, which itself is proportional to
the signal intensity. As the signal becomes more intense, this occurs earlier and
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Figure 4.8: Contour plot of the time evolution of the signal versus the pump intensity. The
colour scale is the logarithmic scale of the signal intensity, where zero corresponds to the
intensity of the probe at ¢ = 0. The dashed line at I = V21, indicates the location of the
signal curve shown in fig. 4.6. The black curve represents the delay of the minimum of the signal
curve after the probe has hit. The blue curve indicates the delay at which the maximum of
the signal emission appears. The panel on the right shows the time integrated signal intensity
versus the pump intensity. It follows over about one decade an exponential behaviour.

consequently the maximum occurs earlier. Qualitatively this corresponds to what
has been observed in fig. 4.5. However, the variations of the delay in the observed
intensity interval are much stronger in the simulation.

e The minima in the signal curves (black curve, left panel) occur earlier with rising
Ipump and even disappear at 2.8 I,,,,. The minimum occurs, when the scattering
rate from the pump stimulated by the idler overcomes the cavity loss rate. With
rising pump intensity the scattering rate grows. The cavity loss is thus overcome
at earlier times [109]. Above 2.8Iy,, there is no minimum, since at ¢ = 0, the
scattering rate into the signal is already larger than the cavity losses.

e The time-integrated signal intensity displayed on the right panel, grows exponen-
tially with pump intensity. The exponential rise is illustrated by the fit and is
applicable from I, ~ 0.7 to ~ 2.2 I, i.e. over a decade in signal intensity. Above
Ipump = 2.2 Iy, the intensity of the signal saturates due to the pump depletion as
discussed before and already shown in section 3.3. This intensity roughly coin-
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cides to that where the peak in signal intensity shifts to smaller values. The initial
exponential rise followed by a saturation is clearly observed in the experimental
data presented in figure 4.5.

We summarise, that the delay of the emission maximum as well as the exponential
dependence and the saturation behaviour of the signal intensity on the pump intensity
is qualitatively reproduced by the model.

4.2.3 Limits of the model

To conclude the modelling presented, we discuss the limitations of the model [29].

e The model considers the interaction of three wavevectors only. Signal, pump, and
idler modes are thus respectively described by plane waves of infinite dimensions.
This clearly does not correspond to the conditions in the experiments, in which
finite spot size lasers with a gaussian intensity distribution are used [8].

The model treats the polariton interactions to lowest order. Especially at high
pump field intensities also the signal and idler intensities become strong and
higher order scattering mechanisms set in [101]. The dynamical solution of the
parametric modes in presence of second order mechanisms appears however a very
complex task (the equations in [101] are solved for the steady state).

In stimulated parametric scattering experiments, the probe and the pump wavevec-
tors determine the idler wavevector. The conversion of two pump polaritons into
a signal-idler pair conserves energy (2Ex, — Eo — Eor, = 0). The model satis-
fies this condition only at the magic angle and in the degenerate regime (signal,
pump, and idler at & = 0). When the system oscillates slightly away from the an-
gular resonances, the model [29] fails. A model describing the system oscillating
outside the angular resonances has been developed in reference [9] and is used to
reproduce bistability effects in parametric scattering.

The exciton interactions as described in reference [92] lead to very strong renor-
malisation of the polariton dispersion. At some point, the magnitude of the
renormalisation becomes of the order of the polariton splitting. This happens in
the simulations at intensities between 4 and 8 I;;,. A more adequate description of
the polariton interaction would thus be required. Such a model including many-
body effects and correlation between excitons has been developed by Savasta and
co-workers in [95]. Their model works particularly well for cavities with large
polariton splittings.

The model treats the cavity without accounting for disorder related effects for
example, thickness fluctuations of the quantum well. In reference [46] it has been
shown, that disorder in the quantum well can strongly influence the dynamics of
the scattering: In a strongly disordered cavity, the delay of the maximum signal
emission intensity remains almost constant, whereas for a very homogeneous sam-
ple the delay shifts to earlier time at high pump intensity. In our case, the cavity

95



appears to have a very weak disorder (the signal maximum shifts to earlier time
in fig. 4.5) and this problem seems thus less important for the cavity investigated
here.

Concluding, despite the simplicity and the limitations of the theoretical model used
here, it permits a qualitative understanding of several features observed with our streak-
camera setup. However this setup has a timeresolution of 5ps and does not allow for
the observation of the short time phenomena observed in the modelling. In the next
section we will study the short time phenomena using an upconversion setup with a
time-resolution of the order of 200 fs.

4.3 High resolution upconversion measurements

The upconversion setup is shown in fig. 4.9. Pump and probe are focussed by a
lens onto the sample as in the previous experiments. The amplified signal in the
transmitted normal direction is focused onto a non-linear BBO-crystal together with a
150 fs gating pulse. The non-linear crystal emits light in the "upconverted” direction
(kup = Ksignat + Kgates Wup = Wsignal + Wyate) between the two incoming beams. The
time-integrated intensity of the cross-correlation beam reads,

Icrosscm“Telation X /Isignal (t/)Igate (t/)dt/- (46)
t

The gate pulse follows a gaussian shape with a 150 fs width which is short as com-
pared to the signal dynamics. Thus, the crosscorrelation beam measures the intensity
of the signal at time ¢ when the gating pulse excites the sample. Scanning the optical
delay of the gating pulse allows to reconstruct the real-time shape of the signal. The
cross correlation signal is selected by a diaphragm and detedcted by a Hamamatsu
alkali photomultiplier tube with very low dark current. With the gating pulse duration
being 150 fs, the time-resolution of the setup is 250 fs.

PMT

Sy

microcavity

Figure 4.9: Upconversion setup.
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Figure 4.10: Temporal evolution of the signal at k¥ = 0 as measured with the upconversion
detection. The pump excites at zero delay. The probe arrival is varied from ¢ = 0 (b) to
t = —4ps (¢) tot = +4ps (d). The black curve (a) displays the evolution of the probe alone.
The pump polariton density is 3- 10! /em?, and the probe polariton density is 2- 108 /cm?. All
the measurements in this chapter are carried out with the probe exciting at normal incidence
and the pump hitting the sample at the magic angle of ~ 9.5° (with exception of fig.4.13).

4.3.1 Different probe-pump delays

In a first experiment, the time-resolved upconversion experiment has been performed
for different pump probe delays.
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Figure 4.10 shows the real time evolution of the parametric scattering with the probe
at different delays. Curve a shows the evolution of the probe in absence of the pump.
The curve decays with the cavity lifetime of ~ 10ps. The intensity oscillations are due
to the fact that we excite both the lower and the upper polariton at £ = 0 [15, 108].
When the pump hits the sample together with the probe at ¢ = 0, the intensity decays
at first and then starts to grow from ~ 4 ps (curve b) and reaches maximum intensity
at a delay of 15ps. This is the behaviour we expected from the model. However, the
delay is longer than in the simulation, where it amounts to 1 — 2 ps.

To further investigate this, additional measurements for different probe arrival times
were performed (curves ¢ and d). When the probe hits the cavity at about —4 ps (curve
¢), the intensity diminishes as observed for the probe alone. At a similar delay as for
curve b the signal starts to rise. The intensity of the signal is smaller, since the amount
of polaritons contributing to the signal at ¢t = 0 when the pump arrives is smaller than
for b. Curve d shows the intensity of the transmitted probe when it hits 4 ps after the
pump. We observe here, that even when the probe hits after the pump, the signal has
a 3 ps rise time. The amount of scattered polaritons is considerably smaller than for
curve b because at the moment when the scattering is started here, already a large
quantity of polaritons have already left the pump reservoir, thus there are no more
available for the scattering.

In the following, we want to investigate the influence of the excitation parameters
such as pump and probe intensity, pump angle, and probe pulse shape on the observed
build up and the whole signal dynamics.

4.3.2 Behaviour for different pump and probe intensities

Figure 4.11 shows the behaviour of the timeresolved signal emission when the pump
intensity is varied. Curve a is the probe alone. Curve b, ¢, d, and e show the pump
probe experiment for a pump intensity of 1, 1.3, 1.6, and 2I;, respectively. In all cases
we observe, that it takes some time for the signal to start to rise as shown in the inset.
For the lowest pump intensity this takes about 7 ps, and for the highest approximately
5ps. For curve e the intensity rises very quickly and exhibits a sharp peak at ¢ ~ 10 ps.
The intensity then decays and rises again to form a second peak at t ~ 20ps. The
other curves, b to d, show a similar double peak structure. The sharpness of the first
peak diminishes with decreasing pump intensity. The double peak structure could not
be reproduced by the model employed before. The symmetry of the equations suggests
oscillations between the pump and the signal-idler state [108], a behaviour well known
in classical OPOs [5]. Such oscillations should be triggered by the second term in eq.
2.21 - 2.23, and the oscillation frequency should thus be different for changing pump
intensity. As it can be seen on the graph, the oscillation period does not change with
pump intensity. Therefore, the oscillations are not due to initial-final state oscillations.
A simpler explanation of the double peak could be a temporal replica in an optical
device, i.e. an artefact. In this case the shape of the signal and its replica should be
the same which is clearly not the case. The second curve in the inset shows the time-
integrated signal intensity. It obeys an approximate exponential behaviour as observed
both in the experiment (fig.4.5) and the simulation (fig. 4.8).
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Figure 4.11: Dynamics of the signal intensity at zero pump-probe delay when pump intensity
is changed. The time averaged pump intensity is normalised to the threshold intensity, where
the probe signal is amplified by a factor of two (time-integrated). The probe (curve a) has a
time averaged intensity of 0.5 W/em?2. The signal intensity scale is normalised to the intensity
of the probe polaritons at t = 0. The probe duration is ~ 100 fs, which results in a spectral
width of 6.6 meV, whereas the lower polariton linewidth is of the order of 0.1 meV. The
effective absorbed intensity is thus of the order of 7.5mW/cm?. Since the probe also excites
the upper polariton the curves feature beating oscillations at early times (similar to fig. 4.10).
In order to clearly observe when the signal starts to rise, the curves have been smoothed over
a time interval of 1.2ps (Ismoothea = I(t &= 1.2ps)), which is slightly longer than the period
of the beating oscillation. The inset shows the delay when the signal starts to rise as well
as the time-integrated signal intensity normalised to the time-integrated probe intensity. The
pump polariton density at threshold is about 1.5- 10! /em?, and the probe polariton density is
1.5-10%/cm?.

In figure 4.12 we evaluate the effect of a varying probe intensity on the parametric
scattering emission. The pump intensity corresponds to ~ 21, the highest value shown
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Figure 4.12: Signal dynamics as probe intensity is varied, at Ipymp = 2I:n. The intensity
scale is the same as in fig. 4.11. The inset shows the delay when the signal starts to rise as well
as the time-integrated signal intensity normalised to the time-integrated probe intensity. The
pump polariton density is about 3-10'*/em?, and the probe polariton density for the strongest
probe (0.5W/em?) 1.5 - 103 /cm? and the weakest probe (0.04W/em?) 1.5 - 107 /em?.

in fig. 4.11. One observes, that the double peak structure is conserved over the whole
range of employed probe intensities and it does not flatten at lower probe intensities
(as was observed for low pump intensities). The time-integrated intensity is linear with
the probe intensity, which is also found in the model [29]. The delay to when the
signal starts to rise remains between 5 and 6 ps and thus stays almost constant. It was
observed that the temporal shape of the emission is governed by the pump intensity.
This results from the fact that the parameters which act on the scattering system is
governed by non-linear effects generated by the pump.
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Figure 4.13: Signal intensity with time depicted on a logarithmic scale for different pump
incidence angles around the magic angle. The signal intensity is normalised to the signal
intensity of the probe at zero delay. The curves are multiplied by factors of 1, 10, 100, ... to
separate them. The probe features a mono-exponential decay representing a lower polariton
lifetime of 8 ps. Since we use here a bandpass filter for the probe, the lower polariton only is
excited at k = 0 and hence no beating between upper and lower polariton is observed. For all
the pump incidence angles, the pump pulse centre wavelength has been adjusted to fit the lower
polariton dispersion at the respective angle. The pump polariton density for all pump angles
amounts to 10*2/cm?, and the probe polariton density to 6 - 108 /cm?.

4.3.3 Variation of the pump incidence angle

Upconversion measurements were performed for a varying pump angle (figure 4.13). To
avoid the beating oscillations between lower and upper polariton, the probe pulses were
filtered with a band pass filter, so that only the lower polariton resonance is excited.
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Figure 4.14: Zoom of the early time dynamics of the signal of fig. 4.11. The probe is the bold
black curve. All the amplified signal curves transiently pass below the intensity of the probe
alone.

Consequently, the probe polariton intensity (black curve) decays without beating os-
cillations. From the exponential fit we extract the lower polariton lifetime at kK = 0
of 7 = 8ps. The upper six curves show the time evolution of the signal intensity in
a pump-probe experiment, when the pump angle is varied between 9.3° and 11°. The
maximum of the amplified signal emission takes place between 10 and 12 ps. The decay
of the signal intensity shows oscillations, which are particularly clear at the central
pump angles around the magic angle. The time period of the oscillations is almost
constant for the different angles. The fact that the oscillation period is static with the
pump angle could be interpreted in terms of a defect in the sample.

4.3.4 Transient deamplification

Figure 4.14 shows a zoom of the early time evolution of the signal in figure 4.11. The
probe curve is depicted by the bold black curve. If the pump is switched on and
adjusted to the threshold intensity, we observe that the intensity of the amplified signal
clearly passes below the probe intensity. When the pump intensity is increased to 1.3,
1.6, and 2[,, the effect becomes weaker and the signal intensity starts to rise earlier.
The signal amplification factor transiently goes below unity, a phenomenon known as
de-amplification. This is a well known feature for OPOs using transparent non-linear

62



crystals. De-amplification is observed for a triply resonant OPO, when the cavity is
detuned for the idler [63]. In this case the light put into the signal is transferred to the
pump mode. The model [29] is very close to the standard model of a ”classical” OPO
(see section 2.5.3). It has however not been possible to reproduce any de-amplification
phenomenon in the simulation using a single probe, even by pushing the model to
the limits of its validity (using pump angles # the magic angle, increasing the pump
intensity to very high values). The behaviour could also be attributed to the influence of
higher order scattering processes as presented in [101]. Higher order processes become
more important at higher pump intensities. Here we observe, that the transient de-
amplification diminishes with rising pump intensity. The de-amplification is thus not
due to the stated higher order processes. The ultimate reason for the transient de-
amplification could be the very complex renormalisation dynamics of the dispersion
governed by the pump polarisation but also the signal and idler polarization [30].

4.3.5 Shaping the probe pulses

The parametric amplification experiments presented have partly been done using the
large band laser spectrum for the probe, and a spectrally filtered probe exciting only the
lower polariton at k& = 0 (section 4.3.3). An argument for the large band probe is the
higher time-resolution of the experiment and the fact to have one optical instrument less
which could harm the results with its imperfections (temporal replicas, ...). Moreover,
the large band probe excites both lower and upper polariton resonance, which causes
a beating of the temporal curves. Monitoring the beating one can make sure that the
experiments are made in the strong coupling regime. On the other hand, the beating
between the lower and the upper polariton makes it more difficult to analyse the early
time phenomena (section 4.3.2). Furthermore it cannot be completely excluded, that
the upper polaritons excited by the probe influence the parametric scattering. To
check this last point, we performed the parametric amplification experiment using both
large and narrow band probes, maintaining all other experimental conditions exactly
identical. To generate the shaped probe, we did not use the picosecond Fabry-Perot
filter, because the filter changes the pump probe delay, spatially slightly changes the
alignment of the beams, and introduces its imperfections. The experiment is done using
the stabilised interferometer (see fig. 3.1) employed in the coherent control experiments
presented in chapter 3.

Fig. 4.15 shows an explanation of how the pulse shaped probe pulses are generated.
The aim is to have on the one hand a large band probe and on the other hand a narrow
band probe only exciting the lower polariton. The right panel shows the Gaussian
spectrum of the laser (black), which covers both lower and upper polariton resonance
(green). The large band pulse is obtained by only using one arm of the interferometer
and blocking the other. To generate the narrow probe, we have to use the interferom-
eter. From the convolution theorem in Fourier analysis it is known, that the spectrum
of a pulse can be sinusoidally modulated using two pulses temporally seperated by the
inverse of the spectral modulation frequency. This case is shown by the red curve: the
lower polariton is excited, without exciting the upper polariton. The position of the
spectral fringes can be set by adjusting the relative phase of the two pulses, i.e. tuning
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Figure 4.15: Temporal and spectral characteristics for pulse-shaped probe pulse and the
unshaped broad band probe pulse.

their optical path difference corresponding to fractions of the optical wavelength. The
left panel shows the two probe pulses in the time domain. The temporal separation
in fact corresponds to the beating period of the polaritons. The intensity entering the
interferometer was adjusted to obtain the same time integrated lower polariton signal
transmission intensity looking at the spectrometer.

Fig.4.16 shows the signal dynamics measured with the broad band probe (black
curve) and the pulse shaped probe, which excites only the lower polariton (red curve).
The inset shows a zoom into the early time dynamics of the signal emission on a linear
scale. In the large band case (black), the dynamics show a LP/UP beating as also
observed in fig.4.10. The red curve displays the behaviour for the narrowband probe.
The first 100 fs-pulse (filled triangle) impinges about 1ps before the second (empty
triangle) and the pump. The first pulse excites both the upper and the lower polariton.
The second one has the appropriate phase and delay to only enhance the intensity at
the lower polariton and to put out the upper polaritons by destructive interference.

The main panel of fig. 4.16 shows the signal emission for the two cases on a logarith-
mic scale. The signal intensity is normalised to the probe intensity at ¢ = 0. Similarily
to the previous experiments, the curves first decay and then grow to a maximum at
t ~ 10ps. Since the pulse-shaped probe only excites the lower polariton resonance,
no beating oscillations are observed for the red curve. From the maximum, the curves
both show an exponential decay governed by the lower polariton lifetime. The two
curves perfectly overlap from ¢ ~ 5ps for the entire time interval investigated which
corresponds to over one order of magnitude in intensity. This demonstrates that the
upper polariton has no influence at all on the parametric scattering. It clearly justifies
that it is a good approximation to neglect the contribution of the upper polariton in
the model [29], which is written in the lower polariton basis.

The perfect mono-exponential decay has not been observed in all the preceding
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Figure 4.16: Temporal evolution for signal intensity with a broad-band (black) and a pulse-
shaped probe pulse (red). The signal intensity scale has been normalised to the transmitted
signal intensity of the shaped probe pulse around ¢ = 0. The pump density amounts to 7 -
10'*/em? and the probe density to 1-10%/cm?. The inset shows a zoom into the early time
dynamics on a linear scale.

experiments. In section 4.3.2 and 4.3.3 double peak structures and even oscillations
have been observed. These may be due to some structural imperfection of the sample
(the point investigated on the sample was not always the same), excitation conditions
also changed slightly.

4.4 Scattering dynamics in the spontaneous regime

In the previous sections, the dynamics of the polariton parametric scattering has been
discussed in the stimulated regime, when an external probe is applied. In section 4.1,
the kinetics of the pump polaritons was analysed when only the pump beam is applied
to the sample (fig. 4.2, panel (a)). In the following, we want to analyse the non-linear
properties of the spontaneous parametric scattering and pay special attention to the
kinetic properties of the system in vicinity of the threshold where the stimulation begins
in the spontaneous regime. The spontaneous parametric scattering will be investigated
both under cw and pulsed excitation to explore the steady-state properties of the pro-
cess on the one hand, and to allow for the comparison with the pulsed experiments
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Figure 4.17: Setup for the autocorrelation measurements

earlier in this chapter on the other hand.

4.4.1 Autocorrelation setup

The goal of the presented measurements is to enable a comparison of the measurements
made in both the cw and the pulsed regime. In cw, the use of a streak camera setup
as in section 4.1 is not possible. We thus employed an auto-correlation setup to obtain
precise information about the dynamics of the spontaneous parametric scattering. The
auto-correlation setup is depicted in fig. 4.17. The sample is excited by laser light im-
pinging at the magic pump angle which has been focussed by a photography objective.
As alaser source, a cw or a pulsed Ti:sapphire laser is used with a wavelength centred at
~ 1486meV which corresponds to the pump polariton energy. The laser beam is modu-
lated by a mechanical chopper to allow a synchronous detection using a photodiode and
a lock-in amplifier. The emission of the sample around normal incidence is collected by
a second photography objective. The diaphragm selects the emission from the sample
at & = 0 £ 2.5°, which covers the signal polariton emission. The signal beam is sent
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Figure 4.18: Contrast of the intensity oscillations versus delay between the interferometer
paths below and above threshold. The inset shows an intensity oscillation.

into a Michelson interferometer, passes a lens and is detected by a photodiode. An
active stabilisation of the interferometer (see appendix A) stabilises the relative path
difference of the two interferometer arms within a precision of 10nm. Using the active
stabilisation, the relative path difference can be scanned and the resulting intensity
variations (the interference fringes) can be detected on the photodiode (see fig. 4.18,
inset). The relative delay of the two interferometer arms can be varied from 0— 300 ps,
this corresponds to moving mirror 1 about 3 cm. The signal intensity can be detected
by simply blocking one of the interferometer arms. The diode is part of a synchronous
detection and allows the detection of very weak signals, which is especially important
for measurements below the non-linear threshold.

The setup represents a Fourier transform spectrometer. When the relative posi-
tion x of the two mirrors is scanned, an interferogram I(z) can be recorded, which
corresponds to the Fourier transform of the investigated signal I(k) [16]. In our case,
we are able to greatly simplify the detection, since the spectrum we want to detect
consists of a single line of approximate Lorentzian shape. The Fourier transform of a
Lorentzian is an exponential. The constant characterising the exponential is the (in-
tensity) coherence time of the signal polaritons which is proportional to the inverse
of the spectral linewidth. The principle of the measurements is explained in fig. 4.18.
When the relative path difference of the two interferometer arms is scanned on a scale
corresponding to the signal wavelength, interference fringes are recorded (see the inset).
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Figure 4.19: Signal intensity and decay time of the Contrast versus the pump intensity. The
cavity is excited by a cw laser. The red, green, and blue curves show a linear, a quadratic, and an
exponential dependence of the signal intensity on pump intensity. The contrast decay time gets
about eight times longer at the exponential threshold, which occurs for a threshold polariton
density of ~ 4-10%polaritons/ecm?. The pump and signal intensity scales are normalised to the
pump and signal intensity at threshold.

The minimum and the maximum of the fringes are used to calculate the fringe contrast,
which is defined as C = (Inyaz — Imin)/ (Imaz + Imin ). The contrast can be measured for
different relative delays of the interferometer arms. This is represented on a logarithmic
scale versus the delay of the interferometer arms. The measured points are then fitted
by an exponential (I = Iy - exp(—t/7)) with a time constant 7 corresponding to the
coherence time of the signal. In fig. 4.18, decay curves for two different pump intensities
below and above threshold are depicted with contrast decay times of 9 and 74 ps. In
the following experiments, this contrast decay time is recorded together with the signal
emission intensity versus the incident pump intensity.

4.4.2 Coherence build-up under CW excitation

Figure 4.19 displays the evolution of the signal output intensity together with the
coherence time versus the pump intensity under cw excitation. For weak excitation
intensities, the dependence of the signal intensity on the pump intensity is linear. In
section 4.1 we observed that a considerable amount of polaritons relaxed down to the
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bottom of the lower polariton dispersion by the emission of phonons. The relaxation by
the emission of phonons is independent of the pump intensity. The linear dependence
can thus be attributed to this process. The contrast decay time of 7 = 10 ps (red curve)
corresponds in this regime to the lifetime of the polaritons at k = 0. At about 1/3 of
the threshold intensity, the dependence becomes quadratic, indicating the onset of a
polariton-polariton interaction, i.e. when the wavefunctions of the polaritons start to
overlap. In this regime, which corresponds to the regime explored in fig. 4.2, polaritons
scatter spontaneously from the pump into a signal-idler pair. The polariton lifetime
slightly decreases to 7 = 8 ps. From 1 to 1.31;,, the signal intensity rises exponentially
by a factor of about 100, indicating the onset of the self stimulation of the polariton
parametric scattering. Near threshold, the contrast decay times increase sharply by a
factor of 7 to ~ 70ps. The contrast decay times stay almost constant to I, = 2 — 4y,
the pump intensity again increases linearly.

4.4.3 Simple model for the spontaneous parametric scattering

The spontaneous parametric scattering has been modelled in different theoretical works
treating the Heisenberg equations of motion for the Hamiltonian described in section
2.5.3. In this section we model the system using a very simple phenomenological ap-
proach in order to understand some dominant features observed in the measurements
shown in fig.4.19. The polariton populations at signal (Ng), pump (N, ), and idler
(Nag,) are modelled, having a radiative linewidth of 4o, 7%,, and ~ax,. Pump polaritons
are created with a rate o by a cw laser. The pump polaritons can relax down the
dispersion via the emisson of phonons described by the constant e. This relaxation
rate scales linearly with pump intensity and the polaritons go from the pump (negative
term) to the signal (positive linear term). The second channel for the polaritons to go
from the pump to the signal is the polariton-polariton scattering, which scales with the
square of the pump intensity. It is caracterised by the polariton scattering constant .
The factor of % for the polariton-polariton scattering process represents the fact that
half of the polaritons leaving the pump mode go to the signal and the idler respectively.

ONy B 2
—8t = _’YONO —|— ENkp —|— ENkp (47)
ON},
atp - _/YkPNkP - ENkp B ﬁN]gp +a (4‘8)
ONayy, 6]
g = 2k NVak, T ENI?I, (4.9)

In the steady state regime corresponding to the cw-measurement, the variation of
the respective populations is zero and the equations can be solved analytically giving
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Figure 4.20: Plot of the analytical solutions of equations 4.10-4.12 for the signal, pump, and
idler populations as a function of the pump intensity «.
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The signal, pump, and idler intensities are plotted in figure 4.20 versus the intensity
of the incident laser field a. The plot is represented on a log-log-scale over several
orders of magnitude. As expected the intensity of the signal scales linearly with the
incident laser power for low incident laser intensities. In an intermediate regime, the
quadratic dependence on the pump density starts to govern and the signal intensity
grows quadratically. At Ig., the signal grows again linearly with the laser intensity,
since the pump starts to be depleted. The behaviour of the idler is similar to that
of the signal with the exception, that the linear dependency at low laser intensity is
not observed since the phonon relaxation channel does not exist for the idler. The
pump polariton density shows a linear behaviour with laser intensity and grows at high
laser intensity with the square root, since it starts to be depleted by the parametric
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Figure 4.21: Signal intensity and decay time of the contrast versus the pump intensity. The
cavity is excited by laser pulses with a 1ps duration. The red, green, and blue parts of the
curve show a linear, a quadratic, and an exponential dependence of the signal intensity on
pump intensity. The contrast decay time gets about eight times longer at the exponential
threshold. The pump intensity has been normalised to the exponential threshold pump density
of ~ 10'3/(pulse - em?). The logarithmic signal intensity scale has been normalised to the
signal intensity at threshold. The red triangle point corresponds roughly to the experimental
conditions of the streak camera measurement shown in panel (a) of fig.4.2.

scattering. The model presented is clearly only a phenomenological approach which
neglects any stimulation effects and the build-up of a coherent signal polarisation. A
modelling including stimulation and the transition to a coherent signal polarisation
has been developed for example in reference [98] and reference [25]. In reference [98]
a set of 12 coupled differential equations have been solved. In [25] the system was
modelled by quantum Monte Carlo simulations. Both approaches are quite complex.
The exponential threshold of the signal intensity, which is not reproduced in fig. 4.20 is
expected to occur in the quadratic regime of the signal emission.

4.4.4 Coherence build-up under pulsed excitation

In section 4.1, the polariton emission under resonant excitation was investigated using
a streak camera. As the streak camera requires a periodic time-base, the measurements
were done in the pulsed regime. To compare these data with the auto-correlation mea-
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surements, the experiment has been repeated under pulsed excitation. Qualitatively
the behaviour of the signal intensity curve in figure 4.21 is the same as that in the
cw experiments shown in figure 4.19). The signal intensity starts to grow linearly due
to the phonon interaction followed by a quadratic increase because of the polariton-
polariton interaction. The signal emission becomes self-stimulated at I, = I and
grows exponentially from 1 — 1.31;, over one order of magnitude in signal intensity. At
high pump intensity, the signal intensity again saturates and becomes linear, which can
be attributed to the pump depletion. From 2.81;,, the signal intensity increases more
slowly than the linear fit. This could be attributed to the fact that we are working
at very high pump densities (~ 10'3/(pulse - cm?) at threshold) and we should expect
additional loss mechanisms of pump polaritons by for example higher order scattering
mechanisms or even the beginning of the break down of the strong coupling regime.

Finally we analyse the behaviour of the coherence decay time. The coherence time
starts again at the value of the linear lifetime of the polaritons at k = 0 of 7ps?. At
threshold it triples to ~ 21 ps. With further increasing pump intensity it begins to
decrease, and at I, = 3.81, it has almost recovered the linear polariton lifetime. The
lower maximum value of the contrast decay time and its decrease above threshold is
the main difference from the measurements under cw excitation. It is clear, that in the
pulsed regime, the characteristic signal emission time cannot be very much longer than
the pump lifetime. Under pulsed excitation, the lifetime thus only triples in contrast
to the cw measurement, where the contrast decay time is multiplied by a factor of
7 at threshold. The second difference is harder to explain. Above threshold, the
dynamics of the polaritons is governed by the coherent polarisation at signal, pump,
and idler [98, 102]. This experiment can be compared, with some prudence, to the
dynamics measured in the pump-probe experiments, since the process in the stimulated
exponential regime can be seen to be stimulated by a probe provided by the relaxed
pump polaritons. In fig.4.11, the time-resolved signal dynamics are presented in the
pump probe experiment for a changing pump intensity. If we were to do an auto-
correlation measurement in this experiment, it’s clear that an auto-correlation of the
complex curves would not result in a simple mono-exponential decay. The approximated
decay time for the contrast would be larger around I, = I;;, than at the highest pump
intensity value. Around threshold, the pump mode is almost not depleted, and the
parametric scattering from the pump into signal and idler can be maintained for a long
time. When the pump intensity increases, the signal intensity grows very quickly and
strongly depletes the pump mode at the same time. The depleted pump mode can no
longer maintain the parametric scattering, and the signal escapes from the cavity with
the polariton lifetime. The decrease of the contrast decay time at high pump intensity
can thus be attributed to the depletion of the pump mode in that regime.

In this section, we have analysed the different regimes occuring when a microcavity
is excited by a pump beam at the magic angle. At low pump intensities the signal
emission intensity around normal incidence scales linearly with pump intensity, this is
attributed to the relaxation of polaritons by phonon emission. The linear regime is

2The value is slightly different from the one in the cw experiment. This is attributed to the fact
that the two experiments in the cw and the pulsed regime are not performed at exactly the same point
on the sample: The lasers have been changed between the measurements.
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followed by a quadratic regime, when the polaritons start to interact with each other.
At the exponential threshold, the decay time of the contrast strongly increases due to
the onset of the self-stimulation of polariton scattering. As already shown in section
4.1, the phonon mediated relaxation of pump polaritons plays an important role for
the spontaneous scattering dynamics (see fig. 4.2, panel a). This relaxation channel is
not included in the models [98, 102] and it should be included in future investigations.
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Chapter 5

Bose-Einstein-Condensation of
Polaritons

5.1 Introduction to Bose-Einstein Condensation

Nearly 80 years ago the Indian physicist Satyendra Nath Bose published a paper in
the Zeitschrift fiir Physik [17], where he derived Planck’s law of black body radiation
from a gas of indistinguishable photons. The translator of the paper, Albert Einstein,
recognised the impact of this work and extended Boses theory to a theory for an ideal
gas of bosons [43]. In his work he claimed that such an ideal Bose gas could undergo
”something similar to what happens to a vapour under isothermal compression above
the saturation volume. A separation occurs: one part ”condenses”, the rest remains a
"saturated ideal gas”....” ! His famous claim, later known as Bose-Einstein Condensation
(BEC) triggered an enormous amount of very beautiful and interesting works to show
Bose-Einstein Condensation in different physical systems, and an intense research is
still going on until today.

In 1938 Kapitsa, Allen, and Misener found that liquid helium (He*) showed some
strange behaviour when cooled down below the so-called A-point, at a temperature of
2.17 K [61, 1]. The liquid dramatically changed its properties. Especially the viscosity
of the liquid vanished, a phenomenon now known as superfluidity. Already in the
same year F. London sensed that this phase-transition must be due to a Bose Einstein
Condensation phenomenon [73]. The theory formulated by Bose and Einstein for a
non-interacting ideal quantum gas was adapted to an interacting fluid by Landau in
1941 [66]. In 1947 Bogoliubov developed a microscopic theory for superfluidity [13].
The concept of off-diagonal long-range order, describing the coherence properties of
condensates, was introduced in the fifties by Landau and Lifshitz [67], Penrose [85],
and Penrose and Onsager [86].

Since the 70s increasing sophisticated methods have been developed to cool down
dilute atomic gases [27, 28]. It took more than twenty years to experimentally observe

!The original text in German reads: ”Die Behauptung geht also dahin, daf etwas Ahnliches eintritt
wie beim isothermen Komprimieren eines Dampfes tiber das Sattigungsvolumen. Es tritt eine Scheidung
ein; ein Teil >>kondensiert<<, der Rest bleibt ein >>gesittigtes ideales Gas<< (A =0A=1). ...”
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BEC in 1995. In very complex setups combining several cooling techniques the groups
of Cornell and Wiemann at Boulder [2] and Ketterle at MIT [38] suceeded in producing
condensates of 8" Rb and 23 Na respectively. Soon after condensates were achieved using
other atomic species such as "Li [19], spin polarized hydrogen [48], metastable *He
[40, 91], and *' K [78].

In parallel to the atom community, semiconductor physicists started to search for
the condensation of quasi-particles in solids. The idea of Bose-Einstein condensation of
excitons was risen in 1962 by Moskalenko [79] and Blatt [11]. The theoretical work was
continued by Keldysh [62] and Zimmermann [119] and the experimental work in the
field started with the investigation of bulk excitons in CusO [58, 106, 105, 47, 72], in
AgBr [32], and biexcitons in CuCl [52]. With the improving quality of semiconductor
nanostructures, quantum wells have been subject to intense research [118, 104, 22, 21]
and as well as exotic electron-electron bilayer structures [44]. The problem of a purely
excitonic system is that, normally the density needed to achieve quantum-degeneracy
is of the order of the Mott transition, where the fermionic character of the exciton
constituents appears. This problem could be seen to be overcome with the realisation
of microcavity exciton polaritons in 1992 [117]. The polaritons have a much lighter mass
than excitons: The density of states per unit energy is orders of magnitude smaller than
the exciton’s and this facilitates the observation of collective boson phenomena. In 1996,
Imamoglu proposed the existence of a non-equilibrium bose condensate, and a polariton
laser [60]. The most common microccavity samples at that time where realised in the
GaAs material system. The existence of a polariton laser or a polariton condensate was
claimed in reference [83], however it turned out that the observed non-linear threshold
behaviour was due to the onset of lasing from electron hole pairs as occurs in vertical
cavity surface emitting lasers [24]. In 2002 Deng et al. claimed the observation of Bose-
Einstein condensation of polaritons occuring in a GaAs based microcavity showing a
large polaritons splitting due to the presence of 12 strongly coupled quantum wells
[39]. The claim was supported by a Hanbury-Brown-Twiss measurement suggesting
the transition of the system from a thermal to a coherent state. This transition should
be observable as a quick change of the second order temporal coherence function g(?)
from 2 to 1 at the transition threshold for Bose-Einstein condensation. The value in
reference [39] changed very slowly from ~ 1.8 at threshold to ~ 1.6 at ~ 15[, where
a break-down of the strong coupling is likely to have appeared.

5.2 Experiments on CdTe cavities under
non-resonant excitation

The onset of a spontaneous stimulation phenomenon in GaAs based cavities is unlikely
to appear as the strong coupling in such cavities becomes saturated before the appari-
tion of a non-linear transition. In 1996, Andre et al. realised the first microcavity in
the CdTe material system working in the strong coupling regime [3]. The CdTe system
appeared to be very promising, due to the large exciton oscillator strength, the Mott
density of the exciton transition is about one order of magnitude above the one of
GaAs. In fact, two years later Dang et al. demonstrated a non-linear stimulated effect
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Figure 5.1: Reflectivity spectrum of a CdTe microcavity (curve (a)). Curves (b) show a set of
normalised photoluminescence curves when pump intensity is varied between 5 and 50 kW/em?2.
Above 26 kW /em? a non-linear threshold occurs. Curves (c) depict the appearance of an emis-
sion peak at the uncoupled cavity energy corresponding to the break down of the strong coupling
regime. Data taken from ref. [33].
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Figure 5.2: Relaxation mechanism in a II-VI CdTe microcavity. Hot free carriers are created
by laser excitation. The electron-hole pairs cool down and form excitons with high in-plane
momentum. The excitons relax emitting phonons and decay radiatively in the radiative region
of the lower polariton dispersion. Porras et al. propose in reference [87] that at high pump
intensity, an efficient exciton-exciton scattering mechanism supplies the k£ = 0 polariton state
directly.

occurring in the strong coupling regime [33]. The measurement is shown on fig.5.1.
Curve (a) depicts the reflectivity spectrum of the employed cavity. It has a splitting of
26meV, similar to the CdTe sample employed in the present work (see section 2.4.2).
The sample was pumped non-resonantly at an energy of ~ 1.8eV, above the reflectivity
stop band of the cavity. The normalised photoluminescence curves (b) show the photo-
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luminescence spectrum from the cavity, when pumped between 5 and 50kW/cm?. At
low excitation intensity (5,13,26kW/cm?) the luminescence is emitted at the slightly
blue-shifted lower polariton energy with a linewidth corresponding to the linear polari-
ton linewidth as measured in reflectivity (curve (a)). Between 26 and 50kW/cm?, the
photoluminescence emission shows a first non-linear threshold behaviour, accompanied
by a line sharpening. This non-linear threshold clearly occurs in the strong coupling
regime. The strong coupling regime breaks down about two orders of magnitude above
the first non-linear threshold, as is manifest by the appearance of an emission peak at
the energy of the uncoupled cavity energy (~ 1670meV’). This second emission also
shows a non-linear threshold, which corresponds to the laser threshold of a conven-
tional electron-hole pair vertical cavity surface emitting laser. The principle of the
underlying relaxation mechanism for the non-linear emission in the strong coupling
regime is depicted in fig.5.2. A laser excites the cavity entering above the stop band
of the Bragg-reflectors and creates electron hole pairs. The electron hole pairs cool
down and form excitons with very large in-plane momentums. During this relaxation,
the excitations lose any phase-coherence of the incident laser light. The excitons relax
towards the bottom of the lower polariton dispersion at & = 0 by phonon emission.
In the radiative region of the lower polariton dispersion, the polaritons decay radia-
tively and emit light. Porras and co-workers have proposed a non-linear mechanism
for the relaxation of the hot excitons [87]. At high densities excitons with high energy
and momentum can scatter with each other conserving both energy and momentum.
Above the non-linear threshold, one exciton scatters into the k = 0 polariton state and
another one to a high in-plane momentum state (see fig. 5.2). This process is similar to
the parametric polariton scattering process investigated in chapter 3 and 4, with the
difference that, here the scattering mechanism also involves states outside the lower po-
lariton dispersion dip. The process becomes stimulated when the stimulated scattering
rate into the k = 0 state becomes larger than its loss rate.

The transition was characterised by the measurement of the photoluminescence
decay time. Below the stimulation threshold shown on curves (b) in fig. 5.1, the charac-
teristic decay time was of the order of 100 ps, which is much longer than the radiative
lifetime of the polaritons (~ 1ps). Above threshold the photoluminescence decay-time
dramatically decreased by about 30 times to ~ 3 ps [80].

Richard et al. characterised the coherence properties of the non-linear emission
in the far-field [90]. They excited the cavity with a very small laser spot. At lower
intensity, the directional emission in the Fourier plane was quite homogeneous, whereas
at the non-linear threshold a well defined ring structure in the far-field built up. It was
demonstrated, that the far-field emission of the cavity was strongly correlated in the
Fourier plane above threshold, i.e. there was a spontaneous apparition of coherence. In
a second paper [89], the intensity distribution of the emission spot was analysed using a
large laser spot (fig. 5.3). Below threshold, the emission came from a large homogenous
spot corresponding to the size of the laser spot (22 um, see panel (a)). Above threshold,
the emission came from a number of bright spots with ~ 3 pm-diameter (panel (b) and
(c)). At the same time the angular width in the far field was measured for the non-linear
emission (panel (b) and (c)). Corresponding to the laws of diffraction, a 3 um-spot in
real space, should present a broad angular width of at least 10°. The measured angular
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Figure 5.3: Images of the emission spot below threshold (panel a) and above threshold from
two different points of the sample (panel b and ¢). The data is taken from [89].

width amounted to only 3.6°. This fact suggests, that there must be some correlation
between the bright spots, i.e. a macroscopic phase-coherence over the whole spot. This
feature of the non-linear emission is strongly connected to the present work. In the
following we will discuss the basic properties of Bose-Einstein condensation of dilute
atom gases and their relevance for the polariton system. Special emphasis will be put
on the concept of long-range order.

5.3 Theoretical basics

5.3.1 Long-range order

A system which is charactersised by a statistical ensemble of states can be conveniently
treated in the density matrix formalism [70]. The one-body density matrix can be
defined as follows:

A A

nW(r,r') = (U ()P @), (5.1)

where Uf(r) and ¥(r') are the field operators creating and annihilating a particle
at point r. The diagonal elements of the one-body density matrix describe the density
of the system:

nt(r) = (¥ (r)¥(r)) = nV(r,r) (5:2)

The diagonal density and thus the field operators are normalised to the total number
of particles (N = [drnM(r) = [denM(r,r)).

In our case, we study the properties of polaritons in a microcavity. The polaritons
cannot be observed directly. Polaritons are coupled states between quantum-well exci-
tons and cavity photon modes. These photon modes are coupled to the external world
and can be measured by using optical methods. This light emitted by the cavity is a
direct part of the polariton wave-function and thus carries the coherence and statistical

79



properties of the polaritons. For the experiments as presented in section 5.2, the micro-
cavity emits light from a small spot. The intensity distribution of the light field I(r) is
equivalent to the diagonal elements of the density matrix 5.2. The spatial correlations
of the polaritons are described by the first order coherence function g™, which is the

density matrix for the emitted photons. The first order spatial coherence function is
defined to be,

W (p. gy = (ET@ER)
9 E) = T B (5:3)

The formal difference between ¢ and n) is that ¢(!) is normalised to the field
values at r and r’. In the case of r = r’, i.e. on the diagonal, n corresponds to the
particle density n(r), the numerator in equation 5.3 is the emitted light intensity I(r)
and is proportional to n(r) and thus g(l) equals 1.

The characteristic of Bose-Einstein Condensation is, that a large number of parti-
cles are in the same state and represented by the same wavefunction. The momentum
distribution can be represented by the diagonal elements of the density matrix in mo-
mentum space

nM(p) = (U1 (p)¥(p)). (5.4)

The momentum distribution n(!) (p) is often discussed in literature in the framework
of the description of the ideal Bose gas. For high temperatures the momentum distrib-
tuion can be described by the Maxwell-Boltzmann distribution. For low temperature,
the distribution is described by the Bose-Einstein distribution. When the system is
cooled down below a characteristic temperature 7, the condensation temperature, the
lowest energy state of the system is populated macroscopically, i.e. the occupation Ny
of this state becomes >> 1. The occupation of all the other states is of the order of or
below unity. The momentum distribution then reads

n(p) = Nod(p) + 7(p). (5.5)

The observation of such a momentum distribution was the first clear evidence for
Bose-Einstein Condensation in dilute atomic gases [2]. The momentum distribution
measured in [2] is shown in fig.5.4. Above T, the system is classic and a smooth
momentum distribution is observed (front surface plot). For T' < T, a sharp peak at
zero momentum appears in the middle of the particle momentum distribution corre-
sponding to the condensate (middle surface plot). When the thermal cloud ”around”
the condensate is evaporated, only the peak corresponding to the condensate remains
(rear surface plot). The finite width of the condensate peak is due to the fact that the
system has finite dimensions in real space corresponding to the size of the atom trap.

The measurement of the momentum distribution is also possible for the case of the
microcavity. The in-plane momentum of the polaritons is proportional to their in-plane
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Figure 5.4: Atomic Bose Einstein Condensates. Momentum distribution of the condensate as
measured by Anderson et al. in 1995 [2].
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Figure 5.5: Luminescence from a CdTe microcavity measured under non-resonant excita-
tion as explained in section 5.2. The horizontal and vertical scale depict respectively in-plane
wavevector and energy. The intensity corresponds to a false colour scale shown on the top of
each image. The first panel shows the emission at very low pump intensity, the second just
below the non-linear threshold, and the third above the non-linear threshold. The data is a
courtesy of Jacek Kasprzak of the University of Grenoble.

wave vector (p = hk). Fig. 5.5 shows the momentum and energy-resolved photolumi-
nescence of a CdTe-microcavity. The vertical axis displays the emission energy, whereas
the horizontal axis shows the in-plane wavevector of the polaritons. At low intensity,
the emission appears all along the lower polariton dispersion, and is broadly distributed
in k-space. At higher intensity, below threshold, the emission becomes more concen-
trated around k = 0 (panel E). Above threshold, the emission comes almost exclusively
from k = 0 (panel F), which corresponds to the appearance of a macroscopically occu-
pied state at k = 0. This feature corresponds to the mid plot of figure 5.4 in which the
momentum distribution of a Bose-Einstein condensate of atoms is shown.

The coupling of the polariton modes depends on their respective wavevectors. To
measure the occupation number of the polariton states, the photoluminescence intensity
in fig. 5.5 was normalised using the Hopfield factors C;. The occupation of the states
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Figure 5.6: Population of the polariton states versus E — Fy—¢ normalised accounting for the
Hopfield factors. To obtain the data, measurements similar to those presented in fig. 5.5 have
been used. The data is a courtesy of Jacek Kasprzak of the University of Grenoble.

was calculated corresponding to n = Ipr(k)/C2. The occupation of the polariton
states at different pump intensities is depicted in fig. 5.6 on a logarithmic scale. At low
pump intensities, which corresponds to a boson gas below the condensation density, the
distribution exhibits an exponential behaviour corresponding to a Maxwell-Boltzmann
distribution. When the pump intensity reaches threshold, the distribution features a
shape corresponding to a Bose-Einstein distribution. At low energies and high pump
intensities, a macroscopic occupation of the lowest energy state at k = 0 is observed.
The fit of a Bose-Einstein distribution to the experimental points does not work at
small energy. The occupation of the lowest energy states is much higher than the value
of the Bose-Einstein distribution fit. This behaviour is also observed in numerical
calculations and can be attributed to the strong interactions of the polaritons®. Before
retrieving the basic theoretical discussion, we point out, that the two presented data
sets presented in fig. 5.5 and 5.6 qualitatively correspond to the behaviour observed in
the dilute atomic system (fig.5.4).

The singularity of the momentum distribution of the particles has a profound conse-
quence for the properties of the one-body density matrix n(!) (r,r’) in real space, which
is the appearance of off-diagonal long-range order. This concept was introduced in the
1950s by Penrose and Onsager [85, 86]. The diagonal elements of the one-body density
matrix can be written in momentum space as in eq. 5.4. It is convenient, to consider a
system in the thermodynamic limit, which is uniform and isotropic 2. In such a case,

2private communication with Davide Sarchi

3This discussion is useful to understand the origin of the spatial coherence of a 3-dimensional ideal
Bose-Einstein condensate. The reader should keep in mind, that the polariton system is basically a
non-uniform 2-dimensional system.

82



the one-body density matrix depends only on the modulus of the relative displacement
s between points r and r’ (s = |r — r/|) and reads

nW(r,r') = nM(s) (5.6)

The dependence of n(!)(s) on the momentum distribution can be written as (see
chapter 2 of [70]),

1

nM(s) = v /dp n(p)e P/, (5.7)

When the momentum distribution equation 5.5 is inserted into equation 5.7, we get

N, 1 ;
nM(s) = 70 + v /dp fi(p) e Ps/h (5.8)

The contribution of the condensate is a constant term, whereas the second term
characterises a smooth distribution with a width of about the thermal wavelength of
the non-condensed particles. For large distances n(")(s) tends to a constant value
ng = No/V, which is a consequence of the momentum singularity of the condensate.
The macroscopic occupation of a single particle state is a general definition of a BEC
and the off-diagonal long-range constancy of the density matrix n(l)(s) is a direct
consequence of that. This property of the density matrix reflects the presence of a
long-range order in the system.

In a beautiful experiment, the long range order, i.e. the decay of n(l)(s) towards
a non-zero constant value was demonstrated in reference [12]. The measurement is
shown in fig.5.7. In the experiment, two parts of a ~ lum large condensate have
been extracted at a distance Az = zo — z1 containing N7 and N» particles. The two
condensates carrying the phase of the original 1um-condensate at positions z; and zo
were then superimposed. Because of the correlation in the original condensate, the
superposition showed interference fringes having a contrast

(
= L oAy (5.9)
2

In a thermal non-condensed gas having approximately a Maxwell-Boltzmann dis-
tribution, the density matrix and thus v(!)(s) shows a Gaussian shape corresponding
to,

‘rrs2

AW (s) e T, (5.10)
for the curves with the open symbols (T = 450nK,T = 290nK) in figure 5.7.
Ar is the thermal wavelength of the classical gas corresponding to Ay = H%ZZ; [70].

83



1.0 |
0.8}

06 |

Visibility

0.4}

02}t

ol
0 100 200 300 400 500 600 700
Az (nm)

Figure 5.7: Decay of the visibility (contrast) of interference fringes of two condensates cut at
distance Az out of a larger condensate. Data taken from [12], for different temperatures and
densities.

When the temperature of the gas was lowered below 7., the contrast v(!)(s) of the
fringes between the cut condensates decayed to a constant non-zero value (see fig. 5.7,
curves with solid symbols). The visibility for the condensed gas on fig. 5.7 approaches
in fact values > 50% for distances Az more than four times the thermal wavelength of
the non-condensed atoms. The data in fig. 5.7 agree with the behaviour displayed in
equation 5.8 and directly demonstrates the appearance of long range order, a concept
developed more than 50 years ago.

5.3.2 Order parameter of the condensate

Let us consider a system consisting of an ensemble of bosons. It is possible to find an
otrtho-normalised basis of single-particle wavefunctions ;(r) for the system [70]. The
field operator \i/(r) used in eq. 5.1 can then be written in terms of these wavefunctions
; and the corresponding annihilation and creation operators a; and dZT-:

()= pi(r)a;, (5.11)

where g is the wavefunction of the lowest energy state. In a condensed system,
it characterises the wavefunction of the condensate. It is convenient to write the field
operator with the condensate wavefunction separate from the rest of the sum:

A

U(r) = pio(r)aio + > pi(r)as. (5.12)
i#0

When the system is condensed, the occupation of the lowest energy state is macro-

scopic and the corresponding operators (a; and &;r) can be replaced by c-numbers+/Ny.
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This approximation is known as the Boguliubov approximation and the field operator
reads,

U(r) = To(r) + 6(r) (5.13)

where Wo(r) = v/Nogo and §¥g(r) = > izo Pi(r)ai. Yo is a classical field, whereas
5U(r) is a field operator. W (r) is the so-called wavefunction of the condensate and plays
the role of an order parameter. It can be written as a complex quantity characterised
by a modulus and a complex phase factor:

To(r) = [To(r)| S (5.14)

The order parameter given in equation 5.14 can be multiplied by an arbitrary phase
factor e’® without changing the physical properties of the system. This reflects the
gauge symmetry of the system. Choosing a specific phase corresponds to the formal
breaking of the gauge symmetry.

The wavefunction of the expected polariton condensate is observable outside the
cavity as a classical electromagnetic field. Being a transverse field, this light field
is also characterised by a polarisation. The scalar wavefunction given by 5.14 must
thus be replaced by a vector field characterising magnitude and direction of the field
components.

5.3.3 Quantum statistical properties of the condensate

A non-condensed thermalised system in a thermal state is described by a Maxwell-
Boltzmann distribution. At the phase-transition, the lowest energy state of the system
becomes macroscopically populated. The field operators of the lowest energy state can
be replaced by a classical field ¥, which is a coherent state representing the condensate
[13]. The Bose-Einstein condensation is thus a transition from a thermal to a single
mode coherent state. As stated before, the polaritons decay into photons, carrying
information about the quantum statistical properties of the polaritons. The statistics
can be investigated performing Hanburry-Brown-Twiss or noise measurements. When
the system is in a thermal state, the value of the second order coherence function g()
is expected to be 2, whereas for a coherent state, ¢ equals 1 [75, 4]. In a concrete
experiment, g(z) should jump from a value between 1 and 2 below threshold to ~ 1
just above threshold in an abrupt way. In [39], the second order coherence of the
polariton emission has been studied. In this study the condensate transition is not
conclusive, since the behaviour of ¢(® with exciting intensity is very smooth and the
minimum value of g(z) is 1.5 at Ipump = 181y,. Furthermore, at very high densities
(Lpump = 1814,), strong interactions in the condensate are expected. These interactions
(Coulomb interaction between excitons, etc.) tend to add noise to the signal, such that
¢? should increase at high density.
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Figure 5.8: Signal intensity and contrast decay time versus pump intensity. The signal
intensity is fitted by a quadratic fit below threshold and by an exponential fit above threshold.
The decay time of the contrast makes a jump approximately at the threshold intensity.

5.4 Life time of the polaritons

In the previous introduction in section 5.3, the basic properties of Bose-Einstein con-
densation were discussed illustrated by their relevance for Bose-Einstein condensation
in dilute atomic gases and the polariton system. One issue not yet adressed is the finite
lifetime of the condensed phase. The lifetime of atomic Bose-Einstein condensates is
of the order of a few seconds. In these condensates, the loss mechanism is the evap-
oration of atoms out of the condensed phase. During the whole time (before, during
condensation, during evaporation, and after), the system consists of a condensed phase
plus a bath of non-condensed atoms.

The polariton system is fundamentally different. The polaritons form from ionised
electron-hole pairs created by a non-resonant laser excitation (see section 5.2). Due to
their coupling to external light modes, a large amount of polaritons decay into light
during their relaxation towards the lowest energy state at k¥ = 0. When the threshold
for the non-linear relaxation of the polaritons is passed, the relaxation time of the
polaritons becomes quicker than their lifetime [80] and polaritons accumulate in the
lowest energy state at k = 0. The coherence time of this state is expected to change at
threshold, since it is continuously re-supplied by the non-linear relaxation.

To measure these dynamical features, an interferometric measurement of the decay
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Figure 5.9: This series of images show real-space images of the excited area on the sample when
the pump intensity is varied (Iy, is the threshold pump intensity for the non-linear emission).
The intensity scale has been adjusted differently for each image to show the intensity profile
of the emission. Above threshold a structured emission pattern builds up with three distinct
bright spots.

time of the contrast has been performed, similar to that in section 4.4. The em-
ployed setup is the same as the one depicted in fig. 4.17, with the difference, that the
laser excites the sample non-resonantly and the signal is detected in reflection and
not in transmission geometry (see fig.5.10). In this geometry, the stray laser light
co-propagates with the signal through the whole detection setup. To remove the con-
tribution of the stray laser light, the output of the interferometer is filtered using a
30 ¢cm monochromator before it reaches the photodiode.

The measurement of the signal emission intensity around k£ = 0 and its contrast
decay time versus the incident pump intensity is depicted in fig. 5.8. The signal intensity
(black squares) fits well with a quadratic evolution at low pump intensity and has
an exponential shape above the stimulation threshold. A quadratic behaviour is the
signature of a scattering process. It is probable that the scattering process is an exciton-
exciton scattering process as proposed by Porras et al. in reference [87]. The process
cannot be identified in the experiment, since the high in-plane momentum exciton
states cannot be investigated in the experiment. At low intensity, one would expect a
linear dependence of the signal intensity (as measured in [33]), as the polaritons will
relax by phonon emission. Our measurement setup was not sensitive enough to record
in this regime. The coherence time, which corresponds approximately to the polariton
radiative lifetime is around 1.7ps at low pump intensity. This agrees well with the
linear polariton linewidth of the cavity. Above the threshold the lifetime rises strongly
to about 5ps. The behaviour seems to be quite similar to the one observed in the
parametric scattering of polaritons (section 4.4). The difference here is that the phase
coherence of the laser has been completely lost by the incoherent relaxation mechanism.
This enhancement of the lifetime must then be connected to the spontaneously acquired
coherence of the polaritons.
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Figure 5.10: Setup for the measurement of the spatial and temporal correlations.

5.5 Spatial correlations of the condensate

As it has been pointed out in section 5.3, the appearance of long-range order is a key
feature of Bose-Einstein condensation. Initially, we analyse the intensity distribution
of the emission spot.

5.5.1 Real space shape of the intensity distribution

Fig. 5.9 shows the intensity distribution of the emission spot when the pump intensity
is varied. Below threshold we observe a uniform circular emission spot with the di-
mensions of the laser spot (diameter 25pum). For a rising pump intensity a pattern
forms, giving rise to three distinct spots above threshold. The angular width of the
emission in k-space (not shown here) is of the order of 3 — 4°. This corresponds to
the observations in reference [89] shown in fig. 5.3, and is an evidence for a correlation
between the spots. The non-uniformity of the spot can be attributed to the strong
static disorder present in the sample (fluctuations of the cavity width and the Bragg
mirror quality). A detailed discussion can be found in [89].

5.5.2 Setup for the spatial coherence study

To probe directly the spatial coherence of the spot, we need to look at the interference
between the bright spots. To do so the interferometer setup used before for the lifetime
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Figure 5.11: Superpostion of the real-space images of the two interferometer arms.

measurements has to be modified. Fig. 5.10 shows the setup. As in the previous
experiments, the pump laser hits the sample at an angle of ~10°. The off-normal
incidence of the laser is chosen to avoid laser light to be reflected to the detector
by the setup (this does not influence the physics of the relaxation since we excite
non-resonantly). The laser beam is chopped by an acousto-optic modulator to avoid
heating the sample. The duty cycle for the illumination is 1.25% and the pulse duration
is quasi CW since it amounts to 5 us, which is long compared to the time scales of the
relaxation and the emission. The polariton emission is collected by a focusing objective
and sent by a prism to a lens. This lens, together with the objective, images a real space
image of the sample surface onto the spatial filtering screen. Between the lens and the
screen, the converging beam passes a Michelson interferometer. The orientation of the
interferometer mirrors enables us to move the relative position of the two images on the
screen. If the two out-coming beams of the interferometer are collinear, we superpose
each point of the whole emission spot with itself (as done for the measurement in section
5.4). Tilting a mirror shifts one image with respect to the other and thus superposes
different points of the sample. Points can be selected using a double slit spatial filter
in the image plane. The plane of the spatial filter is re-imaged by a third lens onto a
CCD video camera or the entrance slit of a spectrometer (by using or not a prism).
The real space image of the spot can be monitored on the CCD. The spectrometer is
equipped with a Si-diode connected with a synchronous detection with a high sensitivity.
The spectrometer is needed to be able to measure the correlations in the spot below
threshold. In this case, the stray-light of the laser captured by the optics is stronger
than the polariton signal to be measured. The CCD is used to look at the emission at
much higher signal intensities, and thus a simple polariser is sufficient to cut out the
stray laser light.

In figure 5.11 we explain how the differrent parts of the image are superimposed.
The emission zone contains three bright spots. Initially we choose to make interfere
the two horizontally distributed ones. We superpose the first arm of the interferometer
with the left spot with the right spot of arm 2. The spatial filtering double slit is used
to select only the region of interest, where the two spots overlap (”Spotl + Spot2” on
the right panel in fig. 5.11).
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Figure 5.12: Normalised intensity of the signal at the output of the interferometer at ”Spot1
+ Spot2” when the relative phase between the interferometer arms is scanned (left panel). The
right panel shows a Fourier transform of the data on the left.

5.5.3 Spatial long range order of the emission

First, it is qualitatively explored how the first order correlation between spot1 and
spot 2 evolves (configuration third panel, fig. 5.11). To do so, we show a measurement
of the detected intensity after the spectrometer when the relative phase of the two arms
of the interferometer is scanned. The phase is changed using the piezo actuator and
the PI-stabilisation as in the former experiments (see appendix A). The measurement
is shown in fig. 5.12. The left panel shows the intensity oscillations when the relative
phase is scanned. The right panel displays the fast Fourier transform of the left panel.
When the pump intensity is adjusted to 0.3 I;;,, no distinct interference fringes are
observed. When the pump intensity is increased to 1.4 Iy, perfect sinusoidal oscillations
are observed, implying a strong correlation of the two emission spots. The contrast of
the oscillations representing g(l)(Spotl,Spot2,Ipump) is calculated using the Fourier
spectrum on the right panel. The spectrum has a strong cw component and a strong
component at the fundamental frequency of the oscillations. The spectrum also contains
negative frequencies, but it is symmetric with respect to the zero frequency (I(—f) =
I(f)). To compute the contrast, one has to use the cw intensity and the intensity at f
corresponding to
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Figure 5.13: Signal emission intensity and contrast versus pump intensity. Signal emission
intensity and pump intensity are normalised to their respective values at threshold. The signal
intensity is fitted by a quadratic fit below threshold and by an exponential fit above threshold.
The contrast between the two spot 1 and 2 makes a jump at about the threshold intensity.

Contrast = g(l)(SPOtl, Spot2, Iyump) =

(5.15)

Using this method, the contrast is approximately 2% below and 45% above thresh-
old. This means that the correlation g(l)(Spotl, Spot2, Ipymyp) is multiplied by a factor
of more than 20 at threshold for the two spots having a distance of ~ 15um.

To do a more detailed quantitative analysis, the contrast measurements are repeated
for several different pump intensities, and the contrast values are represented in graph
5.13 which also shows the signal intensity behaviour. In this plot the contrast has been
evaluated by simply taking the minimum and the maximum of the interference fringes
(C = % ). This technique leads to an overestimation of the contrast below
threshold, since the noise which is not correlated to the fringes enhances the contrast
value (using this technique one obtains 5% of contrast at 0.3 I, in fig.5.12 and 46%
above threshold).

As in the former measurements, the intensity has a quadratic behaviour below, and
an exponential behaviour above threshold. The exponential rise occurs between 1 and
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Figure 5.14: Setup for the mapping measurement of the spatial correlations. The mirror
in one of the interferometer arms is replaced by a retroreflector. This has the effect that the
image is reflected point-symmetrically in the arm containing the retroreflector. At the output
different regions of the emission spot are superimposed, and the spatial correlation can be
measured using the CCD camera.

2 I;p,. Above 2 Iy, the signal intensity slightly saturates. Below threshold the contrast
stays constant at ~ 8% (this value is strongly overestimated as stated before). At
threshold it quadruples to more than 30% and grows to almost 50% around 2 I;,*. The
presence of interference of the light emitted by two spatially distant spots is a direct
evidence of coherence, i.e. long-range order inside the excited volume. The contrast
of the fringes is a quantitative measure of this order. The appearance of long-range
order is a very strong argument for the occurrence of Bose-Einstein condensation in
the polariton system.

5.5.4 Mapping of the spatial long range order

The correlation between spot 1 and spot 2 change dramatically from almost zero be-
low threshold to a value of almost 50% above threshold. To obtain a more complete
mapping of the first order correlation, the interferometer setup must be modified. As
indicated in fig. 5.14, the mirror in one of the interferometer arms is replaced by a
retroreflector, whilst the rest of the setup in fig. 5.10 remains unchanged. The effect of
the retroreflector is indicated by the smiling face in fig. 5.14. The retroreflector changes
the orientation of the face point-symmetrically with respect to the nose. This means,
that at the output of the interferometer, we superimpose point r of the image with
point —r of the other with the origin 0 being the centre of the retroreflector. As be-
fore, the relative delay of the two arms is zero, and we can thus measure the quantity

“The measurement presented in fig. 5.12 does not fit into graph 5.13 as the data are not from the
same set of measurements.
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Figure 5.15: Mapping of the first order spatial coherence g™ (r, —r, 0) above (left panel) and
below threshold (right panel). The false colour scales depict the correlation contrast.

g (r,—r,0). To measure g(!), the two superimposed images are detected by a CCD
video camera. When scanning the phase, the intensity versus phase on each pixel is
recorded and the contrast value is computed using the same method as in fig. 5.12.

The ¢g™M-mapping is depicted in fig. 5.15. The origin of the axes correspond to
the symmetry centre of the retro-reflector. At this point, the image shows the auto-
correlation g(l)(O, 0,0). The correlation amounts here to ~ 75%, which is not too far
from the ideal value of 100%, if we take into consideration the triple reflection in the
retro-reflector. The image is point symmetric with respect to the centre. The two
horizontal maxima at x = 45 um correspond to the superpostion of spot 1 and spot 2
in the former measurement. We can identify two additional maxima of about 40%
in the vertical direction, ~ 7um away from the origin, corresponding to a ~ 14 uym
distance between the corresponding areas. These long-range spatial correlations have
to be compared to the spatial correlation below threshold.

To get the spatial correlation below threshold, we have to use a different method,
since the superimposed pictures of arm 1 and 2 were not scanned in phase. An image
of the superimposed two images is shown on the left in fig. 5.16. We observe a more or
less uniform spot with a region in the middle featuring vertical fringes, corresponding
to the centre of the retro-reflector. The fringes are approximately vertical, since the
planar mirror is slightly tilted with respect to the direction of the beam coming from
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the retro-reflector. This allows for the evaluation of the contrast in a single image. An
intensity profile of the image following the white line is taken and displayed on the right
in fig. 5.16. The image intensity of one interferometer arm has a Gaussian shape

22

I(x)=1Iy-e "rot (5.16)

modulated by the spatial correlation g(l)(x). For ¢ we suppose a Gaussian shape
(eq.5.10)

2

dW@)=a-Cx)=a- Chag - e_&;)?, (5.17)

g(l)(x) is related to the measured contrast by a constant a accounting for the im-
perfections of the interferometer setup. The intensity of the interference image is given
by the interference formula for partially coherent light [16]

1
16) =1+ I+ VIVES P o (518)

Inserting 5.17 into 5.18 and supposing I; = I», the resulting expression reads:

_ac2 2

I(w)=Ip-e "t - (2+ Cag - ¢ O07 - cos(kz + ), (5.19)

where k characterises the fringe separation and 6 is a constant phase factor. The
intensity behaviour in fig. 5.16 can be fitted (red line) by putting dspor = 2rspor = 24pum
and Ay = 4um. According to equation 5.17 we can plot g(l)(r, —r,0) because of the
central symmetry:

2
gM(r,—r,0) _ Co TR (5.20)
a

The plot is shown in fig. 5.15 right panel. According to the theoretical introduction

in section 5.3, the width of the central maximum corresponds to the thermal wavelength
which amounts to Ay = 4 ym. Using the relation for Ay presented in section 5.3, the
effective energy can be estimated. The estimation gives a temperature of ~ 20K which
is approximately the same as that found from the fit of the Bose distribution in fig. 5.6.

5.5.5 Spatial correlation and condensate fraction

In secton 5.3 experimental data for the spatial correlation of atomic Bose-Einstein
condensates has been shown (fig.5.7). As predicted from theoretical considerations
of an infinite and homogeneous system, the contrast of the intensity fringes between
the two cut condensates approached a constant value. The populations of the two
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Figure 5.16: Image of the emission spot at the output of the interferometer. On the right, a
profile of the image intensity along the white line in the image is shown. The image intensity
profile (black) can be fitted corresponding to equation 5.18 (red curve).
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Figure 5.17: Transverse profile of the correlation function g™)(r, —r,0) below and above
threshold, extracted from the data presented in figures 5.15 and 5.16.

interfering condensates were equal (N7 = N3) and also the condensate fraction could
be assumed to be the same at points z; and zp. This allowed the visibility 7! (s) to
be related directly to the condensate fraction Ny/N.

For the microcavity system the condition of homogeneity is not fulfilled (see fig. 5.3
and 5.9). Nevertheless, we still can analyse the transverse profile of the correlation
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Figure 5.18: Images of the superimposed pictures of the two interferometer arms, when the
delay between the arms is varied. At zero delay distinct fringes are observed. With increasing
delay, the fringe contrast diminishes and at 7 = 20 ps the contrast is almost zero.

which is shown in fig. 5.15. The profile for the negative y-axis in fig. 5.15 is plotted in
fig. 5.17. Below threshold, the correlation decays corresponding to the thermal wave-
length of the polaritons of 4um. Above threshold, the correlation shows a peak value of
more than 30% at y = —6um. At this distance there is no correlation at all in the non-
condensed case (below threshold). Between zero and the maximum correlation value,
the correlation has a minimum of 5% and below y ~ —8um the correlation amounts to
less than 10%. In the measurement, a point at r has been superimposed with a point
at —r and the emission intensity at r and —r were generally not equal. Consequently
the value of the correlation does not directly represent the condensate fraction. Nev-
ertheless, it is a lower bound for the condensate fraction at r or —r. At —6um the
correlation amounts to 30%, which means that in one of the two regions (r = (0; 6um)
or r = (0; —6um)) the condensate fraction is at least 30%. To overcome the problem
of the inhomogenous intensity, one would need to normalise the correlation using the
respective intensity shapes of the images from the two interferometer arms. There is
no reason why in an inhomogeneous system that the condensate fraction does not vary
in space. To get a mapping of the condensate fraction, the origin of the retroreflec-
tor would need to be scanned so to superpose r with a different r’ and thus obtain
information about the relative condensate fraction between two different points r’.

5.5.6 Temporal and spatial coherence of the condensate

In section 5.4 the evolution of the decay of the temporal coherence g(l)(T) has been
measured. It was found, that the coherence time of the condensate was ~ 5ps. The
spatial coherence is expected to decay corresponding to this characteristic time, when
the delay between the interferometer arms is increased starting from zero. To qualita-
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Figure 5.19: Polarisation of the polariton emission. On panel A the intensity of the polariton
emission is depicted versus the orientation of a linear polariser. Below threshold no oscillations
are observed whereas above threshold, the oscillations correspond to a linear polarisation degree
of 80%. On the images, the emission pattern of the spot above threshold is shown parallel to the
signal polarisation (panel B) and normal to its polarisation (panel C). The data is a courtesy
of Jacek Kasprzak of the University of Grenoble.

tively explore this effect, images of the two superimposed spots are taken at a delay
between 0 and 10 ps. The images are depicted in fig. 5.18. The planar mirror in figure
5.14 is tilted in order to slightly misalign the direction of the beam coming from each
interferometer arm. This generates spatial fringes in the image and allows an evalua-
tion of the contrast from a single image. On the image for 7 = 0ps a very high fringe
contrast is observed in the centre of the spot. The contrast of the fringes is not uniform
over the spot (see fig. 5.17) and some regions (four points around the centre) show a
locally higher contrast (see fig.5.18). When the delay is increased, the fringe contrast
diminishes (2,4, 6 ps) and almost disappears at 7 = 20 ps.

5.6 Polarisation of the condensate

The polarisation of the emission from the sample was analysed by a linear polariser.
The measurement is displayed in fig. 5.19. The intensity of the emission is plotted ver-
sus the angle of the polariser. Below threshold, the emission is completely unpolarised.
Above threshold, the intensity oscillates when the polariser orientation angle is scanned.
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From the contrast of the oscillations, a polarisation degree of 80 % is deduced. Image B
shows the emission spot when the polariser is set to the direction of the polarisation of
the signal emission. Several bright emission spots as in fig. 5.3 and 5.9 are observed. In
the perpendicular direction, the signal is much weaker (image C). The pattern of the
spots seems to be similar to the one in image B. The direction of the polarisation is in
the direction of one of the crystal symmetry axes. A dependence of the signal polari-
sation direction on the laser polarisation direction can be excluded, as the polarisation
direction of the emission does not change when the input laser polarisation direction is
changed.

5.7 Second order coherence of the condensate

As discussed in section 5.3.3 a polariton condensate is characterised by a coherent state,
whereas the emission below threshold should have a thermal character. In the Greno-
ble group, a Hanburry-Brown-Twiss type measurement was performed on the emission
from the polaritons. In doing this, the emission is split by a beamsplitter and sent to
two single photon detectors. The temporal coincidences are measured and the second
order coherence function ¢(®)(7) is measured. Below threshold, a bunching of the order
of a few percent is observed®, whereas above threshold ¢(?) (1) is completely flat demon-
strating no quantum correlation as expected for a coherent state. This measurement is
a further feature supporting the evidence of the observation of a condensate.

There is a situation known from the theory of Bose-Einstein condensation, where
several states are coherently macroscopically populated at the same time. This is known
as fragmentation of the condensate (see chapter 15 in [70]). In principle this effect can be
excluded, since the interaction potential of the polaritons is positive and thus prevents
from a fragmentation [70, 92]. Nevertheless, it would be interesting to check whether
the system is in a single-mode coherent state or a multimode coherent state, which
would correspond to a fragmentation of the condensate. To do this, the spatial second
order coherence g(?) (r,7,0) would need to be investigated. Such an experimental study
has been done for the signal emission in polariton parametric scattering [7] and the same
experimental technique could be employed here.

5.8 A Bose-Einstein Condensate in a solid state system

We have presented a set of experiments investigating the coherence properties of the
emission arising from a non-linear incoherent relaxation mechanism of polaritons in
CdTe microcavities. When the threshold for the non-linear relaxation is passed, a spa-
tial correlation spanning over several times the thermal wavelength of non-condensed
polaritons at low temperature is observed. This appearance of long-range order is a
manifestation of the appearance of a macroscopic wavefunction for the condensed po-
laritons. A macroscopic wavefunction acts as an order parameter of a condensate and
is the most important fundamental property of Bose-Einstein condensation. Since the

5The value of the bunching is pretty low since the time-resolution of the detectors is ~ 100 ps, which
is about 50 times longer than the coherence time of the emission.
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claim of the existence of Bose-Einstein condensation in excitonic systems [11], various
works have claimed its actual observation, concentrating on the spectral distribution
of exciton photoluminescence. A few years ago, some papers attracted a quite con-
siderable attention [22, 21, 104] reporting a particular spatial distribution of the pho-
toluminescence emission from quantum well excitons. In reference [21], Bose-Einstein
condensation was claimed, however up to now, the appearance of long-range order has
not been shown in the investigated system. At the same time, Deng et al. claimed
the observation of Bose-Einstein condensation in a polariton system based on the mea-
surement of the temporal second-order coherence function. The measurement of the
spatial long-range order was bypassed. The claimed transition from a thermal to a
coherent state was not clearly demonstrated. We have presented for the first time the
observation of long-range order in the framework of Bose-Einstein condensation in a
solid state system.

In conclusion, the experiments performed in Grenoble in the Le Si Dang group and
in our group in Lausanne have presented the following experimental findings:

¢ Bose-Einstein statistics of the polaritons: The energy distribution of the
polariton emission shows a Bose-Einstein distribution shape when the threshold
for the non-linear polariton relaxation is approached. Above threshold, the distri-
bution features a Bose-Einstein distribution and displays a sharp peak at £ =0
corresponding to a macroscopic population of the lowest energy state.

e Polarisation build-up of the polaritons independent from the laser po-
larisation: The emission of the polaritons is unpolarised below threshold whereas
above threshold a linear polarisation of 80% is observed. This polarisation does
not change when the polarisation of the exciting laser beam is changed, show-
ing that the phase coherence of the laser is lost by the incoherent relaxation of
the polaritons. This implies that the coherence of the polaritons at k = 0 is a
spontaneous coherence.

e Build-up of long-range order in the polariton emission: A spatial correla-
tion spanning several times the thermal wavelength of non-condensed polaritons
at low temperature is observed above threshold. This is the most pertinent feature
for the appearance of Bose-Einstein condensation of excitons. The build-up of the
long-range order indicates the build-up of the order parameter of the condensate.

e Transition from a thermal to a coherent state for the polaritons: Below
threshold the emission of the polaritons is bunched, since the system is in a
thermal state. When the threshold is passed, the correlation vanishes showing
that the system is characterised by a thermal state.

Based on all these experimental observations, we can conclude, that we have demon-
strated Bose-Einstein condensation of microcavity polaritons. After 40 years of intense
research this is the first irrefutable observation of Bose-Einstein condensation in a solid
state system.
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Chapter 6

Conclusion and Outlook

The thesis presents an experimental analysis of the coherence and dynamics proper-
ties of polariton non-linearities in semiconductor microcavities. A number of different
experimental techniques essentially pump-probe (including coherent control), but also
resonant and non-resonant photoluminescence have been performed. To investigate the
emission of the cavity, time-integrated as well as time-resolved spectrally, spatially, and
angularly resolved detection has been employed. This required the use of photomulti-
plier tubes, CCD and streak cameras and frequency upconversion techniques as well as
spatial and temporal interferometry. The main results can be summarised as follows:

e In chapter 3, we investigated the dynamics of coherent polaritons during a stimu-
lated parametric scattering experiment in a GaAs microcavity. Essentially pump-
double-probe (i.e. coherent control) techniques have been employed, for the de-
tection we used CCD cameras in time-integration. We found that parametric
scattering can be well controlled by judiciously phase-locked probe pulses. Just
above threshold, the signal emission can be regarded as a superposition of co-
herently interfering processes of the respective probe pulses. For delays of the
second probe pulse as long as 10 ps interference contrasts of more than 75 % were
observed, confirming that polaritons have long dephasing times. Far above thresh-
old a depletion of the pump polariton mode is observed, a feature which is well
reproduced by numerical simulations using the model of the polariton parametric
amplifier proposed by Ciuti et al. [29]. In an angle resolved intensity measure-
ment we showed, that the emission of signal and idler is correlated, i.e. the signal
and idler oscillations are in phase and when the coherent control maximises the
emission in the probe direction, the idler also is maximized.

e In chapter 4 the real-time dynamics of the polariton parametric scattering pro-
cess in the stimulated and spontaneous regimes were investigated. As shown in
chapter 3, the pump mode is strongly depleted by the parametric scattering far
above threshold. This depletion acts on the temporal shape of the scattering and
shifts the emission maximum to earlier delays. In the upconversion measurements
it was shown, that the rise of the signal emission is considerably delayed with re-
spect to the pump and probe excitations. This was attributed to the changes
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of the polariton dispersion during the experiments employing high pump densi-
ties. The shape of the dispersion changes in time which leads to a very complex
phase-matching for the process, probably explaining the delayed rise of the signal
emission. In the spontaneous regime, we showed, that the parametric scattering
is initially started by polaritons which have relaxed to the band bottom by the
phonon emission.

e In chapter 5 the coherence properties of the non-linear emission occurring close
to zero in-plane wavevector in CdTe microcavities under non-resonant excitation
were investigated. The energy distribution of the polaritons emitted from the
cavity is thermalised below threshold. The emission above threshold is highly po-
larised and the orientation of the polarisation does not depend on the polarisation
direction of the exciting laser beam. A spatial coherence largely exceeding the
thermal correlation length of the polaritons was shown to build up above thresh-
old. At the threshold the system passes from a thermal state into a coherent
state characterised by the wavefunction of the polariton condensate. The sum of
all these experimental observations enables us to conclude that the Bose-Einstein
condensation of polaritons has been observed. We regard these observations as
the first bullet-proof evidence for spontaneous Bose-Einstein condensation in a
solid state system, a phenomenon that has been the subject to many investiga-
tions and controversies during the past four decades.

The experiments presented show that it is possible to achieve a quantum degenerate
occupation of polariton states, which can interact in a reasonably efficient way. In
the framework of polariton parametric scattering this quantum degeneracy is directly
induced by the exciting laser beam, whereas in the case of Bose-Einstein condensation
it builds up spontaneously.

The performed series of experiments could be extended and complemented as fol-
lows:

e The coherent control experiment has been performed applying two probe pulses
to the signal state. In the modelling in chapter 4 a coherent control effect was
observed when one probe is applied to the signal and another one to the idler
state. It would be interesting to realise this situation in the experiment, although
this is very complex.

e Below threshold the spontaneous parametric scattering mechanism is supposed to
produce polarisation entangled signal idler pairs. This important property could
be probed doing polarisation resolved coincidence or noise measurements.

e Some excitation parameters in the experiments on the real-time dynamics were
not completely controlled. Especially the spot shape and the superposition of
pump and probe spots should be monitored and eventually recorded. The data
on the spatial intensity distribution could be used as an input for a theoretical
model accounting for finite size and inhomogeneous excitation and emission spots.

101



e The long-range order of a polariton condensate has been shown. The polariton
condensate is inhomogeneous and a more detailed mapping of the first order
spatial coherence function normalised by the spatial intensity distribution could
give information about the condensate fraction distribution over the emission
zone.

e The Bose-Einstein polariton condensate is supposed to be in a single coherent
state. This feature could be checked by performing spatially resolved measure-
ments of the second order coherence in the emission zone.

Polariton parametric scattering could be exploited in real world applications as ul-
trafast amplification devices or compact sources for entangled photons. This appears
especially interesting, as there is a need to further push up the speed of telecommuni-
cation networks and to use quantum cryptography for the secure transmission of data.
The main technological challenge for this research direction would be to make micro-
cavities that work at room-temperature. As discussed in [93], the maximum operation
temperature is dependent on the exciton binding energy which in turn depends on
the respective employed material system. Promising candidates for this attempt are
ZnSe or GaN based microcavities or cavities with an organic active material with first
samples featuring the strong coupling regime [84, 71, 49, 112].

A second more fundamental promising direction would be the investigation of quan-
tum phenomena in polariton systems. In the past polariton microstructures with one-
dimensional and zero-dimensional photonic confinement have been demonstrated. The
photonic mode confined by the boundary of the dielectric mirrors in the growth di-
rection is further confined in the in-plane resonator direction by etching away the top
Bragg mirror and the cavity [35]. This gives rise to one- and zero-dimensional po-
lariton modes and parametric scattering involving different confined modes has been
demonstrated [36, 37, 34]. In a recent work, El Daif and co-workers have employed
a different approach [45]: the thickness of the cavity is locally modified by etching a
mesa of a few nm depth before growing the top Bragg reflector. The advantage of this
method is that the interaction of two dimensional polaritons with zero-dimensional
or one dimensional confined polariton modes can be studied. The lateral structure
of the confinement zones can be defined on demand using photo-lithography and the
realisation of ”polaritonic circuits” is imaginable. Using such circuits, the study of a
polariton Josephson effect or polariton superfluidity could be possible. The effect of
Bose-Einstein condensation in CdTe microcavities seems to be influenced by the local
disorder in the sample. Using the technique described in [45], one could introduce de-
fects in the in-plane cavity structure on demand and study the effects of an eventual
polariton Bose-Einstein condensation in such structures.
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Appendix A

Stabilised Michelson
Interferometer

For the measurements in chapter 3 and 5 a stabilised Michelson interferometer was
used. The employed interferometer stabilisation setup was first proposed by Wehner,
Ulm and Wegener [115].

The stabilisation setup is depicted in figure A.1. The input signal beam is split into
the two interferometer arms by a non-polarizing beam-splitter BS2.The two beams are
reflected by two plane mirrors M2 and M3. They are recombined in the beam-splitter
and sent to the output of the interferometer. Changing the position of a mirror along
the beam direction varies the optical path between the two interferometer arms and
thus the time delay and relative phase between the two split input signals changes.

One of the two mirrors is attached to a piezo actuator which is mounted on a
translational stage. The translational stage can be used to vary the relative delay of the
two interferometer arms to up to several hundred picoseconds. The piezo actuator can
be used to actively stabilise the relative phase of the two interferometer arms and also
allows a variation of the optical path of about 6um or 40 fs (~ 15 times the polariton
wavelength). The active stabilization is provided by monitoring the intensity fringes
of a He-Ne laser beam which passes the Michelson interferometer on a second plane
which is parallel to the one of the signal beam [115]. The He-Ne beam which has linear
p-polarization is reflected twice once by the mirror M0 and once M1 this allows the
control the position and the direction of the beam. Before entering the interferometer
the beam passes a polariser in order to extinct any polarisation deviation induced by
the reflection on the metallic mirrors M0 and M 1. The beam is split and recombined
by BS2 after having passed through the two interferometer arms. In the arm of mirror
M2, the incident p-polarization is turned by 90° into s-polarisation by passing twice
through a A/4-waveplate. Thus the M2-arm beam has s-polarization and the M 3-
arm beam p-polarisation at the output of the interferometer. The two perpendicularly
polarised beams are transformed into left and right circularly polarized light by the
second \/4-waveplate. If the beams are of the same intensity, the beams superimpose
to form linearly polarized light. Putting a polarizer after the waveplate allows one to
probe the delay between the two pulses since the angle of polarisation depends on the
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Figure A.1: Setup of the stabilized interferometer.

I =2Iycos*(6/2 — ¢ +/4) (A1)

where § is the path difference of the two arms in terms of relative phase and ¢ is
the polarizer angle. Some remaining circular polarization stays constant for different
polarizer angles. Since we can measure the path difference by the intensity I and
change it by the piezo voltage it is possible to stabilize the relative phase difference
with a feedback-loop. A photodiode and a preamplifier transform the intensity I into
a Voltage U. A constant voltage reference Uy corresponding to the intensity Iy is
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subtracted by a comparator. The signal coming out of the comparator is zero when
the incident light-intensity on the photodiode is Iy thus at the inflection point of the
cos®-function. If the optical path of the M3-arm is more than desired we get a positive
signal at the output of the comparator and vice versa. This allows a proportional-
integral-control to drive the piezo actuator and to stabilise the optical path difference
in a very efficient manner.

Turning the polarizer angle ¢ results in changing the set point of the stabilisation
(see equation A.1) and thus varies the optical path difference on a nanometer-scale. A
rotation of the polarizer angle of 2w changes the phase between the arms by 47— ne
which corresponds to 1265.6 nm (twice the He-Ne laser wavelength) or a time delay of
4fs.

An estimation of the interferometer stability can be made by measuring the intensity
detected by the photodiode with and without active stabilization. The deviations of
the reference intensity Iy after the comaparator is just:

I =1I(2c08*(6/2 — ¢ +7/4) — 1) (A.2)

Without stabilization the fluctuations of the detected intensity are AT = 2I5. When
the stabilization is turned on the fluctuations diminish down to Al < 0.03 - 2[y. Ap-
proximating equation A.2 by a sawtooth function we can assume that a variation of
Al = 2I; corresponds to a fluctuation amplitude of 316.4 nm. In the stabilized case
the optical path fluctuations are thus three percent of 316.4 nm which is ~ 10nm. For
the polariton wavelength of ~ 800nm we obtain a relative phase stability of 7/40. The
setup has a good performance, since the phase between the two pulses can continuously
be scanned over 307, whilst maintaining a phase stability of ~ 7 /40.
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