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Abstract

Several members of the perovskite family are investigated:

- the temperature dependence of dielectric, elastic, piezoelectric and coupling co-

efficients of KNbO3 in its orthorhombic ferroelectric phase is determined experi-

mentally;

- the values of dielectric stiffness coefficients at constant stress, α, are estimated

for the 6th order Landau-Ginzburg-Devonshire phenomenological description of

KNbO3;

- the origins of the enhanced piezoelectric responses along non polar directions in

perovskites are investigated by studying phenomenologically the temperature evo-

lution of the piezoelectric anisotropy in a material with a sequence of ferroelectric-

ferroelectric phase transitions (BaTiO3) and in a material with only one ferroelec-

tric phase (PbTiO3);

- the influence of external bias fields on piezoelectric response and its anisotropy

in ferroelectric perovskites is discussed phenomenologically by studying tetragonal

BaTiO3, PbTiO3 and Pb(Zr,Ti)O3 under electric bias field applied anti-parallel

to the spontaneous polarization and uniaxial compressive bias stress along the

polarization direction;

- a discussion about a common underlying thermodynamic process able to gen-

erally describe the enhancement of the piezoelectric response and its anisotropy

is given by investigating the Gibbs free energy flattening in tetragonal BaTiO3,

PbTiO3 and Pb(Zr,Ti)O3 upon changes of temperature, bias fields and composi-

tion.

The main conclusions resulting from this work are:

- a comparison of the results of electromechanical properties measurements on

KNbO3 obtained in this work, the ones found in the literature, and estimates

using LGD phenomenology from this work gives discrepancies that suggest that

published measurements should be redone;

- in the absence of bias fields, the intrinsic origin of the enhanced piezoelectric

responses in perovskites is the anticipation of a phase transition, no matter what

is the cause of that transition (temperature, composition); in the presence of suffi-

ciently high bias fields, an enhanced piezoelectric response along non-polar direc-

tion can be predicted in some materials (PbTiO3 under high uniaxial compressive

stress along the polar direction);
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- the influence of the external bias fields on electromechanical properties of per-

ovskites may generally be of significant importance: if the electric fields applied

anti-parallel to the spontaneous polarization or the uniaxial compressive bias

stresses applied along the polarization axis are high enough, the perovskite system

can be strongly dielectrically softened (metastable state), increasing the values

of dielectric permittivities and piezoelectric coefficients; in the vicinity of a coer-

cive field or a phase transition these electromechanical coefficients can increase by

several orders of magnitude;

- the flattening of the Gibbs free energy profile of each of examined perovskite

systems, regardless of whether this flattening is caused by temperature or compo-

sition variation, or by applying compressive pressure or antiparellel electric field

bias, leads to enhancements of dielectric susceptibilities and of the piezoelectric

response; the anisotropy of the free energy flattening is the origin of the anisotropic

enhancement of the piezoelectric response, which can occur either by polarization

rotation or by polarization contraction.

Key words: piezoelectricity, ferroelectricity, phase transitions, single crystals, anisotropy,

perovkites
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Resumé

Plusieurs membres de la famille des perovskites sont étudiés :

- L’influence de la température sur les coefficients diélectriques, élastiques, piézo-

électriques et sur le couplage electromécanique du KNbO3 dans sa phase ferroelec-

trique orthorhombique est déterminée;

- les valeurs des coefficients de rigidité diélectriques à contrainte constante, α, sont

estimées pour la description phénoménologique de Landau-Ginzburg-Devonshire

du 6e ordre de KNbO3;

- les origines des réponses piézoélectriques augmentées le long des directions non

polaires des perovskites sont étudiées phenomenologiquement; pour cela, l’évolution

de l’anisotropie piézoélectrique en temperature dans un matériau avec une série des

transitions de phase ferroelectrique-ferroelectrique (BaTiO3) et dans un matériau

avec seulement une phase ferroelectrique (PbTiO3) est etudiée;

- l’influence des champs statique externes sur la réponse piézoélectrique et sur son

anisotropie est discutée phenomenologiquement en étudiant les BaTiO3, PbTiO3

et Pb(Zr ,Ti)O3 tétragonaux sous champ electrique appliqué anti-parallèlement à

la polarisation spontanée et à contrainte en pression uniaxial appliquée en direction

de polarisation;

- une discussion au sujet d’un processus thermodynamique fondamental commun

pour décrire généralement l’augmentation de la réponse piézoélectrique et de son

anisotropie est donnée en étudiant l’aplatissement du profil de l’énergie libre de

Gibbs dans les BaTiO3, PbTiO3 et Pb(Zr, Ti)O3 tétragonaux sur des changements

de la température, des champs externes et de la composition.

Les conclusions principales obtenues dans ce travail sont:

- une comparaison des résultats des mesures des propriétés électromécaniques

du KNbO3 obtenu pendant ce travail, ceux trouvés dans la littérature, et les

évaluations utilisant la phénoménologie de LGD obtenus pendant ce travail, donne

des anomalies qui suggèrent que des mesures publiées devraient être refaites;

- en l’absence des champs externes, l’origine intrinsèque des réponses piézoélectriques

augmentées des perovskites est l’anticipation d’une transition de phase, quelque

soit la cause de cette transition (la température, composition); en présence des

champs externes, une réponse piézoélectrique augmentée le long de la direction
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non polaire peut être prévue pour quelques matériaux sous un champ suffisam-

ment élevée (PbTiO3 sous une contrainte en compression uniaxiale élevée le long

de la direction polaire);

- l’influence des champs externes sur les propriétés électromécaniques des per-

ovskites peut généralement être d’une importance significative: si les champs

électriques appliqués anti-parallèlement à la polarisation spontanée ou les con-

traintes en compression uniaxiales appliquées le long de l’axe de polarisation sont

assez élevés, les perovskites peuvent être fortement diélectriquement adoucies (état

métastable), augmentant les valeurs des constantes diélectriques et des coefficients

piézoélectriques; dans la proximité d’une zone coercitive ou d’une transition de

phase ces coefficients électromécaniques peuvent augmenter de plusieurs ordres de

grandeur;

- l’aplatissement du profil d’énergie libre de Gibbs de chacun des systèmes de per-

ovskites examiné, indépendamment de ce qui a provoqué cet aplatissement (varia-

tion de la température, variation de la composition, appliquation d’une contrainte

en compression ou d’un champ électrique antiparellel) mène aux augmentations

des susceptibilities diélectriques et de la réponse piézoélectrique; l’anisotropie de

l’aplatissement de l’énergie libre est l’origine de l’augmentation de l’anisotropie de

la réponse piézoélectrique, qui peut se produire par rotation ou par contraction de

polarisation.
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Chapter 1

Introduction

One of the most important facts about ferroelectric perovskites is the enormous techno-

logical importance of their electromechanical properties. These materials are used today

in a great variety of applications, from atomic force microscopy (AFM), through medical

ultrasound probes and health-monitoring techniques in civil engineering, to ultrasound

underwater applications such as sonars in submarines. A sonar, built from thin quartz

crystals, for military purposes, was actually the first application of a piezoelectric mate-

rial (Paul Langevine and his group, France, 1917). Nowadays, the diversity of products

and the number of companies in the piezoelectric industry are impressive.

Apart from its attractiveness from the industrial point of view, the family of ferroelec-

tric perovskites displays a large diversity in its physical properties, which makes these

materials attractive for fundamental research. On one hand, different representatives of

the family exhibit a multitude of physical phenomena, such as pyroelectricity, piezoelec-

tricity, ferroelectricity (in general, perovskites can also show superconductivity), while,

on the other hand, perovskite structure is relatively simple and, thus, attractive for

studies, especially theoretical ones.

The general stoichiometric formula of the perovskite structure is

ABO3,

where A is a monovalent, divalent or trivalent metal, and B is a pentavalent, tetravalent

or trivalent element, respectively. A typical perovskite structure (tetragonal BaTiO3)

is shown in Fig. 1.1. The family spans from simpler classic perovskites (for example

BaTiO3, KNbO3, PbTiO3) that represent a possibility for the fundamental theoretical

investigations, to much more complex relaxor ferroelectric solid solutions (for example

(1-x)Pb(Zn1/2Nb2/3)O3-xPbTiO3, and (1-x)Pb(Mg1/2Nb2/3)O3-PbTiO3, also known as

PZN-PT and PMN-PT, respectively), with very high piezoelectric coefficients and hence

with a great present and future in divers applications.

1
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Figure 1.1: The tetragonal barium titanate (BaTiO3) perovskite structure. Translucent octa-
hedra reveal off-centered titanium atoms and the resulting ferroelectric dipoles are indicated by
arrows.

The piezoelectric materials exist in single crystal and ceramic form, and as thin films. At

present, most of the applications use piezoelectric ceramics. However, the applications of

the single crystals are becoming more and more important - one can predict confidently

that certain piezoelectric applications that use ceramics today have a single crystalline

future.

The perovskites of the particular interest for this work are:

potassium niobate (KNbO3) - firstly, the electromechanical properties data set of

this material can be found in several papers (see Chapter 3 for a review), and the

most striking feature about these results is their inconsistency and incomplete-

ness; secondly, the coefficients set of the commonly used phenomenological theory

(Landau-Ginzburg-Devonshire) for describing the electromechanical properties of

perovskite systems is incomplete for KNbO3; so, the challenges with this mate-

rial are to refine the measured data set, and to improve the phenomenological

description of this material properties;

barium titanate (BaTiO3) and lead titanate (PbTiO3) - these two best known

members of the perovskite family have already been thoroughly investigated ex-

perimentally, both in single crystal and ceramic form, and the phenomenological

models describing their electromechanical behavior have been optimized - this

state of affairs makes these two materials an excellent choice for a discussion of

very important issue of piezoelectric anisotropy in perovskites ;

lead based perovskites (PZT, PMN-PT, PZN-PT) - these perovskites are mostly

not in the mainstream of this work, so not much attention will be given to them
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- nevertheless, they will excellently serve as important comparative examples in

some discussions.

Firstly, it can be easily illustrated where does the interest for potassium niobate come

from. Potassium niobate single crystal (the abbreviation KN will be used throughout

this report) is already known as an outstanding nonlinear optic material. But, it also

has advantages for use in ultrasound medical applications. These are: a low dielectric

constant, the highest reported thickness mode coupling coefficient1 and a high longitudi-

nal sound propagation velocity. It is then straightforward to see that KN represents an

exceptional non-lead based (i.e. environmental friendly) candidate for high frequency

single element transducers.

However, there are certain problems with this material. Ferroelectricity of KNbO3 was

first observed 55 years ago, and, to date, a large number of studies has been reported,

but, considering the period passed since the discovery of its ferroelectricity (piezoelec-

tricity), only some reports can be found in the literature on KNbO3 crystals piezoelec-

tric properties, with very discrepant results presented in them. There are two common

reasons for this: the difficulty of growing of KNbO3 crystals with sufficient electrical

resistance and the difficulty in the poling treatment, i.e. the reconstruction of the pre-

ferred domain configuration.

Yet, the experimental investigation of the properties of KN is not the main subject of

interest in this thesis work. Although of the obvious practical importance, these exper-

iments are at the same time a step towards a discussion about a very important issue

in the piezoelectric perovskites world - a question of origins of piezoelectric anisotropy

in classic perovskites.

After the recent discovery of the very large piezoelectric effect in complex relaxor –

ferroelectric single crystals PZN-PT and PMN-PT [118, 89], and the fact that the

largest piezoelectric response and coupling coefficients are not along the polar axes of

these materials, the interest in classical ferroelectric materials, such as barium titanate

[7, 44, 46, 119, 155, 165] and potassium niobate [109], was renewed. One of the new and

very interesting results of the revived investigations was that one could expect the en-

1The electromechanical coupling coefficient is considered as the key parameter for transducer de-
sign. It is the parameter that measures the strength of piezoelectric interaction. High coupling factor
corresponds to a transducer with improved axial resolution, broader bandwidth and higher sensitivity.
Additionally, the ultrasonic imaging at frequencies from 20 to 100MHz provides a high spatial res-
olution tool for dermatological, opthamological, articular, and intravascular applications, or imaging
during minimally invasive surgery (i.e. the high frequency ultrasound imaging is crucial in areas where
resolution is critical but penetration requirements are small [98]). Since KN has an excellent value of
the thickness mode (which is a high frequency mode) coupling coefficient, it is greatly promising for
this kind of applications.
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hanced longitudinal piezoelectric response along a direction that does not correspond to

the polarization axes in many perovskite ferroelectrics [118, 119, 155]. The magnitude of

this effect is by far the largest in lead–based materials [118, 147], but nevertheless, sim-

pler systems, like BaTiO3 and KNbO3, which show the same effect, are also of interest

because the problems with mesoscopic structure of relaxor–ferroelectric solid solutions

are avoided [99]. However, it is still not clear whether the enhancement of the piezoelec-

tric response in the complex solid solutions and in the simple perovskite ferroelectrics

has the same origin.

Having in mind all the facts mentioned above, the research activities for this thesis work,

thus, head in several directions:

1. experimental determination of temperature dependence of piezoelectric, dielectric

and elastic material parameters in single crystal KNbO3 will be attempted; such a

study can be made only over a limited temperature range (orthorhombic ferroelec-

tric phase), where single domain state can be assured – with these measurements

the determination of missing coefficients of the Devonshire function and the re-

finement of existing coefficients will be tried;

2. the question of the intrinsic origins (temperature and composition related) of the

piezoelectric anisotropy will be investigated in classical perovskites by combining

the framework of phenomenological Landau-Ginzburg-Devonshire theory [31, 32],

experimental data published in literature and experimental results obtained in

this work; the task has a great importance because of the possibility to correlate

between temperature effects on anisotropy in simple single crystal perovskites and

the composition effects in the complex solid solutions of relaxor – ferroelectrics;

this may give an opportunity to get a global picture (i.e. a general model) for

behavior of the piezoelectric properties of all perovskite structures;

3. the influence of external bias electric fields and mechanical stresses on the piezo-

electric response and its anisotropy in classical ferroelectric perovskites will be

investigated phenomenologically - it turns out that, for some bias fields config-

urations, large changes in electromechanical properties of these materials can be

expected;

4. the question ”Is there a common thermodynamic description behind the elec-

tromechanical properties enhancement and their anisotropy in all perovskite ferro-

electrics?” will be discussed in detail - and, hopefully, answered.
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Structure of the report

The report is divided into 9 chapters.

Chapter 2 gives a short review of the theoretical background behind the work. Its pur-

pose is to facilitate the reading to non-experts and to give the report a certain autonomy.

In Chapter 3 a review of key publications on which this thesis work relies is presented.

The chapter is divided into two sections - a section reviewing the literature concerning

the experimental and theoretical results of structural and electromechanical properties

of potassium niobate in single crystal form, and a section on the phenomenological

Landau - Ginzburg - Devonshire theory modeling of perovskite ferroelectrics electrome-

chanical behavior and topics essentially related to studying the problem of piezoelectric

anisotropy origins in classic perovskites.

Chapter 4 presents experimental techniques used to obtain the electromechanical prop-

erties values of KN.

In Chapter 5 the temperature dependence of electromechanical coefficients is measured,

and coefficients for a phenomenological description of potassium niobate are estimated.

Using the phenomenological Landau-Ginzburg-Devonshire theory and classic ferroelec-

tric perovskites, the intrinsic origins of the enhanced response along non-polar axes are

investigated and discussed in Chapter 6.

In Chapter 7 different classic perovskite systems under different configurations of elec-

tric and mechanic bias fields are discussed.

In Chapter 8 the question of the origin of the piezoelectric properties enhancement in

perovskite ferroelectrics is approached by analyzing the Gibbs free energy of tetrag-

onal BaTiO3, PbTiO3 and Pb(Zr,Ti)O3 in the framework of the Landau-Ginzburg-

Devonshire theory.

General conclusions and perspectives are given in Chapter 9.
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Chapter 2

Basic concepts and definitions

A short review of the theoretical background is given. Its purpose is to facilitate the reading to

non-experts and to give a certain autonomy to this report.

2.1 Spontaneous polarization. Ferroelectricity

All dielectrics can be polarized by application of an electric field. Nevertheless, under

certain conditions, some dielectrics also possess a spontaneous polarization or electric

moment per unit volume.

A crystal is defined as ferroelectric when it has at least two orientation states of spon-

taneous polarization in the absence of an external electric field and can be shifted from

one to another of these states by an electric field. Any two of the orientation states are

enantiomorphous and differ only in dielectric polarization vector at null electric field.

This definition is oversimplified - whether or not a real material is ferroelectric depends

on experimental limitations - crystal perfection, electrical conductivity, temperature and

pressure are all factors which affect the reversibility of the polarization.

Ferroelectric domains. The spontaneous polarization in a ferroelectric material is

usually not uniformly aligned throughout the whole material along the same direction.

The regions in the material with uniformly oriented spontaneous polarization are called

ferroelectric domains and the region separating two domains is called a domain wall.

Ferroelectric domains form to minimize the electrostatic energy of depolarizing fields

and the elastic energy associated with mechanical constraints to which the ferroelectric

7
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material is subjected as it is cooled through paraelectric - ferroelectric or ferroelectric -

ferroelectric phase transition.

Types of domain walls that can occur in a ferroelectric crystal depend on the symme-

try of both non-ferroelectric and ferroelectric phases of the crystal. The criteria which

may be used to derive possible types of domain walls in a ferroelectric material were

derived by Fousek and Janovec [43]. The domain walls are usually labeled by the angle

between the spontaneous polarization vectors in the domains that these walls separate.

For example, 90◦-walls are the ones that separate regions with mutually perpendicular

polarization (although the angle between polarization directions on each side of a 90◦

domain wall is slightly smaller than 90◦ [134]).

The existence of ferroelectric domains in the material can contribute enormously to ma-

terial’s overall electromechanic performances. Small displacements of all types of domain

walls will affect the polarization of the material whereas the movement of non-180◦ walls

will, in addition to the polarization change, directly contribute to the piezoelectric effect

[26]. Movement of domain walls at weak to moderate fields is one of the most important

so-called extrinsic (non-lattice) contributions to the dielectric, elastic and piezoelectric

properties of ferroelectric materials [168, 167, 25, 56] and may be comparable to the

intrinsic effect of the lattice [29, 12].

It is interesting to mention that ferroelectric domain walls are much thinner than domain

walls in ferromagnetic materials. Observations with transmission electron microscopy

show that domain walls thickness in ferroelectric films is of the order of 1 − 10nm

[97, 134].

Ferroelectric hysteresis loop and polarization switching. The most important

characteristic of ferroelectric materials is its spontaneous polarization reversal (or switch-

ing) by an electric field. One consequence of the domain-wall switching in ferroelectric

materials is the occurrence of the ferroelectric hysteresis loop. The hysteresis loop can

be observed experimentally by using a Sawyer-Tower circuit (see Chapter 4 ).

To discuss a hysteretic behavior more thoroughly, let us take a look at Fig. 2.1. This

figure represents a behavior of a ferroelectric material under an applied electric field.

At small values of the field, the polarization increases linearly with the field amplitude.

In this region, the field is too weak to switch domains with the unfavorable direction of

polarization. As the field is increased the polarization of domains with an unfavorable

direction of polarization starts switching to the field direction, rapidly increasing the

measured charge density. The polarization response in this region is strongly nonlinear.

Once all the domains are aligned, the polarization again changes linearly (the saturation

region). If the field strength now starts decreasing, some domains will back-switch but



Basic Concepts 9

at zero field the polarization is nonzero. This value of the polarization at zero field

is called the remnant polarization, PR. To reach the zero polarization state, the field

must be reversed. Further increase of the field in the negative direction will cause a

new alignment of dipoles and saturation. To complete the cycle, the field strength is

then reduced to zero and reversed to the positive direction. The value of the electric

field at which the polarization is zero is called the coercive field, EC . The spontaneous

polarization PS is usually taken to be the value of the intercept of the polarization axis

with the extrapolated linear segment of the saturation part of the hysteresis loop. It

should be mentioned that the coercive field EC that is determined from the intercept

of the hysteresis loop with the field axis is not an absolute threshold field [15]. If a low

electric field is applied over a (very) long time period, the polarization will eventually

switch.

An ideal hysteresis loop is symmetrical so that +EC = −EC , and +PR = −PR. The

Pr

-Pr

Figure 2.1: An example of the ferroelectric hysteresis loop (measured on a sample of a rhom-
bohedral PMN-PT poled along the [001] direction, courtesy of M. Davis). In this case (values
measured along a non-polar direction) the value of the polarization at zero electric field is the
remnant polarization, P [001]

R , the value of the electric field at which the polarization is zero
is the coercive field, E[001]

C , and the spontaneous polarization, P [001]
S , is usually taken to be

the value of the intercept of the polarization axis with the extrapolated linear segment of the
saturation part of the hysteresis loop. To get the values along the spontaneous polarization
direction, one should multiply these values by

√
3.

coercive field, spontaneous and remnant polarization and shape of the loop may be af-

fected by many factors - the thickness of the tested sample, the presence of charged



10 Chapter 2

defects, mechanical stresses, preparation conditions, thermal treatment, surface state.

2.2 Pyroelectric effect

The ancient discovery of pyroelectricity1 can probably be attributed to a fact that high

electric fields can develop across insulating pyroelectrics subjected to relatively small

temperature changes. For instance, a crystal with a typical pyroelectric coefficient of

10−8Ccm−2K−1 and a dielectric constant of 50 develops a field of 50kV/cm−1 - sufficient

to break down air - with just a 25◦C temperature change.

The pyroelectric coefficient is thus defined as the change of the vector of spontaneous

polarization with temperature T

pi =
∂Ps,i

∂T
(2.1)

Equation (2.1) may be also written in the form

Di = ∆Ps,i = pi∆T, (2.2)

whereDi is the surface charge density induced in the material by the temperature change

∆T .

The charge due to the spontaneous polarization is usually masked by charges from the

surrounding part of the material, and it is experimentally easier to observe changes in

the spontaneous polarization rather then the spontaneous polarization value itself.

2.3 Piezoelectric effect

Electric field and polarization. The linear relation between the electric field Ei

applied to the dielectric and the induced polarization Pi

Pi = χijEj (2.3)

defines the dielectric susceptibility χij of the material, a second rank tensor. Summation

over the repeated indices is implied.

The relation (2.3) is only approximate - the polarization Pi generally depends on higher

order terms of the field Ei. Similarly, in a general case the dielectric susceptibility χij

is a function of the electric field.

The polarization is thus related to the electric field, and to the dielectric displacement,

by the equation

Pi = Di − ε0Ei = εijEj − ε0Ei. (2.4)

1In writings of Theophrastus in 314 BC.
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Stress and strain. Stress and strain describe the elastic properties of a homogenous,

deformable, continuous solid in thermodynamic equilibrium. The stress, Xij, is defined

as the force per unit area and it is a second rank tensor. Components of the stress

perpendicular to the surface are called the normal and those parallel to the surface

upon which they act are called the shear components. The tensile stresses are defined

as positive and the compressive stresses as negative. By this definition, the stress can

be represented by a symmetrical tensor, and it can be shown that this is true even if

the stress is not homogeneous [116].

A relative deformation of a body caused by stress is called the strain. The strain, xij,

is a dimensionless, symmetrical, second rank tensor.

In the first approximation, a linear relation between the stress and strain is

xij = sijklXkl. (2.5)

This is Hook’s law. sijkl is the elastic compliance of the material, a fourth rank tensor.

The inverse relation

Xij = cijklxkl. (2.6)

defines the elastic stiffness coefficients, also a fourth rank tensor. Obviously, c−1
ijkl = sijkl.

Due to the symmetry of the stress and strain there are a maximum of 36 independent

components of the cijkl and sijkl tensors and this number is further reduced due to the

Maxwell relations2 (see Section 2.6 ) , and due to the symmetry of the material.

Piezoelectric effect. Piezoelectric materials can be polarized, in addition to an elec-

tric field, also by a mechanical stress. The linear relation between the stress, Xik,

applied to a piezoelectric material, and the resulting charge density, Di, is called the

direct piezoelectric effect and may be written as

Di = dijkXjk, (2.7)

where dijk is a third-rank tensor of piezoelectric coefficients. On the other hand, these

materials change their dimensions (they contract or expand) when an electric field Ek is

applied to them. The converse piezoelectric effect describes the strain that is developed

in a piezoelectric material when the electric field is applied

xij = dkijEk = dt
ijkEk, (2.8)

where t denotes the transposed matrix. The piezoelectric coefficients d for the direct

and converse piezoelectric effect are thermodynamically identical (see Section 2.5 ), i.e.

236→21 independent coefficients
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ddirect = dconverse. It is common to call a piezoelectric coefficient in the direction of ap-

plied field the longitudinal coefficient, and that in the direction perpendicular to the field

the transversal coefficient. Other piezoelectric coefficients are called shear coefficients.

The piezoelectric effect was discovered in 1880 by Pierre and Jacques Curie. They pre-

dicted the occurrence of the electric charge on a surface of the crystal subjected to a

compressive stress, if the structure possessed a certain symmetry. Later, they experi-

mentally proved their prediction.

2.4 Electrostrictive effect

Electrostriction is a property of all dielectrics, regardless of their symmetry. It produces

a relatively small mechanical deformation under an applied electric field. Reversal of

the electric field does not reverse the direction of the deformation - it is an example of

nonlinear coupling between elastic and electric fields. If an electric field Ei is applied

on a material, the electrostrictive strain xij is defined by

xij = MijklEkEl, (2.9)

where Mijkl are components of the fourth-rank tensor and are called the electrostrictive

coefficients. The electrostrictive effect can also be expressed in terms of the vector of

the induced polarization

xij = QijklPkPl, (2.10)

where Qijkl and Mijkl are related by

Mijmn = χkmχlnQijkl. (2.11)

In ferroelectric materials the polarization at strong fields is a nonlinear function of the

electric field so that (2.9) and (2.10) cannot be both valid. The equation (2.10) is a more

consistent way to describe the electrostrictive effect in dielectrically nonlinear materials.

2.5 Symmetry considerations

The fundamental postulate of crystal physics, known as Neumann’s Principle, displays

how the symmetry of a crystal is related to the symmetry of its physical properties:

”The symmetry elements of any physical property of a crystal must include the symme-

try elements of the point group of the crystal.”

The point group of a crystal is the group of macroscopic symmetry elements that its
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structure possesses. It is the basis for the division of crystals into 32 crystal classes.

This principle does not state the equality of the symmetry elements of a physical prop-

erty with the elements of the point group - the physical properties often possess more

symmetry than the point group.

Of the 32 crystal classes, 21 are non-centrosymmetric, and of these, 20 exhibit direct

piezoelectricity the remaining one being the cubic class 432. Ten of these are polar and

exhibit pyroelectricity. If this dipole can be reversed by the application of an electric

field, the material is ferroelectric as well.

Since the spontaneous polarization can occur in materials which possess an unique polar

axis, all pyroelectric materials are piezoelectric, but only some piezoelectric materials

(those whose symmetry belongs to polar groups) are pyroelectric (Fig. 2.2).

The symmetry requirements may significantly reduce the number of nonzero and inde-

pendent elements of a property tensor. For example, the number of the independent

elements in the piezoelectric tensor, Eqs. (2.7) and (2.8), is reduced from 27 to 18 be-

cause the strain and stress are symmetrical properties, and the piezoelectric tensor is

symmetrical with respect to the same indices, dijk = dikj. The number of independent

elements of dijk may be further reduced by the symmetry of the material - for example

mm2 symmetry allows 5 independent nonzero tensor elements, while 3m symmetry al-

lows only 4 of them [116].

Figure 2.2: All ferroelectric materials are pyroelectric and all pyroelectric materials are piezo-
electric.

2.6 Thermodynamic considerations

According to the first and the second law of thermodynamics, the reversible change dU

in the internal energy U of an elastic dielectric subjected to a small change of the strain

dx, electric displacement dD, and entropy dS is given by

dU = TdS +Xijdxij + EidDi, (2.12)
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where T is the temperature of the material. If one investigates systems under isothermal

conditions, and uses electric field and stress as independent variables, it is useful to

change the set of independent variables from (S, x,D) to (T,X,E). To change the

independent variables from the original set to the other, a Legendre transformation

[121, 13] of U has to be performed, by adding the expression −TS − Xx − ED to U .

The resulting free energy function

G = U − TS −Xijxij − EiDi (2.13)

is known as the Gibbs free energy. Any natural process occurs if and only if the associ-

ated change in G of the process is negative. Likewise, a system reaches an equilibrium

when the associated change in G is zero.

The differential of G gives, together with (2.12),

dG = −SdT − xijdXij −DidEi. (2.14)

From this equation one obtains

S = −(
∂G

∂T
)X,E xij = −(

∂G

∂Xij

)T,E Di = −(
∂G

∂Ei

)T,X , (2.15)

where the subscripts indicate variables kept constant. The total differential of S, X,

and D can be written as

dS = −(
∂S

∂T
)X,EdT + (

∂S

∂Xij

)T,EdXi,j + (
∂S

∂Ei

)T,XdEi, (2.16)

dxij = −(
∂xij

∂T
)X,EdT + (

∂xij

∂Xkl

)T,EdXi,j + (
∂xij

∂Ek

)T,XdEk, (2.17)

dDi = −(
∂Di

∂T
)X,EdT + (

∂Di

∂Xjk

)T,EdXi,j + (
∂Di

∂Ej

)T,XdEj. (2.18)

Each of the partial derivatives in these equations identifies a physical effect [116]. The

order in which the derivatives are taken is irrelevant, and it follows that, for example

dT,X
ijk = (

∂xij

∂Ek

)T,X = −(
∂2G

∂Ek∂Xij

) = −(
∂2G

∂Xij∂Ek

) = (
∂Dk

∂Xij

)T,E = dT,E
kij (2.19)

This equation demonstrates the thermodynamic equivalence of the direct and converse

piezoelectric effect. Using other thermodynamic potentials which can be formed by

taking Legendre transformations of the internal energy, it is possible to write a total of

27 relations, such as this one, which are known as Maxwell relations.

It is common to express the equations (2.15) - (2.17) in integrated froms, taking dE and

dX as small deviations from the zero initial stress and field

∆S =
cX,E

T
∆T + αT,E

ij Xij + pT,X
i Ei, (2.20)
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xij = αX,E
ij Xij∆T + sT,E

ijklXkl + dT,X
ijklEk, (2.21)

Di = pX,E
i ∆T + dT,E

ijk Xjk + εT,X
ij Ej. (2.22)

All these relations, (2.15) - (2.22), include only the linear effects. In the case of strong

fields or strongly nonlinear material such as ferroelectric, these relations must be ex-

tended to include higher-order terms.

For isothermal processes, equations (2.21) and (2.22), written in the matrix notation,

reduce to

xm = sT,E
m,nXn + dT,X

im Ei (2.23)

Di = dT,E
im Xm + εT,X

i,j Ej. (2.24)

These two are known as the piezoelectric constitutive equations.

It is important to mention and discuss the dielectric permittivity measured on a clamped

(conditions of the zero strain) and free sample. It is trivial to calculate that the con-

stitutive equations give (the tensor indices are omitted for simplicity) X = −eE =

−(d/sE)E, and, after inserting this stress into the expression for the dielectric displace-

ment, D = (εX − d2/sE)E = εxE. The coefficient

εx = εX(1− d2/sEεX) = εX(1− k2) (2.25)

is called the clamped (zero strain) dielectric constant. The expression

k2 = d2/sEεX (2.26)

is known as the electromechanical coupling coefficient. In some ferroelectrics k may be as

large as 0.9 [118] leading to up to 80% difference between the free and clamped dielectric

constant. It can be shown, in a similar way, that the elastic compliance sD, measured

under open-circuit conditions (zero or constant D), and sE measured under short-circuit

conditions (zero or constant E), are related by

sD = sE(1− d2/sEεX) = sE(1− k2). (2.27)

These two examples illustrate the importance of controlling experimental boundary

conditions when measuring properties of piezoelectric materials3.

2.6.1 Phenomenological Landau-Ginzburg theory

Ginzburg and Landau constructed a completely general theory of continuous symmetry

- breaking phase transitions which involves a Taylor series expansion of the Gibbs free

3Also discussed in Chapter 4.
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energy in terms of the order parameter. One can, for instance, find discussions of this

subject in books of L. D. Landau and E. M. Lifshitz [94], L. E. Reichl [121] or Yu. B.

Rumer and M. Sh. Ryvkin [128].

It is assumed in this theory that the order parameter is a tensor η and, then, the general

form of the free energy in the region of the phase transition is discussed as a function of

η. The free energy must be such that it will be minimized for η = 0 above the transition

and η 6= 0 below the transition. Furthermore, the free energy is a scalar function of the

order parameter. Thus, if the order parameter is a vector (an order 1 tensor), the free

energy can only depend on scalar products of the order parameter. In general, near the

phase transition, the free energy Taylor series is

G(T, η) = G0(T ) + α1(T )η2 + α11(T )η4 + . . . . (2.28)

No first-order or third-order terms will appear because a scalar cannot be constructed

from them.

The form of α1(T ) is chosen so that, at the critical temperature and above it, the free

energy will only be minimized for η = 0, and below the critical temperature it will be

minimized for η 6= 0. In general, the free energy will be in its minimum if (∂G/∂η)T = 0

and (∂2G/∂η2)T > 0. If one chooses α1(T ) > 0 for T > TC and α1(T ) < 0 for T < TC ,

where TC is a phase transition temperature, the above condition is satisfied - G(T, η)

will have its minimum value for T > TC if η = 0, while for T < TC one can have η 6= 0

and have an energy minimum. Since the free energy must vary continuously through

the transition point, at T = TC one must have α1(TC) = 0. All these information can

be combined if α1(T ) is written in the form

α1(T ) = α0(T − TC), (2.29)

where α0 can be some function of T .

In order to have a global stability of a thermodynamic system, one must have

α11(T ) > 0. (2.30)

This ensures that, if η increases to very large values, the free energy will increase, and

not decrease.

The Ginzburg-Landau theory applies to all continuous symmetry-breaking transitions,

although the form of the expansion varies considerably for different physical systems.

Most ferroelectric materials undergo a structural phase transition from a high-temperature

non-ferroelectric (or paraelectric) phase into a low-temperature ferroelectric phase. The

paraelectric phase may be piezoelectric or non-piezoelectric and is rarely polar [97]. The

symmetry of the ferroelectric phase is always lower than the symmetry of the paraelec-

tric phase. The temperature of the phase transition is called the Curie point, TC . Above
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the Curie point the dielectric permittivity falls off with temperature according to the

Curie-Weiss law

ε = ε0 +
C

T − T0

≈ C

T − T0

(2.31)

where ε0 is the permittivity of vacuum, C is the Curie constant, T0(T0 ≤ TC) is the

Curie-Weiss temperature. Thus, the coefficient α1(T ) reflects the Curie-Weiss behavior.

Transition into a ferroelectric state may be of the first or second order4. In general, the

order of the phase transition is defined by the discontinuity in the partial derivatives of

the Gibbs free energy of the ferroelectric at the phase transition temperature. Thus, for

an nth-order phase transition, the nth-order derivative of G is a discontinuous function

at the transition temperature [106].

For the ferroelectrics of interest in this work, the ferroelectric polarization (P ) can be

chosen as the order parameter, and thus the Gibbs free energy can appropriately be

written as

∆G = G0(T ) + α1[P
2
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3 ] + α11[P
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+ . . . (2.32)

4Most of the discussion about perovskite ferroelectrics centers around two end-member models for
the transitions. At one extreme, the soft-mode [11, 57], displacive model assumes that a transverse
optical phonon frequency softens and vanishes at the phase transition. This model can most easily
be used to treat a material such as PbTiO3 which has only one ferroelectric phase transition. At the
other extreme, the order-disorder eight site model [139, 18, 20, 92, 37] assumes that in the cubic phase,
the atoms are randomly displaced in local minima along the eight cube diagonal, [111]c, directions.
In the orthorhombic phase the displacements average over two cube diagonals giving an average [110]c
displacement, and in the ground state rhombohedral phase the displacements are ordered along only one
cube diagonal. Experimental evidence shows that far away from the transitions the displacive model
is appropriate, but as the transitions are approached the order-disorder character predominates [107].
This is obvious if one, for example, studies BaTiO3 by infrared spectroscopy; the soft-mode frequency
of barium titanate does not vanish at cubic → tetragonal transition in BaTiO3, for example, but rather
the soft mode splits into a hard mode and two other modes; these latter modes continue to soften with
decreasing temperature. At the tetragonal → orthorhombic transition one of these two models hardens
and the other continues to soften until the orthorhombic → rhombohedral transition.
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where αi, αij, and αijk are ferroelectric dielectric stiffness coefficients at constant stress,

sij elastic compliances at constant polarization, and Qij the coefficients of electrostric-

tive coupling between the ferroelectric polarization and stress.

Early theoretical investigations of phase transitions in perovskites in the framework of

this model were concentrated on BaTiO3, which goes through a sequence of phases

upon cooling: cubic, tetragonal, orthorhombic and rhombohedral. Devonshire [31, 32]

explained the behavior of this material within the Landau-Ginzburg-Devonshire frame-

work by expanding the Gibbs free energy of BaTiO3 up to the sixth order in terms of the

ferroelectric order parameter - the polarization. On the other hand, relaxor ferroelectrics

or relaxors [22], such as Pb(Mg1/3Nb2/3)O3, characterized by a chemical heterogeneity

on nanometer scale, display a diffuse and a broad maximum in the dielectric permit-

tivity and a strong frequency dispersion of the permittivity below the temperature of

the maximum permittivity [26]. Above the temperature of the maximum permittivity,

relaxors do not obey the Curie-Weiss behavior.

It has been shown recently [131] that, in the case of perovskites, the Gibbs free energy

has to be expanded up to the twelfth-order terms to describe completely the phase

diagram induced by the ferroelectric order parameter.
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Literature

A review of key publications on which this thesis work relies is presented. The chapter is di-

vided into two sections - a section reviewing the literature concerning the experimental and

theoretical results of structural and electromechanical properties of potassium niobate in single

crystal form, and a section on the phenomenological Landau - Ginzburg - Devonshire theory

modeling of perovskite ferroelectrics electromechanical behavior and topics essentially related

to studying the problem of piezoelectric anisotropy origins in classic perovskites.

The most useful textbooks for this work, considering the basic subjects of crystal physics,

dielectric, ferroelectric and piezoelectric properties of perovskites and related materials

were those of J. F. Nye [116], of T. Mitsui, I. Tatsuzaki and E. Nakamura [1], of B.

Jaffe, W. R. Cook and H. Jaffe [79], of F. Jona, G. Shirane [81], and of M. E. Lines

and A. M. Glass [97].

For the phenomenological theories descriptions, very useful were textbooks of L. E.

Reichl [121], and of L. D. Landau and E. M. Lifshitz [94].

3.1 Electromechanical properties of single crystal

potassium niobate

Potassium niobate in single crystal form has become only recently a material of interest

for piezoelectric applications. Since its discovery, this material has mostly drawn at-

tention as an excellent material for optical applications, and most investigations on its

properties were directed by that fact.

An evidence of ferroelectricity in this material (and in NaNbO3) was shown for the first

19
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time in 1951 by Matthias and Remeika [100]. In that work the authors also presented

photographs of dielectric hysteresis loops and values of saturation polarization taken

at various points in the tetragonal phase temperature range (Fig. 3.1). Three years

Figure 3.1: The first reported measurements of dielectric constant, loss tangent curves and
hysteresis loops for single crystals of KNbO3, by Matthias and Remeika in 1951 [100].

later, Shirane et al. showed [132] that ferroelectric KNbO3 undergoes an another phase

transition at −10◦C upon cooling, in addition to two phase transitions previously re-

ported at 435◦C (paraelectric cubic→ferroelectric tetragonal) and 225◦C (ferroelectric

tetragonal→ferroelectric orthorhombic). At this, the lowest, phase transition tempera-

ture, KNbO3 changes its orthorhombic structure to a rhombohedral one.

Spontaneous polarization. Pyroelectric coefficient. Surface layer properties

and influence of impurities. Measurements of the spontaneous polarization values

in KN have been quite a difficult problem for a long time because it has not usually

been easy to grow crystals with a quality high enough to obtain good and reproducible

results. Nevertheless, Triebwasser [144] reported in 1955 a spontaneous polarization

value in the tetragonal ferroelectric phase. He measured a value of Ps = 26µC/cm2 at

the orthorhombic-tetragonal transition (with an uncertainty of 10%) from ferroelectric

hysteresis measurements; the author also published, in 1956, the obtained ferroelectric

hysteresis curves in the tetragonal ferroelectric phase of KN [143]. Günter measured

in 1977 [55] Ps = 41± 2µC/cm2 in a single domain orthorhombic KNbO3 by Camlibel

pulse method [16]. The author reported in the same paper measurements of the tem-

perature dependence of the KN pyroelectric coefficient and calculated the temperature

dependence of the spontaneous polarization by using the Devonshire phenomenological

model [31, 32], Fig. 3.3. Measurements of the spontaneous polarization were also done

by Hewat in 1973 [65], Kleemann et al. in 1984 [87], and Szot et al. in 1996 [136], Table
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Figure 3.2: Spontaneous polarization and coercive field for KNbO3 single crystal in the tetrag-
onal and orthorhombic phase. Taken from Ref. [143].

3.1.

The spontaneous polarization has also been calculated theoretically by several authors -

Kam and Henkel [84] have reported a good agreement of calculated value with measure-

ments by Günther, and R. Resta et al. calculated [124] the spontaneous polarization

value in KNbO3 of Ps = 35µC/cm2 using the Bloch functions of the tetragonal crystal,

Table 3.1.

That the influence of the surface layer properties and impurities on the bulk electrome-

chanical properties is very important has been shown in many papers. For example,

Szot et al. have shown [135] by electron spectroscopy investigations, that defects at

various concentrations were inherently present on surfaces of KNbO3 crystals, and that

those defects were important for most classical measurements on this material. The

same author has shown [136] that the surface layer of KN was very heterogeneous and

that the anomalous increase of the spontaneous polarization at low frequencies, as well

reported in this paper, was almost completely determined by the heterogeneous surface.

Domain structure. Poling. The domain structure of KN has a very important in-

fluence on its electromechanical properties, and the importance of this influence is still

under discussion. For example: on one hand, Topolov has shown, theoretically [142],

a strong role of domain-orientaion effects on the longitudinal piezoelectric coefficient

of polydomain KNbO3, while, on the other, Nakamura et al. have demonstrated that
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Figure 3.3: Spontaneous polarization of orthorhombic and tetragonal KNbO3 as a function of
temperature, solid lines and dots, and theoretical calculations in the framework of Devonshire
free energy expansion, dashed lines, (left); temperature dependence of the pyroelectric coefficient
p for orthorhombic KNbO3 (relative errors ±20%) and calculated theoretical value of p. Taken
from Ref. [55].

Spontaneous polarization values of single domain KN, Ps[µCcm
−2]

tetragonal phase orthorhombic phase

Triebwasser [143] 26∗ (270◦C) -

Hewat [65] 30±2∗ (270◦C); 33±2+ (270◦C) 32±3∗ (20◦C); 36±2+ (20◦C)

Kam and Henkel [84] 39.6+ (270◦C) -

Resta et al. [124] 35+ (270◦C) -

Günther [55] - 42±2∗

Szot et al. [136] 31∗ -

Kim and Yoon [86] - 42∗ (RT)

Fontana et al. [40] 37.1+ 42.9+

Kleemann et al. [87] 37.3∗ (227◦C) 43.3∗ (27◦C)
∗ - measured; + - calculated;

Table 3.1: Literature review of single domain KN spontaneous polarization measurements and
theoretical calculations.
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the (001)pc cut crystal poled along the 〈001〉pc direction has a polar multidomain struc-

ture and that the material exhibits almost the same piezoelectric properties as those of

single-domain crystals [110].

In 1973, Wiesendanger studied [159], by optical methods and etching techniques, the

domain configurations in large KN samples grown by a top seeded flux growth technique

- he presented an experimental evidence for existence of a new type of ferroelectric do-

main wall, so called the S-wall. Miller indices of such walls are irrational and depend

on spontaneous strain tensor coefficients. The author as well described in that paper a

procedure of preparation of large single domain crystals.

Further, Lian et al. investigated [96] the behavior of domain walls in KN with tem-

perature variation from room temperature to 300◦C by a heating visualisation system.

They have observed that domain walls show active behavior only in a small teperature

range from the phase transition temperature of 225◦C, the range about 10◦C in the

orthorhombic phase and 15◦C in the tetragonal phase.

It could have been easily concluded, both from the literature and from our own ex-

perience, that an optimized poling method of KN samples has been crucial for the

electromechanical properties measurements. There are several reports of poling proce-

dures descriptions in the literature. There is a paper by Wada et al. [154] in which

the authors have found that the optimum procedure for poling of KN was a new 2-step

poling method (Fig. 3.4), and, already mentioned, the paper from Wiesendanger [159].

Figure 3.4: Schematic poling program using a 2-step poling method for [110]c oriented KNbO3

crystals (left); frequency dependence of |Z| and θ measured at 25◦ for [110]c oriented KNbO3

crystals poled using the optimum conditions (right). Taken from Ref. [154].

There are also KN poling methods reported in papers by Fukuda et al. [45], Kalinichev

et al. [83], J. H. Kim and Yoon [86] (they also measured the spontaneous polarization
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value in that paper), and Hirohashi et al. [66]. In addition, Hirohashi et al. [67] have

reported the investigation of the controllability of specific domain structures in KN by

electric poling to several different orientations at room temperature1. All these poling

methods are gathered in Table 3.2.

Poling procedures for KN

Wiesendanger, 1973 [159] application of an electric fields in silicone oil at 200◦C

Fukuda et al., 1974 [45] application of a DC electric field of 2kV/cm at about

190◦ along the polar axis
Kalinichev et al., 1993 [83] application of a DC electric field of 500V/cm in sili-

cone oil at 198◦ along the polar axis
Wada et al., 2001 [154] two-step poling method with an etching of samples in

HNO3:HCl mixture, to reduce microcracks of defects

near the crystal structure, and with polishing
Kim and Yoon, 2002 [86] application of a DC electric field of 400− 600V/mm

along the polar axis
Hirohashi et al., 2003 [66] application of a DC electric field of 200V/m along the

polar axis at 215◦C and then annealing for 120 hours

at 195◦C

Table 3.2: Literature review of different poling methods of KN.

Dielectric, elastic and piezoelectric properties. Landau-Ginzburg-Devonshire

coefficients of KNbO3. The electromechanical properties of KN have been investi-

gated by several authors. As mentioned, after the work of Matthias and Remeika [100],

Triebwasser was the first to report both the results of measured [143] dielectric con-

stants and spontaneous polarization values on single crystal KNbO3. He also found,

from these values, the coefficients of the first three terms of the free energy expressed

as a power series in the polarization - a comparison with Devonshire’s phenomeno-

logical treatment showed a reasonable agreement with predicted values for dielectric

constant and spontaneous polarization. Further, Phatak et al. determined, in 1972,

all nine elastic constants of orthorhombic potassium niobate at room temperature from

a diffractometric study of 006, 040 and 600 diffuse reflections [120]. Two years after

this work, dielectric, piezoelectric and elastic constants were measured in single domain

1By applying electric field to the direction corresponding to the differential direction between the
original and intended spontaneous polarization directions 60◦−, 90◦−, and 180◦−domain pairs were
successfully fabricated under control in KNbO3, while uncharged 120◦−domain pairs are difficult to
generate.
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orthorhombic KNbO3 by Wiesendanger [160], and temperature dependence dielectric

constant of orthorhombic KNbO3 single domain crystal was measured by Fukuda et al.

[45]. In 1977, Günter publishes [54] room temperature values of piezoelectric coefficients

Figure 3.5: Relative dielectric permittivity of orthorhombic single domain KNbO3 and tetrag-
onal multidomain crystal versus temperature (left); the same constants for the orthorhombic
phase calculated in the framework of the Landau-Ginzburg-Devonshire phenomenological the-
ory. Taken from Ref. [45].

of single domain KN, together with the electrostrictive constants calculated from piezo-

electric coefficients in the polar phase. The author as well showed in that paper the

temperature dependence of the single domain KN longitudinal piezoelectric coefficient,

d33, throughout the orthorhombic ferroelectric phase (Fig. 3.6). In 1993, Kalinichev et

al. [83] used Brillouin light scattering to obtain elastic and piezoelectric constants for

single domain orthorhombic KN at room temperature and pressure, and Zgonik et al.

determined the elastic, piezoelectric, dielectric, elasto-optic, and electro-optic tensors

by numerically evaluating the measurements published before their work and using the

additional measurements done by them [166]. Finally, in 2001, Wada et al. investigated

[154] the piezoelectric properties of the material as a function of crystallographic orien-

tations. This review is systematized in Table 3.3.

From the applications point of view, one of the most potential problems of KN is the

high dielectric loss and its frequency dependence. The importance of this problem is
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Figure 3.6: Temperature dependence of the piezoelectric coefficient d33 in orthorhombic single
domain KNbO3 from room temperature to temperatures near the orthorhombic-tetragonal phase
transition, together with a theoretical fit. Taken from Ref. [54].

nicely illustrated in the paper of Kari et al. [85]. There, the authors have investigated

KN as an ultrasonic transducer material, and a comparison of the capacitance and di-

electric loss for KNbO3 and another single crystal, LiNbO3, was made. The results

showed the relatively high losses for KNbO3 at very low frequencies. These losses may

be attributed to the relatively high porosity of the crystal2. As the frequency increases,

however, the loss reduces. Hence, for an optimally matched transducer the losses should

not affect the overall performance.

Coupling coefficients. It has already been mentioned (Chapter 1 ) - the most attrac-

tive electromechanical property of KN is its high thickness mode coupling coefficient,

which makes this material promising for designing the single element high frequency

transducers.

In the paper of K. Nakamura [111] the orientation dependence of electromechanical

coupling coefficients for bulk waves in KN was calculated for various types of vibration

modes. It was found that the maximum coupling factor of the thickness-extensional

mode and the thickness-shear mode, excited with a perpendicular field, kt and ks, re-

spectively, were as high as 69% and 88% (larger than the largest reported before), for

the rotated X - cut by an angle 49.5◦ about the Y-axis, and for the X-cut, respectively.

These predictions were later experimentally confirmed in the work done by the same

2The crystal surface around the pores forms an easy path for theK+ ions to drift under the measuring
electrical field and hence gives rise to a dielectric loss and a space charge build up at the electrodes (T.
Ritter et al. [125]).
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εij Cijkl dijk Qij LGD

Matthias and Remeika, 1951 [100] + - - - -

Triebwasser, 1956 [143] + - - - +

Phatak et al., 1972 [120] - + - - -

Fukuda et al., 1974 [45] + - - - -

Wiesendanger, 1974 [160] + + + - -

Günter, 1977 [54] - + - + -

Kalinichev et al., 1993 [83] - + + - -

Zgonik et al., 1993 [166] + + + - -

Wada et al., 2001 [154] + - + - -

Table 3.3: Publications review of measurements of single domain KN electromechanical prop-
erties.

author, together with Tokiwa and Kawamura [110].

3.2 Phenomenological modeling on perovskites. Po-

larization rotation. Ultrahigh electromechanical

properties

The basic concepts of the phenomenological Landau-Ginzburg theory are given in Chap-

ter 2, while useful textbooks about this subject are presented at the beginning of this

chapter.

Evolution of the phenomenological theory for perovskite ferroelectrics. The

theory of the dielectric and crystallographic properties of barium titanate was consid-

ered for the first time in 1949 by Devonshire [31]. By expanding the Gibbs free energy

as a function of polarization and strain as order parameters, and making reasonable

assumptions about the coefficients, he found possible to account for the various phase

transitions in the crystal and to calculate the dielectric constants, crystal strains, in-

ternal energy, and self polarization as functions of temperature. One year later, the

same author extended the theory [32], and obtained expressions for the piezoelectric

constants, elastic coefficients for constant field and dielectric constant strain in terms of

other physical constants of the material.

The refinement of the phenomenological theory of barium titanate was continued in

1966, when Buessem et al. [14] have used the Devonshire phenomenological thermody-
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Figure 3.7: The first Landau-type phenomenology calculations for a perovskite: (a) Free energy
and polarization of BaTiO3 as a function of temperature. (b) Principal dielectric constants of
the same material. Taken from the work by Devonshire, Ref. [31].

namic method and a simplified model to involve the stresses that are in the origin of the

anomalously high permittivity in fine-grained ceramic barium titanate. In 1984, Bell

and Cross modified [8] that theory further, by including the last symmetry permitted

sixth order term α123P
2
1P

2
2P

2
3 (see Eq. (2.32)). Their function then predicted the cor-

rect high electric field behavior of the low temperature ferroelectric-ferroelectric phase

changes in the single crystal and suggested a change of sign of the pyroelectric effect at

high field levels in the induced tetragonal ferroelectric phase.

In 1987, Haun et al. developed [62] a phenomenological thermodynamic theory of an

another perovskite family member - PbTiO3. They used a modified Devonshire form

of the elastic Gibbs free energy and were able to predict the intrinsic single domain

dielectric and piezoelectric properties of this material, not completely determined from

experimental measurements. Further, in 2001, Bell [7] reviewed, the possible domain

states of perovskite ferroelectrics under applied fields. He performed a phenomenological

study of barium titanate to illustrate that review. The electric field-temperature phase

diagrams, the polarization, and the lattice strain of barium titanate single crystals were

obtained for applied fields up to 20MV/m and for temperatures from 1 to 450K. Some

results from that work are shown in Fig 3.8.

In 2001, Iniguez et al. showed [76] that the typically assumed form of the potential,

a sixth-order expansion in polarization around the paraelectric cubic phase, properly

accounts for the behavior of the system, but they found a nontrivial temperature de-

pendence for all the coefficients in the expansion, including the quadratic one, which is

shown to behave nonlinearly. Their results also prove that the sixth-order terms in the
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free-energy expansion (needed to account for the first-order character of the transitions

and the occurrence of an orthorhombic phase) emerge from an interaction model that

only includes terms up to the fourth order.

In 2002, Sergienko et al. showed [131] that an adequate Landau-type description of the

ferroelectric Landau potential in highly piezoelectric mixture compounds PZT, PMN-

PT and PZN-PT, is achieved by the use of a twelfth-order expansion of the Landau

potential in terms of the phenomenological order parameter.

Recently (2005), a new phenomenological free energy description was constructed based

Figure 3.8: Phase diagram of barium titanate as a function of temperature and electric field
applied parallel to [001]c direction, including the data points of Fesenko and Popov [38] (left);
calculated piezoelectric coefficient as a function of electric field at 300K for fields parallel to
[001]c, [001]c and [001]c - measurements from literature compared with the calculated results
(right). Calculations were not done for negative values of E. Taken from Ref. [7] (reference
number in the right figure does not correspond to a reference in this thesis report).

on the properties of bulk BaTiO3 single crytals by Li et al. [95] by using an eight-order

polynomial of Landau-Ginzburg-Devonshire expansion. This new thermodynamic po-

tential reproduced bulk properties, including the three possible ferroelectric transition

temperatures, and their dependence on electric fields, as well as the dielectric and piezo-

electric constants. The difference from the existing thermodynamic potential is that

this model is applicable to predicting the ferroelectric phase transitions and properties

of BaTiO3 thin films under large compressive biaxial strains.

In 1997, Du et al. calculated phenomenologically [34] the crystal orientation dependence

of piezoelectric properties for lead zirconate titanate (PZT) in the three dimensional

space. The calculations were made for tetragonal PZT 40/60 (40% PZ and 60% PT)

and rhombohedral PZT 60/40 compositions; later, in 1998 they calculated the values

for the same properties of PZT near the morphotropic phase boundary [35], see Fig 3.9.
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The origin of the appearance of the morphotropic phase boundary in the perovskite-

Figure 3.9: Effective piezoelectric constants d33, and dielectric constants εeff
33 of PZT with

various compositions (upper row); Effective piezoelectric constants d33 of tetragonal PZT 48/52
(lower left) and rhombohedral PZT 52/48 (lower right). Taken from Ref [35].

type oxide solid solution systems and the increase in the dielectric susceptibilities in the

vicinity of the boundary was theoretically clarified on the basis of a Landau-type free en-

ergy function by Ishibashi and Iwata [77] - the dielectric susceptibilities were concretely

expressed in terms of the model parameters, and found to diverge at the morphotropic

phase boundary within the present model. In 2001, Iwata et al. calculated [78] the

angle dependence of the piezoelectric displacement along the driving electric field near

the morphotropic phase boundary in the perovskite-type oxide family on the basis of

the Landau-Devonshire type free energy function. In both phases the piezoelectric dis-

placements are strongly enhanced near the morphotropic phase boundary.

Giant piezoelectric response. The very important papers in the science of piezo-

electric materials are the ones in which the discovery of ultrahigh electromechanical

properties of relaxor based ferroelectric single crystals are reported. These are the papers

by Kuwata et al. [89] from 1982, and by Park et al. [118] from 1997. In the first paper

the dielectric, piezoelectric and elastic properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3

single crystals were investigated as functions of temperature and applied electric field -
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in particular, the sample poled along the pseudo-cubic [001] axis revealed anomalously

large piezoelectric and electromechanical coupling constants at room temperature in

the rhombohedral phase (d[001] = 1500pC/N , k[001] = 0.92). The second paper presents

the work on the piezoelectric properties of (1-x)Pb(Zn1/2Nb2/3)O3-xPbTiO3 and (1-

x)Pb(Mg1/2Nb2/3)O3-PbTiO3 single crystals - piezoelectric coefficients > 2500pC/N ,

subsequent strain levels up to > 0.6% with minimal hysteresis and high electromechan-

ical coupling k > 90% were observed.

These two papers increased the interest in novel piezoelectric materials, but also, revived

Figure 3.10: Piezoelectric coefficient d33 as a function of crystal composition and orientation.
Taken from Ref. [118] (reference numbers in the figure do not correspond to references in this
thesis report).

the investigations on classic perovskites, known and investigated for decades already.

Polarization rotation. Fu and Cohen have reported a first principle study of BaTiO3

where they have shown that a large piezoelectric response could be driven by polarization

rotation induced by an external electric field [44]. Furthermore, the polarization rotation

origin of ultrahigh piezoelectricity in a relaxor ferroelectric PZN-PT was studied by

Noheda et al. [114], and the origin of the high piezoelectric response in PZT was shown

in the paper of R. Guo et al. [52].

Influence of the domain density on piezoelectric properties. In 1999, Park et

al investigated [119] dielectric and piezoelectric properties of BaTiO3 single crystals po-

larized along the 〈001〉 crystallographic axes as a function of temperature and dc bias.
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Electromechanical coupling k33 ≈ 85% and piezoelectric coefficients d33 ≈ 500pC/N ,

better or comparable to those of lead based PZT, were found from 〈001〉-oriented or-

thorhombic crystals at 0◦C, as a result of crystallographic engineering. Later, in 2005,

Wada et al. studied the influence of the domain size on the piezoelectric properties of

tetragonal BaTiO3 [156]. They found that the piezoelectric properties increased signifi-

cantly with decreasing domain size (with increasing domain density).

Intrinsic vs measured coercive field. One can find, in Chapter 6 of this report,

a discussion about the importance of the difference of, phenomenologically predicted,

intrinsic values of coercive electric fields and their experimental counterparts, that are

always much smaller because of dynamic properties (nucleation) not included in the

phenomenological theory. For that purpose, a paper by Ducharme et al. [36], published

in 2001 is of a great importance. The authors measured for the first time the intrinsic

coercive field in a ferroelectric material. It was in two-dimensional Langmuir-Blodgett

polymer films as thin as 1nm. The reported coercive field was in good agreement with

the theoretical intrinsic value, and exhibited the expected dependence on temperature

and did not depend on thickness below 15nm.

Figure 3.11: The theoretical polarization P (E) at 25◦C (thick-solid line) of P(VDF-TrFE
70:30) calculated from the Landau-Ginzburg theory and the hysteresis in the pyroelectric re-
sponse at 25◦C (circles) in a 30-ML LB film of P(VDF-TrFE 70:30). One can note that the
thermodynamic and experimental coercive fields are almost equal. Taken from Ref. [36].
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Experimental techniques

All experimental techniques used to obtain the electromechanical properties values of KN are

presented.

The experimental part of this work is to refine the electromechanical properties set of

ferroelectrically monodomain potassium niobate in single crystal form, and to calculate

the coefficients in the Landau-Ginzburg-Devonshire phenomenological theory by fitting

the obtained experimental results. For these measurements, small resonator bars of KN

were prepared (see Chapter 5 ).

4.1 Five-terminal setup for low capacity measure-

ments

One of the first problems encountered during experiments was how to measure precisely

the relative dielectric constant of the resonator bars, ε33. The single domain KN value

is very low (the relative permittivity εr
33 ≈ 45− 55). Thus, the resonator bars for mea-

surements of d33, which were prepared as capacitors with electrode surface S ≈ 1mm2

and a distance between them d ≈ 6mm, have values of the capacity around Cp = 80fF

(Cp = εε0S/d) - a very good accuracy of capacity measurements of such samples can be

a demanding task because the stray capacitance of the experimental setup can easily

be commensurable with the sample capacitance. So, for these measurements, a special

5-terminal setup was made [149].

To connect a sample to the measurement terminals of the auto balancing bridge in-

strument (Impedance Analyser HP4192A) that we used for the measurements, there are

33
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several connection configurations to choose from. This auto balancing bridge instrument

is equipped with four terminals (Hc, Hp, Lp and Lc) on its front panel. The possible

ways to connect the sample to the terminals are described in Ref. [117]. Out of sug-

gested connection schemes in this reference the five-terminal (5T) configuration is the

most appropriate for our measurements of dielectric constants (i.e. capacities lower than

100fF ). In this configuration all of the outer conductors of the four coaxial cables are

connected to the guard terminal, improving the low impedance measurements accuracy,

Fig. 4.1. A 5T configuration sample holder, with the accuracy of about ±1fF , was

Figure 4.1: Fve terminal setup for low capacity measurements: (a) connection diagram, (b)
schematic diagram.

made in our laboratory (Fig. 4.2).

Figure 4.2: The sample holder, with the five terminal configuration, for low capacity measure-
ments made in our laboratory (left); the stray capacity of the 5-terminal setup as a function
of frequency - the accuracy of the configuration can be estimated to ±1fF (right).
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4.2 Domain structure and ferroelectric poling pro-

cedure of single crystal KNbO3

Since we were aiming to perform experiments exclusively on single domain KN samples,

it was clear that the control of a sample domain structure was one of key issues.

4.2.1 Domain structure

Potassium niobate has a pseudocubic structure which allows the presence of a variety

of domain structures. Domain walls of 180◦, 120◦, 90◦, which generally appear and

distribute randomly, and 60◦ (Fig. 4.3), which are mostly distributed at the corners

of the crystals [96], are commonly observed at room temperature in as-grown KN. The

a 60° domain wall

spontaneous polarization

    in [110]c direction

spontaneous polarization

    in [101]c direction

Figure 4.3: An example of a domain structure in KN. Since the material has the orthorhombic
symmetry at room temperature, the appearance of 60◦ domains like the one here is possible.

structure of such poly-domains can be a serious obstacle for applications because it

drastically influents the piezoelectric properties.

The domain walls are regarded as zero-net-strain planes, i.e. planar boundaries that

satisfy conditions for complete internal stress relief [6]. There are two origins of fer-

roelectric domains: a) a change in the electrostatic forces owing to the spontaneous

polarization [96], and b) internal defects and stresses help the nucleation of domain

walls [42, 105, 104, 74, 72].

It is complicated to obtain and keep the single domain structure in KN samples through-

out a broad temperature interval. The reason is that in this material the domain state

tends to be easily changeable and is very sensitive to electric fields [101, 108, 66, 74],

mechanical stresses [74, 75, 96, 70, 73], and an abrupt temperature change [66].
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4.2.2 Surface layer. Polishing. Impurities

The importance of the surface region in materials of perovskite structure has been men-

tioned in the literature for about 50 years. However, the surface region has been tradi-

tionally considered to be homogeneous with different electrical and dielectric properties

compared to the bulk of the crystals. It is found that the surface region of perovskite

crystals shows a rather complicated chemical composition1[135].

The influence of the surface layer on electromechanical properties of a KN sample thus

turns out to be of great significance. It has been demonstrated for the case of the

hysteresis loop of KNbO3 that the anomalous increase of Ps at low frequencies is al-

most completely determined by the heterogeneous surface [136]. An another example

of the sample surface influence on experimental results is a fact that in many classical

experiments it can be found that the electric properties of KNbO3 are affected by the

atmosphere in which experiments are carried out [135].

To perform experiments that will give only the bulk properties, the polishing of samples

surfaces is important. Polishing in our experiments has been used, but, since the KN

samples are very fragile, its usage was minimized - the mechanical treatment of KN

samples tends to introduce a slight curvature to the sample surfaces, especially near the

edges [83], and it is also considered as a possible origin of creating ferroelectric domains

[151, 152, 153]. For the polishing procedure diamond surfaces (1µ and 6µ grains size)

and graphite paper (2400) were used.

On the other hand, it is worth mentioning that impurities in KN can also influent ex-

perimental results. It has been shown that impurities in an amount of 0.1 at.% may

significantly change the dielectric properties of KNbO3 [163], not to forget to emphasize

the impurities as problematic domain wall pinning centers which make poling procedure

and restoring of the single domain state in samples more difficult. Impurities and dislo-

cations can induce domain nucleation even at low electric fields of the order of 100V/cm,

and this may lead to the nucleation of unwanted domains even in poled crystals [75].

Impurities have been found to give rise to anomalous hysteresis loops [71].

4.2.3 Poling

It is clear then, from preceding sections, that the starting point for the experimental

study of KN to refine the material parameters set was the preparation of ferroelectrically

single domain samples. In most materials electrical poling may be achieved by cooling

1The existence of extended defects in the surface region, which serve as fast diffusion path for oxygen
and A-type atoms, leads to a segregation o A or AO-complexes already at room temperature. With a
rise in temperature, a continuous transition in the surface region between ABO3 and AO(ABO3)n is
found.
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a crystal from the paraelectric phase into the ferroelectric phase in an applied bias elec-

tric field parallel to the polar crystallographic axis under constant field conditions. The

single-domain state is then thermodynamically stable in an unstressed crystal since de-

polarization fields are neutralized by charge flow in the external circuit. Short-circuiting

the polar faces of a crystal during cooling could, in principle, be sufficient to produce

the single-domain state, but in practice this is not the case because of temperature gra-

dients, internal strains, and surface effects.

In the case of KNbO3, even though it has been known that poly-domains can be con-

verted to single domain by a strong electric field [45], it is difficult to achieve good yield

because KN crystals easily crack and new domains can be generated in KN crystals

during such a poling process.

Most industrial research teams keep their KN poling procedures as a confidentiality,

but one can nevertheless find several poling procedures proposed in the literature. By

doing a literature research (see Chapter 3 ), one can find different attempts of poling,

with different results of electromechanical properties obtained on single domain samples

after the poling was done. In some papers the poling has not even been done, although

it would be logical to do experiments on the single domain crystals [162], or sometimes

it has just been mentioned that the poling at elevated temperature has been required if

one wished to obtain a single domain crystal [103].

Since the domain structure of KN at room temperature is complicated, and these do-

mains can easily be created in samples, the optimal poling procedure is the major tool

for the high quality measurements. In our experiments, the two-step poling method

proposed by S. Wada et al. [154] was the one most frequently used (see Table 3.2).

Verification of the domain structure

There are several common methods of determination whether a crystal is fully poled:

a) the direct observation of domains by optical microscope, optical interferometer, or

x-ray diffraction analysis [66], b) the measurements of the pyroelectric coefficient2, c)

the second harmonic generation.

There is an another simple method to verify and discuss the domain structure of a

sample. It is the investigation of its dielectric permittivity. The presence of domains

contributes to the increased polarizability of the sample (also, the dielectric permittiv-

ity is, generally, anisotropic) and thus the dielectric constant is different for a sample

containing domains than the one fully poled.

The most frequent methods of domain structure verification in samples used in this work

2For the pyroelectric measurement it is necessary to know dPi/dT for the poled material or else to
assume that the maximum attainable dPi/dT corresponds to the fully poled state.
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were the dielectric and pyroelectric constants measurements and the optical microscopy.

4.3 Sawyer - Tower bridge

The Sawyer - Tower bridge has been the common method for characterizing ferroelectric

devices due to its simplicity and cost. However, this method is susceptible to significant

errors from parasitic elements and is limited by the accuracy to which the sense capac-

itor value is known.

The bridge uses a capacitive voltage divider comprising the test sample and a sensing

capacitor (Csense) supplied by the user (Fig. 4.4). The voltage generated across the

sense capacitor is proportional to the charge stored in the sample.

This circuit is commonly used for investigating Ps switching, i.e. for obtaining ferro-

electric hysteresis curves (See Chapter 2 ).

Vdrive

Csample

Vout

Csense Cparasitic

Figure 4.4: Shematic representation of Sawyer - Tower bridge for ferroelectric hysteresis loops
measurements.

4.4 Pyroelectric measurements setup

The pyroelectric measurements have been performed by a dynamic method constructed

in our lab [24]. It was possible to measure a temperature dependence of pyroelectric

properties in the range [200K − 300K].

4.5 Resonant technique

Among several techniques for investigation of the piezoelectric response (such are inter-

ferometry, atomic force microscopy, direct methods, measuring the displacement of the

cantilever, . . . ) the resonant technique is one of the most efficient ones.

The basis of this technique lies in a fact that the mechanical response of a piezoelectric
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body excited by an electric field is a function of all electromechanical material param-

eters and its dimensions and density. The magnitudes of excited vibrations depend on

the frequency of this (alternating) electric field, because if this frequency is close to a

natural mechanical resonance of the body, the elastic vibrations will be very large, and

according to the piezoelectric constitutive equations3, so will the electrical impedance.

Measuring of the frequency dependence of the sample electric impedance thus gives an

indirect way to determine the material coefficients.

Theory of vibrating piezoelectric bodies is not simple - usually, one considers only linear

cases, assuming additionally that the velocity of elastic effects in the material is much

smaller than the velocity of electrical effects. Further, it is also sufficient for the most

cases to assume that the body is in the homogeneous thermal equilibrium, that the

material is a perfect insulator and that magnetic effects are negligible.

If one wants to determine the complete set of the material coefficients from the piezoelec-

trically induced mechanical resonance, it is sufficient to consider a few of the simplest

geometries and vibration modes. For our measurements, piezoelectric vibrating bars

were used4, to determine the transversal piezoelectric coefficients, d31 and d32. It can

be shown [68] that the admittance Y = G(ω) + iB(ω) (the inverse of the impedance

Y −1 = Z = R(ω) + iX(ω)) of such a geometry (convenient aspect ratios [2]) can be

approximately written in the analytical form, for example

Y = i
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From this equation material coefficients such as the dielectric constant along the polar-

ization direction, ε33, the elastic compliance s11 and the piezoelectric coefficient d31 can

be calculated by fitting the expression to the experimentally obtained resonance curves

such as ones shown in Fig. 4.5. Equivalent equations can be derived for s22, d32 and

s33, d33.

On the other hand, there are simplified equations for calculations of the material coef-

ficients, according to the ”IEEE Standard on piezoelectricity” [1]. For the transversal

resonator bar, one can use

fs =
1

2l

1√
ρsE

11

, (4.2)

to relate the material’s conductance (G) resonant frequency with its density (ρ) and

elastic compliance (s11), then

k2
31

1− k2
31

= −π
2

fp

fs

ctg(
π

2

fp

fs

) (4.3)

3These equations are discussed in Chapter 2.
4More details in Chapter 5.
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Figure 4.5: The frequency dependence of the impedance and admittance of the potassium nio-
bate in the vicinity of the first natural resonance frequency of the sample.

to relate the electromechanical coupling coefficient k31 with the ratio of the resonance

frequencies for the conductance and the resistance (R). Finally, the expression

k31 =
d31√
εT
33s

E
11

. (4.4)

relates the piezoelectric coefficient with the coupling coefficient, dielectric permittivity

and the elastic compliance. Of course, the equations for elastic compliances, electrome-

chanical coupling coefficients and piezoelectric coefficients in other crystallographic di-

rections are equivalently derived.

It follows, then, that it is possible to measure the temperature dependence of the elec-

tromechanical coefficients by simultaneously measuring the temperature dependence of

the resonant frequencies of the real parts of the impedance and admittance, fs and fp

respectively, and the capacity of the sample (i.e. its dielectric constant).

4.5.1 Experimental setup for simultaneous measurements of

electromechanical properties

The experimental setup used for simultaneous measurements of dielectric, mechanic and

piezoelectric constants of KN was as following (Fig.4.6):

• samples surfaces perpendicular to the spontaneous polarization direction were elec-

troded with gold, i.e. resonator bars were tested as capacitors;
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• samples were attached by 30µm gold wires to a sample holder; the wires were glued

on the center of the sample surface by silver paint, or by bicomponent Duralco 124

highly conductive epoxy, dissolved in the 4-Methyl-2-pentanone, which is usually

used as a silver paint solvent; in the case where epoxy was used, the epoxy was not

supposed to be dissolved, but the mixing of two components and drying of this

mixture would last extremely long; the other side of golden wires were soldered to

a sample holder; the samples were hanging freely, i.e. they were not clamped;

• the sample holder was put inside the Delta9023 Chamber in which the temperature

of the samples was easily controlled with high precision (down to 0.1◦) throughout

the whole temperature range of the orthorhombic phase of KNbO3 [from −60◦ to

230◦]; the temperature was measured by a thermocouple;

• the electromechanical properties (resonance curves and dielectric constants) of the

samples were measured by HP4194A impedance analyser; the measurements were

automatized using LABVIEW software package.

HP4192A

DELTA CHAMBER

resonator bar
   (sample)

impedance analyser

PC

Figure 4.6: Scheme of the experimental setup used for the simultaneous electromechanical
properties measurements of KN vibrators.

The easiest way to verify the performance quality of the setup was to measure the

temperature dependence of the electromechanical properties of a piezoelectric material

with a previously known data set. For that purpose, a sample from a family of langasite

materials was used and reproducible results were obtained, with no noticeable influence
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of the setup on the quality of results.

During measurements, heating and cooling rates were 0.5◦/min − 1.0◦/min (the same

rate was also used in Ref. [149]), although it was reported that a cooling rate of about

5.0◦/min was not large enough to generate cracks in samples of KN [96].

4.6 Some experimental constraints

For ordinary dielectrics it is well known that measurements at constant stress (X =

const.) may differ significantly from measurements at constant strain (x = const.) -

there are elastic contributions to the various compliances. In ferroelectrics, addition-

ally, important differences also exist between measurements at constant dielectric dis-

placement (D = const.) and constant electric field (E = const.). In practice clamped

measurements are normally made with a dynamic method at frequencies well above the

fundamental mechanical resonance frequency, while unclamped measurements are made

at low frequencies. Adequate clamping of a crystal by external means is normally diffi-

cult. Similarly, open-circuit (D = const.) and short-circuit (E = const.) measurements

are performed above and below the dielectric relaxation frequency [69]. External short-

circuiting of crystals is adequate for constant electric field measurements provided that

any stresses or temperature changes of the crystal are uniform.
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Experimental results

Potassium niobate is a member of the perovskites family that has, because of the highest re-

ported thickness mode coupling coefficient in the single crystal form and environmental friendly

lead free composition, a promising future in various applications. At present, the set of elec-

tromechanical properties values at room temperature is complete, and the phenomenological

description of KNbO3 is incomplete. In this chapter, we will try to measure the temperature

dependence of some electromechanical coefficients, and to obtain a phenomenological descrip-

tion of potassium niobate.

One can note that published reports cite significant deviations for the various phase

transition temperatures in potassium niobate single crystals [39, 64, 51, 162]. At room

temperature, KNbO3 is ferroelectric and belongs to the orthorhombic mm2 class with

cell parameters a ≈ 0.5697nm, b ≈ 0.3971nm, and c ≈ 0.5722nm. As the temper-

ature falls from the crystal growth temperature1 (≈ 1100K), this material undergoes

three phase transitions2: 1) paraelectric cubic → ferroelectric tetragonal at ≈ 435◦C, 2)

ferroelectric tetragonal → ferroelectric orthorhombic at ≈ 225◦C, and 3) ferroelectric

orthorhombic → ferroelectric rhombohedral at approximately −10◦C. This structural

phase transformation sequence is schematically shown in Fig. 5.2, and it is completely

analogous to that of barium titanate (only the transition temperatures are different,

1Typical growing procedures of KN can be found in the literature [96, 138]. It is now possible to
obtain high quality KN crystals with highly transparent, colorless, and crack free features (as shown in
Fig. 5.1) - growing high quality KN single crystals has been a problem for a long period.

2The mechanisms of the phase transitions (i.e. their displacive or order-disorder character) in KN
are still under the discussion. [33, 40, 41]. There is experimental evidence for both of these scenarios.
It is quite possible, that real ferroelectric transitions involve a combination of these behaviors [40, 41].

43
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Figure 5.1: A crystal of potassium niobate

being in BaTiO3 393K, 278K and 183K, respectively).

According to its symmetry (mm2 ), the orthorhombic KNbO3 has nine independent elas-

tic, five piezoelectric, and three dielectric constants [116]. A review of these coefficients

measurements is given in Chapter 3. Since the set of the experimentally obtained elec-

tromechanical coefficients is discrepant3, a refinement is attempted here, by measuring

temperature dependences of some coefficients in the orthorhombic phase.

The KN crystals used for these measurements were grown by Forschungsinstitut für

a

a

a

aT

aT

c

aO

aO

cO

P P P

aR

aR

aR

Cubic Tetragonal Orthorhombic Rhombohedral

temperature

435°C / 708K 225°C / 498K -10°C / 263K

Figure 5.2: The phase transition sequence of potassium niobate upon cooling, according to the
literature data.

mineralische und metallische Werkstoffe - Edelsteine/Edelmetalle - GmbH4 (FEE) from

Germany. The samples were cut in forms of expedient resonator bars: along the a, b and

c side of an orthorhombic single domain cuboid, having appropriate aspect ratios, to

get 31−, 32− and 33− resonator bars, respectively (Fig. 5.3). With this set of samples,

3For example, the entire set of elastic constants of KN at room temperature was first calculated
by Phatak et al. [120] from diffuse x-ray scattering data. Then, by using dielectric measurements,
Wiesendanger later showed [160] that the values of Phatak et al. were in error.

4www.fee-io.de
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Figure 5.3: Schematic showing how the samples were cut from a poled single domain KN
cuboid. The direction of the spontaneous polarization in the orthorhombic phase is along [001]o
direction of the orthorhombic phase axes frame, and along [110]c direction in the cubic phase
axes frame. Shaded surfaces denote sample sides that were electroded.

it was possible to measure the temperature dependence of d31, d32 and d33 piezoelectric

coefficients in the orthorhombic phase. The method used for measurements was a mod-

ified resonance method, described in Chapter 4.

The orientation of the resonator bars with respect to the orthorhombic unit cell princi-

pal directions was verified by Laue camera. The figures obtained have proven that the

samples were cut very accurately. Typical Laue figures are shown in Fig. 5.4.

Since the aim of measurements was to determine single domain properties of KN, practi-

Figure 5.4: Typical Laue figures obtained for verification of the accuracy of sample cuts. Sam-
ples were cut along the principal axes of the orthorhombic system with high accuracy.

cally the most important experimental procedures were the poling procedure, to remove
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residual domains, and the verification of the domain structure in samples. The do-

main state verification was done either by pyroelectric and dielectric measurements (no

need to remove gold electrodes), either by polarization microscope (necessary to remove

the electrodes mechanically, and, like that possibly creating domains, which makes this

method rather unreliable). Typical figures obtained by polarization microscopy are

shown in Fig. 5.5, for different domain structures in samples.

Experimental problems that can happen if a non-stoichiometric composition of the KN

Figure 5.5: Polarization microscope images of (a) multidomain and (b) single domain KN
sample.

sample surface layer appears are discussed in Chapter 3 and Chapter 4. To remove

the surface layer from some samples, etching in the mixture of HF and HNO3 acids

was done. The surfaces of the samples after etching became rough and non-transparent

for the polarized light - therefore, the domain structure verification of the samples by

optical methods became impossible. The surface of an etched KN sample is shown in

Fig. 5.6. To make the sample transparent for optical microscopy, surface polishing

should be done, but this procedure is highly unreliable because of the high probability

of additional domains creation.

5.1 Measured electromechanical properties

Prior to all other electromechanical properties measurements, a behavior of the dielec-

tric constant along the spontaneous polarization direction, ε33, was investigated as a

function of temperature - to verify the temperature extent of the orthorhombic phase

of the samples. Upon heating, the ferroelectric orthorhombic → ferroelectric tetragonal

phase transition was observed at 220◦C, while the transition from the orthorhombic to
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Figure 5.6: Surface of a KN sample after etching in a mixture of HF and HNO3 acids. The
surface layer that may cause experimental problems has been removed, but it is not possible
any more to verify the domain structure by polarized light microscopy.

the ferroelectric rhombohedral phase occurred at −61◦C on cooling5. To preserve the

usefulness of the samples for multiple experiments (to have them as long as possible in

the single domain state), measurements were never performed close to the phase tran-

sition temperatures, to avoid sizeable energetic instabilities in samples and a possibility

of easy creation of domains. The temperature dependence of the dielectric constant of

the test samples is shown in Fig. 5.7.

5.1.1 Spontaneous polarization values and ferroelectric hys-

teresis loops

If one wants to study, by phenomenological modeling, the behavior of electromechan-

ical properties of a ferroelectric, the knowledge of the spontaneous polarization value,

Ps, is of critical importance. It will be shown in many examples in this and further

chapters that, in the framework of the phenomenological Landau-Ginzburg-Devonshire

theory [31, 32], the dielectric properties can be represented as polynomial functions of

the spontaneous polarization value, while piezoelectric coefficients are directly propor-

tional the products of dielectric constants and the spontaneous polarization. Hence,

having the experimental values of Ps is crucial.

In principle, there are two common methods for measuring the spontaneous polarization

in a ferroelectric material: a) Sawyer - Tower bridge [129] - the most used procedure

(described in Chapter 4 ), b) a special rectangular pulses technique (the so-called Cam-

libel pulse method) [55].

5Note that this temperature is 51◦C lower than the usually reported temperature of the particular
phase transition.



48 Chapter 5

Figure 5.7: The relative dielectric permittivity of the orthorhombic potassium niobate as a
function of temperature. The phase transition to tetragonal phase takes place upon heating
above 220◦C, while the one to the rhombohedral phase happens upon cooling below -61◦C.
Measurements were performed for different frequencies of the measuring field.

There were several previous attempts of measuring the spontaneous polarization in KN

- for example, Triebwasser measured the spontaneous polarization values for several

temperatures in the tetragonal and orthorhombic phase [143], Hewat measured values

of Ps at 270◦C (tetragonal phase) and at 20◦C (orthorhombic phase) [65], while Günther

measured the temperature dependence of the spontaneous polarization in the whole or-

thorhombic phase temperature interval [55]. These and all other references related to

spontaneous polarization values of KN are systematized in Chapter 3, Table 3.1.

It is in general difficult to observe the proper ferroelectric hysteresis loops of KN, es-

pecially at low frequencies, where an anomaly of the hysteresis loop is reported6 [136].

This is seen in the fact that published results on the spontaneous polarization at room

temperature in this material differ up to 40%. Günther [55] additionally reports inap-

plicability of the usual P-E hysteresis loops (Sawyer-Tower bridge) method in measuring

the spontaneous polarization of KN, because of the very rapid change of loops from the

ferroelectric type to the paraelectric type7, so he uses a pulse-field method. Camlibel

[16] also points out to experimental difficulties in the determination of Ps from hysteresis

loops.

The method available in our laboratory for measurements of the ferroelectric hysteresis

6Together with the explanation of an anomaly as a consequence of the existence of non-stoichiometric
surface layer.

7Due to appearance of 90◦ domains
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loops and, indirectly, the spontaneous polarization, was the Sawyer-Tower bridge. Typ-

ical hysteresis loops obtained on KN samples are shown in Fig. 5.8. The measurements

were done by applying electric fields at frequency f = 5kHz (limited by experimental

setup), and the results shown reveal a high electric conductivity behavior of samples.

This method is thus not reliable for obtaining the spontaneous polarization values.

Figure 5.8: Typical results of measurements of the hysteresis loops on KN samples. The
samples show electrical conductivity for electric fields applied at f = 5kHz.

5.1.2 Pyroelectric properties

Measurements of pyroelectric coefficient of a sample is an indirect way of obtaining some

information on sample domain structure. Taking a step further, by doing measurements

of the temperature dependence of the pyroelectric coefficient, one can reveal the temper-

ature dependence of the spontaneous polarization, if its value for a certain temperature

is known.

It is not difficult to show by calculations that the presence of domains in the sample

decreases the value of the pyroelectric coefficient. Thus, if one compares pyroelectric

coefficients of several samples cut from the same batch, the one with the highest pyro-

electric coefficient will be the closest to the single domain state.

Up to our best knowledge, there is only one report on single domain KN pyroelectric

coefficient measurements (Günter in 1977 [55]). In that work the value of the room

temperature pyroelectric coefficient was p ≈ 75 µC
m2K

and the author noted a relative

experimental error of ±20%.

In this thesis work, pyroelectric measurements on several samples were done. The typ-

ical results are shown in Fig. 5.9. By using optical methods, it was revealed that

some samples were not single domain. Nevertheless, all samples gave higher average
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room temperature values of pyroelectric coefficients than the one reported by Günter,

showing the better quality of samples and a small influence of domains present.

Figure 5.9: Typical results of pyroelectric coefficient measurements on KN samples at room
temperature. Sample 2 appears to have more domains influencing the pyroelectric effect than
Sample 1. Small graphs on right depict the time dependence of a sample temperature change
(upper graph) and the electric current caused by that temperature change (lower graph).

5.1.3 Dielectric properties

While doing measurements of electromechanical properties of a piezoelectric material,

one has to keep in mind that these materials generally display frequency dispersion in

most electromechanical properties [157]. Considering an example of interest, KNbO3

shows relatively high dielectric losses at very low frequencies8 [85]. On the other hand

piezoelectrics also show nonlinear behavior of their properties with increasing of applied

fields.

The frequency dependence of dielectric properties of KN samples was measured by HP

Impedance Analyser 4192A. The measured frequency dependence of a KN sample ca-

pacity and its dielectric loss at room temperature is shown in Fig. 5.10, while the

temperature dependence of ε33 is depicted in Fig. 5.11. The measurements of the tem-

8These losses may be attributed to the relatively high porosity of the crystal. The grain surface
around the pores forms an easy path for the K+ ions to drift under the measuring electrical field and
hence gives rise to a dielectric loss [125].
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Figure 5.10: Capacity of a KN sample (left) and its dielectric loss (right) as functions of the
measuring electric field frequency. High capacity at higher frequencies is due to approaching
the natural resonance frequency of the sample. The applied measuring fields were very small.

perature dependence of ε33 were performed at frequencies far from the natural resonance

frequency of the sample and at which samples had a low dielectric loss, and for very

small measuring fields. The room temperature value of ε33 is compared to the literature

results in Table 5.1.

It is interesting to note that the relatively low values of permittivity hint a poor per-

formance of KNbO3 in transducer arrays applications, but do suggest its application in

single element transducer technology9 [85].

Wada [153] Zgonik [166] this work Wiesendanger [160]

ε11 872.8 985 - 1000

ε22 155.3 150 - 160

ε33 43.6 44 45.1 55

Table 5.1: Measured free (no mechanical constraints) dielectric constants of single domain KN,
compared to the values from the literature. One can note the large anisotropy in the constants.

5.1.4 Mechanical properties

Since the frequency dependence of the electric impedance of a piezoelectric material

is in general a function of all electromechanical material constants10, measurements of

9In this case, the low dielectric constant translates into a smaller capacitance (and hence a higher
impedance), which allows optimum impedance matching with the pulsing and receiving electronics
while still maintaining a large aperture.

10Discussed in Section 4.5.
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Figure 5.11: Dielectric permittivity of potassium niobate in the orthorhombic phase as a func-
tion of temperature. Smaller graph on the right shows the same function, but only in the
vicinity of the room temperature.

temperature dependencies of the impedance indirectly give us the temperature depen-

dences of material electromechanical properties. The temperature dependence of elastic

constants of KN samples were calculated from the experimentally obtained piezoelectric

resonance curves, using Eq. (4.2). The temperature dependence of the elastic compli-

ances s11 and s22 is given in Fig. 5.12, while their room temperature values are compared

with the results found in the literature in Table 5.2.

5.1.5 Piezoelectric properties

The temperature dependence of the measured piezoelectric coefficients is shown in Fig.

5.13, while the room temperature values are compared with the literature values in Table

5.3. The temperature dependence of the d33 has already been measured by Günter [54].

5.1.6 Coupling coefficients

The temperature dependence of the coupling coefficients k31 and k32 are plotted in Fig

5.14. The room temperature values are extracted from the graphs and compared with
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Figure 5.12: Elastic compliances s11 (left) and s22 (right) of KN samples in the orthorhombic
phase as a function of temperature.

sE
ij[10−12Pa−1] Wada [152, 153] this work Zgonik [166]

sE
11 5.41 6.78 5.41

sE
22 5.12 5.27 5.06

sE
33 6.44 - 7.0

sE
44 38.9 - 40.0

sE
55 12.5 - 13.5

sE
66 - - -

sE
12 - - -

sE
13 - - -

sE
23 - - -

Table 5.2: Measured elastic compliances in comparison with the corresponding literature data.
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Figure 5.13: Transversal piezoelectric coefficients d31 (left) and d32 (right) of potassium niobate
samples in the orthorhombic phase as functions of temperature.

(pC/N) Wada et al. [153] Zgonik [166] Günther [54] this work

d15 135.8 156.0 159.0 -

d24 204.0 206.0 215.0 -

d31 -22.3 -19.5 -19.5 -21.2

d32 18.5 9.8 9.8 18.4

d33 29.6 29.3 24.5 -

Table 5.3: Experimentally obtained room temperature values of the piezoelectric coefficients,
compared to previously published results. Note a much more pronounced discrepancy of the d31

coefficient than of d32. Our experimental results are in a very good agreement with the results
obtained by Wada et al.
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the corresponding values found in the literature (Table 5.4).

Zgonik [166] Wada [152, 153] this work

k15 0.455 0.437 -

k24 0.894 0.882 -

k31 0.439 0.468 0.461

k32 0.213 0.395 0.391

k33 0.561 0.608 -

Table 5.4: Measured room temperature values of the coupling coefficients, compared with pre-
viously published results.

5.2 A discussion about Landau-Ginzburg-Devonshire

theory of KNbO3

5.2.1 Calculation of the LGD coefficients

To discuss the behavior of electromechanical properties of potassium niobate single

crystals in the framework of Landau-Ginzburg-Devonshire phenomenological theory, one

has to start with the Taylor expansion of the Gibbs free energy. This expansion has

already been presented in Chapter 2, Eq. (2.32), but it will be rewritten here for practical

reasons:

∆G = G0(T ) + α1[P
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+ . . . (5.1)

If one now wants to determine the series expansion coefficients (α, S,Q), one can do

that by fitting the experimental results obtained for different phases of KNbO3.

In general, dielectric permittivity values can be calculated from (5.1) as

1

εij

=
∂2∆G

∂Pi∂Pj

. (5.2)
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Figure 5.14: Coupling coefficients k31 and k32 of KN samples in the orthorhombic phase as
functions of temperature.
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In the paraelectric cubic phase (P1 = P2 = P3 = 0), for a system without mechanical

constraints (Xi = 0)11, this equation will give

1

εij

= 2α1. (5.3)

The paraelectric phase is macroscopically isotropic, and so is its dielectric constant.

Since the dielectric permittivity of the paraelectric phase obeys Curie-Weiss law, the

coefficient α1 is thus obtained by fitting the measurements taken in the cubic paraelectric

phase onto this law,

ε =
C

T − TC

=
1

2α1

. (5.4)

The measurements and fitting results are shown in Fig. 5.15.

The Curie constant then can be calculated to be C = 2.293·105K, the Curie temperature

Figure 5.15: Temperature dependence of the dielectric constant of paraelectric cubic potassium
niobate (left), and fitting of these measured values to Curie-Weiss law (right).

TC = 645K, and value of α1 to be

α1(T ) = 2.462 · 105(T − 645)
V m

C
. (5.5)

When describing phenomenologically many perovskite systems (for example, PbTiO3

[62], PbZrO3 [58], PZT systems with different concentration ratios of the components

[?, 59]), α1 is considered to be the only coefficient depending on temperature. But this is

not the case for all perovskites. An excellent example is barium titanate. In this material,

some higher order terms are necessarily considered to be temperature dependent, if one

11This condition is assumed throughout the whole chapter.



58 Chapter 5

wants to obtain highly accurate agreement of the phenomenological description and

measured results. Taking this into account, and the fact that potassium niobate has

the same crystal structure and can undergo the same sequence of phase transitions as

barium titanate, one can rise the question of number of the LGD coefficients for KN not

depending on temperature as an important one.

If one now wants to make assumptions about the temperature dependence of higher order

coefficients in the same manner as it has been done for the case of barium titanate, than

one has that coefficients have to possess analytical forms as

α11 = A11(T − T11) +B11, (5.6)

α111 = A111(T − T111) +B111, (5.7)

α12, α112, α123 6= f(T ). (5.8)

In the tetragonal ferroelectric phase (P1 = 0, P2 = 0, P3 6= 0) the dielectric constants

calculated from the Gibbs free energy will have the form

1

ε11

=
∂2∆G

∂P1∂P1

= χ11 = 2(α1 + α12P
2
3 + α112P

4
3 ) =

∂2∆G

∂P2∂P2

= χ22 =
1

ε22

, (5.9)

and
1

ε33

=
∂2∆G

∂P3∂P3

= χ33 = 2(α1 + 6α11P
2
3 + 15α111P

4
3 ), (5.10)

while the spontaneous polarization can be calculated using the condition of the thermo-

dynamic stability of the system

∂∆G

∂Pi

= Ei = 0, (5.11)

giving

P 2
t,s = − α11

3α111

+

√
α2

11 − 3α1α111

3α111

, (5.12)

where t denotes the tetragonal ferroelectric phase.

For the orthorhombic phase the dielectric stiffnesses can be calculated to be χ11 0 0

0 χ22 χ23

0 χ32 χ33

 , (5.13)

where

χ11 = (4α112 + 2α123)P
4
3 + 4α12P

2
3 + 2α1, (5.14)

χ22 = χ33 = (30α111 + 14α112)P
4
3 + (12α11 + 2α12)P

2
3 + 2α1, (5.15)
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χ23 = χ32 = 16α112P
4
3 + 4α12P

2
3 . (5.16)

and for the dielectric permittivities one has ε11 0 0

0 ε22 ε23

0 ε32 ε33

 , (5.17)

where

ε11 = χ−1
11 , (5.18)

ε22 = ε33 =
χ33

χ2
33 − χ2

23

, (5.19)

ε23 = ε32 =
−χ23

χ2
33 − χ2

23

, (5.20)

The spontaneous polarization can be calculated to be

P 2
o,s =

−2α11 − α12 +
√
−4α1(3α111 + 3α112) + (2α11 + α12)2

2(3α111 + 3α112)
, (5.21)

where o denotes the orthorhombic phase.

Since the dielectric constants for the orthorhombic phase are calculated here in the

paraelectric cubic axis reference frame, and the experimental results reported in the

literature and obtained from our measurements are in the orthorhombic crystallographic

reference frame, one has to transform from one reference frame to the other12. In the

orthorhombic system the dielectric stiffness values along principal axes have the form χo
11 0 0

0 χo
22 0

0 0 χo
33

 , (5.22)

where

χo
11 = χ11, (5.23)

χo
22 = χ33 − χ23 = (30α111 − 2α112)P

4
3 + (12α11 − 2α12)P

2
3 + 2α1, (5.24)

χo
33 = χ33 + χ23 = (30α111 + 30α112)P

4
3 + (12α11 + 6α12)P

2
3 + 2α1. (5.25)

Then, in the orthorhombic axes system, the nonzero dielectric constants can be written

as

εo
ii =

1

χo
ii

. (5.26)

When fitting experimental results to a theoretical expression, it is always more advanta-

geous to have simpler analytical expressions with as few as possible unknown coefficients.

12These transformations are discussed in Chapter 6 and in Appendix A
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It is clear then, by comparing the expressions for the tetragonal and orthorhombic phase

presented here, that it is most preferable having the experimental results obtained in

the tetragonal phase. However, for measurements of single domain properties in the

tetragonal phase, it is necessary to master a method that will simultaneously pole a KN

sample at elevated temperatures (the tetragonal phase of KNbO3 occurs in the tem-

perature range 225◦C − 435◦C) and then measure the dielectric properties for different

orientations in the sample, taking into account possible problems with elevated conduc-

tivity of the material at high temperatures. One can consider this as the reason why

there is no, up to our best knowledge, published results on dielectric properties mea-

surements on single domain KN crystals in the tetragonal phase. For this phase there

are only measurements reported for the temperature dependence of the spontaneous

polarization [55]. This is not enough to determine any of the LGD coefficients.

On the other hand, trying to measure the dielectric properties of the single domain

samples in the tetragonal phase was impossible with the set of crystals in our posses-

sion because the crystals did not have proper cuts (they were cut for measurements of

piezoelectric coefficients d31, d32 and d33 and dielectric constant ε33 in the orthorhombic

ferroelectric phase).

However, by gathering the results from the literature and the results of measurements

shown in this chapter, it is possible to make a first step towards obtaining the LGD

coefficients of single crystal KNbO3 - an estimation of values of all the coefficients α in

the 6th order description is feasible using measurements obtained in the orthorhombic

phase.

For this estimation, it suffices:

• to combine the results of measurements of temperature dependence of dielectric

constants done in our laboratory and by Fukuda [45], and the results of the tem-

perature dependence of the spontaneous polarization in the orthorhombic phase

by Günter [55];

• to make an assumption that higher order coefficients are temperature independent,

because the fitting by taking the coefficient forms as in Eqs. (5.6) - (5.8) is

very difficult without having the experimental data of dielectric constants in the

tetragonal phase.

It can be seen from Eqs. (5.14) - (5.26) that the Landau-Ginzburg-Devonshire theory

coefficients can be obtained by fitting the spontaneous polarization dependence of the

dielectric constants. The calculation in this manner is not unusual - for example Wiesen-

danger used in his thesis report [158] and in Ref. [160] the spontaneous polarization

values obtained by Hewat [64, 65] and Curie constant and Curie temperature from a
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work by Triebwasser [143, 144] to fit his own experimental results to the LGD theory.

From these measurements the spontaneous polarization dependences of the dielectric

ε33

ε11

ε22

Figure 5.16: Temperature dependences of the dielectric constants in the orthorhombic phase
of potassium niobate along the phase principal axes. Closed circles denote our measurements.
The rest of the data (solid lines) taken from the Ref. [45].

constants can be derived. These dependences are shown in Figs. 5.18 - 5.20.

Now, the dependence of εo
11, shown in Fig. 5.19, is fitted using the Eqs. (5.14), (5.23),

and (5.26), and the coefficients are obtained:

2α112 + α123 = 6.4076 · 1010V m
9

C5
(5.27)

and

α12 = −4.0089 · 109V m
5

C3
(5.28)

Further, the dependence of εo
22, shown in Fig. 5.18, is fitted using the Eqs. (5.24), and

(5.26), and the following relations are obtained:

6α11 − α12 = 7.8835 · 108V m
5

C3
, (5.29)

and

15α111 − α112 = −3.0405 · 107V m
9

C5
. (5.30)

Finally, the dependence of εo
33, shown in Fig. 5.20, is fitted using the Eqs. (5.25), and

(5.26), and the following relations are obtained:

2α11 + α12 = −8.2098 · 109V m
5

C3
, (5.31)
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Figure 5.17: Temperature dependence of the spontaneous polarization in the orthorhombic
phase of KN. Data extracted from the Ref. [55].
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Figure 5.18: Spontaneous polarization dependence of the value 1
2ε11

− α1(T ) and the fitted
curve. Fitting of these results by using Eqs. 5.14, 5.23 and 5.26 gives the values of α12 and
2α112 + α123.
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Figure 5.19: Spontaneous polarization dependence of the value 1
ε22

− α1(T ) and the fitted
curve. Fitting of these results by using Eqs. 5.24 and 5.26 gives the values of 6α11 − α12 and
15α111 − α112.
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Figure 5.20: Spontaneous polarization dependence of the value 1
ε33
−α1(T ) and the fitted curve.

Fitting of these results by using Eqs. 5.25 and 5.26 gives the values of 2α11+α12 and α111+α112.
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and

α111 + α112 = 1.3428 · 1010V m
9

C5
. (5.32)

Solving the equations system obtained by fitting the spontaneous polarization depen-

dences of dielectric constants one can obtain (estimate) all the coefficients α of the 6th

order LGD phenomenological theory. These coefficients are shown in Table 5.5.

α1 2.463 · 105(T − 645) V m
C

α11 −5.3676 · 109 V m5

C3

α12 −4.0089 · 109 V m5

C3

α111 8.3735 · 108 V m9

C5

α112 1.2591 · 1010 V m9

C5

α123 3.8895 · 1010 V m9

C5

Table 5.5: Estimated values of dielectric stiffness coefficients at constant stress, α, for single
domain single crystal potassium niobate.

5.2.2 Calculation of temperature and direction dependences of

dielectric and piezoelectric constants, and spontaneous

polarization in KN

Using the coefficients from Table 5.5, it is possible now to estimate theoretically the

temperature dependences of the spontaneous polarization, dielectric constants, in all

three ferroelectric phases of KN. The calculated values for the spontaneous polarization

in the orthorhombic phase are shown in Fig. 5.21, together with the experimental val-

ues obtained by Günter [55], which helped us to estimate the coefficients α, while the

calculated values of the spontaneous polarization for all three ferroelectric phases are

shown in Fig. 5.22. Dielectric constants are calculated for the orthorhombic phase and

compared to the experimental results obtained by Fukuda [45] and our experiments, Fig.

5.23, while values for all three ferroelectric phases are shown in Fig. 5.24.

Further, using the electrostrictive coefficients from the work of Günther [54], we esti-

mated the temperature dependence of the piezoelectric coefficients. These calculated

values are shown in Fig. 5.25 for the d15, d24 and d33 in the orthorhombic phase, while

in Fig. 5.26 one can find d31 and d32 together with our experimental results for the same

coefficients.

In the orthorhombic phase (symmetry), one has that five piezoelectric coefficients can

have non-zero values
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Figure 5.21: Temperature dependence of the spontaneous polarization of orthorhombic KN -
LGD calculations compared to experimental data from Ref. [55] (see Fig. 3.3).
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roelectric phases - LGD calculations. Compare to Fig. 3.2.
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Figure 5.23: Temperature dependence of the dielectric constants of single domain orthorhombic
KN - a LGD estimate compared to experimental values from Ref. [45] (see Fig. 3.5).
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Figure 5.24: Temperature dependence of the dielectric constants of single domain KN for all
three ferroelectric phases - LGD calculations.
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Figure 5.25: Temperature dependence of the piezoelectric constants of single domain or-
thorhombic KN - LGD calculations.
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d32 - LGD

d31 - LGD

d32 - measurements

d31 - measurements

Figure 5.26: Temperature dependence of the transverse piezoelectric constants of single domain
orthorhombic KN - LGD calculations compared to experimental results obtained in this work.

 0 0 0 0 do
15 0

0 0 0 do
24 0 0

do
31 do

32 do
32 0 0 0

 , (5.33)

where

do
15 =

√
2dc

15; (5.34)

do
24 =

√
2(dc

33 − dc
32); (5.35)

do
31 =

√
2dc

31; (5.36)

do
32 =

1√
2
(dc

33 + dc
33 − dc

24); (5.37)

do
33 =

1√
2
(dc

33 + dc
33 + dc

24), (5.38)

are the coefficients represented in the orthorhombic axes reference system, related to

the corresponding coefficients in the cubic axes system, in which we calculated the

coefficients α,

dc
15 = ε11Q44P3; (5.39)

dc
24 = (ε32 + ε33)Q44P3; (5.40)

dc
31 = 2(ε32 + ε33)Q12P3; (5.41)

dc
32 = 2(Q11ε32 +Q12ε33)P3; (5.42)
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dc
33 = 2(Q12ε32 +Q11ε33)P3. (5.43)

Finally, using the estimated and measured results of the dielectric and piezoelectric

properties in the orthorhombic phase, we can calculate three dimensional representa-

tions of the dielectric and piezoelectric constants in a general direction for this phase.

The angle dependence of the dielectric constant is shown in Fig. 5.27, while the same

dependence, but for the related piezoelectric constant is shown in Fig. 5.28. One can

note that the dielectric constant has a very anisotropic behavior with the temperature

change, while piezoelectric response does not follow that anisotropy evolution in the

same qualitative manner.
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Figure 5.27: Temperature and direction dependence of the dielectric constant ε∗33 (see Appendix
A) in the orthorhombic phase of KN - calculations.
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5.3 Conclusions

Potassium niobate in single crystal form has a long experimental history. Despite that

fact, the phenomenological description of its electromechanical properties has never

been done as complete as for some other classic perovskites, such as BaTiO3, PbTiO3,

or different compositions of PZT. There are several reasons: difficulties in growing high

quality crystals and in obtaining and preserving ferroelectrically single domain state13,

high phase transition temperature between orthorhombic and tetragonal ferroelectric

phase, and problems with the increased material conductivity at high temperatures and

low frequencies. These facts have made measurements of the temperature dependence

of the spontaneous polarization and single domain dielectric properties at higher tem-

peratures very difficult. Since the accurate obtaining of the LGD coefficients for KN

requests experimental results of the single domain electromechanical properties in the

tetragonal phase, these coefficients have never been published completely.

In this work measurements of the temperature dependence of some electromechanical

properties of potassium niobate were performed. The number of the independent mea-

sured values was limited by the set of samples in our possession. Combining the results

obtained by our measurements with the experimental results for the orthorhombic phase

of KNbO3 from the literature, it was possible to calculate the coefficients of the 6th order

Gibbs free energy expansion for a free dielectric. The assumption while doing calcula-

tions was that no higher order coefficients have the temperature dependence. Up to our

best knowledge, this is the first time that all coefficients α for the series expansion of

the KN Gibbs free energy up to the 6th order have been calculated (estimated).

One can note that the calculated dielectric response of KN in a general direction is

very anisotropic upon temperature change - it changes its maximal value direction by

90◦ if the material goes throughout the orthorhombic phase. However, our LGD co-

efficients estimate that the piezoelectric response in a general direction will not follow

that anisotropy. The reason might be the large ε11/ε33 and Q44/Q11 ratios that prevent

a dominant contribution of do
24 over do

15 in a general direction piezoelectric response in

the orthorhombic phase - one should come back to this question after reading Chapter 6.

The experimental results on KNbO3 are fitted to LGD theory and all coefficients α for the se-

ries expansion of the Gibbs free energy up to the 6-th order have been calculated (estimated).

13Even recently (2003), there is a paper by Wada et al. [152] in which the authors state that their
samples of potassium niobate had almost the single domain state after they performed the poling
procedure.
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Piezoelectric anisotropy - phase

transition relations in perovskites

The discovery of the exceptionally large piezoelectric respone along directions that not coincide

with polar directions in single crystals of lead-based relaxor-ferroelectric solid solutions has

risen the question of origins of the enhanced response along non-polar axes, and the origins of

the large piezoelectric coefficients in these materials. By using the phenomenological Landau-

Ginzburg-Devonshire theory and classic ferroelectric perovskites, these origins are investigated

and discussed.

The work presented here was initiated by the discovery of the unusually large piezo-

electric respone along non - polar directions in single crystals of lead-based relaxor-

ferroelectric solid solutions [118]

• (1− x)Pb(Zn1/2Nb2/3)O3 − xPbT iO3 (PZN-PT), and

• (1− x)Pb(Mg1/2Nb2/3)O3 − PbT iO3 (PMN-PT)

with the piezoelectric and coupling coefficients d33 > 2500pC/N and k33 > 90%. Before

this discovery, materials the most used in applications were piezoelectric ceramics such

as soft PZT, exhibiting piezoelectric coefficients d33 as high as 750pC/N (but having a

disadvantage of hysteretic behavior), low hysteresis hard piezoelectric ceramics (but with

d33 values of only ∼ 200 − 300pC/N ,) or electrostrictive ceramics with the maximum

strain level limited by its dielectric breakdown strength and polarization saturation.

On the other hand, the piezoelectric response which is an order of magnitude higher

71
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piezoelectric response measured in PZN-PT and PMN-PT along a non - polar axis than

along the polar axis was opposite of what was always observed in poled piezoelectric

ceramics where the largest piezoelectric response is measured along the poling direction

and thus macroscopic average polar axis [82]. The same behavior has subsequently been

observed in simple perovskites BaTiO3 and KNbO3 [155, 110, 111].

This observation in the perovskite family of piezoelectric materials revived, generally,

investigations in this field and thus has also renewed the interest in the piezoelectric

properties of classical ferroelectric materials, through attempts to explain the mecha-

nisms of the enhanced response along non-polar axes, and as well to indirectly explain

the origins of the large piezoelectric coefficients in relaxor - ferroelectrics. Here, in this

chapter, a phenomenological model treating this piezoelectric anisotropy is presented.

Although the magnitude of the piezoelectric effect is, with few exceptions [81], by far

the largest in lead-based complex perovskites, classical ferroelectric systems, such as

BaTiO3 and KNbO3, are also of interest for the following reasons:

• like complex PMN-PT and PZN-PT compositions, barium titanate and potassium

niobate exhibit enhanced piezoelectric response along certain non-polar directions

[155, 110, 111]; in the case of KNbO3, as discussed in previous chapters, its large

thickness coupling coefficient kt ≈ 69% along a nonpolar axis is of a practical

interest [111];

• barium titanate and potassium niobate do not exhibit problems associated with

the mesoscopic structure present in the relaxor-ferroelectric solid solutions [91];

• it has been seen that both BaTiO3 and KNbO3 exhibit a temperature induced

sequence of phase transitions and that sequence is, in principle, similar to that in

PMN-PT and PZN-PT crystals; however, in contrast to the complex solid solutions

[148], all crystal phases in BaTiO3 and KNbO3 are well-defined [81, 97].

These compositions may thus be used as convenient modeling materials [44] and may

give important clues on mechanisms of the enhanced piezoelectric response along non-

polar directions in complex perovskites. One of the most interesting and unexpected

results obtained from these recent investigations was that the enhanced piezoelectric

response could be expected in many perovskite ferroelectrics along crystal axes that do

not coincide with the direction of the spontaneous polarization, i.e. non-polar direc-

tions, for a given ferroelectric phase [118, 155, 110]. This result is not trivial , as will be

shown in following sections of this chapter by considering examples of the orientation

dependence of the longitudinal piezoelectric coefficient in tetragonal phases of two struc-
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turally similar, but qualitatively different1 [19], members of perovskite family PbTiO3

and BaTiO3.

6.1 Piezoelectric anisotropy as a function of tem-

perature - intrinsic effects

The goal of this section is to calculate the orientation dependence of the piezoelectric co-

efficients d∗ij (the asterisk denotes the fact that the piezoelectric response is determined

along an arbitrary crystallographic direction) in all ferroelectric phases of ferroelectri-

cally single domain BaTiO3 and PbTiO3 single crystals as a function of temperature,

and then to demonstrate how the existence or absence of phase transitions influents

the piezoelectric anisotropy in these materials. The longitudinal piezoelectric coefficient

d∗33, will be considered in detail here, while the shear and transverse coefficients will be

briefly presented and discussed in Appendix B.

Barium titanate is an excellent model material to investigate the most important issues

of this problem. On cooling, it transforms from the cubic paraelectric phase (point

group m3m) into the ferroelectric tetragonal phase (4mm) at 393K, to the ferroelec-

tric orthorhombic phase (mm2) at 278K and to the ferroelectric rhombohedral phase

(3m) at 183K [79], Fig. 6.1 Considering that the orthorhombic point group mm2 can

be described as a special case of the monoclinic point group m [79], this sequence is

similar to that observed in complex perovskite solid solutions [21, 90, 112]. BaTiO3 is

therefore a rich source for determination and discussion of the phase transition effects

on the orientation dependence of the piezoelectric coefficients in perovskite materials.

On the other hand, PbTiO3 exhibits only tetragonal ferroelectric phase [62, 88] and is

thus a convenient example of a material where ferroelectric - ferroelectric phase transi-

tions do not affect the temperature dependence of the piezoelectric properties. So, it is

important to have in mind that this discussion compares systems with and without a

sequence of ferroelectric - ferroelectric phase transitions.

To calculate the temperature dependence of the coefficient d∗33, it is necessary to know

the full set of the piezoelectric coefficients measured along the principal crystal axis for

each crystal phase. Unfortunately, the experimental values of these piezoelectric coeffi-

1The differences in behavior between BaTiO3 and PbTiO3 stem from their different electronic struc-
tures - the Pb 6s and O 2p states are strongly hybridized in PbTiO3, whereas Ba is essentially fully
ionic Ba2+ ion in BaTiO3. The Ti-O hybridization is crucial to allow ferroelectricity in both materials,
and Pb-O hybridization changes the behavior of PbTiO3 relative to BaTiO3 in a way that it leads to a
large Pb polarizability and stabilizes a large tetragonal c/a strain which stabilizes the tetragonal over
the rhombohedral phase in PbTiO3.
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Figure 6.1: Phase transition sequence of barium titanate with decreasing temperature. The
sequence is qualitatively the same as the one of potassium niobate, Fig. 5.2, only the transition
temperatures are respectively much lower.

cients are not available for BaTiO3 and PbTiO3 (or any other perovskite) crystals over

a sufficiently large temperature range. Here, these piezoelectric coefficients are deter-

mined in the framework of the phenomenological Landau–Ginzburg–Devonshire (LGD)

theory [31, 32, 106].

The coefficients of the LGD function are well documented in the literature, both for

barium titanate [7] and lead titanate [62]. They are usually determined with respect to

the coordinate system of the prototypic cubic phase, while for this subject it is always

more convenient to express piezoelectric coefficients with respect to the crystallographic

coordinate system of each phase. Thus, we first calculate temperature dependence of all

piezoelectric coefficients in the cubic system using LGD function, then find correspond-

ing values in the crystallographic coordinate system, and then calculate coefficients along

an arbitrary direction with respect to the crystallographic system. The orientation de-

pendence of d∗33 will be expressed in terms of the Euler angles (φ, θ, ψ) that are defined

in the following way [48]:

• the rotation is first made by angle φ around the z-axis, then

• around the new x-axis by angle θ, and finally

• by angle ψ around the new z-axis.

All rotations are in the positive direction (counterclockwise). This rotation procedure

is visualized in Fig. 6.17.

The dielectric permittivity, polarization, and piezoelectric coefficients in the crystallo-

graphic coordinate system for each phase are denoted by εp
ij, P

p
ij and dp

ij, respectively,
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Figure 6.2: Euler angles

where p = t, o, r stands for tetragonal, orthorhombic and rhombohedral phase. The vari-

able dp∗
ij designates piezoelectric coefficients along an arbitrary direction in the crystal-

lographic coordinate system of the phase p. The electrostrictive coefficients are denoted

by Qij. The dielectric permittivity, εp
ij, is related to the dielectric susceptibility by the

relation εij = χij + 1, and in the case of ferroelectric materials, one can write εij ≈ χij,

see Eq. (5.2). Finally, crystallographic directions are written as 〈hkl〉p and [hkl]p where

index p = c, t, o, r ; c stands for the prototypic cubic phase and remaining indices are

defined as above.

Tetragonal phase

In the tetragonal phase the value of the longitudinal piezoelectric coefficient dt∗
33 in the

crystallographic coordinate system along an arbitrary direction can be expressed as2

dt∗
33 = cosθ(dt

15sin
2θ + dt

31sin
2θ + dt

33cos
2θ) (6.1)

where angle θ describes a rotation away from the [001]t axis of the tetragonal cell. The

temperature dependences of dt
ij for BaTiO3 and PbTiO3 in the tetragonal phase are

shown in Figs. 6.3 and 6.4. In both compositions the term containing the transverse

coefficient is small comparing to the other two terms in Eq. (6.1), so that the tempera-

ture dependence of dt∗
33 is dominated by the longitudinal coefficient dt

33 and by the shear

2Calculations of the piezoelectric and dielectric coefficients in arbitrary directions are shown in
Appendix A.
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coefficient dt
15.

It can be seen from Figs. 6.3 and 6.4 that the dt
15 has the opposite temperature de-

pendences for BaTiO3 and PbTiO3. This different temperature dependence of the shear

coefficients is directly related to the presence of the tetragonal-orthorhombic phase tran-

sition in BaTiO3 and its absence in PbTiO3. In the tetragonal phase the shear piezoelec-

tric coefficients are proportional to the dielectric permittivities εt
11 and εt

22 along [100]c

and [010]c axes (i.e., along directions perpendicular to the direction of the spontaneous

polarization P3) [62, 31, 32, 59]
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Figure 6.3: Calculated temperature dependence of (a) the longitudinal and shear piezoelec-
tric coefficients, dp

ij, and (b) the relative dielectric permittivities, εpij for BaTiO3 in all three
ferroelectric phases.
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15 piezo-
electric coefficients and (b) the relative dielectric permittivities, εpij for PbTiO3 in the tetragonal
ferroelectric phases. The paraelectric - ferroelectric phase transition temperature is T = 763K.

dt
15 = dt

24 = εt
11Q44P

t
3, (6.2)
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where εt
11 = εt

22, since the macroscopic symmetry of the dielectric tensor in the tetrago-

nal structure is ∞m. To understand the origins of the temperature dependence of the

shear piezoelectric coefficients in each material it is therefore instructive to consider the

temperature dependence of the dielectric permittivity.

In the tetragonal phase, the polarization lies along the 〈100〉c axes of the prototypic cu-

bic phase, whereas in the orthorhombic phase the polarization develops along the 〈110〉c
axes [79]. By approaching the tetragonal-orthorhombic phase transition temperature

from the tetragonal side, where the polarization switches from [001]c to [011]c axis, the

tetragonal BaTiO3 becomes dielectrically soft along crystallographic directions perpen-

dicular to the tetragonal phase spontaneous polarization direction. This is seen in the

significant increase of the dielectric permittivity εt
11 along [100]c and [010]c axes as the

orthorhombic phase is approached on cooling, Fig. 6.3, whereas permittivity εt
33 along

the polar axis [001]c decreases with the decreasing temperature. In agreement with Eq.

(6.2), the shear coefficient dt
15 (= dt

24) increases as the temperature decreases towards

the orthorhombic phase. On the other hand, due to the absence of the phase transition

in PbTiO3, ε
t
11 (Fig. 6.4), and consequently dt

15, decrease monotonously with decreas-

ing temperature. The orientation dependence of the dt∗
33 in BaTiO3 and PbTiO3 with

temperature is therefore qualitatively different, as can be seen in Figs. 6.5 and 6.6. In

Figure 6.5: The orientation dependence of the dt∗
33 coefficient of BaTiO3 in the ferroelectric

tetragonal phase for three different temperatures. Note different scales as the temperature
changes. The angle θmax at which the maximum dt∗

33 occurs is indicated for the each temper-
ature. The tetragonal cell axes [hkl]t are indicated in (c). The units of the numerical values
marked on the axes are [pC/N].
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Figure 6.6: The orientation dependence of the dt∗
33 coefficient of PbTiO3 in the tetragonal

ferroelectric phase (the only one) for three different temperatures. Note different scales as
the temperature changes. The maximum dt∗

33 occurs at θmax = 0◦ at all temperatures. The
tetragonal cell axes [hkl]t are indicated in (c). The units of the numerical values marked on
the axes are [pC/N].

BaTiO3, deep in the tetragonal phase (330K < T < 393K), where dt
15 is relatively small

with respect to dt
33, the term containing dt

33 in Eq. (6.1) dominates. In this temperature

range, the largest dt∗
33 appears in both materials along the polar [001]t direction. As the

temperature decreases towards the orthorhombic phase in barium titanate, this mate-

rial will show a qualitative change of the d∗33. The shear term for BaTiO3, in Eq. (6.1),

becomes dominant at temperatures sufficiently close to the orthorhombic phase, leading

to a distortion of the dt∗
33 surface - the maximum in dt∗

33 develops along a direction other

than [001]c. For example, at T = 279K, the maximum dt∗
33 = 256pC/N is along direction

determined by θ = 51.6◦, while along the polar direction, θ = 0◦, dt∗
33 = dt

33 = 84.7pC/N .

In PbTiO3, which does not exhibit an orthorhombic phase, the shear coefficient stays

sufficiently small at all temperatures so that the dt∗
33 surface does not change qualitatively

with temperature; the direction of the maximum dt∗
33 in PbTiO3 remains along the axis

of its spontaneous polarization at all temperatures, Fig. 6.6. Results for BaTiO3 and

PbTiO3 are summarized in Fig. 6.7 which plots dt∗
33(θ) at selected temperatures.

One can understand intuitively why the shear coefficients in the tetragonal phase in-

crease as the orthorhombic phase is approached on cooling by considering Fig. 6.8. A

shear stress σ13 ≡ σ5 (or σ23 ≡ σ4) applied on a tetragonal 4mm material deforms the

crystal and produces charges on (100) [or (010)] planes, i.e. it rotates the polarization
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Figure 6.7: Orientation dependence of dt∗
33 for (a) BaTiO3 and (b) PbTiO3 at selected temper-

atures.

Figure 6.8: Effect of shear σ23 stress on the polarization rotation and crystal deformation
in a tetragonal 4mm crystal and its relation to the orthorhombic distortion and polarization.
(a) A tetragonal (solid lines) and a cubic (dotted lines) crystal; (b) The polarization rotation
in the tetragonal unit cell under the shear stress. Deformation of the unit cell and polar-
ization rotation are shown with dotted lines; (c) The pseudomonoclinic representation of the
orthorhombic cell of BaTiO3; (d) The orthorhombic cell (solid lines) and pseudomonoclinic
cell (dotted lines). The crystallographic axes [hkl]p are indicated for each phase with dashed
lines. Note that the choice of the a, b and c axes for the orthorhombic phase is arbitrary.
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from [001]c polar axis toward [100]c (or [010]c) axis. The polarization rotation is easier

as the orthorhombic phase is approached because the material becomes increasingly di-

electrically softer along [010]c and [100]c axes, anticipating the onset of the polarization

along [011]c in the incipient orthorhombic phase, Fig. 6.3. This temperature behavior

of the piezoelectric shear coefficient in the vicinity of a phase transition is analogous

to the Curie-Weiss behavior of the permittivity in the cubic paraelectric phase, where

crystal becomes dielectrically soft and permittivity increases as the ferroelectric phase

is approached by decreasing the temperature. In fact, it is seen from Fig. 6.8 that

the shear stress has the same effect on the tetragonal lattice deformation and change

in polarization direction as the temperature-induced tetragonal↔orthorhombic phase

transformation. On the other hand, at high temperatures, near the tetragonal↔cubic

phase transition temperature, the piezoelectric properties are influenced by the incipient

cubic phase that does not involve change in the polarization direction. In this region,

the dt∗
33 is dominated by the term containing dt

33 and the shear effect plays only a small

role.

It is possible to derive a condition that piezoelectric coefficients must satisfy for a crystal

to exhibit a maximum dt∗
33 along a nonpolar direction [28]. In addition to Eq. (6.2), the

piezoelectric coefficients dt
ij can be written as

dt
33 = 2εt

33Q11P
t
3, (6.3)

dt
31 = 2εt

33Q12P
t
3. (6.4)

Equation (6.1) shows that the direction along which dt∗
33 is the largest depends on dt

33,

dt
31 and dt

15. The condition that these coefficients must satisfy in order that dt∗
33 may have

the maximum along a direction other than [001]c (i.e., θmax 6= 0◦) may be calculated by

taking ∂dt∗
33(θ)/∂θ = 0. One obtains:

cos2θmax =
(dt

31 + dt
15)

3(dt
31 + dt

15 − dt
33)

(6.5)

For θmax 6= 0◦, it follows that

dt
15 + dt

31 > 3dt
33/2. (6.6)

Furthermore, since from Eqs. (6.2)-(6.4) one has that dt
33/d

t
31 = Q11/Q12, the above

inequality may be rewritten as

dt
15 > dt

33(
3

2
− Q12

Q11

) ≡ dt
33q. (6.7)

This condition is general and valid for all perovskite crystals belonging to the point

group 4mm. Note that, by using Eqs.(6.3) and (6.4), this inequality can be expressed in
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terms of permittivities εt
11 and εt

33. Assuming that Qij are independent of temperature,

q is constant. For the special case of BaTiO3, one has

q = 1.9 (6.8)

so that the d∗33 exhibits a maximum along a direction different from the polar axis

(θmax 6= 0◦) whenever dt
15 > 1.9dt

33. This result is supported by calculations of the

dependence of the angle θmax, at which d∗33 will have the maximum value, as a function

of the dt
15/d

t
33 ratio (shown in Fig. 6.9). At temperatures below approximately 332K,

where dt
15 > 1.9dt

33, θmax deviates from 0◦. In this temperature region (T ≤ 332K)

the proximity of the orthorhombic phase transition temperature leads to a significant

softening of the crystal along the pseudocubic 〈110〉 axes and to an increase in εt
11 and,

therefore, also to an increase in the shear dt
15 coefficient. Consequently, dt

15/d
t
33 ratio

increases and reaches the critical value required to have θmax 6= 0◦.

Another condition which can be derived from Eq.(6.5) is that

1√
3
< cosθmax ≤ 1, (6.9)

i.e., 0 ≤ θmax < 54.73◦. Note that the case in which θmax = 54.73◦ (i.e., that dt∗
33(θmax)

lies along the pseudocubic [111] axis) is possible only in the limit dt
33 → 0. This condition

is clearly seen in Fig. 6.9 where θmax approaches 54.73◦ asymptotically. This analysis

thus shows that in monodomain crystals belonging to the point group 4mm, under

zero external fields, the maximum dt∗
33 never lies exactly along the pseudocubic [111]

axis. This result is in contrast with the usual assumption that the highest response in

tetragonal BaTiO3 is along this direction [155]. In addition, the maximum dt∗
33 as well

as the angle at which maximum dt∗
33 occurs, θmax, are strongly temperature dependent.

Implications of these results on PbTiO3 are straightforward. In this material q = 1.8,

but dt
15 is too small at all temperatures (see Fig. 6.4) and the condition in Eq. (6.7)

is never fulfilled, in the absence of external bias fields (see Chapter 8 ). Ferroelectric

PbTiO3 thus exhibits the maximum dt∗
33 along the polar direction at all temperatures.

Orthorhombic phase

In this phase, the temperature dependence of the piezoelectric coefficient d∗33 is more

complex than in the tetragonal phase. Instead of two equal shear coefficients that exist

in the tetragonal phase, dt
15 = dt

24, that are related to the permittivities perpendicular to

the spontaneous polarization axis, and that give the ∞m symmetry to the dt∗
33 surface,

the orthorhombic phase mm2 possesses two distinct shear coefficients, do
15 6= do

24. Their

influence on the longitudinal piezoelectric coefficient is given by

do∗
33(θ, φ) = cosθ[(do

15 + do
31)sin

2θsin2φ+ (do
24 + do

32)sin
2θcos2φ+ do

33cos
2θ]. (6.10)
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Figure 6.9: The angle θmax indicating the direction along which the maximum d∗33 occurs as a
function of the dt

15/d
t
33 ratio and temperature.

The calculated temperature dependencies of the do
15, d

o
24 and do

33 piezoelectric coefficients

are shown in Fig. 6.3. One can see that the two shear coefficients have qualitatively oppo-

site temperature dependences. Neglecting, for the sake of discussion only, comparatively

small transverse coefficients, it can be seen that close to the orthorhombic↔tetragonal

phase transition temperature, the coefficient do
24 dominates the expression Eq. (6.10).

On cooling, the do
15 shear coefficient increases and becomes dominant near the temper-

ature of the orthorhombic↔rhombohedral phase transition. The opposite influence of

the two shear coefficients can be clearly observed in the three-dimensional plot of the

do∗
33, shown in Fig. 6.10. The direction of the maximum do∗

33 is rotated by 90◦ after

the term containing do
15 becomes the dominant term in expression (6.10). For exam-

ple, at 193K, do∗
33max ≈ 215.8pC/N and it lies along the direction defined by θ ≈ 53◦,

φ ≈ 90◦, while at 273K do∗
33max ≈ 176.5pC/N and it lies along the direction defined by

θ ≈ 49.9◦ and φ = 0◦. At approximately 250 K, the do∗
33 surface is nearly symmetrical

in the [100]o − [010]o plane, indicating that terms containing do
15 + do

31, and do
24 + do

32

are comparable. For example, at 253 K, do∗
33max ≈ 141.3pC/N for θ ≈ 49.6◦ and φ = 0◦

while for the same θ and φ = 90◦, do∗
33max ≈ 138.4pC/N . As in the tetragonal phase,

both the coefficient do∗
33max and its direction are strongly temperature dependent.

In order to gain a deeper insight of the origins of the temperature dependence of the
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shear coefficients, one can analyze phenomenological expressions for these coefficients

[59], expressed below in the crystallographic coordinate system

do
15 = εo

11Q44P
o
3 , (6.11)

do
24 = 2εo

22(Q11 −Q12)P
o
3 . (6.12)

It is seen from Fig. 6.3 that, during cooling from the orthorhombic↔tetragonal phase

Figure 6.10: The orientation dependence of the do∗
33 coefficient of BaTiO3 in the ferroelectric

orthorhombic phase for three temperatures. Note different scales as the temperature changes.
Angles θmax and φmax, at which maximum do∗

33 occurs, are indicated for each temperature. The
[hkl]o axes of the orthorhombic cell are indicated in (c). The units of the numerical values
marked on the axes are [pC/N].

transition temperature, the dielectric permittivity εo
22, and consequently do

24 decrease,

while the permittivity ηo
11, and accordingly do

24, increase, due to incipient transition into

the rhombohedral phase.

As in the case of the tetragonal phase, one can intuitively understand the reasons for

the temperature dependence of the shear piezoelectric coefficients by considering the

sketches shown in Figs. 6.11 and 6.12. The σ4 ≡ σ23 shear stress rotates the polariza-

tion from the [110]c cubic ([001]o orthorhombic) axis towards the [001]c cubic/tetragonal

axis, Fig. 6.11, and deforms the crystal in such a way that it becomes increasingly

tetragonal-like. A very large shear σ4 stress would have a similar effect on the crystal as

the temperature induced orthorhombic↔tetragonal phase transformation. The electri-

cal effect of the shear stress σ4 is described by the shear piezoelectric coefficient d24. It

is thus reasonable to expect that d24 should increase when the crystal is heated in the
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Figure 6.11: Effect of shear stresses on deformation and polarization rotation in an orthorom-
bic mm2 crystal and its relation to the distortion and polarization in neighboring tetragonal
and rhombohedral phases. (a) Tetragonal and orthorhombic cells and corresponding polariza-
tions are given by solid lines while the orthorhombic cell deformed by σ23 shear stress and
polarization rotatation are indicated by dotted lines.

Figure 6.12: b) Orthorhombic and rhombohedral cells and corresponding polarizations are pre-
sented by solid lines while the orthorhombic cell deformed by σ13 shear stress and polarization
rotatation are given by dotted lines. Deformed pseudomonoclinic cell (dotted line) is shown
within the orthorhombic cell (see Fig. 6). The crystallographic axes [hkl]p are indicated for
each phase with dashed lines.
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orthorhombic phase, anticipating the orthorhombic↔tetragonal phase transition. On

the other hand, the σ5 ≡ σ13 shear stress rotates the polarization from the [110]c cu-

bic ([001]o orthorhombic) axis towards [111]c cubic axis ([001]o rhombohedral axis) and

deforms the lattice in such a way that it becomes rhombohedral-like, Fig.6.12. The σ5

has a similar electro-mechanical effect on the crystal lattice as the temperature-induced

orthorhombic↔rhombohedral phase transition. The electrical effect of the shear stress

σ5 is described by the shear piezoelectric coefficient do
15. As in the previous case, it

is not surprising that do
15 increases as the sample is cooled within orthorhombic region

towards the rhombohedral phase. The competing effects of the do
15 and do

24 are clearly

seen in Fig. 6.10 where three-dimensional surface of do∗
33 evolves with the temperature

in a function of the proximity of the two crystal phases that surround the orthorhombic

region.

Figure 6.13 summarizes the orientation dependence of the do∗
33 at selected temperatures.

Note that do∗
33 exhibits its maximum at φmax = 90◦ for low temperatures and at φmax = 0◦

for high temperatures reflecting influences of the phase transitions into rhombohedral

and tetragonal phases. In the intermediate temperature region, the orientation depen-

dence of do∗
33 is similar to that in the tetragonal phase (compare Fig. 6.10b and Fig.

6.5b).

Figure 6.13: Orientation dependence of do∗
33 in BaTiO3 at selected temperatures for φmax = 0◦

and φmax = 90◦. Note that at 253K do∗
33 has nearly the same value for both orientations.

Rhombohedral phase

Lastly, in the rhombohedral phase, dr∗
33 is given by

dr∗
33(θ, φ) = dr

15cosθsin
2θ − dr

22sin
3θcos3φ+ dr

31sin
2θcosθ + dr

33cos
3θ. (6.13)
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Figure 6.14: The orientation dependence of the dr∗
33 coefficient of BaTiO3 in the rhombohedral

phase for two temperatures. Note different scales as the temperature changes. The maximum
dr∗

33 occurs at and θmax ≈ 60◦ and φmax and this direction changes little with the temperature.
The [hkl]r axes of the rhombohedral cell are indicated in (c). The units of the numerical values
marked on the axes are (pC/N).
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Figure 6.15: Effect of σ13 = σ5 shear stress on deformation and polarization rotation of a
rhombohedral 3m crystal and its relation to the distortion and polarization in the orthorhombic
phase. (a) The rhombohedral cell and its polarization are presented by solid lines while the
rhombohedral cell deformed by the σ13 shear stress and the rotated polarization are indicated by
dotted lines; (b) The pseudomonoclinc cell and its polarization (solid lines) and orthorhombic
cell (dotted lines). The crystallographic axes [hkl]p are indicated for each phase by dashed
lines.
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Figure 6.16: Orientation dependence of dr∗
33 in BaTiO3 at selected temperatures.

In contrast to the tetragonal and orthorhombic phases, the three – dimensional surface

representation of dr∗
33 does not qualitatively change with the temperature, Fig. 6.14. The

dr
15 remains approximately two times larger than dr

33 throughout the temperature range

of the rhombohedral phase, Fig. 6.3. The direction of the maximum value of dr∗
33 changes

with temperature inside a small interval of the Euler angle θ. At 180K the maximum

dr∗
33 ≈ 44.1pC/N lies along the direction defined by θ ≈ −60.3◦ and φ = 0◦, while at 10K

the maximum dr∗
33 ≈ 17.8pC/N is atθ ≈ −59.8◦ and φ = 0◦. It should be noted that

these θ angles are higher than θ = −54.73◦ which corresponds to the [001]c (or [111]r)

direction, often quoted in the literature as the angle along which the maximum dr∗
33 lies.

The rhombohedral phase is the most stable one as it does not transform to another

lower-symmetry phase as the temperature is reduced towards 0K. There is no longer an

increase of the dielectric susceptibility perpendicular to the direction of the spontaneous

polarization with decreasing temperature, and no more corresponding increase of the

shear coefficient, which is related to the susceptibility by:

dr
15 =

1

3
(4Q11 − 4Q12 +Q44)ε

r
11P

r
3 . (6.14)

The shape of the dr∗
33 surface, determined by the rhombohedral↔orthorhombic phase

transition, remains therefore unchanged as the crystal response gradually freezes during

cooling towards 0K.

In analogy to the behavior of the shear piezoelectric coefficients in the tetragonal and

orthorhombic phases, the coefficient dr
15 increases with temperature as the rhombohedral

↔ orthorhombic phase transition is approached on heating. As in the previous cases,

this can be understood from Fig. 6.15. Under the action of the σ5 ≡ σ13 shear stress,
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the rhombohedral cell deforms and its polarization rotates in such a way that the cell

becomes orthorhombic-like. This electrical effect of the σ5 shear stress is presented by the

dr
15 coefficient, which increases with increasing temperature anticipating the transition

into the orthorhombic phase. Finally, Fig. B.7 gives a summary of the dr∗
33 orientation

dependence at two temperatures. The angular dependence changes only quantitatively,

in agreement with the absence of a low temperature phase with a lower symmetry.

6.2 Monodomain versus polydomain piezoelectric re-

sponse of a relaxor ferroelectric single crystal

along nonpolar directions

As a side effect of the work on investigating the origins of the piezoelectric anisotropy,

analytical tools and way of reasoning from this chapter can be now used to discuss an

another problem of practical significance.

The domain configurations in the ferroelectric materials can strongly influence their

properties3. Therefore, one of the most interesting questions related to applications is

the control of the desirable domain configuration - so called domain engineering. There

are several domain engineering techniques (an example is controlling of the pinning level

of domain walls in ferroelectrics by introducing impurities - ”hardening” and ”soften-

ing” of ferroelectrics). Among these approaches, the one based on the crystallographic

anisotropy of the ferroelectric single crystals is known as engineered domain configura-

tion.

A discussion about the difference between the piezoelectric responses of a perovskite

in the monodomain and in the engineered domain configuration is presented here. The

material suitable for the discussion is a relaxor ferroelectric solid solution PMN-PT

(rhombohedral 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3).

When a crystal is poled along a nonpolar direction the resulting crystal state is neces-

sarily multidomain, as shown schematically in Fig. 6.17 for rhombohedral symmetry.

The multidomain structure created by poling a crystal along a nonpolar direction is

called an engineered domain state [118] and its role on the large piezoelectric response

has been discussed by many authors [155, 119, 123, 169, 99]. Park and Shrout [118]

determined that the optimal angle (i.e., the cut which gives the large piezoelectric re-

sponse and smallest strain hysteresis) in rhombohedral compositions is inclined by 54.7◦

with respect to the polar axis of the rhombohedral crystallographic system, i.e. it lies

3A review of publications concerning this problem for a particular case of potassium niobate is given
in Chapter 3.
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Figure 6.17: (a) Relation between coordinate systems of the crystals with rhombohedral (solid
lines) and cubic (dashed lines) prototypic symmetries. Subscripts r and c denote directions
with respect to the rhombohedral and cubic coordinate systems, respectively. (b) Multidomain
rhombohedral crystal obtained by poling along the [001]c axis. The arrows show possible di-
rections of the polarization vector in a fully poled crystal. The resulting domain structure is
called the engineered domain configuration. (c) Monodomain rhombohedral crystal poled along
the [111]c axis. Ideally, only one domain, whose direction is indicated by the arrow, should be
present.
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along the 〈001〉c axes of the prototypic cubic symmetry. Poling of the crystal along one

of the 〈001〉c axes leads to the special domain configuration illustrated in Fig. 6.17. In

addition to rhombohedral materials, an enhanced piezoelectric response along nonpolar

directions has been observed in complex perovskites with monoclinic [123] symmetry

and, albeit to a lesser extent, in the orthorhombic [119, 111] and tetragonal [155] phases

of simple perovskites such as BaTiO3 and KNbO3.

Wada et al. [152, 150], and Nakamura et al. [110] were the first to point out that

in tetragonal BaTiO3 and orthorhombic KNbO3, respectively, the special multidomain

state is not necessary to obtain an enhanced piezoelectric response along a nonpolar

direction. They obtained comparable enhancement of piezoelectric properties along the

same nonpolar direction in monodomain crystals and in crystals with special “engi-

neered” multidomain configurations. The enhanced piezoelectric effect in BaTiO3 and

KNbO3 along a nonpolar direction is therefore due to crystal lattice properties, i.e.

crystal anisotropy and large shear piezoelectric coefficients [110, 28] but not to a special

domain configuration.

The domain state created by poling a crystal along a nonpolar direction can, in gen-

eral, contribute to the piezoelectric response if an external electric field moves non-180◦

domain walls and if this displacement changes the shape of the crystal. Ideally, this

should not be the case for the most commonly used “engineered” domain configuration,

illustrated for a rhombohedral crystal in Fig. 6.17b. In the pseudocubic symmetry, the

four 〈111〉c domain states are equivalent and application of a field along the cubic [001]c

direction should not move the domain walls [155, 35, 34]. Experimental support for this

conjecture is shown by the small piezoelectric strain hysteresis [110] and small nonlin-

earity [140] for rhombohedral crystals with this special domain structure. It is, however,

possible that mechanisms other than domain walls displacement might contribute to the

piezoelectric response in a crystal with “engineered domain structure”. For example,

besides the presence of domain states that are not equivalent with respect to the driving

field direction, the domain structure of a poled crystal may be accompanied by internal

stresses [122] and electric fields, and poling field along a nonpolar direction may locally

induce different crystal phases in the crystal [99], all of which could affect the piezoelec-

tric properties.

To experimentally verify how much a polydomain or an “engineered domain state” con-

tributes to the piezoelectric response it is necessary to compare piezoelectric properties

along the same crystallographic direction of both poled monodomain and multidoman

crystals, as was done by Nakamura et al. [110] for BaTiO3 and KNbO3. Difficulties

in obtaining monodomain crystals made, until recently, such comparison impossible for

complex perovskites. Recently, Renault et al. [122] investigated multidomain and quasi-
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monodomain 0.91PZN-0.09PT monoclinic crystals and suggested that the longitudinal

piezoelectric coefficient of a crystal with such an “engineered domain state” is more than

two times higher than that of a monodomain crystal measured along the same nonpolar

direction. The authors suggested that the difference is due to internal shear strains

associated with the multidomain state. If confirmed, this result would indicate an im-

portant difference in piezoelectric behavior between simple and complex perovskites.

Elucidating the contribution of the multidomain or “engineered domain state” is thus of

a crucial importance for understanding the origins of the giant piezoelectric properties

in complex relaxor ferroelectrics.

Zhang et al. [169, 170] have recently published a complete set of materials coefficients

for 0.67PMN-0.33PT crystals with a rhombohedral 3m structure. Using different tech-

niques they derived all elastic, dielectric and piezoelectric coefficients of crystals with

multidomain “engineered domain states” and of monodomain crystals with respect to

the rhombohedral crystallographic coordinate system. In this section we use the data of

Zhang et al. [170] to calculate the orientation dependence of the longitudinal and trans-

verse piezoelectric coefficients of monodomain 0.67PMN-0.33PT crystals. The calculated

values are then compared with experimentally-determined coefficients for multidomain

crystals along a given direction. Results of these calculations give direct information

on contribution of the multidomain state to the large piezoelectric effect in 0.67PMN-

0.33PT crystals.

Fig. 6.17a shows the relationship between the coordinate axes of the prototypic cubic
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Figure 6.18: Orientation dependence of the d∗33 piezoelectric coefficient of a 0.67PMN-0.33PT
single domain crystal in the plane determined by [111]c = [001]r and [100]r = [11 − 2]c. Only
a half of the plane is shown.
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and rhombohedral coordinate systems, as defined by Zhang et al [169, 170]. [hlk]c and

[hlk]r denote crystal directions with respect to the cubic and rhombohedral coordinate

systems, respectively. Directions of polarization vectors in a multidomain crystal ob-

tained by poling along the [001]c axis (the “engineered domain state”) are shown in Fig.

6.17b; the polarization vector in a monodomain crystal obtained by poling along the

[111]c axis is shown in Fig. 6.17c. Values of the piezoelectric coefficients d∗ij along an

arbitrary direction in a monodomain crystal can be expressed in terms of the coefficients

dij measured along principal crystallographic axes and Euler angles (φ, θ, ψ) [48]. For

the d∗33 coefficient, one uses Eq. (6.13).

For dij we take the values determined by Zhang et al4 [170]. The expression for d∗31
depends on all three Euler angles and is not shown. Fig. 6.18 shows d∗33(φ = 0◦, θ)

is obtained for θ ≈ 62.9◦ and its value is ≈ 2410pC/N . At φ = 0◦ and θ = 54.73◦

(response measured along [001]c) d
∗
33 ≈ 2310pC/N . In a multidomain crystal with

an engineered domain state, which is obtained by poling a crystal along the [001]c

axis, the equivalent piezoelectric coefficient d∗multi
33 measured along the same direction

is between 2500 (Ref. [170]) and 2800pC/N [169]. These values are about 8% − 20%

higher than those for a monodomain crystal. Thus, the contribution of the special en-

gineered domain state amounts to at most 20% of the d∗multi
33 value in a multidomain

crystal. In other words, at least 80% of the piezoelectric response of a multidomain

crystals poled along the [001]c axis originates from intrinsic lattice effects. A similar

result is obtained for the transverse d∗31 coefficient. Its value in a monodomain crystal,

d∗31(φ = 0◦, θ = 54.73◦, ψ) ≈ −1150pC/N , is only 13% lower than the experimen-

tally detemined value for a multidomain crystal [170], d∗multi
31 = −1300pC/N , measured

along the same direction. An exceptionally large value for the transverse coefficient,

d∗31 = −1922pC/N , is predicted along several directions within the monodomain crys-

tal, e.g., φ = 0◦, θ = 130◦, ψ = 90◦, and φ = 60◦, θ = 50◦, ψ = 90◦, as shown in Fig.

6.19.

It should be pointed out that the values of materials coefficients given by Zhang et al

[169, 170] are partly directly measured and partly calculated from other experimental

data using the constitutive equations. This introduces certain errors in the values of the

coefficients. In addition, since the monodomain state of 0.67PMN-0.33PT is unstable,

all measurements on monodomain crystals were made under the application of a dc bias

field of about 2 kV/cm on the samples, whereas measurements on multidomain crystals

were made on poled crystals under zero bias field. The effect of this bias field has not

been taken into account in the present calculations. Additional source of discrepancy in

values of piezoelectric coefficients may be small variations in crystal composition, quality

4d33 = 190pC/N , d31 = −90pC/N , d22 = 1340pC/N , d15 = 4100pC/N
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and orientation between the different crystals used by Zhang et al. for the coefficients

determination.
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Figure 6.19: Orientation dependence of the d∗31 piezoelectric coefficient of a 0.67PMN-0.33PT
monodomain crystal as a function of angle θ for different values of φ and ψ = 90◦.

6.3 Conclusions

The main results presented in this chapter deal with the effects of temperature-induced

phase transitions on the piezoelectric anisotropy in perovskite materials. The LGD rela-

tions clearly show how dielectric softening of the material along directions perpendicular

to the polarization axis, taking place in the vicinity of a phase transition, leads to large

shear piezoelectric coefficients and, consequently, to enhanced dp∗
33 along nonpolar direc-

tions. It is useful to note that the change of polarization direction, i.e. the dielectric

softening, required for the dp∗
33 to exhibit a maximum along a nonpolar direction, is an

incipient process. One can use analogy with the Curie-Weiss law, where a ferroelectric

material becomes dielectrically soft tens of degrees before the transition from the para-

electric to ferroelectric phase actually occurs.

The presented results can be generalized to include other processes involving a change

in the polarization direction. For example, it has been observed experimentally [52, 140]

that the largest longitudinal piezoelectric response in Pb(Zr,Ti)O3 (PZT) compositions

near the morphotropic phase boundary (MPB) occurs along non-polar directions. It is

well known that composition variation of PZT in a vicinity of the MPB is accompanied

by phase transitions [79, 115]. As shown in the literature [77], the dielectric susceptibil-

ity in a direction perpendicular to the direction of the spontaneous polarization diverges

as a function of composition at the MPB. This divergence of the susceptibility leads to
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large shear piezoelectric coefficients and consequently to the large dp∗
33 along non-polar

axes. Another example can be deduced from the results of first-principle calculations

[10], which indicate that the application of a strong electric field on PZT may lead to

exceptionally large shear piezoelectric coefficients in the vicinity of the field-induced

phase transitions. Clearly, the field driven phase transitions and associated enhance-

ment of the shear coefficients may have the similar effect on the piezoelectric anisotropy

as composition and temperature variation.

In situations when the largest dp∗
33 is observed along a nonpolar axis, two questions

become interesting from the both practical and fundamental point of view.

1. The first is related to the direction along which dp∗
33 is maximal. In the literature

dealing with perovskite crystals, this direction is almost invariably assigned to

〈001〉 and 〈111〉 pseudocubic directions for, respectively, rhombohedral [118] and

tetragonal [155] phases. The results obtained here clearly show that the direc-

tion of maximum dp∗
33 is a strong function of temperature in orthorhombic and

tetragonal phases and that this dependence is related to the proximity of a phase

transition temperature. In the rhombohedral phase this direction deviates by sev-

eral degrees from 〈001〉 pseudocubic axes both in simple and complex perovskites

(present results and Ref. [170]). However, it must be mentioned that, from the

practical point of view, the direction of the optimal piezoelectric response in a

poled multidomain rhombohedral crystal appears to be along 〈001〉 pseudocubic

axes. Besides exhibiting a large dp∗
33, this direction also possesses a stable domain

wall configuration and a small strain-electric field hysteresis [118].

2. The second question is related to the fact that poling of a crystal along a nonpolar

direction results in a multidomain state [118]. The question is then raised whether

the presence of the multidomain state contributes to the piezoelectric response.

Our results based on available experimental data, show that the values of d∗33 and

d∗31 coefficients in [001]c oriented monodomain crystal are lower by < 20% and

13%, respectively, than the corresponding values in multidomain crystals oriented

and poled along this same [001]c axis. This result demonstrates that, the mul-

tidomain configuration contributes relatively little to the piezoelectric response

of 0.67PMN-0.33PT single crystals - it appears that the dominant contribution

to the large piezoelectric response in this composition are intrinsic lattice effects

(such as the large shear piezoelectric coefficients). In this respect, behavior of

0.67PMN-0.33PT crystals may be qualitatively similar to those of BaTiO3 and

KNbO3, even though the size of the coefficients in the relaxor-ferroelectric is an

order of magnitude higher, if the domain structure in classic perovskites is not

very dense, in which case the piezoelectric response is greatly enhanced with this
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dense domain structure, as shown by Wada et al [156]. However, the results from

this chapter and recent studies [170, 110] seem to indicate that, at least in some

complex relaxor-ferroelectrics compositions and in simple perovskites poled along

special directions, giving a mechanically equivalent set of domain walls, the en-

hanced dp∗
33 is dominated by the response of the single domain. However, when

poling is made along a direction which does not lead to a mechanically equivalent

set of domain walls, one may expect strong contribution to the from the domain

wall displacement.

Briefly, it can be said that the existence of a sequence of phase transitions in ferro-

electric perovskites implies the significant change in the direction of the maximal value

of the longitudinal piezoelectric coefficient, no matter whether these phase transitions

are induced by temperature, composition variation or by an electric field. The dielec-

tric softening becomes pronounced as the phase transition temperature, composition or

field are approached. In some examples of tetragonal materials, such as PbTiO3 under

the temperature change, this effect is absent and dp∗
33 remains maximal along the polar

axis over the whole ferroelectric region, because this material does not undergo a phase

transition sequence. This behavior can be changed by application of electric fields and

stresses.

This subject considering the piezoelectric anisotropy and enhancement of the piezoelec-

tric response is extended further in Chapter 8, where the discussion is based on the

treatment of the free energy.

It is shown in this chapter that the direction of the maximum longitudinal piezoelectric response

is a strong function of temperature in orthorhombic and tetragonal ferroelectric phases of bar-

ium titanate, but not in the tetragonal phase of lead titanate, and that the temperature depen-

dence of the anisotropy is related to the proximity of a phase transition temperature. It is also

indicated and shown by calculations that at least in some complex relaxor ferroelectrics compo-

sitions and in simple perovskites poled along special directions giving mechanically equivalent

set of domains, the enhanced longitudinal piezoelectric response is dominated by the response

of the single domain.
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Chapter 7

Enhancement of the piezoelectric

response in perovskites by external

bias fields

Having discussed the influence of intrinsic system parameters to the piezoelectric response and

its anisotropy in the previous chapter, one can now make a step further by including external

bias fields (electric and mechanic) as new parameters in the same problem. Here we discuss

different classic perovskite systems for different configurations of electric and mechanic bias

fields. Some special configurations reveal very interesting results, possibly with broad implica-

tions.

A discussion of influences of temperature and existence of ferroelectric phase transi-

tions in perovskites on their piezoelectric properties has been presented in the previous

chapter. The next step is a discussion about the question of possible influence of bias

fields on piezoelectric properties and the piezoelectric anisotropy in perovskites. What

happens with the electromechanical properties of a perovskite system if one applies a

bias electric field, or a mechanical stress is discussed in detail by using the phenomeno-

logical approach and classic perovskites as examples.

97
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7.1 Electric bias field

To discuss the influence of the bias electric field on electromechanical properties of

perovskites, we start by considering the tetragonal phase of monodomain BaTiO3 single

crystal under an electric bias field applied either along the polar axis [001]c or anti-

parallel to it, i.e. along the [001̄]c direction. Although it is rather counterintuitive, it is

this latter field orientation that leads to the most interesting results.

For the tetragonal phase the Gibbs free energy expanded up to the sixth power of

polarization is given by

∆G = α1P
2
3 + α11P

4
3 + α111P

6
3 − E3P3, (7.1)

where E3 and P3 are the applied electric bias field and the polarization along the [001]c

axis. If the field is applied along the [001̄]c direction, the value of E3 is negative, by

definition [4]. The stability condition, Eq. (5.11), defines the relation between the

applied electric field and the overall polarization in the material,

E3 = 2α1P3 + 4α11P
3
3 + 6α111P

5
3 . (7.2)

This equation can be used for implicit numerical calculation of the field dependence of

polarization P3 within the temperature and field range where the tetragonal phase is

stable. The results for selected temperatures are shown in Fig.7.1 in form of familiar

Figure 7.1: Dependence of polarization on electric field in BaTiO3 at two temperatures. Ver-
tical dashed lines indicate coercive field, while dashed curves indicate nonphysical solutions of
thermodynamic P (E3) relation.

hysteresis loops. The values of temperature dependent coefficients α are taken from lit-

erature [7]. The polarization decreases with decreasing electric bias field until it switches
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direction at coercive field. This thermodynamic coercive field increases with the lower-

ing of the temperature.

The field dependence of the dielectric permittivity can be calculated numerically from

E3(P3) and Eqs. (5.9) and (5.10), and, the longitudinal, transverse, and shear piezo-

electric coefficients in the crystallographic coordinate system are given, respectively,

by

d33 = 2ε33(E3)Q11P3(E3), (7.3)

d31 = 2ε33(E3)Q12P3(E3), (7.4)

and

d15 = ε11(E3)Q44P3(E3). (7.5)

The analytical form of the longitudinal piezoelectric response along a general direction,

d∗33(θ), is given in Eq. (6.1), where the θ is the angle between the weak measuring field

(not the bias field E3) and polar axis [001]c. The calculated orientation dependence of

d∗33(θ) is shown in Fig. 7.2 for different bias fields at T = 285K. This temperature

Figure 7.2: Orientation dependence of the longitudinal piezoelectric coefficient, d∗33(θ), in
BaTiO3 at 285K and for three values of bias field E3. Note that from Eq. (6.1) d∗33(θ) =
d∗33(−θ).

is about 7K higher than the tetragonal↔orthorhombic phase transition temperature

at zero bias field. The d∗33(θ) exhibits its maximum value for all bias fields at approx-

imately θ ≈ 50◦, i.e. close to [111]c axis. This agrees well with experimental data

[118] for E3 = 0. The value of d∗33(θmax) depends strongly on the bias field. For E3 = 0,

d∗33(θmax) = 227pm/V . While positive bias fields decrease d∗33(θmax), calculations predict
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that negative bias fields (anti-parallel to polarization) strongly enhance the piezoelectric

coefficient. A field of −9MV/m (applied along [001̄]c) increases d∗33(θmax) to 497pm/V ,

which represents more than a five fold increases with respect to zero bias value along

the polar axis (d∗33(θ = 0◦) = d33 = 89pm/V ), and more than two fold increase with

respect to the maximum value measured approximately along [111]c axis at E3 = 0

[d∗33(θ = 50◦) = 227pm/V ].

Interesting results are also observed at higher temperatures, closer to the tetragonal-

cubic phase transition temperature that occurs at 393K. At these temperatures the

condition for having a maximum in d∗33(θmax) along a non-polar direction is not ful-

filled1 [28] and the piezoelectric response exhibits maximum value along the polar axis.

The positive bias field decreases the piezoelectric coefficient, similarly to what has been

reported in ferroelectric thin films [23], while the negative field enhances the piezoelec-

tric response, Fig. 7.3. At E3 = −4MV/m and at 365K, the maximum d∗33(θ = 0) is

Figure 7.3: Orientation dependence of the longitudinal piezoelectric coefficient, d∗33(θ), in
BaTiO3 at 365K and for three values of bias field E3. Note that from Eq. (6.1) d∗33(θ) =
d∗33(−θ).

700pm/V , compared to 268pm/V at E3 = 0.

The above results can be understood by analyzing Eqs. (7.3)-(7.5) and the field de-

pendences of susceptibilities and piezoelectric coefficients, shown in Fig. 7.4. Except at

very high temperatures, the transverse coefficient d31 is small and can be ignored in the

discussion for the sake of simplicity. Let us first consider behavior at temperatures close

to the tetragonal-orthorhombic phase transition, depicted in Fig. 7.2. The negative bias

1Discussed in Chapter 6
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Figure 7.4: (a) Relative dielectric permittivities, ε11 and ε33, and (b) piezoelectric coefficients,
d33 and d15, of BaTiO3 as a function of electric bias field E3 at T = 285K and 365K.

fields strongly increase ε11, Fig. 7.4a, and, consequently, lead to high d15 coefficient, see

Fig. 7.4b and Eqs. (7.3)-(7.5). In agreement with Eqs.(7.3) and (7.4), a high d15 leads

to a maximum of d∗33(θ) along a nonpolar direction. Large ε11 implies an easier polar-

ization rotation away from the polar axis, as predicted by the first principle calculations

[44]. In contrast to earlier studies where strong bias fields were always applied along

nonpolar directions, we now show that a weak-field polarization rotation may be facil-

itated by application of strong bias fields anti-parallel to polarization. Note that the

proximity of the tetragonal↔orthorhombic phase transition temperature by itself leads

to a maximum d∗33(θ) close to the [111]c axis - however, we now show that this effect is

enhanced considerably by anti-parallel bias fields.

At higher temperatures, towards tetragonal↔cubic phase transition, the maximum in

d∗33(θ) must appear along the polar axis, Eq. (6.7). At these temperatures ε11 and d15

are relatively small, and the effect of the weak measuring field applied along nonpolar

directions is small. However, our calculations show, Fig. 7.4b, that d∗33(θ = 0) increases

with the negative bias field, the effect being entirely due to the dielectric softening of

the crystal along the polar axis; this softening is reflected in the large ε33 at negative

bias fields, Fig. 7.4a. Thus, a considerable enhancement of piezoelectric coefficients may

be obtained by mechanisms that are not related to the polarization rotation.

Calculations show that the effect of the Curie temperature shift by the applied bias fields



102 Chapter 7

on the value of d∗33(θ) is relatively small (20%) compared to the field induced changes.

It can be speculated that presented results are a general characteristic of perovskite

materials that exhibit multiple phase transitions.

A comment on use of high values of negative bias fields in these calculations should be

made. It is a known fact that experimental coercive fields needed to switch ferroelectric

polarization are much smaller than the thermodynamic coercive fields predicted by the

LGD theory [44]. The lower experimental coercive fields are due to the nucleation of

domains with reversed polarization on crystal imperfections. However, recent exper-

imental results [36] suggest that thin layers may exhibit much higher coercive fields

than corresponding bulk samples, and in materials whose thickness is only a few crystal

layers, the experimental and thermodynamic (intrinsic) coercive fields become equal.

The results from this section, thus, not only indicate fundamental behavior of perfect

perovskite crystals, but may be directly applicable to thin layers.

7.2 Mechanical bias stress

One can now replace the electric bias field from the previous section by a mechanical

bias stress and make a qualitatively similar discussion about the piezoelectric response

and its anisotropy in tetragonal perovskites under uniform bias stresses. The tetragonal

BaTiO3 and PbTiO3 at uniaxial mechanical stresses applied along the polar axis will be

used as examples.

The influence of the hydrostatic stress on dielectric properties of BaTiO3 has been

discussed in the past [10]. Here, on the other hand, the effect of uniaxial stresses

applied along the polar [001]c direction is investigated.

If one considers a 4mm tetragonal ferroelectric crystal with the zero external electric field

and with a stress applied along the polar axis, the elastic Gibbs free energy, expanded

up to the sixth power of polarization, is given by

∆G = α1P
2
3 + α11P

4
3 + α111P

6
3 −

1

2
sD
11X

2
3 −Q11X3P

2
3 , (7.6)

where X3 and P3 are the applied mechanical bias stress and the polarization along the

polar axis, respectively. If the stress is compressive, the value of X3 is negative, by

definition [4]. For barium titanate, the coefficients α and electrostrictive constants Q

are taken from literature [7], while the value of the elastic compliance sD
11 at constant

polarization is taken as 9× 10−12m2/N at all temperatures within the tetragonal phase

[130]. Coefficients for lead titanate are taken from Ref. [62], and sD
11 = 8× 10−12m2/N .

As will be shown later, a sufficiently high compressive stress X3 can switch the polar-

ization P3 by 90◦. The result of switching is so called an a-domain of the tetragonal



Influence of Bias Fields on Piezoelectric Response 103

phase, denoted here as T90◦ and characterized by P2 6= 0 or P1 6= 0 and P3 = 0. In

addition, barium titanate transforms into orthorhombic phase at T = 278K by develop-

ing a polarization component along the [010]c axis, such that P2 = P3 6= 0 and P1 = 0.

This phase is unstable in the temperature region of the tetragonal phase stability. To

investigate the effect of the stress X3 on the polarization switching by 90◦, on the po-

larization rotation in the (100)c plane, and on the stability of the tetragonal phase of

BaTiO3, especially near the orthorhombic-tetragonal phase transition temperature, we

shall consider the following free energy function, assuming P2 6= 0 [50, 49, 31, 32, 60]

∆G = α1(P
2
2 + P 2

3 ) + α11(P
4
2 + P 4

3 ) + α12P
2
2P

2
3 + α111(P

6
2 + P 6

3 ) +

α112(P
4
2P

2
3 + P 2

2P
4
3 )− 1

2
sD
11X

2
3 −Q11X3P

2
3 −−Q12X3P

2
2 . (7.7)

For the purposes of these calculations the following things have been ignored: (i) the

rhombohedral phase (P1 = P2 = P3 6= 0) which in BaTiO3 is stable below 183K, (ii)

the polarization rotation in the (110)c plane, as well as (iii) the switching of P3 by 90◦

from [001]c to [100]c axis. Due to the symmetry of the tetragonal phase the latter is

equivalent to the 90◦ switching from the [001]c to the [010]c axis, which is taken into

account by Eq. (7.7).

7.2.1 Dependence of polarization, dielectric susceptibility and

piezoelectric coefficients on uniaxial stress

The stress dependences of spontaneous polarization, dielectric susceptibility and piezo-

electric coefficients for the tetragonal phase can be calculated from the condition for

the elastic Gibbs free energy minimum, Eq. 5.11. The stress dependence of the spon-

taneous polarization, P3(X3), is shown in Fig. 7.5 for BaTiO3 and PbTiO3 at selected

temperatures. A tensile stress applied along the [001]c increases the tetragonality and

the polarization of each material. For a compressive stress (i.e. X3 < 0), the polar-

ization P3 decreases, and at some critical stress, which is a function of temperature, it

drops to zero. This stress corresponds to the compressive stress necessary to switch the

polarization by 90◦, from [001]c to [100]c/[010]c axis and is equivalent to the coercive

electric field in the polarization-electric field hysteresis [78]. We shall return to this case

in the next section. In this section we will discuss crystals properties only for stresses

where P3 > 0, and P2 = 0.

The dielectric permittivity εij in the tetragonal phase (ε11 = ε22, ε33) can be calcu-

lated from Eqs. (7.7) and (5.2). One obtains for the susceptibility perpendicular to the
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spontaneous polarization

ε11 = [2Λ1 + 2α12P
2
3 (X3) + 2α112P

4
3 (X3)]

−1, (7.8)

where Λ1 = α1 −Q12X3, and for the susceptibility along the polar direction

ε33 = [2Λ3 + 12α11P
2
3 (X3) + 30α111P

4
3 (X3)]

−1, (7.9)

where Λ3 = α1−Q11X3. The shear, transverse and longitudinal piezoelectric coefficients

in the crystallographic coordinate system are given, respectively, as

d33 = 2ε33(X3)Q11P3(X3), (7.10)

d31 = 2ε33(X3)Q12P3(X3), (7.11)

and

d15 = ε22(X3)Q44P3(X3). (7.12)

The orientation dependence of the longitudinal piezoelectric coefficient d∗33(θ) is ex-

pressed in Eq. (6.1), where θ is the angle between the polar axis and the measuring

filed (note: the measuring field is a weak field applied to measure the piezoelectric coef-

ficient, not the bias field X3). The calculated orientation dependence of d∗33(θ) is shown

in Figs. 7.6 and 7.7 for selected uniaxial stresses applied to the tetragonal BaTiO3 and

PbTiO3 along the polar [001]c axis. For BaTiO3, the calculations have been done for

T = 285K (Fig. 7.6a), close to the tetragonal ↔ orthorhombic phase transition tem-

perature (T = 273K) and T = 365K (Fig. 7.6b), closer to the tetragonal↔cubic phase

transition temperature (393K). Calculations for PbTiO3 have been done for T = 700K
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and T = 300K.

Barium titanate shows a qualitative change in the behavior as the temperature changes

from T = 285K to T = 365K. At 285K, the d∗33(θ) in BaTiO3 exhibits its max-

imum value along a direction (θmax ≈ 50◦) that lies close to the [111]c axis. The

value of d∗33(θmax) has a strong dependence on the applied stress. At T = 285K, for

X3 = 0, d∗33(θmax) = 227pm/V . If one applies a tensile bias stress, the calculations

predict that d∗33(θmax) will decrease. On the other hand, the compressive stress will

enhance this piezoelectric coefficient. As shown in Fig. 7.6, at the compressive stress

X3 = −100MPa, d∗33(θmax) = 654pm/V . This is a huge increase with respect to the

zero stress value along the polar axis (d∗33(θ = 0◦) = d33 = 89pm/V ), as well as with

respect to the maximum value d∗33(θmax) = 227pm/V at X3 = 0. It is clearly seen from

Fig. 7.6a that both the enhancement effect by the compressive and reduction effect by

the tensile stress are minimal along the polar axis and are the largest approximately

along the [111]c axis.

Deeper in the tetragonal region of BaTiO3, at T = 365K, one has again an enhance-

ment of the piezoelectric response by the compressive stress and reduction by the tensile

stress. However, the maximum response is now along the [001]c axis, Fig. 7.6b. At these

temperatures the condition for having a maximum in d∗33(θ) along a non-polar direction

is not fulfilled, Eq. (6.7), so the piezoelectric response exhibits the maximum value along

the polar axis. Similarly to what is predicted for lower temperatures, the tensile stress

decreases the piezoelectric coefficient d∗33(θ), while the compressive stress enhances it.

At X3 = −75MPa and at 365K, the maximum d∗33(θ = 0◦) is 469pm/V , compared to

268pm/V at X3 = 0.

Qualitatively similar results can be shown for PbTiO3, Fig. 7.7a and b. Analogous to

the results for BaTiO3 deep in the tetragonal phase, the maximum d∗33(θ) and its max-

imum enhancement by the compressive stress in PbTiO3 are observed along the polar

axis. For example, at T = 700K, the compressive stress of X3 = −100MPa will give

approximately the 150% increase of d∗33(θ) along the [001]c axis, while at T = 300K, the

compressive stress of X3 = −1000MPa increases d∗33(θ = 0◦) by over 160% (Fig. 7.7).

In contrast to BaTiO3, however, this behavior does not qualitatively change as PbTiO3

is cooled towards T = 0K – this crystal stays strongly tetragonal and never exhibits a

maximum of its longitudinal piezoelectric response along directions away from the polar

axis [102].

On the simple phenomenological level, one can understand the above results by consid-

ering the stress dependences of dielectric permittivities εij and piezoelectric coefficients

dim, depicted for the tetragonal BaTiO3 in Fig. 7.8 and for PbTiO3 in Fig. 7.8. is suf-

ficiently small under these conditions and can be neglected in the discussion; however,
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Figure 7.8: (a) Relative dielectric permittivities, ε11 and ε33, and (b) piezoelectric coefficients,
d33 and d15, of BaTiO3 as a function of the bias mechanical stress X3 at 285K and 365K.
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Figure 7.9: (a) Relative dielectric permittivities, ε11 and ε33, and (b) piezoelectric coefficients,
d33 and d15, of PbT iO3 as a function of the bias mechanical stress X3 at T = 300K and 700K.
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this coefficient was taken into account to calculate d∗33(θ) shown in Figs. 7.6 and 7.7.

For the tetragonal BaTiO3, at T = 285K, close to the tetragonal↔orthorhombic phase

transition, the compressive bias stress increases ε11 while ε33 remains small, Fig. 7.8a.

The large ε11 implies an easier polarization rotation in (100)c or (010)c plane, away from

the polar axis [001]c, and leads therefore to a high coefficient (Eq. (6.1) and Fig. 7.8b).

Under conditions of a large dielectric anisotropy (large ε11/ε33 ratio), d15 dominates

Eqs. (6.1) and the maximum of d∗33(θ) appears approximately along the [111]c axis. It

is important to repeat here that the proximity of the tetragonal↔orthorhombic phase

transition temperature leads by itself to the maximum of d∗33(θ) along the [111]c axis as

discussed in Chapter 6. The effect is now considerably enhanced by the application of

the compressive bias stress.

At higher temperatures the dielectric anisotropy ε11/ε33 in BaTiO3 is reduced, Fig. 7.8a.

A smaller ε11 leads to a smaller d15 (see Eq. (6.1) and Fig. 7.8) implying that the term

containing d33 now dominates Eq. (6.1). Therefore, the maximum in d∗33(θ) appears

along the polar axis, Eq. (6.7), Fig. 7.7b. By applying the compressive stress, the max-

imum d∗33(θ = 0◦) increases (Fig. 7.7b). The enhancement of the maximum d∗33(θ = 0◦)

by compressive stress X3 is now primarily due to the dielectric softening of the crystal

along the polar axis. Thus, at this temperature range, the compressive stress-assisted

polarization rotation no longer plays the dominant role in the enhancement of the lon-

gitudinal piezoelectric coefficient.

Figure 7.7a shows that, throughout the tetragonal phase of BaTiO3, the compressive

stress causes softening of the dielectric properties both parallel and perpendicular to

the polar axis. The tensile stress has the opposite effect. The direction along which the

stress-assisted dielectric softening is dominant, and the direction of the maximal piezo-

electric response, are determined by the temperature of the system. One should note

that tensile stress increases the tetragonality (polarization) while the compressive stress

reduces it. However, despite the reduced polarization, the compressive stress enhances

the permittivity and consequently the piezoelectric coefficients. The enhancement of

the material response by the compressive stress is due to the reduced stability of the

polarization that is made more susceptible to a change by external fields. This point

will be discussed further in the next section.

Exactly the same way of reasoning can be applied for the tetragonal PbTiO3. The im-

portant difference is that, since there are no ferroelectric-ferroelectric phase transitions

in this crystal, the maximal piezoelectric response lies always in the direction of the

spontaneous polarization if the bias fields are not applied (see Chapter 8 ). In PbTiO3,

therefore, the stress causes the same effect as in the tetragonal BaTiO3 at higher temper-

atures and can change the direction of the maximal longitudinal piezoelectric response
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if the stress is high enough.

7.2.2 Flattening of the elastic Gibbs free energy profile by com-

pressive stress

Now a profile of the Gibbs free energy for the tetragonal BaTiO3 at T = 285K and

PbTiO3 at T = 300K, as a function of the uniaxial mechanical stress bias, X3, applied

along the polar axis is discussed. It will be shown that the dielectric softening of the

crystal perpendicular to and along the polar axis, and the resulting enhancement of the

piezoelectric response, are a consequence of the stress-assisted flattening of the Gibbs

free energy profile.

In the ferroelectric BaTiO3 and PbTiO3 the spontaneous polarization is related to a

temperature induced atom displacement with respect to their ideal positions in the cu-

bic paraelectric phase [30]. External bias and measuring fields shift atoms and modify

the polarization. The elastic Gibbs free energy thus reflects the free energy of the crystal

as a function of atoms shifts by external fields or temperature variation. A flatter profile

of ∆G(P2, P3) is a manifestation of the higher dielectric permittivity of the system to

atom displacement, and signifies therefore enhanced piezoelectric coefficients. In the

previous section we have shown that the enhancement of the dielectric and piezoelectric

properties of the crystals by external stress is strongly anisotropic. In this section we

demonstrate that the softening of the material response is a direct consequence of the

anisotropic flattening of the Gibbs free energy profile by the external stress.

To support the following discussion, we first show in Fig. 7.10 a three-dimensional plot

of ∆G(P2, P3) for BaTiO3 (T = 285K, X3 = −100MPa) and for PbTiO3 (T = 300K,

X3 = −1000MPa). The thick solid lines represent ∆G(P2) at the equilibrium sponta-

neous polarization P3 for a given compressive stress X3 (P3 = 0.257C/m2 in BaTiO3

and 0.654C/m2 in PbTiO3). The ∆G(P2) profile reflects a polarization rotation away

from the polar axis and in the (100)c plane, caused by a weak measuring field applied

along the [010]c axis. The dashed lines represent ∆G(P3) for P2 = 0 and correspond

to measurements along the polar axis. Black dots mark approximate positions of the

stable and metastable tetragonal, orthorhombic and cubic phases. T0◦ indicates the

tetragonal phase with the polarization along the [001]c axis (P3 6= 0,P2 = 0), and T90◦

the tetragonal phase with the polarization switched by 90◦, i.e. along the [010]c axis

(P3 = 0,P2 6= 0). The cross sections of ∆G(P2, P3) are shown in Figs. 7.11 for BaTiO3

(T = 285K, for X3 = −100, 0, +100MPa) and in Fig. 7.12 for PbTiO3 (T = 300K, for

X3 = −1000, 0, +1000MPa). Note that, while Fig. 7.10 is calculated for compressive
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Figure 7.10: Gibbs free energy (7.7) at compressive stress for (a) BaTiO3 (T = 285K, X3 =
−1000MPa) and (b) for PbT iO3 (T = 300K, X3 = −1000MPa). The thick solid lines
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stress only, Figs. 7.11 and 7.12 include also data for stress free crystals and crystals

under the tensile stress X3.

We first discuss the results for BaTiO3 at T = 285K shown in Fig. 7.11. The

∆G(P2 = 0, P3) given in Fig. 7.11a reflects the susceptibility of the crystal to dilatation

and contraction of the polarization along the polar [001]c axis. Comparison of curves

for the tensile (dashed-dotted line) and compressive stress (solid line) shows that, as

the tetragonality decreases by the compressive stress, the ∆G(P2, P3) profile becomes

somewhat flatter indicating an improved movement of atoms along the [001]c axis. How-

ever, the effect is modest, as it is shown in a small increase in the permittivity and the

piezoelectric coefficient along the polar axis, Fig. 7.8. The effect is strikingly stronger

for ∆G(P2;P3 = 0.257C/m2), Fig. 7.11b, which reflects a change in the ∆G when the

external measuring field has a component perpendicular to the polar axis [001]c. For the

dielectric response this situation corresponds to the polarization rotation in the (100)c

plane, away from the [001]c and toward the [010]c axis; for the piezoelectric response the

situation corresponds to the shear effect. The compressive stress strongly flattens the

∆G(P2;P3 = 0.257C/m2) profile, Fig. 7.11b, leading to a considerable increase in ε11

and d15, Fig. 7.8. The flattening of the ∆G profile along the polar axis (corresponding

to the polarization dilatation and contraction) and within (100)c plane (corresponding

to the polarization rotation) are compared in Fig. 7.11c. The flattening of the ∆G

profile is clearly anisotropic - the effect of the flattening on the polarization rotation

(and on ε11 and d15) is much stronger than on the polarization contraction (and on ε33

and d33). This ultimately leads to a much larger enhancement of d∗33 away from than

along the polar axis, as shown in Fig. 7.6a.

Similar to its effect on the free energy of BaTiO3, the compressive stress has a tendency

to flatten the ∆G(P2, P3) polarization dependence in PbTiO3, Fig. 7.12a and 7.12b, and

thus to enhance its piezoelectric response. However, the anisotropy of the ∆G(P2, P3)

profile flattening in PbTiO3 is at all temperatures qualitatively different from that in

BaTiO3 at 285K. In PbTiO3, the flattening is more pronounced along the polar axis,

Fig. 7.12c, than along the [010]c axis. Consequently, the contraction of the polarization

along the [001]c axis is now at least as much important as the rotation in the (010)c

plane. Using the same line of arguing as above, one sees that the longitudinal piezo-

electric effect d33 and susceptibility ε33 now increase more by the compressive stress,

Fig. 7.9, than d15 and ε11. The shear effect no longer dominates in Eq. (6.1) and the

maximum d∗33 and its maximum enhancement by the compressive stress appear along

the polar axis.

At 365K BaTiO3 behaves similarly to PbTiO3 at low stresses (see Chapter 8 ), and will

not be discussed in detail. The polarization rotation effects in BaTiO3 in this temper-
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ature range are stronger than in highly tetragonal PbTiO3, but still do not dominate

the piezoelectric response. Therefore, the maximum d∗33 and its maximum enhancement

appear along the polar axis, Fig. 7.6b. This is true for the tetragonal phase of BaTiO3

above a certain critical temperature Eq. (6.7).

We next discuss the stability of the polarization along [001]c axis when a compressive

stress is applied on the crystal. A compressive stress leads to a reduction of the po-

larization, which becomes zero at a certain coercive stress, Fig. 7.6. In terms of the

Gibbs energy, the ∆G(P3) develops, for sufficiently high compressive stress, a minimum

at P3 = 0, see Fig. 7.13. As mentioned before, this minimum does not correspond to

-0.2 0.2

-2

1

2

P3[C/m2]

∆G[MJ]

0Pa

-200MPa

-500Pa

-400MPa

Figure 7.13: The Gibbs free energy of the tetragonal BaTiO3 at T = 285K as a function of
the applied compressive stress. At coercive stress the free energy develops a minimum for P3

corresponding to a saddle point in the two-dimensional graph, indicating the 90◦ switching into
the (P2 6= 0; P3 = 0) state. Compare with Figs. 7.5 and 7.10.

the cubic phase, but to the switching by 90◦ into the tetragonal state characterized by

P2 6= 0; P3 = 0, indicated in Fig. 7.10 as T90◦ . That this state is not cubic but tetrag-

onal, can be verified by analyzing ∆G(P2, P3). The analysis shows that the minimum

in ∆G(P3), seen in Fig. 7.13, corresponds to a saddle point in the two dimensional

∆G(P2, P3) plot; the system does not stay in the cubic state but moves into T90◦ state.

In systems with the first order phase transitions, such as BaTiO3 and PbTiO3, the phase

transitions are hysteretic: the system can remain in a metastable state as long as this

state represents a local minimum in ∆G. Thus, switching from the tetragonal T0◦ state

(P2 = 0; P3 6= 0) to the tetragonal T90◦ (P2 6= 0; P3 = 0) state happens not when the

minimum for T90◦ becomes an absolute minimum, but when the minimum for T0◦ trans-

forms into an inflection point. In BaTiO3, at 285K, this happens at X3 < −400MPa,

while the calculations in Section 7.2.1 were made for X3 = −100MPa. For all calcula-

tions, care was taken not to pass over the coercivity limit. Furthermore, an orthorhombic

phase (P2 = P3 6= 0) appears in BaTiO3 at 273K. The stress applied along the [001]c
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can shift the tetragonal system into the T90◦ state, while only temperature can develop

the orthorhombic state. Thus, in Fig. 7.11b, the curve for X3 = −100MPa has three

minima: two for an incipient orthorhombic state (for P2 between −0.2 and −0.1C/m2

and between +0.1 and +0.2C/m2) and one for T0◦ state for P2 = 0. Even though T0◦ is

not an absolute minimum, the system will stay in that state as long as it is a local min-

imum. Only when the temperature is sufficiently decreased and this minimum becomes

an inflection point, the system will transform into the orthorhombic state.

We point out again that results presented refer to thermodynamically ideal systems.

Real crystals will have lower coercive fields and the described effects will be weaker. How-

ever, these calculations demonstrate general trends that can be expected from tetragonal

perovskite crystals under the influence of the uniaxial stress applied along the polar axis.

7.3 Extension of the dielectric tunability range in

ferroelectric materials by electric bias field an-

tiparallel to polarization

The results obtained in Section 7.1 can directly and easily be applied for a discussion

about an another subject - the influence of negative (anti-parallel) electric fields on di-

electric tunability in ferroelectrics.

The tunability of the dielectric permittivity by electric field is, in general, of interest

for number of devices operating in the microwave region including dielectric resonators,

filters, phase shifters and antennas [146, 47, 137, 93]. Ferroelectric materials are pos-

sible candidates for these applications becuase they exhibit high dielectric tunability,

especially in the vicinity of the structural phase transitions. An additional advantage

of ferroelectrics is a possibility of miniaturization and integration with other electronic

components. In general, however, ferroelectrics exhibit elevated dielectric loss. Among

different loss mechanisms [137, 53], important contributions to the dielectric loss in fer-

roelectric materials at microwave frequencies are related to presence of domain walls

and quasi-Debye process [137]. The first mechanism is present only in the polar phase

of ferroelectrics and in multidomain samples, whereas the second mechanism operates

only in the noncentrosymmetric phases. Thus, most materials used for microwave ap-

plications are centrosymmetric; if ferroelectrics are employed, they are preferably used

either as single domain crystals or in the temperature range where they are paraelectric.

It should be mentioned, however, that application of the bias electric field breaks the

symmetry of the material, inducing the quasi-Debye loss mechanism even in centrosym-

metric materials [137].
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In centrosymmetric materials the dielectric tunability is symmetrical with respect to

the bias field direction [137]. Thus, only one field direction is usable. This is not the

case for noncentrosymmetric materials, where the field dependence of the permittivity

is not the same for positive and negative fields. This property of noncentrosymmetric

materials, together with our results from Section 7.1, suggests an interesting possibility

to broaden the dielectric tunability range and increase the tunability coefficient by ap-

plying both positive and negative bias fields, while keeping the absolute value of the bias

field the same. Here, we try applying this idea to the tetragonal phases of BaTiO3 and

Pb(Zr,Ti)O3 ferroelectric perovskites. By using the Landau-Ginzburg-Devonshire phe-

nomenological thermodynamic theory, we show that the theoretical tunability in these

materials and other ferroelectrics may, in principle, be considerably increased by apply-

ing an electric bias field antiparallel to polarization.

The thermodynamic dielectric tunability of the mentioned ferroelectrics is investigated

here by studying their Gibbs free energy dependence on the electric bias field. The

Gibbs free energy of tetragonal materials having polarization as the order parameter is

shown in Eq. (7.1). The dielectric permittivity ε33 along the polar axis is then given by

Eq. (5.10), where P3 is a function of the bias field E3.

The dielectric tunability n is defined as the ratio between the dielectric permittivity of

the material at zero electric bias field and its permittivity under a given electric field.

In the present case the tunability coefficient is

n33 =
ε33(0)

ε33(E3)
, (7.13)

and can be calculated form Eq. (5.10). For BaTiO3 the coefficients of the Gibbs free

energy expansion can be found in Ref. [7] and for Pb(Zr1−xTix)O3 from Ref. [63].

The results of the electric bias field dependence of the thermodynamic tunability in

tetragonal ferroelectric BaTiO3 at two temperatures (T = 365K and T = 300K) and

for two Pb(Zr1−xTix)O3 compositions (x = 0.6 and 0.9) are shown in Figs 7.14 and

7.15, respectively. The thermodynamic tunability of BaTiO3 at a temperature in the

paraelectric phase is shown in Fig. 7.16 for comparison. In the centrosymmetric case

(Fig. 7.16) the tunability is larger than n33 = 1 (the permittivity in general decreases

with the field) for both negative and positive fields. Moreover, the tunability is sym-

metrical with respect to the field direction. This is the general case for centrosymmetric

materials; hence, only one field direction is useful. In contrast, in the ferroelectric phase,

Figs. 7.14 and 7.15, a field applied antiparallel to the polarization leads to an increase

in the permittivity with increasing negative field, leading to n33 < 1. Moreover, the

slope of the n33 is considerably steeper for negative fields and as the thermodynamic

coercive field is approached. The reasons for such behavior are discussed in Section 7.1.
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Figure 7.14: Calculated electric bias field dependence of (a) the dielectric permittivity along
the polarization axis and (b) the dielectric tunability along same direction in tetragonal mon-
odomain single crystal of BaTiO3 at T = 365K (diamonds) and T = 300K (circles). Note:
The tetragonal-orthorhombic phase transition temperature is T = 278K upon cooling.

(a) (b)

Figure 7.15: Calculated electric bias field dependence of (a) the dielectric permittivity along
the polarization axis and (b) the electric tunability along the same direction in tetragonal
Pb(Zr1−xTix)O3 monodomain single crystal for two different compositions, x = 0.6 (PZT
60/40; closed circles) and x = 0.9 (PZT 90/10; diamonds) at T = 298K. Note: the tetragonal-
rhombohedral morphotropic phase boundary is around x = 0.48 at room temperature. Open
circles in (b) show the dielectric tunability coefficient for an epitaxial {100}-oriented tetragonal
Pb(Zr,Ti)O3 thin film. (Experimental data are taken from Fig. 10(a) of Ref. [164]. The exact
composition of the film in this reference is not specified and its permittivity is about twice as
high as that calculated for the PZT 60/40 crystal.)
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Figure 7.16: Calculated electric bias field dependence of the dielectric permittivity (circles) and
the dielectric tunability (diamonds) along the polarization axis in cubic, paraelectric phase of
BaTiO3 at T = 440K. Note: The paraelectric-ferroelectric phase transition temperature is
T = 393K upon cooling.

Note that the enhancement of the tunability along the polar axis by antiparallel fields

is stronger at temperatures and compositions that lie further away from the structural

phase transitions where polarization changes direction. Thus, in BaTiO3, Fig. 7.14,

the tunability changes faster at 365K, deeper in the tetragonal phase, than at 300K,

which is only 22K above the tetragonal↔orthorhombic phase transition temperature.

Similarly, the tunability along the polar axis is stronger in Pb(Zr0.1Ti0.9)O3, which lies

further away from the morphotropic phase boundary, than in Pb(Zr0.4Ti0.6)O3. Inter-

estingly, our calculations for BaTiO3 show that this trend is opposite for tunability

perpendicular to the polar direction, n11 = ε11(0)/ε11(E1). In that case the tunability

becomes higher and changes faster in a vicinity of the tetragonal↔orthorhombic phase

transition temperature where polarization changes its direction.

7.4 Conclusions

There are several important results obtained in this chapter.

Firstly, it is shown that, in the framework of the Landau-Ginzburg-Devonshire (LGD)

theory, an application of a strong negative electric bias field (i.e. field applied along

[001̄]c direction or anti-parallel to the spontaneous polarization) in the tetragonal bar-

ium titanate, leads, at low temperatures of this phase, to a large enhancement of the
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piezoelectric properties along nonpolar [111]c axis. It is also shown that the negative

bias field considerably enhances the piezoelectric response along the polar [001]c direc-

tion at high temperatures of this phase.

Furthermore, it is shown that the application of uniaxial compresive bias stresses along

the polar axis of BaTiO3 and PbTiO3 can enhance the longitudinal piezoelectric response

in these materials, and that this enhancement can be interpreted in terms of the profile

flattening of the Gibbs free energy. This is true for the enhancement along the [111]c

axis (in BaTiO3 at 285K) as well as along the [001]c axis in PbTiO3 (throughout the

tetragonal phase) and in BaTiO3, at sufficiently high temperatures within the tetragonal

phase. The Gibbs free energy profile flattening by the compressive stress can be directly

related either to the facilitated polarization rotation in (100)c plane (BaTiO3) or to the

polarization contraction along the polar axis (BaTiO3, PbTiO3).

Finally, it is demonstrated that the thermodynamic tunability in ferroelectric phase

of perovskites behaves differently and advantageously comparing to their paraelectric

phase: since the ferroelectric phase is not centrosymmetric, the tunability for the posi-

tive and negative fields is not the same and the tunability region is thus broader for the

same absolute value of the field. In addition, the dielectric tunability changes quicker

in the region of negative than for positive bias fields.

The results in this chapter may have broad implications:

- Calculations of the influence of the bias fields on the piezoelectric response and

its anisotropy, followed by an attempt of tracing the thermodynamic origins of

these effects by studying the flattening of the Gibbs free energy profile can be

extended to give a general explanation of the improved piezoelectric response in

perovskite ferroelectrics. This explanation might include the cases of complex solid

solutions in the vicinity of the morphotropic phase boundary, and the tempera-

ture driven enhancement of piezoelectric properties near ferroelectric–ferroelectric

phase transitions.

- In real (i.e., non-ideal) materials, the range in which the enhancement of the

piezoelectric response could be obtained, and, consequently, the tunability range,

at negative fields would be narrower then the thermodynamic range calculated

here. The reason is that polarization switching occurs at fields that are much

lower than the thermodynamic coercive fields. This is a general constraint for

perovskite materials, and a problem from applications point of virew. However,

there are some indications that this may not be the case for very thin ferroelectric

layers [36]; experiments on thin films could therefore directly confirm the results of

the thermodynamic calculations. On the other hand, systems with dense domain

structures could have charged domain walls creating strong enough electric fields
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antiparallel to the spontaneous polarization within domains, and/or internal com-

pressive stresses. This could be a possible origin of enhanced piezoelectric response

in such systems [156]. In agreement with our phenomenological predictions, as an

interesting note, one can speculate that composite materials may offer possibilities

to design noncentrosymmetric materials with low losses [133], in which tunabil-

ity region would be broadened by the asymmetry, even if none of the constituent

phases is ferroelectric.

The last step towards a more general thermodynamic description is given in the next

chapter. It relates the free energy instability and enhancements of the electromechanical

properties induced by different variables (electric and mechanic bias fields, temperature,

composition) and is applied to three different perovskites.

Different classic perovskites served as examples in a phenomenological study of the influence

of different external field bias on their dielectric and piezoelectric properties. Some very in-

teresting results were obtained - if an electric field is applied in the direction opposite to the

spontaneous polarization direction, or an uniaxial compressive stress is applied along the polar

axis, energetically metastable system states are obtained in which all dielectric permittivities

and piezoelectric coefficients are increased. One of the most important results is that both

the polarization rotation (piezoelectric enhancement along non-polar axes) and polarization

contraction (piezoelectric enhancement along the polar axis) effects can be described by the

common mechanism i.e. this metastability of the Gibbs free energy of the system.
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Piezoelectric response and free

energy instability in classic

perovskites

The question of the origin of the piezoelectric properties enhancement in perovskite ferro-

electrics is approached by analyzing the Gibbs free energy of tetragonal BaTiO3, PbTiO3 and

Pb(Zr,Ti)O3 in the framework of the Landau-Ginzburg-Devonshire theory. The generality of

the approach is demonstrated by examining the free energy flattening and piezoelectric enhance-

ment as a function of composition, temperature, electric field and mechanical stress.

The origins of the piezoelectric anisotropy and piezoelectric response enhancement were

discussed in previous chapters of this work. It was demonstrated that the enhancement

is dependent on proximity of the phase transition temperatures (Chapter 6 ), crystal

instability induced by electric fields applied antiparallel to polarization, or compressive

stresses applied along the polar axis (Chapter 7 ).

There are other studies of the enhancement origins - it has been demonstrated that

these origins can be traced to polarization rotation under external electric field [44], the

density of domain walls in crystals with an engineered domain structure [156, 3], hi-

erarchical domain structure [80], and composition/morphotropic phase boundary effects

[9, 52, 77, 78].

Considering the importance of this effect from both the fundamental and technological

point of view, it is clearly of interest to see if there exists a a common underlying process
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for piezoelectric enhancement in ferroelectric perovskites.

This problem will be addressed in the framework of the Landau-Ginzburg-Devonshire

theory.

8.1 Calculations and discussion

As in previous two chapters, the Gibbs free energy and the longitudinal piezoelectric

coefficient of the tetragonal phase of classic perovskites will be investigated and dis-

cussed - this time the suitable examples will be BaTiO3 and (1-x)PbTiO3-xPbZrO3

(PZT) monodomain single crystals. In both materials the ferroelectric tetragonal phase

exhibits 4mm and the paraelectric cubic phase m3m symmetry; the polar axis is ori-

ented along the [001] direction of the cubic system. In the framework of the LGD

theory [31, 32] the Gibbs free energy ∆G can be written as the series expansion of the

polarization P = (P1, P2, P3). While all calculations in this article are concerned with

the tetragonal phase (P1 = P2 = 0;P3 6= 0), the proximity of the orthorhombic phase

(P1 = 0;P2 = P3 6= 0) is taken into account in BaTiO3 near the tetragonal-orthorhombic

phase transition temperature. Similarly, as shown in Chapter 7, variation of the ∆G

with P2 for equilibrium P3 gives susceptibility of a tetragonal ferroelectric to polariza-

tion rotation and tendency towards a monoclinic distortion. In a more general case all

three components of polarization may be included in the analysis [27], however, such

generalization is beyond the scope of this discussion.

If external electric and elastic fields are applied along the P3, the Gibbs free energy can

be written in the coordinate system of the cubic phase as

∆G = α1(P
2
2 + P 2

3 ) + α11(P
4
2 + P 4

3 ) + α12P
2
2P

2
3 + α111(P

6
2 + P 6

3 )

+α112(P
4
2P

2
3 + P 4

3P
2
2 )− sD

11σ3/2−Q11σ3P
2
3 −Q12σ3P

2
2 − E3P3, (8.1)

where sD
11 is the elastic compliance at constant polarization. The values of the α and

Qij coefficients are taken from Refs. [61, 62, 8]. At all examined temperatures sD
11 is

taken as 9 · 10−12m2/N for BaTiO3 [130] and as 6.785 · 10−12m2/N for Pb(Zr,Ti)O3 [5].

The negative σ3 and E3 have the meaning of compressive stress and electric field applied

antiparallel to polarization [4].

The dielectric susceptibilities are calculated by using Eq. (5.2) and the longitudinal, the

transverse and the shear piezoelectric coefficients by using Eqs. (6.2)-(6.4). One should

note that P3 and εij are functions of σ3, E3 and T in those relations. The origin of

the temperature dependence is in Curie-Weiss behavior of 1/α1; in BaTiO3 higher order

dielectric stiffnesses are also temperature dependent [76, 8].

It is easily seen that the flattening of a simple polynomial such as ∆G in Eq. (8.1)
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implies flattening and decrease of its first and second derivatives. Since d ∼ ε and

εij = (∂2∆G/∂Pi∂Pj)
−1, the flattening of the free energy profile implies increase of the

system’s dielectric susceptibility, and thus the increase of its piezoelectric response.

To calculate effects away from the crystallographic axes, the orientation dependence of

the longitudinal piezoelectric coefficient, d∗33, of a tetragonal crystal may be expressed as

in Eq. (6.1). As it can be seen there, d∗33(θ) is a function of both the dielectric permit-

tivity along the polar axis, ε33, and the one perpendicular to it, ε11. This dependence is

the basis for d∗33(θ) enhancement driven by either polarization rotation (∼ ε11) [161, 9]

or the polarization contraction (∼ ε33), as discussed in previous chapters.

To illustrate the relation between the Gibbs free energy flattening and the enhancement

of the d∗33, ∆G and d∗33 of PZT are analyzed as a function of the Zr/Ti ratio, compres-

sive stress and electric field applied along the polar axis. In BaTiO3, ∆G and d∗33 are

analyzed as functions of temperature and electric field applied along the polar axis.

One can first consider effects of Zr/Ti ratio on the Gibbs free energy and piezoelectric

response in PZT at 298K. Two tetragonal compositions, one with Zr/Ti=0/100 (i.e.,

pure PbTiO3) and the other with Zr/Ti=40/60 are considered. These two compositions

are chosen to illustrate effects of the proximity of the morphotropic phase boundary

(MPB) on the Gibbs free energy profile flattening and the piezoelectric enhancement.

In PZT, the MPB appears at Zr/Ti=52/48 and PZT 40/60 is sufficiently far from it

[113] that complications arising from possible presence of mixed phases or a monoclinic

phase can be avoided. Two different free energy profiles were calculated - one along

the polar direction with P2 = 0;P3 6= 0 and the other with P2 6= 0;P3 = P3(σ3, E3),

were P3 is fixed at its equilibrium value at 298 K. The former case (Fig. 8.1a) involves
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Figure 8.1: Effects of composition in PZT 0/100 (PbTiO3) and PZT 40/60 at 298K on
free energy flattening, (a) ∆G(P2 = 0, P3) profile related to polarization contraction, (b)
∆G(P2, P3 = 0.52c/m2) profile indicating polarization rotation.

elongation (E3 > 0) or contraction (E3 < 0) of the polarization along the polar axis,
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while the latter case (Fig. 8.1b) corresponds to the polarization rotation away from

the polar direction, as described in detail in Ref. [27]. As expected [141], both profiles

are flatter in PZT 40/60 lying closer to the MPB. As a consequence, ε33 and ε33 are

larger in PZT 40/60 than in PZT 0/100 leading to enhancement of the corresponding

piezoelectric coefficients, Fig. 8.2. This enhancement of the properties in compositions

50
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10050

0/100

 PZT

40/60

 PZT

d*33(θ)(pC/N)

[001]

[111]

0°
θ (°)

54.7°

Figure 8.2: Effects of composition in PZT 0/100 (PbTiO3) and PZT 40/60 at 298K on the
longitudinal piezoelectric response in a general direction, d∗33(θ).

close to the MPB is a well-known empirical and theoretical result [61], interpreted here

in terms of the Gibbs free energy flattening. Significantly, the analysis shows that the

flattening of the ∆G profile away from the polar axis and along the polar axis are com-

parable. In fact, the d∗33(θ) surface is elongated along the polar axis, Fig. 8.2, indicating

that the maximum enhancement is along the polar axis (θ = 0◦). This is qualitatively

different from the behavior of the rhombohedral phases of PZT [34, 9], BaTiO3 [44], and

relaxor ferroelectrics [118], where piezoelectric enhancement is strongest along nonpolar

directions.

We next show that under external electric field and stress applied against polarization,

the isotropy of the free energy profile is broken, leading to a large enhancement of the

piezoelectricity by polarization rotation.

The effect of the electric field bias E3 and the mechanical stress σ3 on the ∆G and d∗33(θ)

in PZT 40/60 composition is shown in Figs. 8.3 - 8.6. Figures 8.3 and 8.4 compare the

∆G and d∗33(θ) for the crystal at zero bias field and for E3 = −35, −43 and −44MV/m

applied antiparellel to the polarization. Likewise, Figs. 8.5 and 8.6 show the ∆G and

d∗33(θ) for uncompressed crystal and for the crystal subjected to compressive stress of

σ3 = −350 and −500MPa applied along the polar direction. In the limits of the phe-

nomenological theory used, neither the electric field nor the stress are high enough to

cause polarization switching by 180◦ or 90◦; thus, crystals remain in the tetragonal sin-
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Figure 8.3: Effects of electric bias field (E3 = 0, −35, −43 and −44MV/m) on free energy
profile and d∗33(θ) in PZT 40/60 at 298 K: a) ∆G(P2 = 0, P3) profile indicating polarization
contraction; (b) ∆G(P2, P3 = cost(E3)) profile indicating polarization rotation. Only ∆G(P2 =
0, P3 ≥ 0) is of interest and is shown.
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Figure 8.4: Effects of electric bias field (E3 = 0, −35, −43 and −44MV/m) on d∗33(θ) in PZT
40/60 at 298 K. Coercive electric field for this composition is just above −44MV/m. In highly
unstable regions even small changes in the flatness of the ∆G (compare ∆G and d∗33(θ) for
E3 = −43 and −44MV/m) can have a huge impact on d∗33(θ).
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gle domain state, as stated in Chapter 7.

At low electric fields and compressive pressures the dominant enhancement of the d∗33(θ)

is along the polar direction, i.e. it is a consequence of colinear polarization contraction.

This behavior changes dramatically at high antiparellel electric fields and compressive

pressures approaching thermodynamic coercive fields, where instability of the ∆G and

d∗33(θ) enhancement become strongly anisotropic and polarization rotation effects dom-

inate the piezoelectric response. At high fields (compare ∆G and d∗33(θ) for E3 = −43

and −44MV/m in Fig. 8.3 and 8.4) even a small increase in the flatness of the ∆G
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Figure 8.5: Effects of compressive stress (σ3 = 0, −350, −500MPa) on free energy profile
in PZT 40/60 at 298 K: a) ∆G(P2 = 0, P3) profile indicating polarization contraction; (b)
∆G(P2, P3 = cost(E3)) profile indicating polarization rotation. Only ∆G(P2 = 0, P3 ≥ 0) is of
interest and is shown.

profile leads to a large enhancement of d∗33(θ) along off-polar directions.

Remarkably, our calculations show that PbTiO3 exhibits giant enhancement of the d∗33(θ)
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Figure 8.6: Effects of compressive stress (σ3 = 0, −350, −500MPa) on d∗33(θ) in PZT 40/60
at 298K.

along nonpolar directions once compressive stress is sufficiently large, Figs. 8.7 and 8.8.
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At 300K and σ3− 1.79GPa, just below the thermodynamic coercive pressure, the value

of the noncolinear d∗33(θ) in PbTiO3 is on the order of 103 − 104pC/N . This result is

qualitatively similar to that obtained by Wu and Cohen using ab initio calculations

for PbTiO3 under hydrostatic pressure [161]. We emphasize, however, that in the two

cases the origin of the free energy instability is different. In the report by Wu and

Cohen, the instability is related to the presence of the morphotropic phase boundary

that is induced by the hydrostatic pressure. At this boundary the polarization changes

direction from pseudocubic [001] axis in the tetragonal phase to pseudocubic [111] axis

in the rhombohedral phase. In our work, the instability is related to the multiple orien-
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Figure 8.7: Effect of compressive stress (σ3 = 0 and −1.79GPa) at T=300 K on anisotropic
free energy flattening in PbTiO3: (a) ∆G(P2 = 0, P3) profile indicating polarization contrac-
tion; (b) ∆G(P2, P3 = const(σ3)) profile indicating polarization rotation.

tations of the ferroelectric polarization within the same crystal phase (i.e., switching by

90◦ in tetragonal materials from [001] to [010] axis). Once the thermodynamic coercive

compressive pressure is approached but not passed, the crystal is destabilized, the free

energy becomes shallow and the piezoelectricity is greatly enhanced.

Interestingly, the polarization rotation effects under antiparallel electric fields in PbTiO3

are small. The reasons for this difference between effects of compressive pressure and

antiparallel field on piezoelectric anisotropy will be discussed in one of our next publi-

cations.

Recent experimental studies of effects of hydrostatic pressure on 52/48 PZT MPB com-

position [126, 127] and studies of effects of tensile stress perpendicular to polarization

in thin films of PbTiO3, [17] indicate that polarization rotation indeed occurs in these

material and that the symmetry becomes lower in both compositions under the effect

of stress. Monoclinic or triclinic phases cannot be predicted in the framework of the 6th

order LGD theory [145]; however, as indicated above and explained in more details in

Ref. [27], our approach does indicate susceptibility of materials to monoclinic distortion,

correctly predicting the relationship between the instability of the ∆G, susceptibility of

the material to polarization rotation and ensuing enhancement of the d∗33(θ).
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Figure 8.8: Effect of compressive stress (σ3 = 0 and −1.79GPa) at T = 300K on piezoelectric
enhancement in PbTiO3. At σ3 = 0 values for d∗33(θ) (dashed line) is multiplied by 10. For σ3

close to the coercive stress (approx. −1.9GPa) values of d∗33(θ) are strongly sensitive to input
parameters and vary between 103 and 104 pC/N .
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Figure 8.9: Effects of electric bias field (E3 = 0, −10MV/m) at T = 298K on anisotropic free
energy flattening in BaTiO3: (a) ∆G(P2 = 0, P3) profile indicating polarization contraction;
(b) ∆G(P2, P3 = cost(σ3)) profile indicating polarization rotation.
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We next show that the proposed approach is also applicable to processes involving tem-

perature driven enhancement of the piezoelectric response. As an example, effects of

electric field and temperature on the ∆G and d∗33(θ) in the tetragonal phase of BaTiO3,

in a vicinity of 298K, are analyzed. Figure 8.9 illustrates the flattening of the ∆G profile

by application of a bias electric field antiparallel to polarization at 298K. The behavior
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Figure 8.10: Effects of electric bias field (E3 = 0, −10MV/m) at T= 298 K on piezoelectric
enhancement in BaTiO3.

is similar to that predicted in BaTiO3 at high compressive pressures (Chapter 7 ) and

in PZT 40/60 and PbTiO3 shown above: the flattening of the ∆G profile is anisotropic,

being stronger away from the polar axis, Fig. 8.9b, than along the polar axis, Fig.

8.9a. This leads to the maximum d∗33(θ) approximately along the [111] axis, Fig. 8.10,

while its enhancement along the polar axis [001] is comparatively smaller. Finally, it
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Figure 8.11: Effects of proximity of tetragonal-orthorhombic phase transition temperature
(T=283 K) at zero field on anisotropic free energy flattening in BaTiO3.

is interesting that the free energy anisotropy is strongly influenced by the proximity of

the tetragonal-orthorhombic phase transition temperature that occurs at 283K. At this
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phase transition temperature the polarization vector changes its direction from [001]

(P2 = 0, P3 6= 0) to [011] (P2 = P3 6= 0) leading to the dielectric softening of the crystal

in the plane perpendicular to the polar axis and to an increase in ε11 (Chapter 6 ). The

dominant temperature effect is clearly seen in Figs. 8.11 and 8.12 which show that the

anisotropic flattening of the ∆G profile and enhancement of the piezoelectric response

at zero field become stronger as the tetragonal-orthorhombic phase transition tempera-

ture is approached on cooling. The antiparallel electric field in Figs. 8.9 and 8.10 has

therefore an additional destabilizing effect on the crystal and enhances the temperature

driven anisotropic flattening of the ∆G profile and enhancement of the d∗33(θ) along a

nonpolar axis.
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Figure 8.12: Effects of proximity of tetragonal-orthorhombic phase transition temperature
(T=283 K) at zero field on piezoelectric enhancement in BaTiO3.

8.2 Conclusions

Remarkably large piezoelectric responses along nonpolar crystallographic directions were

reported in complex ferroelectrics [89, 118, 34] and qualitatively the same effects, but

smaller in magnitude, were observed in simple perovskites [155, 110] - the idea that

this behavior is a common characteristic of perovskite ferroelectrics has suggested itself

naturally.

Numerous different studies by different groups revealed different mechanisms of the ori-

gins of this piezoelectric enhancement along non-polar axes [9, 52, 77, 78, 44, 156, 3, 80].

Here, we tried to find an universal thermodynamic background for these mechanisms.

Several different classic perovskite systems under different system conditions (variation

of different thermodynamic parameters) were used for this discussion. It is shown that
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the flattening of the Gibbs free energy profile of each of these systems, regardless of

whether it is caused by temperature or composition variation, or by applying compres-

sive pressure or antiparellel electric field bias, leads to enhancements of the dielectric

susceptibilities and of the piezoelectric response of examined materials.

The relationship between the enhancement of the piezoelectric response and a free en-

ergy profile flattening was introduced by Fu and Cohen using a first principles approach

[44]. Recently, Wu and Cohen [161] made a link between the enthalpy difference between

two pressure-induced crystal phases and enhanced piezoelectric response in PbTiO3. In

both of these cases the large piezoelectric response is related to field (electrical or me-

chanical) induced phase transitions and polarization rotation. In contrast to the results

of Cohen and co-workers, we show that phase transitions related free energy instabilities

are not the only way to achieve large enhancement of the piezoelectric response. Huge

enhancement of the piezoelectricity can be expected in the vicinity of and just below the

thermodynamic coercive fields within the same ferroelectric phase (as in here presented

case of PbTiO3).

Furthermore, it is also shown here that the anisotropy of the free energy profile de-

termines whether the enhancement of piezoelectricity will take place by polarization

rotation or polarization contraction, and that, in contrast to rhombohedral perosvkites,

in the case of tetragonal Pb(Zr,Ti)O3 materials lying in the vicinity of the morphotropic

phase boundary, the composition related flattening of the free energy profile and piezo-

electric enhancement are isotropic i.e. effects of polarization rotation and polarization

contraction are comparable. This isotropy can be broken by external stresses and electric

fields leading to large, polarization rotation related, enhancement of the piezoelectric

effect.

The universality of the approach is further indicated by the fact that the anisotropic

flattening of the free energy profile can explain both the enhancement of the piezoelec-

tric response by polarization rotation away from the polar axis, and by polarization

contraction along the polar axis. The huge enhancement of the piezoelectric response

by compressive stress predicted in PbTiO3 along off-polar directions suggests that com-

positional or structural disorder, such as present in complex relaxor-ferroelectrics, is not

essential for the giant piezoelectric effect. Our results and those of ab initio calcula-

tions [161] hint that such disorder is probably responsible for the free energy instability,

which, as shown here, leads to a large piezoelectric response.
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It is shown that the flattening of the Gibbs free energy profile of each of examined perovskite

systems here, regardless of whether it is caused by temperature or composition variation, or by

applying compressive pressure or antiparellel electric field bias, leads to enhancements of their

dielectric susceptibilities and piezoelectric response, and that the anisotropy of the free energy

flattening is the origin of the anisotropic enhancement of the piezoelectric response, which

can occur either by polarization rotation or by polarization contraction. Additionally, giant

enhancement of the longitudinal piezoelectric response is predicted in PbTiO3 under uniaxial

compression.
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Conclusions and perspectives

The following questions were discussed during this thesis work:

How to measure the temperature dependence of single domain electrome-

chanical properties of potassium niobate single crystal? This task is very dif-

ficult, especially for the high temperature tetragonal phase, where the electric conduc-

tivity of the material is elevated, and the low temperature rhombohedral phase, where

obtaining the single domain state is extremely energetically unfavorable. There are

other practical problems - KN samples are mechanically fragile1; it is a nontrivial task

to obtain and preserve the ferroelectrically single domain state of samples; the material

surface layer can have a stoichiometry other than the bulk and this surface layer can have

the dominant contribution in experimental results; during phase transitions samples can

break because of large strains induced by instability at the transition temperature and

the probability of the rupture is related to sample size; the material is a poor thermal

conductor and changing the temperature of samples, while doing measurements of tem-

perature dependence of its properties, can induce temperature gradients in them that

can destroy the single domain state; the material shows elevated dielectric loss even at

room temperature if the frequency of the electric measuring signal is low enough; the

relatively small dielectric permittivity of the material makes measurements for some

aspect ratios difficult (for example, measurements of the piezoelectric coefficient d33),

especially if the measurements are not performed at room temperature (stray capaci-

tances of temperature dependence resonance measurements setups are comparable to

the capacities of the samples); and, it is difficult to obtain hysteresis loops that can

clearly give values of the spontaneous polarization and coercive fields.

Up to our best knowledge, there are few experimental results obtained on the KN sam-

1There is a crystal growth company that warns that shaking and stressing of their KN crystals can
induce domains in them (http://www.u-oplaz.com/crystals/crystals05.htm).
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ples in the tetragonal phase, none of those are single domain values, and there are no

results obtained from the rhombohedral phase, apart the measurements of the phase

transition temperature and multidomain state dielectric permittivity. The measure-

ments performed in this thesis work were thus confined to the orthorhombic ferroelectric,

room temperature, phase.

How to obtain the LGD coefficients for potassium niobate? When describing

electromechanical properties of barium titanate in the framework of the phenomenologi-

cal Landau-Ginzburg-Devonshire theory, it has been necessary to extend the description

proposed by Devonshire in 1949 and 1951 to a more complex one, having more higher

order terms (including the order parameters coupling) in the Taylor series expansion of

the Gibbs free energy, if one wanted to describe this perovskite system behavior with

high accuracy. At present, the phenomenological description of barium titanate elec-

tromechanical properties generally contains in its series expansion all terms up to the

6th power of order parameters, and there is even a recently published work by Li et al.

in which the authors used a series expansion up to the 8th power of the polarization as

order parameter.

On the other hand, for all perovskites for which accurate phenomenological descriptions

already exist, there are reported single domain measurements of electromechanical prop-

erties in the ferroelectric phase that occurs immediately below the Curie temperature.

Using such experimental results, it is possible to do a fit to the phenomenological ex-

pressions, because they are simple enough, and it is possible to analytically compare the

neighboring phases energies at the phase transition temperatures, and obtain additional

phenomenological coefficients. Fitting procedures in the low temperature phases are

generally used to obtain only the higher order coefficients.

If one wants to obtain qualitatively the same phenomenological description of elec-

tromechanical properties behavior for potassium niobate as it has been done for barium

titanate, one can see the following obstacles. For potassium niobate single crystal there

is not enough of experimental results in the ferroelectric phase that occurs immediately

below the Curie temperature (the tetragonal phase) to perform fitting procedures that

will easily give lower order coefficients.

The idea in this thesis work was to combine the experimental results that could be

found in the literature with the results obtained in our experiments, and to perform a

fitting using only the measured single domain properties in the orthorhombic ferroelec-

tric phase of KNbO3. It was probable that the coefficients obtained would be relatively

inaccurate, because the fitting was done in a lower temperature phase of potassium nio-

bate and because the experimental data used were obtained on samples from different
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sources. Gathering data from different authors has already been done before for this

material, by Wiesendanger. However, up to our best knowledge, the estimate of a set

of the ferroelectric dielectric stiffness coefficients at constant stress, α, was done in this

work for the first time, up to the 6th order in polarization.

What are the intrinsic origins of the piezoelectric anisotropy in perovskites?

The origins are free energy instabilities caused either by an anticipation of a structural

phase transition in materials with well defined phases, either by mesoscopic disorder

in the complex relaxor ferroelectric solid solutions or destabilization of the structure

by temperature. When approaching the structural changes, these materials will di-

electrically soften in directions in which new components of the order parameter will

appear. In the case when the order parameter is the spontaneous polarization, phase

changes are represented by appearing or disappearing of the polarization components in

certain crystallographic directions - dielectric permittivity will increase or decrease in

corresponding directions, according to the phase changes. The increase of the dielectric

permittivity along the direction perpendicular to the spontaneous polarization direction

implies an increase of the corresponding shear piezoelectric coefficient - these large shear

coefficients can be the dominant contributors to the piezoelectric response of a domain

engineered crystal in some perovskites.

How can external bias fields influence the piezoelectric response in per-

ovskites? In the literature, one can find studies about the influence of the hydrostatic

pressure on the electromechanical properties, as well as studies of the influence of the

electric bias fields on the piezoelectric properties of certain classic perovskites. However,

studies of the influence of the special bias configurations such as the uniaxial compres-

sive stress or the electric bias field applied antiparallel to the spontaneous polarization

have never been published. The reason for that may be an intuitive feeling that decreas-

ing the ferroelectricity of a material by application of ”unfavorable” strong electric and

mechanical bias fields will decrease the electromechanical constants, or not taking into

account a fact that ferroelectric switching does not occur immediately after changing

the sign of the applied electric field.

In spite of this, a phenomenological study of the influence of ”negative” electric fields and

compressive mechanical stresses on electromechanical properties of classic perovskites

was done in this work, and some very interesting results were obtained, possibly with

broad implications. The fields that decrease the value of the spontaneous polarization,

and do not cause the polarization switching at the same time, lead to a significant

enhancement of the dielectric properties in all crystallographic directions, and, analo-
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gously, to the enhancement of the piezoelectric response. By approaching the values of

coercive electric and mechanical fields, the dielectric (and piezoelectric) properties may

increase up to giant values. Thus, qualitatively, the anticipation of the spontaneous

polarization switching induced by biases and the anticipation of the polarization rota-

tion in the vicinity of a phase transition have the same influence on the dielectric and

piezoelectric properties of classic perovskites.

Is there a general thermodynamic description of the piezoelectric response

enhancement and its anisotropy for classic perovskites? Yes. It is shown in this

thesis that this enhancement is related to the free energy flattening, regardless of variable

(temperature, stress, electric field and composition) that induces it. It is furthermore

demonstrated that the anisotropy of the enhancement (either along or away from the

polarization direction) is directly related to the anisotropic flattening of the free energy.

Thus, the enhancement can take place by polarization rotation and by polarization con-

traction. This approach additionally predicts that huge enhancement of the longitudinal

piezoelectric response may be expected along nonpolar directions in PbTiO3. This ma-

terial exhibits only one, tetragonal, ferroelectric phase, and never fulfills the condition (a

high shear piezoelectric coefficient) necessary for having an enhancement of piezoelectric

response along a non-polar axis only by changing the temperature, without bias fields

applied.

This result suggests that a large piezoelectric effect is not limited to relaxor-ferroelectrics

or disordered systems. In fact, our results hint that the large piezoelectric response in

relaxor-ferroelectrics is due to the flattening of the free energy profile, the flatness prob-

ably being a consequence of the disorder or of the internal fields.

The only explicit link between the free energy and enhanced piezoelectric response that

can be found in the literature was made by Cohen and his coworkers in two papers.

In the first, ab initio calculations were used for BaTiO3 under external electric field

and concept of polarization rotation was introduced, and in the second the same link in

PbTiO3 under hydrostatic pressure was shown. Our calculations, based on Landau ther-

modynamic theory, which is advantageously much less consuming in time and computer

power than ab initio calculations, expand this idea to Pb(Zr,Ti)O3 (PZT), PbTiO3 and

BaTiO3, and stress, composition and temperature as variables.

The origins of the piezoelectric enhancement are different in this discussion, compared to

the work of Cohen and his coworkers. In their case the enhancement is due to proximity

of the electric field/stress induced phase transformations, and in our case the instability

of the free energy under electric field/stress is due to the proximity of applied field/stress

to the thermodynamic coercive field/stress.
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What to do next? There are always many unanswered questions at the end of a

thesis work, that might encourage future work. Here we point out some important un-

solved problems and suggestions: a) a method that will measure single domain dielectric

properties of KN single crystals in the tetragonal ferroelectric phase should be mastered;

b) if one takes a closer look at the graphic comparison among the phenomenologically

calculated and experimentally obtained results for transverse piezoelectric coefficients

in the orthorhombic phase of potassium niobate, d31 and d32, and the room temper-

ature values of piezoelectric coefficients in Chapter 5, it can be seen that the results

are generally discrepant, and that the measurements of the dielectric properties done

by Fukuda and the spontaneous polarization by Günter yield our phenomenological es-

timate that agrees with the piezoelectric coefficients measured by Zgonik and Günter,

and not with our results and the recent values obtained by Wada; our suggestion is,

thus, that measurements of the piezoelectric coefficients and spontaneous polarization

should be redone; c) it is not clear what is the origin of the very large thickness mode

coupling coefficient, kt, in potassium niobate - one can speculate that the opposite signs

of the transverse piezoelectric coefficients in this material might decrease the planar

coupling coefficient value, kp, and thus increase the thickness mode coefficient; d) it can

be noted in our discussion about the influence of bias fields on the piezoelectric response

in perovskites that there is a qualitative difference in the influence of electric bias field

and mechanic bias compressive stress (for example, very high mechanical stresses can

induce a non polar piezoelectric maximum in PbTiO3, but electric bias fields cannot)-

this difference will be discussed in one of our next publications.
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Appendix A

Transformations of coordinate

systems. Diagonalization of

matrices and eigenvalues

Transforming from one coordinate system to another was an important issue in this

thesis report, so it is useful to describe these transformations in more detail.

When a perovskite system undergoes a phase transition from the cubic paraelectric

phase to the tetragonal ferroelectric one, with the spontaneous polarization along the

x3 axis, one keeps the same reference frame for description of the properties in both

phases. For example, in the cubic phase the dielectric permittivity tensor is

Ec =

 εc
33 0 0

0 εc
33 0

0 0 εc
33

 , (A.1)

while in the tetragonal phase it is

E t =

 εt
11 0 0

0 εt
11 0

0 0 εt
33

 . (A.2)

The tetragonal phase has more of independent coefficients, and one can keep the same

reference frame, because in both phases one has a diagonal matrix.

If one now wants to calculate, for example, what is the value of a dielectric permittivity

in some general directions, one has to take a new coordinate system, rotate it with

respect to the old one and calculate coefficients in this new system. Two coordinate

systems relation is uniquely determined by Euler angles (see Chapter 6 ). Changing the

direction in which one wants to consider permittivity coefficients, one also changes Euler
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angles.

The matrix of transformations from one coordinate system to another by using Euler

angles is given by

T =

 cosψcosφ− cosθsinψsinφ cosψsinφ+ cosθsinψcosφ sinθsinψ

−sinψcosφ+ cosθcosψsinφ −sinψsinφ+ cosθcosψcosφ cosψsinθ

sinθsinφ −sinθcosφ cosθ

 ,

(A.3)

where θ, ψ and φ are Euler angles.

Now, to transform a vector (tensor of order 1) from an old system, X = (x1, x2, x3), to

a new one, X ′ = (x′1, x
′
2, x

′
3), one has that its components change as

x′i =
3∑

j=1

Tijxj, (A.4)

or

X ′ = TX. (A.5)

For a tensor of order 2 (permittivity, for example), one has

ε′ij =
3∑

k=1

3∑
l=1

TikTjlεkl, (A.6)

or

E ′ = T 2E , (A.7)

and for a tensor of order 3 (piezoelectric coefficients tensor), one has

d′ijk =
3∑

m=1

3∑
n=1

3∑
p=1

TimTjnTkpdmnp, (A.8)

or

D′ = T 3D. (A.9)

In the tetragonal phase, one thus has expressions for a longitudinal piezoelectric coeffi-

cient,

dt∗
33(θ, ψ, φ) = dt∗

33(θ) = cosθ(dt
15sin

2θ − dt
31sin

2θ + dt
33cos

2θ), (A.10)

a transversal piezoelectric coefficient

dt∗
31(θ, ψ, φ) = dt∗

31(θ, ψ) = cosθ(−dt
15sin

2θ sin2 ψ −
dt

31

8
(−6− 2 cos 2θ + cos2(θ − ψ)− 2cos2ψ + cos2(θ + ψ)) +

dt
33sin

2θ sin2 ψ), (A.11)
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or a shear piezoelectric coefficient

dt∗
15(θ, ψ, φ) = dt∗

15(θ, ψ) = cosθ(−d
t
15

4
(−2− 2cos2θ + cos2(θ − ψ)− 2cos2ψ +

cos2(θ + ψ)) + 2sin2θsin2ψ(−dt
31 + dt

33). (A.12)

These coefficients are obtained by using the matrix of tetragonal 4mm symmetry piezo-

electric coefficients in the short notation [116] 0 0 0 0 dt
15 0

0 0 0 dt
15 0 0

dt
31 dt

31 dt
33 0 0 0

 . (A.13)

In the orthorhombic phase this matrix has the form 0 0 0 0 do
15 0

0 0 0 do
24 0 0

do
31 do

32 do
33 0 0 0

 , (A.14)

where one can calculate that, for example, a transverse piezoelectric coefficient in a

general direction, do∗
32, has the analytic form

do∗
32(θ, ψ) = −d15cosψsin

2θsinφ(cosθcosψsinφ+ cosφsinψ)

−d24cosφcosψsin
2θ(cosθcosφcosψ − sinφsinψ)

+d31cosθ(cosθcosφcosψ + cosφsinψ)2

+d32cosθ(cosθcosφcosψ − sinφsinψ)2

+d33cosθcos
2ψsin2θ (A.15)

while in the rhombohedral phase, the form of the piezoelectric matrix is 0 0 0 0 dr
15 −2dr

22

−dr
22 dr

22 0 dr
15 0 0

dr
31 dr

31 dr
33 0 0 0

 . (A.16)

The piezoelectric coefficients in these matrices are all presented in the crystallographic

phase axes systems. In these systems, the property tensors have the simplest form. One

can illustrate that by considering the permittivity in the orthorhombic phase. In this

phase, in the paraelectric cubic axes system, permittivity tensor can be calculated to

give

Eo =

 εc
11 0 0

0 εc
22 εc

23

0 εc
23 εc

33

 . (A.17)
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If one looks for eigenvalues of this matrix, one has the equation

Eo − λI = 0, (A.18)

where I is the identity matrix, and solutions λ1,2,3 of this polynomial equation of the 3rd

order will give the eigenvalues. The eigenvalues will give us eigenvectors x by solving

the next equation

Eox = λ1,2,3x. (A.19)

Eigenvectors obtained for the orthorhombic phase are the base vectors for constructing

the orthorhombic crystallographic coordinate system. In the coordinate system of the

orthorhombic eigenvectors, the permittivity matrix has the form

Eo =

 εo
11 0 0

0 εo
22 0

0 0 εo
33

 . (A.20)

It is now in the simplest possible form and thus generally the most appropriate for

studying the permittivity in the orthorhombic phase.
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Direction dependence of transverse

and shear coefficients of barium

titanate

Transverse and shear coefficients in general directions, as it can be seen in Appendix A,

have analytical forms that are nontrivially more complex for discussions than the ones

for the longitudinal piezoelectric response, used often in this thesis work. Nevertheless,

we performed calculations of all coefficients in general directions, and here we present

some results, for the sake of completeness. All coefficients are calculated for single

domain barium titanate, and all axes labels are [pC/N].
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Figure B.1: Transverse coefficient dt∗
31 - tetragonal phase.
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Figure B.2: Shear coefficient dt∗
15 - tetragonal phase.

Figure B.3: Shear coefficient do∗
15 - orthorhombic phase.

Figure B.4: Transverse coefficient do∗
32 - orthorhombic phase.
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Figure B.5: Shear coefficient dr∗
15 - rhombohedral phase.

Figure B.6: Transverse coefficient dr∗
31 - rhombohedral phase.

Figure B.7: Transverse coefficient dr∗
32 - rhombohedral phase.
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