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RESUME 

 

Plus de 100 nucléosides modifiés présents dans les ARN naturels ont été identifiés à 

ce jour. Ces modifications sont impliquées dans la structuration de l’ARN, le maintien du 

cadre de lecture durant la synthèse des protéines et l’interaction correcte de celui-ci avec les 

complexes enzymatiques. Pour une étude systématique de leur fonction, il apparaît nécessaire 

de pouvoir incorporer ces modifications à une position donnée de séquences d’ARN en ayant 

recours à la synthèse chimique.  

Nous présentons ici des protocoles optimisés de préparation d’une large variété de 

ribonucléosides phosphoramidites 2'-O-TOM protégés contenant certaines des nucléobases 

modifiées les plus fréquemment rencontrées, à savoir m2G, m2
2G, m1A, m5U, D, m5C, ψ, m1I, 

i6A, m6
2A, m6A, m1G, t6A, I et imG. De plus, les phosphoramidites des nucléosides non-

naturels isoG, isoC et 4-desmethyl-5-methylwyosine ont été préparés (Chapitres I, II et III). 

Pour l’introduction de nucléobases labiles, des conditions de déprotection en combinaison 

avec l’emploi du nouveau N2-methoxyacetyl protégé guanosine phosphoramidite, ont été 

développées (Chapitre V). Pour la première fois, le nucléoside particulièrement sensible 

wyosine a été incorporé dans un 18mer d’ARN et au sein de la boucle de l’anticodon d’une 

version tronquée d’un ARN de transfert. Dans ce but, des stratégies de ligation enzymatique, 

basées sur l’emploi de T4 RNA ligase et de DNA ligase, ont été évaluées et optimisées 

(Chapitres III et V). 

Les propriétés décodantes des anticodons modifiés ont été revues et de nouveaux modèles 

d’interaction basés sur la formation de liaisons hydrogènes secondaires ont été proposés 

(Chapitre IV). 

Pour la préparation efficace d’analogues d’ARNt estérifiés avec des acides amines non 

naturels, la synthèse de séquences modifiées d’ARN contenant une 2'-deoxy-2'-thioadenosine 

3’-terminale a été développée. En analogie avec la ligation chimique d’oligopeptide, une 

aminoacylation spécifique spontanée avec un acide aminé faiblement activé sous la forme 

d’un thioester, a lieu efficacement dans des solutions aqueuses tamponnées ainsi que sous une 

multitude de conditions. Ce concept pourrait à terme, être employé pour l’aminoacylation 

directe d’ARNt similairement modifiés (Chapitre VI). 
 
 
 
 
 
 
 



ABSTRACT 

 

More than 100 modified nucleosides have been found in naturally occurring RNA 

sequences. These modifications are involved in the correct folding, in the maintenance of the 

reading frame during translation and in the proper interaction with enzymes and protein 

complexes. For an exhaustive study of their function it would be necessary to incorporate by 

chemical synthesis such modifications at selected positions of RNA sequences.  

Here we present optimized protocols for the preparation of a large variety of 2'-O-

TOM protected ribonucleoside phosphoramidite building blocks containing the most 

frequently encountered modified nucleobases m2G, m2
2G, m1A, m5U, D, m5C, ψ, m1I, i6A, 

m6
2A, m6A, m1G, t6A, I and imG. In addition, the non-natural ribonucleoside 

phosphoramidites containing isoG, isoC and 4-desmethyl-5-methylwyosine have been 

prepared (Chapters I, II and III). For the introduction of base-labile modifications into RNA 

sequences, modified deprotection conditions in combination with the new N2-methoxyacetyl 

protected guanosine phosphoramidite have been developed (Chapter V). For the first time, the 

sensitive modified nucleoside wyosine was incorporated into a 18mer RNA sequence and into 

the anticodon loop of a truncated tRNA. For this purpose, enzymatic ligation strategies, based 

on T4 RNA and T4 DNA ligase, were evaluated and optimized (Chapters III and V). 

The decoding properties of modified anticodons have been reviewed and new models, 

based on the formation of secondary hydrogen bonds have been proposed (Chapter IV). 

For the efficient preparation of tRNA analogues esterified with unnatural amino acids, 

a synthesis of modified RNA sequences containing a 3'-terminal 2'-deoxy-2'-thioadenosine 

was developed. In analogy to the "native chemical ligation" of oligopeptides, its spontaneous 

and site-specific aminoacylation with weakly activated amino acid thioesters occurred 

efficiently in buffered aqueous solutions and under a wide range of conditions. This concept 

could be employed for a straightforward aminoacylation of analogously modified tRNAs 

(Chapter VI).                
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INTRODUCTION  

 1. Structure and function of nucleic acids 

For a long time, cells were viewed as closed systems containing a multitude of free 

components and steady progresses in analytical methods allowed their progressive 

identification. The complex and fascinating architecture of cells and their capacity to 

communicate with their environment has only emerged recently and much more aspects and 

details about their functioning will eventually be uncovered.  

A rough analysis reveals that cells are composed of H2O (70%), a multitude of small, 

monomeric compounds such as sugars, nucleotides, amino acids, fatty acids and salts (6%) 

and, importantly, oligomeric macromolecules (25%, MW usually several kDa), belonging to 

the categories of proteins and nucleic acids. For the first time, nucleic acids were identified 

and described by Miescher in 1869 (Doonan 2004), but only in the 1950s their constitution 

and their basic mode of function was described properly. Since then, the associated field of 

Molecular Biology is growing steadily, producing new insights and tools for all areas of 

biological research. 

Nucleic acids are oligomers consisting of 5'→3' phosphodiester-linked nucleotide units that 

are composed of a 2'-deoxy-D-ribose or D-ribose in their furanose forms (in DNA and RNA, 

respectively) and a heteroaromatic nucleobase (Figure 1.). The nucleobases found in DNA 

include the purines adenine (A) and guanine (G) and the pyrimidines cytosine (C) and 

thymine (T), while RNA contains the pyrimidine uracile (U) in place of T. The 

oligonucleotide chain is composed of a polar, negatively charged sugar-phosphate backbone 

and an array of hydrophobic nucleobases. This amphiphilic nature, together with the hydrogen 

bonding and stacking potential of nucleosides, ultimately drives the assembly and 

maintenance of secondary and tertiary structures within nucleic acids. 

The first, global description of the three-dimensional, supramolecular structure and the basic 

function of nucleic acids has been achieved in 1953 when Watson and Crick have proposed 

their model of the DNA double helix (Watson and Crick 1953) (its confirmation by high-

resolution single-crystal X-ray analysis was obtained only in 1982 (Dickerson et al. 1982)). 
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For the first time, structural considerations permitted to deduce the mechanisms of cellular 

replication and conservation of genetic information. At the same time, the previously 

observed constant ratios of C/G and A/T (Chargaff et al. 1951) was finally understood, since 

the association of two DNA single strands is based on the formation of distinctive hydrogen 

bonds. Thereby, the distribution of acceptor and donor hydrogen bonds allows formation of 

selective and defined base pairs where C can only be associated with G and A only with T 

(Figure 2.). The same base pairing rules are found in RNA, which is constituted of almost the 

same elements undergoing G·C and A·U associations.  
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Figure 1: Constitution of DNA (left) and of RNA (right), with the name of the monoric nucleotide units 
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Figure 2: Structure of so-called Watson-Crick base pairs in DNA (left) and RNA (right). 

These common features reflect the close relationships and interactions exhibited by these two 

classes of nucleic acids within the cell. Whereas the genetic information is stocked by DNA, 

the RNA is responsible for its transport to the site of protein manufacturing. The reasons for 

this attribution of roles are based on the structural difference existing between these two 

entities, which is the presence or absence of a HO-group at the 2'-position of the sugar moiety. 

Absent in DNA and present in RNA, different preferred conformations are adopted by the two 

closely related classes of nucleic acids. In DNA, the C2’-endo conformation is preferred, 

whereas RNA preferentially adopts a C3’-endo conformation (Figure 3.), resulting in the 

(preferred) formation of the B-form double helix structure in DNA and A-form helix 

structures in RNA (Figure 4.).  

 

O BaseRO3PO

RO3PO

O Base
RO3PO

RO3PO

C3'-endoC2'-endo  

 
Figure 3: C2’ and C3’-endo conformations demonstrated with DNA nucleotides. The inclination of the 
nucleobase and the progression of the backbone is affected by the conformation of the sugar moiety. 

 

The B-form helix consists in a right handed helical structure with a hydrophobic interior of 

Watson-Crick base pairs stacked nearly perpendicular to the central helix at 3.4 Å intervals, 

achieving a complete rotation after 10 base pairs (Dickerson et al. 1982) (Wing et al. 1980). 

The B form of the DNA helix creates two distinct helical grooves, the minor groove and the 

major groove, providing selective surfaces for the binding of ligands such as proteins or small 

molecules. Depending on the relative humidity and salt concentration, DNA can also adopt 

the A-form helix which is characterized by a complete turn after eleven base pairs and a 

reduced rise per base pair of 2.3 Å (Dickerson et al. 1982) (Frederick et al. 1989).  
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Major groove

Minor groove

Major groove

Minor groove

 

 
Figure 4: Structure of A form and B form helixes.  

 

The A-type helical orientation is preferred by RNA and results in a deep and narrow major 

groove and a very shallow and wide minor groove. Another consequence of the presence of a 

2’-OH groups in RNA concerns the structure stability of the backbone. RNA is much less 

stable than DNA specifically under basic conditions which promote strand cleavage by 

transesterifaction and formation of monomeric nucleotide 2’,3’-cyclic phosphodiesters from 

oligomeric nucleotide 5’,3’-linear phosphodiesters (Figure 5.). A multitude of enzymes 

(RNases) exploit the same mechanism and are devoted to their degradation (Knapinska et al. 

2005) which results in a relative short life-cycle of RNA in the cell.  
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Figure 5: Influence of the 2’-OH group on the stability the phosphodiester bond in RNA. a) pH > 12. b) pH < 2.  

 

These structural and chemical features confer distinctive biological properties to these two 

types of nucleic acids. Whereas the role of DNA is well confined to the storage of genetic 

information, RNA displays a multitude of functions. Most of these functions have been 

identified only recently by isolation, characterization and study of the wide-ranging family of 

"non-coding" or "functional" RNAs (ncRNAs, fRNAs). They appear to interfere with the 

RNA processing, editing, targeting and regulation (Eddy 2001). Among them, small nuclear 

RNAs (snRNAs) play a central role during the assembly of the mRNA-splicing complexes by 

associating with proteins to form ribonucleoprotein (RNP) complexes (Nagai et al. 2001). 

Small nucleolar RNAs (snoRNAs) interact sequence-specifically with rRNA to guide 

processing and modification by the corresponding RNA-editing enzymes (Lau et al. 2001). 

Micro-RNAs (miRNAs) have shown to act as posttranscriptional downregulaters of protein 

expression by inducing the cleavage of specific mRNAs (Elbashir et al. 2001). Very 

importantly, it has been discovered that the same intrinsic mechanism of gene-silencing can 

be triggered by artificial short interfering RNAs (siRNAs) (Goldstrohm et al. 2001). The 
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concepts of gene-expression have been enriched by the discovery of the phenomenon of 

"alternative splicing" which leads to the generation of alternative proteins from one gene; this 

process is regulated by consensus sequences (e.g. polypyrimidine tracks) located in intron 

regions (Winkler and Breaker 2003). Among mRNAs, so-called "riboswitch" motives have 

been found which regulate or control gene expression on the level of translation or 

transcription by changing their structure upon binding of metabolites, or 3'-end processing 

(Nagel and Pleij 2002). 

Before these recent developments, the study of RNA was devoted to the three most abundant 

forms, which are directly involved in the biosynthesis of proteins: the ribosomal RNA 

(rRNA), the messenger RNA (mRNA) and transfer RNA (tRNA), occurring in all forms of 

life.  

 

 2. The messenger RNA (mRNA)  

The mRNAs represent the link between the genotype (DNA) and the phenotype 

(proteins). It is the carrier of the genetic information (DNA) to the ribosome where this 

information is expressed as proteins sequences. In prokaryotes, RNA copies (transcripts) of 

specific DNA sequences (genes) are exclusively constituted of the four canonical nucleotides. 

In eukaryotes, however, a multitude of modification processes take place. The eukaryotic pre-

mRNA obtained from the direct transcription of DNA within the nucleus, is subjected to 5’-

end capping, splicing, 3’-end cleavage and polyadenylation (Gu and Lima 2005). Importantly, 

pre-mRNAs can be spliced differently, depending on the context of the cell, finally resulting 

in different proteins from the same gene. This process has been termed "alternative splicing" 

and is responsible for the seemingly paradox situation that the number of proteins greatly 

exceed the number of genes. The exact comprehension of this phenomenon is extremely 

challenging and represents a highly active field of research (Moore 2005) (Oberstrass et al. 

2005).  

However, the mRNAs mainly consist of a linear sequence of the four canonical 

ribonucleotides, which can be assembled in any possible order. The resulting nucleotide-code 
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is converted into a sequence of amino acids (proteins) by translation within the ribosome. 

Thereby,   64 different combinations (= 43) of nucleotide triplets are required for encoding the 

20 proteinogenic amino acids (Figure 6.). These nucleotide triplets, named codons, have 

defined functions within the genetic code. Three of them are devoted to stop-signals (UAG, 

UAA and UGA) for termination of translation, one to a start-signal (methionine) for initiation 

of translation, and the remaining 60 codons are all encoding for amino acids. There is at least 

one specific codon for each of the 20 amino acids; some of them are encoded by several 

codons with different level of degeneracy (4-fold degenerate, e.g. leucine; 2-fold degenerate 

e.g. histidine and glutamine; only one codon, e.g. tyrosine). The resulting code contained in 

the mRNA is accurately translated into proteins, with only one in ten thousand amino acids 

incorporated incorrectly (Thompson and Karim 1982) (Loftfield and Vanderjagt 1972). 
  2nd Letter        

  U  C  A  G    

1st  UUU Phe UCU Ser UAU Tyr UGU Cys U 3rd 

Letter  UUC Phe UCC Ser UAC Tyr UGC Cys C Letter 

 U UUA Leu UCA Ser UAA Stop UGA Stop A  

  UUG Leu UCG Ser UAG Stop UGG Trp G  

  CUU Leu CCU Pro CAU His CGU Arg U  

  CUC Leu CCC Pro CAC His CGC Arg C  

 C CUA Leu CCA Pro CAA Gln CGA Arg A  

  CUG Leu CCG Pro CAG Gln CGG Arg G  

  AUU Ile ACU Thr AAU Asn AGU Ser U  

  AUC Ile ACC Thr AAC Asn AGC Ser C  

 A AUA Ile ACA Thr AAA Lys AGA Arg A  

  AUG Met ACG Thr AAG Lys AGG Arg G  

  GUU Val GCU Ala GAU Asp GGU Gly U  

  GUC Val GCC Ala GAC Asp GGC Gly C  

 G GUA Val GCA Ala GAA Glu GGA Gly A  

  GUG Val GCG Ala GAG Glu GGG Gly G  

            

 

Figure 6: The genetic code with the “triplet” codons and their corresponding amino-acid (three letter code).  
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 3. The ribosomal RNA (rRNA) 

Ribosomes are huge RNA/protein complexes of almost 2.5MDa size (Dahlberg 1989) 

(Noller 2005) (Clemons et al. 1999) (Cate et al. 1999) (Figure 7.). 

 

  
Figure 7: Three dimensional structure of the ribosome with three tRNAs in A, P and E sites taken from 
(Yusupov et al. 2001)) 

 

They consist of two subunits, (the large and the small subunit), containing several rather small 

proteins, some RNA-sequences of different length (ribosomal RNA, rRNA), depending on the 

organism (Figure 8.).  
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Figure 8: Two-dimensional structure of the ribosomal RNA (rRNA) 1). 

 

The ribosomes are responsible for bringing together the mRNAs and the aminoacylated 

tRNAs and for catalyzing the formation of proteins from the amino acids attached to the 

tRNAs. With the help of several proteins (initiation factors) and a specifically aminoacylated 

tRNA (with an anticodon complementary to the start-codon of an mRNA and a methionine or 

N-formylmethionine as amino acid), the two subunits are assembled on the 5'-end of the 

mRNA and translation can start. The elongation step is carried out by first binding an 

aminoacylated tRNA with an anticodon complementary to the codon following the start-

codon (Figure 9.). Next, the amino-group of the amino acid of the aminoacylated tRNA is 

attacking the carbonyl-group of the methionine (or N-formylmethionine) bound to the first 

tRNA, thereby forming the first peptide-bond of the protein to be synthesized and releasing 

the methionine from its tRNA. This free (non-aminoacylated) tRNA is now released, the other 

tRNA, carrying now a dipeptide is translocated (together with the mRNA), and another 

                                                 
1 ) http://www.learner.org/channel/courses/biology/archive/images/1705.html 
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elongation step takes place in a completely analogous manner. Thereby the peptide is formed 

by stepwise assembly of each amino acid. The non-aminoacylated tRNA is charged again 

with the correct amino acid by the corresponding aminoacyl-tRNA synthetase (aaRS) and 

thereby, continues to participate to the protein synthesis. The peptide continues to grow until 

one of the three stop-codons is reached (Figure 10.). Since no complementary tRNA is 

present, the translation stops and eventually a release-factor (a protein with the shape of a 

tRNA) binds to the ribosome and the stop-codon of the mRNA, and cleaves the ester bond 

between the full-length protein and the last tRNA by hydrolysis. The resulting complex 

dissociates into the two ribosomal subunits, the mRNA and the protein. 

 

aaRS

O O
O

+H3N

O4aa
aa3

2aa
aa1

R

+H3N

A siteP siteE site

OO

R+H3N

OH

mRNA3'5'

Ribosome

tRNA

OH

 
Figure 9: The process of protein synthesis.  
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Figure 10: The termination of the protein synthesis.  

 

Interestingly, during the study of the ribosome, it has been demonstrated that the ribosomal 

RNA supported the catalytic activity of the peptide bond formation (Orgel 2004). This 

observation has given a significant argument for partisans of the RNA world theory, but it has 

also given new interest for RNA.  

 

 4. The transfer RNA (tRNA) 

Transfer RNAs are relatively short RNA sequences which consist of 56 to 95 

nucleotides. The cytoplasmic class I tRNAs have a typical length of 76 nucleotides which can 

be extended up to 86 by the presence of a long variable arm specific of class II tRNAs. Beside 

these most encountered and conventional lengths, exceptions are found that always 

correspond to tRNAs displaying special functionalities. Therefore, the tRNASec of 95 
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nucleotides length is designed for the incorporation of selenocysteine, the 21st amino acid, by 

possessing the unique capacity to read the UGA STOP codon (Commans and Bock 1999). 

Other tRNAs have a singular structure in relation to their origin tRNAs (Giegé and Frugier 

2003) (Florentz et al. 2003), as observed for mitochondrial species that can miss the D arm 

(for instance in human mitochondrial tRNASer (de Bruijn and Klug 1983), the T arm or both. 

Despite their different lengths, sequences and modifications, they have geometrically very 

similar secondary cloverleaf and three-dimensional, L-shaped, structures (Kim et al. 1973) 

(Kim et al. 1974) (Robertus et al. 1974) (Stout et al. 1974) (Figure 11.), even the bizarre 

mitochondrial tRNAs (de Bruijn and Klug 1983). The presence of conserved (U8, A14, A21, 

U33, G53, T54, Ψ55, C56, A58, C61, C74, C75 and A76) and semiconserved (Y11, R15, 

R24, Y32, R37, Y48, R57, and Y60) nucleotides in tRNA (Figure 12.)2) accounts for its 

evolutionary conserved L-shaped architecture. Accumulation of sequence and structure 

information of many tRNAs3) has shown that all exhibit the same distance of 100 Å between 

the ends of the two "L"-arms. 

    A
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Figure 11: Typical and common cloverleaf secondary structure of tRNAs (left) and typical L-shape tertiary 
structure of tRNAs (right) 4). 

                                                 
2 ) (http://medlib.med.utah.edu/RNAmods/) 
3 ) (http://www.uni-bayreuth.de/departments/biochemie/trna/) 
4 ) http://www.stanford.edu/~esorin/trna_cartoon.gif 
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The end of the so-called anticodon branch (comprising the anticodon and D stems) contains a 

three-nucleotide sequence, named the anticodon, which is complementary to the three-

nucleotide codon-sequences of the mRNAs. At the end of the other branch, a specific amino 

acid is attached enzymatically to the 2'/3'-OH groups of the 3’-terminal adenosine of the 

highly conserved CCA sequence. Consequently, the tRNAs are at the same time carrying 

amino acids and decoding the codon-information of the mRNAs, thereby providing the link 

between information (mRNA-sequence) and sequence-specific assembly of proteins from 

amino acids. The highly accurate loading of a given tRNA with the corresponding amino acid 

is carried out by enzymes, named aminoacyl-tRNA synthetases (aaRS) by a two step process. 

Initially the amino acid and a molecule of ATP are bound to the synthetase where they are 

covalently linked by ester bond, forming a pyrophosphate and an enzyme bound aminoacyl-

adenylate complex. In the second step, the amino acid is then transferred to the 3’-end of the 

tRNA.  

T loop

T Stem 1

72

69
13

51
63

22

41

29

36
35

34

4

D loop

D Stem

Anticodon

Anticodon
Stem

Variable
loop

5' end

3' end

 
Figure 12: Identity elements in tRNA for recognition by aminoacyl-tRNA synthases; the size of spheres is 
proportional to the likelihood of putative identity position for aminoacylation (McClain and Nicholas 1987). For 
an updated view on identity see (Giegé et al. 1998) (Beuning and Musier-Forsyth 1999) (Giegé and Frugier 
2003). 
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The connection of an amino acid to a wrong tRNA would result in false amino acid 

incorporations into proteins (Chapeville et al. 1962). Accurate tRNA aminoacylation is under 

the control of identity rules that allow a given tRNA to be recognized by its cognate 

aminoacyl-tRNA synthetase. For each amino acid specificity, a small number of positive 

nucleoside determinants, constituting the so-called ‘identity sets’, confers the aminoacylation 

identity to the tRNA. Some of these determinants can be considered as ‘strong’ since their 

mutation strongly reduces the aminoacylation capacity of the mutant tRNA, others are 

‘moderate’ or ‘weak’. Additionally, other nucleosides that may display modifications, can act 

as negative signals, i.e. antideterminants, by preventing tRNAs to be recognized by 

noncognate synthetases. As a typical example, aspartate identity for tRNA aspartylation in 

yeast in given by a set of 6 positive determinants, namely anticodon G34U35C36, C38, G73 

and base-pair G10-U25, with anticodon and G73 the strongest determinants and the methyl 

group of m1G37 being an antideterminant preventing tRNAAsp to be arginylated by yeast 

arginyl-tRNA synthetase (reviewed in Giegé and Frugier, 2002). Notice, that modified 

nucleosides, beside an antideterminant role in some tRNAs, can have a diversity of structural 

and functional roles in tRNA, such as triggering the correct folding of some tRNAs (Helm et 

al. 1998) or reducing frame-shift events (Liu et al. 1997) (Wang et al. 2001) (Kowal et al. 

2001). 

 

 5. The modified nucleosides of tRNAs  

In 1951, a modified nucleoside differing from the four canonical nucleosides was 

isolated for the first time (Cohn and Volkin 1951). Later characterized as pseudouridine, a 5-

ribosyl isomer of uridine (Davis et Allen 1957), this modification is widely distributed in 

most types of RNAs (1 to 2% of total RNA), with the noticeable exception of mRNA 

(although its absence remains to be definitively proven (Grosjean. 2005)) (Figure 13.). Other 

modified nucleosides are present in much smaller quantities, but they represent a large 

diversity of original structures and are mainly found in tRNAs (66% of the known 

modifications) (Grosjean and Benne 1998) (Figure 14-18.).  
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# Symbol Name R1 R3 R4 
1 ψ Pseudouridine H H H 
2 ψm 2’-O-methylpseudouridine CH3 H H 
3 m1ψ 1-methylpseudouridine H H CH3 
4 m3ψ 3-methylpseudouridine H CH3 H 
5 m1acp3ψ 1-methyl-3-(3-amino-3-

carboxypropyl)pseudouridine 
H acp CH3 

      
Figure 13: The listing of modified nucleosides found in rRNA, mRNA and tRNA: pseudouridine derivatives 
(name, symbol and structure).  
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# Symbol Name R1 R3 R4 
1 Cm 2’-O-methylcytidine CH3 H H 
2 m4C N4-methylcytidine H CH3 H 
3 m4Cm N4,2’-O-dimethylcytidine CH3 CH3 H 
4 ac4C N4-acetylcytidine H Ac H 
5 ac4Cm N4-acetyl-2’-O-methylcytidine CH3 Ac H 
6 m5C N5-methylcytidine H H CH3 
7 m5Cm N5,2’-O-dimethylcytidine CH3 H CH3 
8 hm5C 5-hydroxymethylcytidine H H CH2OH 
9 f5C 5-formylcytidine H H CHO 

10 f5Cm 2’-O-methyl-5-formylcytidine CH3 H CHO 
11 m3C 3-methylcytidine - - - 
12 s2C 2-thiocytidine - - - 
13 k2C Lysidine - - - 

      
Figure 14: The listing of modified nucleosides found in rRNA, mRNA and tRNA: cytidine derivatives (name, 
symbol and structure).  
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# Symbol Name R1 R2 R3 R4 

1 Um 2’-O-methyluridine CH3 O H H 
2 s2U 2-thiouridine H S H H 
3 s2Um 2-thio-2’-O-methyluridine CH3 S H H 
4 m3U 3-methyluridine H O CH3 H 
5 m3Um 3,2’-O-dimethyluridine CH3 O CH3 H 
6 acp3U 3-(3-amino-3-carboxypropyl)uridine H O acp H 
7 s4U 4-thiouridine - - - - 
8 m5U ribosylthymine H O H CH3 
9 m5Um 5,2’-O-dimethyluridine CH3 O H CH3 

10 m5s2U 5-methyl-2-thiouridine H S H CH3 
11 ho5U 5-hydroxyuridine H O H OH 
12 mo5U 5-methoxyuridine H O H OCH3 
13 cmo5U uridine 5-oxyacetic acid H O H OCH2COOH 
14 mcmo5U uridine 5-oxyacetic acid methyl ester H O H OCH2COOCH3 
15 cm5U 5-carboxymethyluridine H O H CH2COOH 
16 mcm5U 5-methoxycarbonyl methyluridine H O H CH2COOCH3 
17 mcm5Um 5-methoxycarbonylmethyl-2’-O-methyl 

uridine 
CH3 O H CH2COOCH3 

18 mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine H S H CH2COOCH3 
19 ncm5U 5-carbamoylmethyluridine H O H CH2CONH2 
20 ncm5Um 5-carbamoylmethyl-2’-O-methyl uridine CH3 O H CH2CONH2 
21 chm5U 5-(carboxyhydroxymethyl) uridine H O H CH(OH)COOH 
22 mchm5U 5-(carboxyhydroxymethyl) uridine 

methyl ester 
H O H CH(OH)COOCH3 

23 nm5s2U 5-aminomethyl-2-thiouridine H S H CH2NH2 
24 mnm5U 5-methylaminomethyluridine H O H CH2NHCH3 
25 mnm5s2U 5-methylaminomethyl-2-thiouridine H S H CH2NHCH3 
26 mnm5se2U 5-methylaminomethyl-2-selenouridine H Se H CH2NHCH3 
27 cmnm5U 5-carboxymethylamino-methyluridine H O H CH2NHCH2COOH 
28 cmnm5Um 5-carboxymethylaminomethyl-2’-O-

methyluridine 
CH3 O H CH2NHCH2COOH 

29 cmnm5s2U 5-carboxymethylaminomethyl-2-
thiouridine 

H S H CH2NHCH2COOH 

30 D dihydrouridine H O H H 
31 m5D dihydrothymine H O H CH3 

Figure 15: The listing of modified nucleosides found in rRNA, mRNA and tRNA: uridine derivatives (name, 
symbol and structure).  
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# Symbol Name R1 R2 R3 R4 
Adenosine derivatives 
1 Am 2’-O-methyladenosine CH3 H H H 
2 m2A 2-methyladenosine H CH3 H H 
3 m6A N6-methyladenosine H H H CH3 
4 m6

2A N6,N6-dimethyladenosine H H CH3 CH3 
5 m6Am N6,2’-O-dimethyladenosine CH3 H H CH3 
6 m6

2Am N6,N6,2’-O-trimethyl adenosine CH3 H CH3 CH3 
7 ms2m6A 2-methylthio-N6-methyl adenosine H CH3S- H CH3 
8 i6A N6-isopentenyladenosine H H H Dimethylallyl 
9 ms2i6A 2-methylthio-N6-isopentenyl adenosine H CH3S- H Dimethylallyl 

10 io6A N6-(cis-hydroxyisopentenyl) adenosine H H H cis-hydroxy-methyl-allyl 
11 ms2io6A 2-methylthio-N6-(cis-hydroxyisopentenyl) 

adenosine 
H CH3S- H cis-hydroxy-methyl-allyl 

12 g6A N6-glycinylcarbamoyl adenosine H H H -CONH- 
13 t6A N6-threonylcarbamoyl adenosine H H H threonyl carbamoyl 
14 m6t6A N6-methyl-N6-threonyl 

carbamoyladenosine 
H H CH3 threonyl carbamoyl 

15 ms2t6A 2-methylthio-N6-threonyl 
carbamoyladenosine 

H CH3S- H threonyl carbamoyl 

16 hn6A N6-hydroxynorvalyl carbamoyladenosine H H H hydroxynorvalyl 
carbamoyl 

17 ms2hn6A 2-methylthio-N6-hydroxynorvalyl 
carbamoyladenosine 

H CH3S- H hydroxynorvalyl 
carbamoyl 

18 Ar(p) 2’-O-ribosyladenosine (phosphate) 2’-O-
ribosyl

H H H 

19 m1A 1-methyladenosine - - - - 
Inosine derivatives 
20 I inosine H H - - 
21 Im 2’-O-methylinosine CH3 H - - 
22 m1I 1-methylinosine H CH3 - - 
23 m1Im 1,2’-O-dimethylinosine CH3 CH3 - - 

CH3 CH3 N
H

OH
O

HO

H2PO4

OH

CH3
OH

O

O

OHH3C

N
H

OH
O

O

OH
CH3

Dimethylallyl
(isopentenyl)

threonylcarbamoyl hydroxynorvalylcarbamoyl 2'-O-ribosylcis-hydroxymethyl
-methylallyl
(cis-hydroxyisopentenyl)  

Figure 16: The listing of modified nucleosides found in rRNA, mRNA and tRNA: adenosine derivatives (name, 
symbol and structure).  
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# Symbol Name R1 R2 R3 R4 
Guanosine derivatives 

1 Gm 2’-O-methylguanosine CH3 H H H 
2 m1G 1-methylguanosine H H H CH3 
3 m2G N2-methylguanosine H CH3 H H 
4 m2

2G N2,N2-dimethyl guanosine H CH3 CH3 H 
5 m2Gm N2,2’-O-dimethylguanosine CH3 CH3 H H 
6 m2

2Gm N2,N2,2’-O-trimethyl 
guanosine 

CH3 CH3 CH3 H 

7 Gr(p) 2’-O-ribosylguanosine 
(phosphate) 

2’-O-
ribosyl

H H H 

m7 Guanosine derivatives 

8 m7G 7-methylguanosine - H H - 
9 m2,7G N2,7-dimethyl guanosine - CH3 H - 

10 m2
2,7G N2,N2,7-trimethyl guanosine - CH3 CH3 - 

       

 

 

O

HO

H2PO4

OH

2'-O-ribosyl  
Figure 17: The listing of modified nucleosides found in rRNA, mRNA and tRNA: guanosine derivatives (name, 
symbol and structure).  
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# Symbol Name R1 R2 R3 R4 
Wyosine derivatives 

1 imG wyosine - - -  
2 mimG methylwyosine - - - CH3 
3 OHyW* undermodified 

hydroxywybutosine 
- - - S1 

4 yW wybutosine - - - S2 
5 OHyW hydroxywybutosine - - - β-hydroxy-S2 
6 O2yW* peroxywybutosine - - - β-peroxy-S2 

7-deazaguanosine derivatives 

7 Q queuosine - - - S3 
8 oQ epoxyqueuosine - - - epoxy-S3 
9 galQ galactosyl-queuosine - - - gal-S3 

10 manQ mannosyl-queuosine - - - man-S3 
11 preQ0 7-cyano-7-deazaguanosine - - - -CN 
12 gQ Archaeosine - - - -C(NH2)=NH 
13 preQ1 7-aminomethyl-7-

deazaguanosine 
- - - CH2NH2 
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Figure 18: The listing of modified nucleosides found in rRNA, mRNA and tRNA: wyosine derivatives (name, 
symbol and structure).  
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Among the known structures, the methylated forms of the canonical nucleotides are 

structurally the most simple ones (Figure 14-17.). The methylation can occur at the base or at 

the 2'-O-position of the sugar moiety. The latter type of modification is very common and is 

found in almost all kinds of RNAs (mRNA, snRNA, rRNA and tRNA) and sometimes even in 

combination with base-methylation (e.g. m6Am, m3Um). The nucleobase methylation occurs 

primarily by replacement of a H-N hydrogen or, to a lesser extent, at nitrogen (m7G and m1A), 

leading to a high sensitivity towards basic media (Hendler et al. 1970) (Helm et al. 1999) 

(Chapter I). The same chemical instability is also observed for the dihydrouridine nucleobase 

which has lost its aromatic character by having a saturated C5-C6 bond (Figure 15.) (Chapter 

I and V). More generally, the chemical reactivity is unique for each modified nucleoside, 

obliging to reconsider synthetic approaches and protecting group for every new compound. 

In contrast to their rather simple three-dimensional structure, these modifications 

render the tRNAs complex chemical structures. Within the sequence of tRNAs different types 

of modifications are found at different positions, strongly indicating a specific purpose. 

Guanosine, although often simply methylated (m2G, m2
2G, m1G) (Figure 17.), can be 

integrated into an extended imidazole ring, which creates an intriguing tricyclic structure, the 

wyosine (Figure 18.) (Chapter III). Three of the structurally simplest versions of this 

nucleoside are unique to archaea (imG-14, imG2, mimG) and one is in common with eukarya 

(imG) (Zhou et al. 2004) (Kalhor et al. 2005). The most elaborated versions of these 

derivatives have an extended linker at the C7 position and are exclusively found in eukarya 

(yW, o2yW, OHyW, OHyW*). Despite this phyllogenetic distribution, all of these tricyclic 

compounds are exclusively localized at position 37 of the anticodon loop of phenylalanine 

tRNAs. Similarly, some of the adenosine derivatives (e.g. i6A, t6A) are localized also at 

position 37 of tRNAs where they appear to have a strong influence on the decoding properties 

of the tRNA (Agris 2004) (Chapter IV).  

Within the anticodon loop, other modifications appeared to affect the decoding capacities of 

the tRNAs, especially those present at position 34. This position offers a wide variety of 
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modified nucleosides such as inosine. This nucleoside has constituted the first evidence of the 

"wobble hypothesis" formulated by Crick in 1966 (Crick 1966). According to this concept, 

some nucleosides should be able to form base pairs with multiple nucleosides by deviating 

from the conventional Watson-Crick H-bond arrangement (Doonan 2004). With the 

increasing variety of modified nucleosides identified at this position, such as the modified 

pyrimidines mnm5U, mcm5Um and mo5U, this model has been continuously extended, but 

the relationship between tRNA structure and codon readout capacities remains nevertheless 

poorly understood (Agris 2004). In Chapter IV, the modifications present at the now so-called 

wobble position (position 34) are reviewed and interaction models, which link the structure to 

the decoding properties, are proposed. 

More generally, modified nucleosides are known to ensure the efficiency of recognition of the 

tRNA by modification enzymes (including RNase P and aminoacyl-tRNA synthetases), 

protein factors (initiation, elongation, and termination factors) and the ribosome (Agris 2004). 

Furthermore, the tRNAs seem to play a fundamental role in other biological pathways such as 

tetrapyrrole biosynthesis (Schubert et al. 2002), to serve as regulator in aromatic amino acid 

transport (Buck et al. 1981) or as initiation primers of HIV-1 (Rigourd et al. 2003). However, 

this diversity of functions remains minor in comparison to its contribution as adaptor 

molecule and amino acid carrier in the protein synthesis.  

 

6. tRNA based incorporation of unnatural amino acids into proteins.  

There is a considerable interest in tRNAs which are loaded with unnatural amino 

acids because it has been shown that such amino acids can be incorporated site-specifically 

into proteins, e.g. leading to cross-linking reactions with components of membranes or to be 

used for fluorescence measurements (Wang, Schultz 2002), leading to enzymes with different 

catalytic or structural properties than the wild-type enzyme (Wang, Schultz 2002) or to caged 

proteins which regain their function after photoisomerization (Muranaka et al. 2002). In 

general, this methodology allows the site-specific introduction of almost every feasible amino 

acid into proteins and is an extremely important tool for the study of protein-interactions, for 
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functional and structural assays and for the development of designer-enzymes with artificial 

properties (Wang and Schultz 2005). The ribosome-mediated incorporation of unnatural 

amino acids into proteins is usually carried out using a combination of genetically engineered 

DNA (which is transcribed enzymatically into the corresponding mRNA) and an engineered 

suppressor-tRNA (Wang and Schultz 2005). The latter carries the desired amino acid and has 

an anticodon-site which is complementary to a natural stop codon introduced site-specifically 

into the DNA. In this way, the codon usually leading to a stop of the translation process 

serves as an active codon, allowing incorporation of the unnatural amino acid into the 

growing peptide chain (Chapter VI) (Figure 19.). 
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Figure 19. Description of the suppressor tRNA methodology, which exploits the STOP codon. An artificial 
tRNA has been modified for having the ability to translate a STOP codon as a reading codon.  

 

This approach takes advantage of the fact that the nature of the attached amino acid has no 

effect on the anticodon-codon recognition with the mRNA (Chapeville et al. 1962). The first 
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designed tRNA suppressors were elaborated by ligation of a truncated tRNA lacking pCpA 

end (Heckler et al. 1984) (Heckler et al. 1986) (Roesser et al. 1986) (Heckler et al. 1988) with 

a suitably protected chemically prepared aminoacylated dimer (Figure 20.).  
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Figure 20. Structure of the chemically prepared aminoacylated dimer  

 

A different approach is designed as in-vivo process and involves the development of artificial 

aminoacyl-tRNA-synthetases which recognize the artificial tRNA and connect it to an 

artificial amino acid (Kiga et al. 2002). This method is in principle very elegant but restricts 

the choice of the amino acid and has to be adapted to every new combination of tRNA and 

amino acid. The latest approaches involve ribozymes which catalyze the transfer of the amino 

acid of short aminoacylated RNA-fragments to a tRNA (Lee et al. 2000), or short peptide 

nucleic acid (PNA) sequences, which are complementary to the 3'-end of the tRNA, and carry 

an activated amino acid (connected via a thioester bond and a linker with the PNA), which, 

after duplex formation, is then transferred to the tRNA (Ninomiya et al. 2004). 

During the last years, two concepts to overcome the limitations of the initial suppressor-

tRNA approach (based entirely on stop-codons) were developed. The first includes the 

simultaneous incorporation of unnatural (orthogonal) complementary nucleotides, such as 

isoC/isoG (Rich 1962) and a thienyl-substituted 2-aminopurine/pyridine-2-one (Fujiwara et 

al. 2001) (Hirao et al. 2002) into the tRNA and the mRNA respectively (Chapter II). Thereby 
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new (and orthogonal) codons were created and successfully exploited in the above-mentioned 

context. The second concept is based on tRNA/mRNA pairs containing four or five 

complementary RNA-nucleotides as anticodon- and codon-analogues, respectively (Hohsaka 

et al. 2002) (Hohsaka and Sisido 2002). 

The first concept is experimentally more difficult to realize than the second, and consequently 

only two examples are known so far. In both approaches, the modified mRNA was obtained 

by transcription of a modified DNA (the modifications were introduced by ligation with a 

chemically synthesized DNA-fragment), whereas the corresponding tRNA was prepared by 

ligation of a chemically synthesized RNA-fragment with an enzymatically produced 

fragment. This approach is very labor-intensive (multi-step preparation of the aminoacylated 

tRNA) and restricted to modifications, which are transcribed efficiently. The second concept, 

involving four- or five-nucleotide-codons/anticodons is in principle very simple to realize by 

standard molecular-biology methods and was already used for the simultaneous introduction 

of two unnatural amino acids into the same protein (Hohsaka et al. 1999). However, a certain 

limitation is the requirement to eliminate the corresponding coding triplets from the mRNA. 

 

7. Outlook 

The preparation of aminoacylated t-RNA analogues by conventional methods is labor-

intensive and can hardly be carried out repetitively or even routinely; they are "of 

considerable technical difficulty" (Hohsaka and Sisido 2002). Furthermore, protein 

expression is quite inefficient and only very small quantities of labeled proteins are usually 

obtained with this approach (typically 5 - 15 percent relative to formation of the parent 

protein). Although the preparation of artificially aminoacylated tRNAs has been simplified by 

developping new protecting groups for the synthesis of the dimer (Robertson et al. 1991) 

(Adams et al. 1989) (Patchornik et al. 1970) (Ellman et al. 1992) (Stutz 2003), it is still the 

limiting step in this useful strategy. Therefore, new approaches for the aminoacylation of 

tRNAs should be considered. One such new strategy, which is an adaptation of the "native 

chemical ligation" of oligopeptides (Dawson and Kent 1997), is presented in Chapter VI. 
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Since the chemical manipulation of natural tRNA remains a difficult task, most of the 

work carried out with tRNAs was done with tRNA transcripts which, in contrast to the natural 

tRNAs, contain only the unmodified nucleosides A, C, G and U. However, in some cases, 

tRNA transcripts appeared to not bind or poorly to the ribosome (Ashraf et al. 1999) (Ashraf 

et al. 2000) (Yarian et al. 2000) (Yarian et al. 2002) (vonAhsen et al. 1997) due to the lack of 

modified nucleosides which normally contribute to the proper folding of a tRNA (Helm et al. 

1999) (Chapter I). Furthermore, by using suppressor tRNAs, competition of the tRNAs with 

the termination-factors (which recognize the stop-codon and subsequently cleave the 

oligopeptide) takes place, restricting the incorporation efficiency. Therefore, all 

modifications, which lead to a stronger codon/anticodon pairing, could result in a more 

efficient introduction of the modified amino acid. In this context particularly relevant are the 

modified purine-bases in position 37 of the t-RNA-sequences adjacent to the anticodon-site. It 

has been recognized that these modified nucleobases could be important for a strong 

codon/anticodon interaction (Agris 2004). They are expected to provide additional pairing-

energy by stacking to the last, exposed nucleoside of the codon (Chapter IV). Furthermore, in 

order to obtain completely orthogonal anticodons, and to avoid competition with the 

temination factors completely, unnatural codon/anticodon pairs, achievable by synthesizing 

the corresponding tRNA and mRNA analogues, could be introduced (Chapter II).  

The biological introduction of modified nucleosides is under the control of editing enzymes 

but their application is quite limited since they have not been all identified or purified (Ferré-

D’Amaré 2003). Furthermore, the process of the tRNA editing is often highly sequence-

dependent, restricting the position choice for their introduction to their natural substrates. 

Consequently, the flexible preparation of partially modified tRNA derivatives can be achieved 

only by chemical synthesis (Chapter V). A couple of years ago we created methodologies for 

the chemical preparation of biologically active aminoacylated tRNAs (Pitsch 2001). Based on 

the gained experience and on the development of efficient synthetic tools (Stutz 2003) (Wu 

and Pitsch 1998) (Pitsch et al. 1999) (Pitsch 2001) (Pitsch et al. 2005), we planned to extend 
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these methodologies to the chemical incorporation of naturally occurring and unnatural 

modified nucleotides into tRNAs (Chapter V and VI).  

 

  

 

 

 

 



CHAPTER I “Synthesis of modified nucleoside phosphoramidite building blocks” 

I.1. Introduction  

I.1.1. Chemical synthesis of oligonucleotides  

 This technology, first developed for the preparation of DNA oligonucleotides and 

then adapted to the preparation of RNA oligonucleotides, is similar to other solid-phase 

methods, such as peptide synthesis. A controlled pore-glass solid support (CPG), 

functionalized with a “long chain alkylamine”, is bonded with the first (3’-terminal) 

nucleoside. The solid-phase synthesis is accomplished by stepwise coupling of single building 

blocks, which are suitably protected and functionalized. The product is then cleaved from the 

solid support, deprotected and purified. In Scheme I.1. such a single reaction cycle is 

illustrated; the repetition of this cycle leads to the desired oligonucleotide.  

The phosphoramidite building blocks are 5’-O-protected with the 4,4'-dimethoxytrityl (= 

DMT) protecting group, which is removed under acidic conditions (Scheme I.2.). This 

reaction, which constitutes the first step of the cycle, liberates the 5'-OH group. After 

washing, a mixture of an appropriate phosphoramidite and 1H-benzylthio tetrazole is added, 

which in situ react with each other under the formation of a phosphorotetrazolide. This 

reactive intermediate is then allowed to react with the previously liberated 5’-OH group of the 

growing chain. Although quite efficient, usually 90 to 99% of yield, this coupling step leaves 

a few unreacted 5’-OH groups, which later could lead to the formation of (n-1) sequences that 

are not easy to remove from the full-length product. In order to prevent an accumulation of 

these undesired sequences, the unreacted nucleosides are blocked or “capped” by acetylation 

with acetic anhydride in the presence of N-methylimidazole and 2,6-lutidine. The phosphate 

triester obtained after coupling is prevented from degradation by oxidation with a mixture of 

iodine, lutidine and water.  

After the synthesis, the different protecting groups (cyanoethyl groups, nucleobase protecting 

groups) and the solid support are cleaved simultaneously by incubation with a 10M solution 

of methylamine in H2O/EtOH 1:1 for 6h at room temperature. Filtration of the remaining solid 

support offers a solubilized mixture of crude sequences containing the shorter (n-1) sequences 
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and, as main product, the desired sequence. After evaporation, the residue is, for DNA 

sequence, directly purified by HPLC and, for RNA sequences, treated under specific 

conditions for removing the 2’-O-protecting group. 
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Scheme I.2. The activation and coupling step of solid-phase synthesis. (OR = suitable protecting group).  
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As previously described, the presence of a hydroxyl group at 2’-O-position confers special 

properties to the RNA and especially to its degradation susceptibility towards basic media. 

Consequently, this position requires a protecting group stable towards basic reagents but also 

towards acidic media (detritylation cycle during automated synthesis). These requirements 

incited to employ fluoride-labile protecting groups relying on silyl ethers such as tBDMS.  

This protecting group continues to be widely employed but appears less efficient for the 

preparation of long RNA-sequences (Muller et al. 2004). This severe limitation has been 

overcome a couple of years ago by introducing the new fluoride labile TOM 

(={[triisopropylsilyl]oxy}methyl) protecting group (Wu and Pitsch 1998) (Pitsch et al. 1999) 

(Figure I.1.).  
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Figure I.1. Structure of 5’-O-DMT, 2’-O-TOM protected phosphoramidite building blocks. 

 

In contrast to tBDMS group, the 2'-O-TOM group possesses a sterically non-demanding 

formacetal function preventing any migration or removal during synthesis (Muller et al. 2004) 

and appears particularly efficient for preparation of long RNA-sequences under DNA 

coupling conditions (Wu and Pitsch 1998) (Pitsch et al. 1999) (Pitsch et al. 2001). Moreover, 

its high chemical stability towards a multitude of reagents and reaction conditions (Figure 

I.2.) offers the unique possibility to carry out base transformations in its presence allowing 
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design of novel and efficient syntheses of 2'-O-TOM protected ribonucleoside 

phosphoramidites of modified nucleobases (Berry et al. 2004) (Hoebartner et al. 2005) (Wu 

and Pitsch 1998) (Wenter and Pitsch 2003). 
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Figure I.2. A few examples of sugar- and base-transformations with 2’-O-TOM protected ribonucleosides. a) 1. 
Et3N, CuI, MeOH, reflux (Berry et al. 2004). b) 1. NaBH4, CH3SeSeCH3, THF, 20° (Hoebartner et al. 2005). c) 
1. 1-aza-18-crown, Bu4NI, (iPr)2NEt, EtOH, 75° (Wu and Pitsch 1998). d) 1. NaNO2, AcOH, H2O, 20° 
(Wenter and Pitsch 2003). e) 1. Ac2O, pyridine, 100°; 2. NaOH, THF, MeOH, H2O, 4°; 3. Raney-Ni, THF, 
MeOH, H2O, 80° (Wenter and Pitsch 2003). 
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I.1.3. Aims of the project 

During their biosynthesis, tRNAs undergo different levels of processing which mainly 

consists in the introduction of modified nucleosides (up to 25%) by tRNA-modifying 

enzymes. This biosynthetic step is so important that E.coli devotes about 1% of its genom in 

coding such enzymes (Björk 1995). Their absence within tRNAs has widespread 

consequences including incorrect folding (Helm et al. 1998), frameshifting events (Liu et al. 

1997) (Wang et al. 2001) (Kowal et al. 2001) and mis-aminoacylation due to reduction of 

proper interactions with the aminoacyl-tRNA-synthetases (Connolly et al. 2004). For an 

exhaustive study of their function, it would be necessary to incorporate one or several 

modifications (natural or not) at selected positions of tRNAs (Nobles et al. 2002). Apart from 

a pioneering synthesis of the tRNAAla from yeast, containing m5U, Ψ and D reported in 1992 

(Gasparutto et al. 1992) and the enzymatic incorporation of a single m1A into a tRNA 

transcript (Helm et al. 1999), no other attempts to prepare such compounds have been 

reported. Moreover, these syntheses contain only few modifications in comparison to most of 

the tRNAs found in Nature which contain modified nucleosides in an extent of up to 25% 

(Grosjean and Benne 1998). The preparation of such extensively modified full-length tRNA 

sequences, containing several modified nucleotides, still represents a major challenge. Some 

of the 80 different known modifications (Björk 1995) (Sprinzl et al. 1998) have been 

incorporated into short (< 20 mer) model RNA sequences (D (Dalluge et al. 1996), m1G, 

m2
2G, m2G, m

1
I , m3U, m4C, m6A, m6

2A (Höbartner et al. 2003), m1A (Mikhailov et al. 

2002), I (Green et al. 1991), ψ (Gasparutto et al. 1992) (Chui et al. 2002a), m3ψ (Chui et al. 

2002b), s4U (Kumar and Davis 1997), mcm5U (Bajii and Davis 2000), mcm5s2U (Bajii and 

Davis 2000), s2U (Agris et al. 1995), mnm5U (Agris et al. 1995), i6A (Kierzek and Kierzek 

2003), ms2i6A (Kierzek and Kierzek 2003), mnm5s2U (Sundaram et al. 2000) and t6A 

(Sundaram et al. 2000) (Boudou et al. 2000)), and it was established that they exhibit unique 

chemical properties requiring an adaptation of protecting groups and deprotection conditions 

for their introduction. Most of these modifications were introduced as the corresponding 2’-O-
tBDMS protected phosphoramidites. In order to profit from the advantages of the 2’-O-TOM 
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based RNA chemistry we prepared the 5’-O-DMT, 2’-O-TOM protected phosphoramidite 

building blocks of the most encountered modified nucleosides of the tRNA (Figure I.18.). In 

the following, the nucleosides are presented in two main categories, by distinguishing the 

modifications found at the anticodon loop from other tRNA modifications. The chemical 

syntheses of the nucleosides are also presented in the context of their biosynthesis because 

often the strategy for preparing them is the same.   

 

I.2. Modified non-anticodon purines  

 I.2.1. Introduction 

The purines of the stem contribute to the structuration of the tRNA (Söll and RajBhandary 

1995) (Grosjean and Benne 1998) by favoring or preventing some base pairing. Theoretically 

investigated for natural or artificial methylated nucleosides (Micura et al. 2001), these 

properties have been recently highlighted with the m1A nucleoside which appeared essential 

for the proper and functional folding of human mitochondrial tRNALys (Helm et al. 1999).  

 

 I.2.2. Methylated guanosines m2G, m2
2G  

I.2.2.1. Biosynthesis 

Among the methylated purines, we find m2
2G which is present at position 26 in some 

eukaryotic tRNAs. The isolation of the related modifying enzyme from yeast has permitted to 

investigate the editing mechanism and to identify a stepwise process where the two 

methylations take place within a unique protein (Ellis 1986). This observation has also been 

confirmed by purification of a G26 methyltransferase from T. pyriformis which was found to 

have both monomethylating and dimethylating activity (Reinhart 1986). Like with other 

methylating enzymes, the cofactor employed as electrophilic methyl group donor is 

adenosylmethionine (AdoMet, SAM) (Figure I.3.). This observation suggests that the process 

takes place upon deprotonation of the nitrogen and subsequent nucleophilic attack, but the 

mechanistic details remain unknown. Nevertheless, the G11-C25 and C10-G24 base pairs 

have been identified as the main recognition elements (Edqvist 1992, 1994). Furthermore, it 
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has been suggested that other structural features are required to ensure the favourable 

orientation of G26 to be recognized by the methyltransferase. The genes related to the 

methylation of guanosine have been well identified and should soon allow new insights into 

this process (Armengaud et al. 2004). 
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Figure I.3. Structure of S-Adenosylmethionine (AdoMet, SAM).  

 

I.2.2.2. Synthesis 

The m2G and m2
2G nucleosides have been already incorporated into RNA sequences 

as its 2'-O-TOM/O-C(6) nitrophenylethyl protected phosphoramidite building block. They 

have been prepared by nucleophilic aromatic substitution reaction of a protected 2-

fluoroinosine derivative with the appropriate amine, MeNH2 for m2G and Me2NH for m2
2G, 

respectively (Höbartner et al. 2003). In contrast, we introduced the methyl group into the 

protected guanosine derivative 1, by adopting a one-pot method developed by Sekine and 

Satoh. First, the nucleoside 1 in Py was treated with Me3SiCl (→ silylation of O-C(6) and O-

C(3')), and then with 1,3-benzodithiozolium tetrafluoroborate (Sekine and Satoh 1991). The 

resulting N2-benzodithiol-2-yl derivative was filtered on silica gel and treated with 

(Me3Si)3SiH (Ballestri et al. 1991) (Ryu et al. 1997) (Apeloig and Nakash 1994) 

(Chatgilialoglu 1992) /2,2’-azobisisobutyronitrile (AIBN) in refluxing benzene (→ 2, not 

isolated)
1
). Finally, the remaining Me3Si-group of 2 was removed with NH3 in MeOH and the 

nucleoside 3 was obtained in a yield of 57% (based on 1, (Scheme I.3.)). The protected N2,N2-

   1
) This reduction was originally carried out with Bu3SnH/AIBN according to (Sekine and Satoh 1991); 

however, it was difficult to separate the tin-containing byproducts from 26 and 27. 
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dimethylguanosine nucleoside 5 was prepared from the crude N2-monomethylated 

intermediate 2 by repeating the sequential treatment with 1,3-benzodithiozolium 

tetrafluoroborate (Sekine and Satoh 1991) and (Me3Si)3SiH/AIBN (→ 4, not isolated). After 

cleavage of the Me3Si-group with NH3 in MeOH, the fully protected nucleoside 5 was 

obtained in a yield of 50% (from 1, (Scheme I.3.)). 
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Scheme I.3. a) 1. Me3SiCl, pyridine, 20°; then 1,3-benzodithiolylium tetrafluoroborate; 2. (Me3Si)3SiH, 
benzene, reflux. b) NH3, MeOH, THF, 20°. 1 was prepared according to (Stutz et al. 2000). 

  

 

I.2.3. Methylated adenosine m1A 

I.2.3.1. Biosynthesis 

This modified nucleoside is present in about 25% of all eukaryotic tRNAs, mostly at position 

58 and, in a lesser extent, at position 14 in the D-loop and at position 9 of some mitochondrial 
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tRNAs (Helm et al. 1999). Among the different m1A methyltransferases, the one related to 

m1A58 has been well characterized and it has been established that the TΨC arm constituted 

the main determinant of the recognition (Grosjean et al. 1996b). Although no experiment has 

been carried out in order to reveal mechanistic details, the process should not differ from 

those of other methyltransferases where a deprotonation activates the attacking nitrogen.  

 

I.2.3.2. Synthesis 

The corresponding 2'-O-tBDMS protected phosphoramidite has been recently prepared by 

stepwise introduction (1. chloroacetyl, 2. (MeO)2Tr, 3. tBDMS) of all protecting groups into 

1-methyladenosine (Mikhailov et al. 2002). In contrast, we first prepared the N(1)-methylated, 

2'-O-TOM protected adenosine derivative 7 by treatment of the easily accessible nucleoside 6 

(Stutz et al. 2000) with MeI in DMF (98% yield). The chloroacetyl protecting group was then 

introduced with (ClCH2CO)2O in Py and the fully protected 1-methyladenosine nucleoside 8 

was obtained in a yield of 64% after cleavage of the concomitantly formed 3'-O-chloroacetyl 

ester with NH3 in MeOH according to (Mikhailov et al. 2002) (Scheme I.4.). 
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Scheme I.4. a) MeI, DMF, 20°. b) 1. (ClCH2CO)2O, (CH2Cl)2, pyridine, –15°; 2. NH3, MeOH, –15°. 6 was 
prepared according to (Stutz et al. 2000). 

 

I.3. Modified non-anticodon pyrimidines   

 I.3.1. Introduction 

Analogously to the purines of the stem, modified pyrimidines contribute to the structuration 

of the tRNA or serve as markers for editing enzymes (Söll and RajBhandary 1995) (Grosjean 
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and Benne 1998). In contrast to all other modified nucleosides, the dihydrouridine (D) does 

not display a flat aromatic π-system, but a saturated C(5)-C(6) bond. Thereby, it prevents 

stacking interactions as revealed by NMR investigation of a short synthetic D-containing 

oligomer (Dalluge et al. 1996) 
2
). 

 

 I.3.2. Ribothymidine m5U (= rT) 

I.3.2.1. Biosynthesis 

5-Methyluridine (ribothymidine, rT) is one of the most conserved modified nucleosides found 

in tRNAs and is usually located at position 54 in the TψC loop (Söll and RajBhandary 1995) 

(Grosjean and Benne 1998). This modification is introduced by methylation of uridine with 

the (m5U54)methyltransferase (EC 2.1.1.35). Since the sequence of the enzyme is similar to 

the enzyme thymidylate synthase (EC 2.1.1.45), which generates (d)TMP from (d)UMP, the 

mechanism of modification has been simply extrapolated (Santi and Hardy 1987). Thereby, a 

cysteine residue attacks the C6, generating an enolate and a nucleophilic C5, which 

subsequently allows reaction with an electrophilic methyl group. 

Interestingly, the nature of the methylating reagent depends on the organism. It is often 

AdoMet but can also be 5,10-methylenetetrahydrofolate (Delk et al. 1980). Furthermore, 

although the identification elements involved in the process depend on the organism, a same 

dependence is observed for the nature of identity elements involved in the editing process. 

Whereas in yeast some specific nucleobases have been identified, in E.coli no such sequence 

specificity has been observed and the interaction depends on the structure of the T arm 

(Becker et al. 1997).  

 

I.3.2.2. Synthesis 

We prepared the 2'-O-TOM protected 5-methyluridine 13 from the parent nucleoside 

in two steps, by first introducing the dimethoxytrityl-group with (MeO)2Tr-Cl in Py 

   2
) Revealed by a NMR investigation of a short synthetic D-containing oligomer, which was prepared from the 

2'-O-tBDMS protected phosphoramidite (Flockerzi et al. 1981).  
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according to (Gasparutto et al. 1992), followed by alkylation of the product 9 with TOM-Cl 

under standard conditions (Pitsch et al. 2001) (→ 10, 38% yield, (Scheme I.5.)). 
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Scheme I.5. a) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 20°; then TOM-Cl, 20°. 9 was prepared according to (Gasparutto 
et al. 1992). 

 

 I.3.3. Dihydrouridine D  

I.3.3.1. Biosynthesis 

Widely distributed among eubacteria and eukaryotes, and less among archeaebacteria, 

the dihydrouridine is found at different positions within tRNAs, such as 16, 17, 20, 20a (rarely 

47) (Dalluge et al. 1996). Known for many years and so often encountered that it gave the 

name to the so-called D-loop, the exact role and the biosynthesis of this nucleoside remain 

obscure. After its incorporation as nucleoside monophosphate by E.coli RNA polymerase 

(Söll and RajBhandary 1995), an eventual formation during transcription has been suggested, 

but it appeared soon more reasonable to imagine a “simple enzymatic reduction of the 5,6-

double bond” (Grosjean and Benne 1998). This hypothesis has been recently confirmed by 

isolation of the four specific yeast dihydrouridine synthases, but no further investigations have 

been carried out yet for elucidation of mechanistic aspects (Xing et al. 2004). 

 

I.3.3.2. Synthesis 

We prepared the protected nucleoside 11 in analogy to the reported approach (Flockerzi et al. 

1981), consisting in hydrogenation of uridine with Rh/H2, followed by introduction of the 
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(MeO)2Tr-group. The 2'-O-TOM group was introduced under standard conditions (Pitsch et 

al. 2001) (→ 12, 47% yield) (Scheme I.6.)
3
). 
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Scheme I.6. a) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 20°; then TOM-Cl, 80°. 11 was prepared according to (Flockerzi 
et al. 1981). 

 

 

 I.3.4. 5-Methylcytidine m5C  

I.3.4.1. Biosynthesis 

In analogy to the biosynthesis of m5U, the formation of m5C occurs by methylation of 

cytidine. A m5C40 methyltransferase from human Hela cells has been purified and 

characterized (Keith et al. 1980). The identification of its sequence specificity in yeast 

suggests that this modification takes place at the level of the precursor tRNA (intron 

containing tRNA) (Jiang et al. 1997).  

 

I.3.4.2. Synthesis 

We prepared the corresponding 2'-O-TOM protected nucleoside 13 by adapting one of 

our recently reported, optimized base-transformation methods (Wenter and Pitsch 2003). The 

5-methyluridine nucleoside 10 (see Scheme 1.5.) was first acetylated at the 3'-OH-group with 

Ac2O in Py, then treated with (ClC6H4O)P(O)Cl2, 1H-1,2,4-triazole and iPr2NEt in MeCN (→ 

formation of the 4-triazolide derivative), and finally with NH3 in dioxane/H2O; after 

   3
) Hydrogenation of 2'-O-TOM protected uridine provided the corresponding dihydrouridine derivative in 

excellent yield. This reaction, however, could not be carried out in the presence of a 5'-O-(MeO)2Tr-group. 
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extraction and deacetylation with NaOMe in MeOH, the cytidine nucleoside 13 was isolated 

in a yield of 90%. It was finally transformed into its N(4)-acetylated derivative 14 by selective 

N-acetylation with Ac2O in DMF and isolated in a yield of 90% (Scheme I.7.). 
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Scheme I.7. a) 1. Ac2O, DMAP, pyridine, 20°; 2. 1H-1,2,4-triazole, 4-chlorophenyl phosphorodichloridate, 
iPr2NEt, MeCN, 20°; 3. NH3, dioxane, MeCN, H2O, 20°; 4. NaOH, THF, MeOH, H2O, 4°. b) Ac2O, DMF, 
20°. 

  I.3.5. Pseudouridine Ψ  

I.3.5.1. Biosynthesis 

For a long time, the study of modified ribonucleosides was limited to their most represented 

forms due to the great quantities of tRNAs required for their isolation. Consequently, the first 

modified nucleoside to be identified has been the most abundant pseudouridine, which 

represents almost 2% of the total RNA (Davis and Allen 1957). Present in all variety of RNAs 

(rRNA,  snRNA, snoRNA, tRNA), pseudouridine (ψ), is highly conserved at position 55 in 

most of the tRNAs in the so-called TψC loop and is also found at other positions where it 

appears to influence the three-dimensional structure, cell viability or aminoacylation (Arnez et 

al. 1994) (Davis and Poulter 1991) (Harrigton et al. 1993). This 5-ribosyl isomer of uridine is 

unique by having a C-C, rather than the usual N-C glycosyl bond that links base and sugar 

(Charette and Gray 2000). This feature confers different hydrogen bonding capacities to it and 

influences the conformational preferences. Whereas the free nucleotide shows no real 

preferential conformation (Davis 1998) (Neumann et al. 1980) (Davis et al. 1998a), NMR and 

X-ray experiments have demonstrated that it exhibits an extraordinary conformational rigidity 
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in RNA sequences due to the coordination of a water molecule between N1-H and the 5’-

phosphate group (Arnez et al. 1994) (Auffinger and Westhof 1998). This feature improves 

base stacking interactions and contributes significantly to the structuration of RNAs 

(Neumann et al. 1980) (Davis et al. 1998a) (Durant and Davis 1999) (Davis 1999). Among 

the modified nucleosides of the tRNAs, pseudouridine possesses the unique feature to be also 

present in the middle of the anticodon (position 35) where it is supposed to reinforce the base 

pairing strength (Johnson and Albeson 1983).  

In the tRNAs, the biosynthesis of this modified nucleoside by pseudouridine synthase occurs 

by recognition of the target-uridine. The isomerization of uridine to pseudouridine requires no 

ATP or coenzyme and seems to be controlled by only one aspartic acid residue in the active 

site. However, the mechanistic details of this intriguing base transformation are still heavily 

debated (Mueller 2002) (Spedaliere et al. 2004). 

 

I.3.5.2. Synthesis 

Pseudouridine is still exclusively obtained by isolation from natural sources resulting 

in a prohibitive price of approximately 2000 CHF per gram. Consequently, some attention 

was given to its chemical preparation in a multigram scale, but the stereoselective formation 

of C-nucleosides is still a difficult task. A good process, involving the coupling of an 

iodinated pyrimidine with a suitably protected ribonolactone was presented by Grohar and 

Chow (Grohar and Chow 1999). Their approach gives a 1:1 mixture of α / β anomers in 51% 

yield. 

We have now investigated alternative synthetic approaches to this nucleoside. Specific 

attention was given to the stereoselective formation of the N-glycosidic bond. Our synthetic 

plan involved a stereoselective reduction of the acyclic ketone, obtained by coupling the 

lithiated, protected base with a suitably protected ribonolactone derivative. The cyclisation 

could then be carried out under Mitsunobu conditions (Figure I.1.).  
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Figure I.1. Retrosynthethic analysis for preparation of the pseudouridine nucleoside. 

 

While we were investigating this pathway, a similar synthesis was published (Hanessian and 

Machaalani 2003). Importantly, there it was described that tert-butoxy protecting groups have 

to be employed for the introduction of the base, since the usually employed methoxy 

protecting groups could not be removed without anomerization of the product. All the 

reactions were incompletely described and usually, in our hands much lower yields were 

obtained than reported. Therefore all steps required for the preparation of the pseudouridine 

nucleoside had to be optimized (Scheme I.8.). The 2,4-dichloro-5-iodopyrimidine 15 (93% 

yield) was prepared from 5-iodouridine and POCl3 according to (Pichat et al. 1971), but 

purified by chromatography. No exact description for the preparation of the di-tert-butyl 

derivative 16 was available, but it could be prepared from 15 by chloride substitution with 

sodium tert-butanolate in tert-BuOH (50% yield). The ketal-protected ribonolactone 

derivative 17 was prepared from ribonolactone/2,2-dimethoxypropane/TsOH according to 

(Brown 1968), but only 40% yield were obtained (98% yield reported in (Hanessian and R. 

Machaalani 2003)). In analogy to the preparation of the 2,4-dimethoxy analogue (Grohar and 

Chow 1999), the protected base 16 was lithiated with tert-BuLi in THF and then added to the 

sugar-derivative 17 (89% yield). Under our optimized conditions, this hemiketal-intermediate 
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18 was then reduced to the corresponding alcohol 19 with RedAl (sodium 

bis(methoxyethoxy)aluminium hydride) in CH2Cl2 at –78° (85% yield). This reagent provided 

a fully stereoselective reduction of 18 and was more convenient to handle than the reported L-

Selectride/ZnCl2 complex (Hanessian and Machaalani 2003). Under Mitsunobu conditions, 

smooth cyclization of 19 to the C-nucleoside 20 occurred (87% yield). Finally, the free 

pseudouridine was obtained by cleavage of all protecting groups with AcOH/H2O. This 

reaction was quantitative and the product 21 was not purified, but directly subjected to the 

next reaction (Scheme I.9). 

O

O

O

O

17 (40%)

O

O d)

N N

O

I
O

O

O

O

O

18 (89%)

O

OH

NN

O

O

OH

O

O

O

19 (85%)

O

OH

NN

O

O

HO

O

O

O

20 (87%)

O NN

O

O

e)

g)O

HO

HO

OH

21 (not purif.)

NHHN

O

O

f)

c)O

HO

HO

OH

O

N N

Cl

I
Cl

a)HN NH

O

I
O

16 (50%)15 (93%)

b)

 
Scheme I.8. a) Cl3P=O, Et2NPh, reflux. b) tBuOK, tBuOH, 20°. c) 2,2-dimethoxypropane, TsOH, Na2SO4, 
20°. d) 2, tBuLi, THF, -78°; then 3, THF, -78°. e) RedAl, CH2Cl2, -78°; then 4, -78° - 4°. f) PPh3, 
diisopropylazodicarboxylate, THF, 4°. g) AcOH, H2O, 50°. 
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In the literature, contradictory statements about base protecting groups required for 

introduction of this nucleoside into RNA sequences have been reported. The phosphoramidite 

with an unprotected base has been employed for the preparation of the fully modified E.coli 
AlatRNA (Gasparutto et al. 1992), but other authors underlined the necessity to protect the 

nucleobase (Bergmann and Pfleiderer 1994) (Pieles et al. 1994). This conclusion seems to be 

justified upon the recent use of acrylonitrile as derivatization reagent for detection of minor 

nucleosides, such as pseudouridine by MS analysis (Mengel-Jørgensen and Kirpekar 2002). 

Acrylonitrile, also generated during phosphate deprotection, results in irreversible N(1) 

alkylation of pseudouridine (Scheme I.9.). Therefore, we decided to protect the N(1) and N(3) 

by a suitable protecting group. 
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Scheme I.9. a) MeNH2, EtOH, H2O, 20°. 
 

In a first approach, two fluoride-labile TOM groups were introduced (Scheme I.10.). The free 

pseudouridine nucleoside 21 was first 5'-O-dimethoxytritylated with (MeO)2TrCl  in Py (→ 

22, 76% yield) and then 2',3'-di-O-trimethylsilylated with Me3SiCl in Py (→ 23, 92% yield). 

Alkylation of 23 with TOM-Cl/K2CO3 in DMF provided the N(1),N(3) di-O-TOM derivative 

24 in 93% yield. The Me3Si-groups of 24 were then removed with NH3 in MeOH (→ 25) and 

without purification of this intermediate, the 2'-O-TOM group was introduced under standard 

conditions (→ 26, 34% yield from 24). Unfortunately, the corresponding phosphoramidite 

could not be efficiently introduced into RNA sequences. Most probably, the two additional 

TOM-groups at the nucleobase moiety create too much steric hindrance.  

 43



O

HO

HO

OH

O

HO

(MeO)2TrO

OH

O

Me3SiO

(MeO)2TrO

OSiMe3

22 23 (76%) 24 (92%)

a) b)

NHHN

O

O

NHHN

O

O

NHHN

O

O

RO

(MeO)2TrO

OR

NN

O

OiPr3SiO

e)

c)

O

HO

(MeO)2TrO

O

NN

O

OiPr3SiO

27 (34% from 24)

OSiiPr3

OSiiPr3OSiiPr3

O

d) 25 R = Me3Si (93%)
26 R = H (not purif.)  

Scheme I.10. a) (MeO)2TrCl, pyridine, 20°. b) Me3SiCl, pyridine, 4°. c) K2CO3, DMF, 20°; then TOM-Cl, 
20°. d) NH3, MeOH, 20°. e) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 20°; then TOM-Cl, 65°.    

 

Consequently, we turned to the related POM (pivaloyloxymethyl) protecting group, which has 

been successfully employed for the preparation of pseudouridine-containing RNA sequences 

from the corresponding 2’-O-Fpmp (=2'-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl]) 

protected phosphoramidites (Pieles et al. 1994) (Scheme I.11.). Incubation of the intermediate 

23 with K2CO3 and POM-Cl in DMF offered the fully protected derivative 27.  Subsequent 

removal of the Me3Si-groups with 1M of TBAF in THF for 70 sec, according to (Pieles et al. 

1994) gave the diol 28 in 90% yield (from 23). Alkylation of 28 with POM-Cl under standard 

conditions (Pitsch et al. 2001) gave the pseudouridine phosphoramidite precursor 29 in 25% 

yield. 

 

 

 44



O

Me3SiO

(MeO)2TrO

OSiMe3

23

NHHN

O

O

O

Me3SiO

(MeO)2TrO

OSiMe3

NN

O

OO

O

O

27

O

HO

(MeO)2TrO

OH

NN

O

OO

O

O

28 (90% from 24)

O

HO

(MeO)2TrO

O

NN

O

OO

O

O

29 (25%)

OSiiPr3

O

OO

a)

b)

c)

 
Scheme I.11. a) K2CO3, DMF, 20°; then pom-Cl, 20°; b) Bu4NF, THF, 20°. c) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 
20°; then TOM-Cl, 65°. 
 

I.4. Modified purines of the anticodon  

 I.4.1. Introduction 

The position 37 of the anticodon loop is always occupied by an unmodified or 

modified purine such as m1I, m1G, i6A, t6A, m6A, imG. Some of the modifications have been 

demonstrated to influence the codon-anticodon recognition, probably by a stronger shielding 

from water and their extended structure (Söll and RajBhandary 1995) (Grosjean and Benne 

1998). This ability is also influenced by the hydrophobic character of the nucleobase which is 

increased by the presence of alkyl substituents, such as methyl groups. Furthermore, for the 

guanosine-derived nucleoside m1G, the methyl group has been shown to prevent any base 

pairing which could result in quadruplet reading, as observed with an unmodified guanosine 

at this position (Björk et al. 1989). The hypomodification of the nucleobase at position 37 has 

 45



often severe consequences on the tRNA reading fidelity. This point will further be discussed 

in more details in Chapter IV. 

  

I.4.2. 1-Methylinosine m1I 

I.4.2.1. Biosynthesis 

The m1I nucleoside is exclusively found at position 37 of eukaryotic AlatRNA and at 

position 57 of several archaebacterial tRNAs (Sprinzl et al. 1998). The observed difference of 

position is also correlated with the mechanism of formation by two distinctive biosynthetic 

pathways. Whereas in eukaryotes the methylation follows the deamination step, in 

archaebacteria, the methylation apparently precedes the deamination (Grosjean 1995a and 

1996a).  

 

I.4.2.2. Synthesis 

 The 2'-O-TOM protected phosphoramidite of this nucleoside, has already been 

prepared by introduction of the TOM group into the corresponding nucleoside (Höbartner et 

al. 2003). As an alternative to this procedure, we efficiently methylated the 2'-O-TOM and 5'-

O-(MeO)2Tr protected inosine derivative 31 with MeI/K2CO3 in DMF (→ 32, 98%) (Scheme 

I.12.). The building block 31 was prepared in 67% yield from the 2'-O-TOM protected 

analogue 30, previously synthesized as a common intermediate for the synthesis of 15N-

labeled adenosine and guanosine phosphoramidites by nucleobase transformation reactions 

(Wenter and Pitsch 2003).  
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Scheme I.12. a) 1. NH3, MeOH, 20°; 2. (MeO)2TrCl, pyridine, 20°. b) 1. K2CO3, DMF, 20°; then MeI, –15°. 
30 was prepared according to (Wenter and Pitsch 2003). 

  

 I.4.3. N6-Isopentenyladenosine i6A 

I.4.3.1. Biosynthesis 

This modified nucleoside, present at position 37 of tRNAs, interestingly acts also as a 

growth factor (cytokinin) in plants (Skoog and Armstrong 1970). This double role is an 

unique feature amongst the nucleosides present in tRNAs. The role of the isopentenyl moiety 

in the decoding properties has been extensively investigated and is discussed in the Chapter 

IV. The i6A nucleoside has been recently incorporated enzymatically into tRNAs for studying 

anticodon stem structuration (Cabello-Villegas et al. 2002), and chemically into short RNA-

sequences for thermodynamical investigations (Kierzek and Kierzek 2001) (Kierzek and 

Kierzek 2003). By these studies, it has been demonstrated to contribute significantly to the 

stabilization of adjacent base pairs and to the maintenance of an open loop structure.    
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I.4.3.2. Synthesis 

The reported methodology involved the preparation of a phosphoramidite building 

block with a reactive, "convertible" purine derivative, which was converted into the N6-

isopentenyl adenosine upon treatment of the immobilized RNA sequence with 

isopentenylamine
 
(Scheme I.13.).  
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Scheme I.13. a) 1. Isopent-2-enylamine.HCl, Et3N, pyridine, 20°. b) 1. Me2NH, EtOH, 20°; 2. (MeO)2TrCl, 
pyridine, 20°. c) 1. MeNH2, EtOH, 20°; 2. (MeO)2TrCl, pyridine, 20°. 33 was prepared according to (Wenter 
and Pitsch 2003). 
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We recently reported an optimized method for the preparation of the 2'-O-TOM 

protected, 6-nitrotriazole-substituted adenosine-derivative 33 (Wenter and Pitsch 2003), 

which served as convenient precursor for the N6-alkylated adenosine derivatives 35, 36 and 

37. By treatment of 33 with isopentenylamine in Py/Et3N, the corresponding N6-isopentenyl 

derivative 34 was obtained in a yield of 89%. Deacetylation of this intermediate with NH3 in 

MeOH, followed by evaporation and dimethoxytritylation with (MeO)2Tr-Cl in Py gave the 

fully protected N6-isopentenyladenosine 37 in 60% yield. 

 

 I.4.4. Methylated adenosines m6A, m6
2A 

I.4.4.1. Biosynthesis 

Whereas m6A is found exclusively in bacterial tRNAs, m6
2A occurs at the 5'-terminal 

cap sequence of some mRNAs and in the antibiotic puromycine. The biosynthesis of these 

two adenosine derivatives should very likely follow the general methylation process with 

AdoMet as observed for m1G and m1A (Grosjean and Benne 1998).  

 

I.4.4.2. Synthesis 

In analogy to the preparation of 37, we treated the 2'-O-TOM protected purine-

derivative 33 with Me2NH in EtOH, followed by introduction of the (MeO)2Tr-group under 

standard conditions and obtained 35 in a yield of 80% (Scheme I.13.). 

Likewise to i6A and m6
2A, the 2'-O- TOM and 5'-O-(MeO)2Tr protected N6-methyladenosine 

36 was obtained again from the intermediate 33, upon treatment with MeNH2 in EtOH (65 % 

yield, Scheme I.13.). 

 

I.4.5. 1-Methylguanosine m1G 

I.4.5.1. Biosynthesis  

The m1G modification is present exclusively at position 37 of tRNAs and is 

interestingly also the precursor of the wybutosine nucleoside (Droogmans and Grosjean 

1987). During its biosynthesis, the parent guanosine is methylated by AdoMet after 
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deprotonation of the H-N(1) position (Byström et al. 1983) (Hjalmarsson et al. 1983). The 

main structural requirements for recognition of the corresponding tRNA by the enzyme 

tRNA(m1G37)methylransferase is the overall-structure and the target nucleotide G37; the 

nucleoside at position 38 contributes not to the recognition. 

 

I.4.5.2. Synthesis 

A multi-step synthesis of the 2'-O-TOM and N-acetyl protected 1-methylguanosine 

phosphoramidite has been reported (Höbartner et al. 2003) but our previous use of 

unprotected guanosine phosphoramidite (Stutz et al. 2000) suggested that the N-acetyl 

protecting goup was not necessary. Consequently, we prepared the corresponding nucleoside 

38 directly from the readily available intermediate 1 (Stutz et al. 2000) by treatment with 

MeI/K2CO3 in DMF at –15° (63% yield, Scheme I.14)
4
). 
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Scheme I.14. a) K2CO3, DMF, 20°; then MeI, –15°. 1 was prepared according to (Stutz et al. 2000). 
 

I.4.6. N-[(9-β-D-ribofuranosyl-9H-purin-6-yl)carbamoyl]threonine t6A 

I.4.6.1. Biosynthesis 

N-[(9β-D-ribofuranosyl-9H-purin-6-yl)carbamoyl)]threonine or so called t6A, is one of 

the most extensively modified nucleosides. Present in all phyllogenetic domains of life 

(Archaea, Bacteria and Eukarya (Söll et al. 1995) (Sprinzl et al. 1998)), its abundance has 
   4
) This modified nucleoside was already incorporated by employing a corresponding N(2)-acetylated buidling 

block. We found, however that this protecting group is not required, since the N(2)-position of guanosine 
derivatives is inert under standard coupling conditions (see also (Stutz et al. 2000) for the incorporation of the 
parent N(2)-unprotected guanosine phosphoramidite into RNA sequences). 
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aroused several biological investigations (Curran 1998) which permitted to describe its 

biosynthesis (Chheda et al. 1972) (Powers and Peterkofsky 1972) and to identify the sources 

of its two starting materials. The threonyl group originates from free L-threonine (Chheda et 

al. 1972) (Powers et al. 1972) and the carbamoyl moiety originates from HCO3
- . 

Furthermore, ATP and Mg2+ are required for its incorporation (Elkins et al. 1974). A 

mechanism involving all these components has been proposed, in which the initiating step 

would be the formation of an ADP-enzyme-carbamoylphosphate complex. The adenosine 37 

induces cleavage of this complex resulting in loss of inorganic phosphate and formation of an 

N6-carbamoyladenosine which is again phosphorylated by ATP. Finally, L-threonine is 

introduced into this active intermediate (Garcia et al. 1998). The enzyme responsible for the 

incorporation of the amino acid tolerates other structurally similar amino acids and 

correspondingly modified adenosines containing glycine (g6A) and hydroxynorvalyl (hn6A) 

have been detected (Elkins and Keller 1974).  

 

I.4.6.2. Synthesis 

 The corresponding 2'-O-tBDMS protected phosphoramidite has been prepared already 

twice (with different protecting groups for the threonine moiety), by first adding the protected 

amino acid derivative to an activated N6-carbamoyl- (Sundaram et al. 2000) or a N6-

isocyanato- (Boudou et al. 2000) adenosine, respectively, followed by stepwise introduction 

of the 5'-O-(MeO)2Tr and the 2'-O-tBDMS protecting group. In 1999, we have introduced a 

method for the preparation of N-carbamoylated nucleosides, which was applied for the 

synthesis of ribonucleosides containing photolabile (Stutz and Pitsch 1999) and fluoride labile 

(Stutz et al. 2000) nucleobase protecting groups, respectively. Meanwhile, we have further 

optimized this method, which now allows the straightforward synthesis of the nucleoside 41 

from the adenosine derivative 39. Acetylation of the 3'-O-position of 39 with Ac2O in Py gave 

the derivative 40 in a yield of 88%. This intermediate was treated first with 1,1'-

carbonyldi(1,2,4-triazole) and Et3N in 1,2-dichloroethane, followed by addition of O-[(tert-

butyl)dimethylsilyl]-l-threonine 2-(4-nitrophenyl)ethyl ester (prepared according to (Boudou 
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et al. 2000)). After extraction, the remaining 3'-O-acetyl group was cleaved with NH3 in 

MeOH and the fully protected t6A-derivative 41 was isolated in a yield of 56% (based on 40, 

Scheme I.15.). 
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Scheme I.15. a) 1. Ac2O, DMAP, pyridine, 20°. b) 1,1'-Carbonylbis[1H-(1,2,4 triazole)], Et3N, (CH2Cl)2, 70°; 
2. O3-[(tert-butyl)dimethylsilyl]-l-threonine-2-(4-nitrophenyl)ethyl ester, 70°; 3. NH3, MeOH, 20°; 4. 
(MeO)2TrCl, pyridine, 20°. 39 was prepared according to (Stutz et al. 2000). 

 

I.4.7. Inosine I 

I.4.7.1. Biosynthesis  

Inosine was one of the first identified modified nucleosides occurring in tRNAs. 

Present at position 34 in some tRNAs of bacteria and eukarya, it is totally absent from 

archaea. Its biosynthesis proceeds through deamination of the related adenosine (Droogmans 

and Grosjean 1991) by tRNA (I34) deaminase, which is highly sequence dependent. 

However, other elements, responsible for the three-dimensional folding of the tRNA, are 

involved in the enzymatic recognition during this editing process (Haumont et al. 1984).  
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I.4.7.2. Synthesis 

The inosine was one of the earliest modified nucleoside to be incorporated into RNA 

sequences through its 2'-O-tBDMS protected phosphoramidite (Green et al. 1991). The 

synthesis is described in Scheme I.12. as precursor for the preparation of m1I.  

 

 

I.5. Preparation of phosphoramidites 

The protected nucleosides 3, 5, 8, 10, 12, 14, 26, 29, 32, 37, 35, 36, 38, 41 and 31 were 

finally converted with iPr2NEt / 2-cyanoethyl diisopropylphosphoramidochloridite in CH2Cl2 

into the corresponding phosphoramidites 42 - 57. However, due to a significant side-reaction 

at O-C(6), the protected inosine phosphoramidite 56 was prepared by a different method, by 

treating the nucleoside 31 with 2-cyanoethyl tetraisopropylphosphoramidite and 5-

(benzylthio)-1H-tetrazole (Wu and Pitsch 1998) (Pitsch et al. 1999) (Pitsch et al. 2001) in 

MeCN (conditions adapted from (Ji et al. 1990)). After chromatography on silica gel, these 

building blocks were isolated in yields between 50 and 98% (Scheme I.16.)5).  

 

 

 

 

 

 

 

   5
) The lower yields were obtained from small-scale reactions. High yields of phosphoramidites (>85 %) can 

usually be obtained only from reactions carried out in a scale > 0.5 mmol. Since for small-scale reactions more 
equivalents of silica gel have to be employed, the decomposition of these reactive compounds occurs more 
efficiently. 
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Scheme I.16. a) 2-Cyanoethyl diisopropylphosphoramidochloridite, iPr2NEt, CH2Cl2, 25°. b) 2-Cyanoethyl 
tetraisopropylphosphoramidite,  5-benzyl-1H-tetrazole, MeCN, 20°. 
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I.6. Conclusion 

For an exhaustive study of the role of modified nucleosides within tRNA, it is 

necessary to be able to incorporate one or several modifications at selected positions (Nobles 

et al. 2002). This can be achieved only by the preparation of synthetic oligonucleotides using 

phosphoramidite technology. For this aim, we prepared the 5’-O-DMT, 2’-O-TOM 

phosphoramidite building blocks of the most encountered modified nucleosides of tRNAs (5-

methyluridine (m5U), dihydrouridine (D), inosine (I), 1-methylinosine (m1I), N6-

methyladenosine (m6A), N6,N6-dimethyladenosine (m6
2A), N6-isopentenyladenosine (i6A), 1-

methyladenosine (m1A), N6-(1-threonylcarbamoyl)adenosine (t6A), 1-methylguanosine 

(m1G), N2-methylguanosine (m2G) and N2,N2-dimethylguanosine (m2
2G), 5-methylcytidine 

(m5C)). Their syntheses have been achieved by the development of original synthetic 

pathways, exploiting the chemical stability of the 2’-O-TOM protecting group. Although 

these synthetic approaches do not significantly reduce the number of synthetic steps for 

individual nucleosides, they offer a rapid access to a large set of modified nucleosides 

prepared from the four commercially available, canonical 2’-O-TOM building blocks. In 

many cases, the synthetic approach is quite similar to the biosynthetic pathway and the 

modification is carried out after introduction of the 2’-O-TOM group. This strategy facilitates 

considerably the preparation of these compounds, since the introduction of the 2'-O-TOM 

group often results in low yields or appears incompatible with some modified nucleosides.  

These phosphoramidite building blocks, available for the investigation of the role of 

modified nucleosides of the tRNA, could also serve for the preparation of more efficient 

suppressors tRNAs. Indeed, these compounds which carry an unnatural amino acids, are 

prepared by biologists as tRNA transcripts which exhibit a lower biological affinity. 

However, the main limitation of this methodology, which relies on the reading of STOP 

codon triplet by the ribosome machinery, is the resulting competition with the release factor 

(See Introduction) (Wang and Schultz 2005). In order to reduce this competition, several 

approaches have been envisaged such as the design of artificial base pairs. Among these base-
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pairs, the firstly designed was the isoC-isoG system for which we describe a synthesis 

(Chapter II).  

 

 



CHAPTER II “Artificial base pairs: Isocytidine-Isoguanosine” 

II.1. Introduction  

In the context of attempts to expand the genetic code, new solutions have been 

proposed for increasing the efficiency of the suppressor tRNA methodology for the 

introduction of unnatural amino acids into proteins (Wang and Schultz 2005). Thereby, some 

groups have proposed to “rewrite” the language of protein translation and to create new, 

orthogonal codon/anticodon pairs to overcome the intrinsic problems associated with the use 

of stop-anticodons, competing with release factors. These methods implied “quadruplet 

codons” by preparation of tRNA analogues with a larger anticodon loop containing four 

decoding bases (Hirao et al. 2002) or codon/anticodon pairs containing unnatural bases. The 

latter concept was early envisaged (Rich 1962), since it would create new codons that could 

be used in a very general way, even for the introduction of several unnatural amino acids into 

proteins. The first example of this strategy was demonstrated with the isoC-isoG base pair, 

which displays a new arrangement of H-bonds, but the same geometry as the C·G base pair 

(Figure II.1.) (Bain et al. 1992). This system worked effectively during the translation 

process, but nevertheless, it has never found any broad application and has been recently 

replaced by the other orthogonal pairing systems such as pyridine-2-one (y) / 2-amino-6-(2-

thienyl)purine (s) in the CUs codon / yAG anticodon or pyridine-2-one (y) / 2-amino-6-(N,N-

dimethylamino)purine (x) in the CUx codon / yAG anticodon (Figure II.2.) (Fujiwara et al. 

2001) (Hirao et al. 2002).  

The principal reason to abandon this system was the necessity to chemically modify 

both mRNAs and tRNAs, which at that time caused severe technical problems. The enzymatic 

incorporation of these modifications by the corresponding nucleoside triphosphates was 

difficult and not really satisfactory (Seela et al. 1997). However, considerable progress in the 

synthesis and ligation of relatively long RNA sequences has been achieved recently, in our 

group and elsewhere (Pitsch et al. 2005). It could therefore be possible to prepare isoG-isoC 

based orthogonal translation systems and employ them for the preparation of modified 

proteins. As an important step towards such projects, involving the preparation of 
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mRNA/tRNA pairs containing unnatural, isoC-isoG modified codons/anticodons, we have 

evaluated the synthesis of the corresponding 2'-O-TOM protected phosphoramidite building 

blocks. 

Several syntheses of these nucleosides have been reported already, but confusing and 

contradictory statements in the literature about the stability of the nucleobase protecting 

groups prompted us to reevaluate their synthesis completely (for a discussion of this subject 

see (Jurczyk et al. 1998)). 
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Figure II.1. Iso-cytidine/Isoguanosine base pair in comparison to the conventional Cytidine/Guanosine base pair 
 

 

 

R
N

N

N

N

N

N
H

N

O
R

x-y s-y

R
N

N

N

N

N

N

O
R

H

H3C CH3 H

H

H

H
S

 

Figure II.2. Unconventional xy and sy base pairs 

 

II.2. Synthesis 

II.2.1. Isocytidine 

In the RNA series, both the 2'-O-tBDMS, N2-(dialkylamino)methylidene (= N2-

dialkylformamidine) protected isocytidine (Roberts et al. 1997) (Chen et al. 2001) and 5-

methylisocytidine phosphoramidite (Strobel et al. 1994) (Strobel et al. 1996), respectively, 
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have been prepared and incorporated. The 5-methylisocytidine was systematically used in 

place of isocytidine in both DNA and RNA series in order to avoid depyrimidination during 

oligonucleotide deprotection, which was only observed in the DNA series (Jurczyk et al. 

1998). Despite these conclusions concerning the 2’-deoxyisocytidine, we prepared the related 

RNA building block isocytidine in its N2-acetyl protected form. This choice has been later 

approved by the publication of chemical preparation of an isocytidine containing RNA 

sequence (Chen et al. 2001).  

In our approach, uridine was first transformed into its cyclic derivative 57 under 

Mitsunobu conditions as reported (Vyle et al. 1998), and then ring-opened under optimized 

conditions, with MeOH in the presence of Et3N, resulting in the formation of O2-

methyluridine, which was directly transformed into its (MeO)2Tr-derivative 58 under standard 

conditions (60% yield from 57). Substitution of the MeO-group of 58 with liquid NH3 at 65° 

gave the isocytidine derivative 59. After evaporation, the N2-acetyl protecting group was 

introduced by first forming the 2',3'-di-O-di(trimethylsilyl) derivative with Me3SiCl in Py, N-

acetylation with AcCl, extractive work-up and treatment of the intermediate with Bu4NF in 

THF (→ 60, 64% yield, based on 58)
1
). Introduction of the 2'-O-TOM group into 60 was 

quite difficult, and even by employing optimized conditions (tBu2SnCl2 at 25°, instead of 

Bu2SnCl2 at 70° (Pitsch et al. 2001)) the 2'-O-TOM protected isocytidine building block 61 

could be obtained only in a low yield of 12% (Scheme II.1.). The protected nucleoside 61 was 

finally converted with iPr2NEt / 2-cyanoethyl diisopropylphosphoramidochloridite in CH2Cl2 

into the corresponding phosphoramidite 62 in a yield of 50%. 

 

 

   1
) The traditional, less efficient synthesis involves first preparation of isocytidine (treatment of 57 with NH3), 

followed by sequential protection of positions N(2), O-C(5') and O-C(2') (Jurczyk et al. 1998).  
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Scheme II.1. a) 1. Et3N, MeOH, 65°; 2. (MeO)2TrCl, pyridine, 20°. b) NH3, 65°. c) 1. Me3SiCl, pyridine, 4°; 
then AcCl, DMAP (= N,N-dimethylpyridin-4-amine), pyridine, 20°; 2. Bu4NF, THF, 20°. d) tBu2SnCl2, 
iPr2NEt, (CH2Cl)2, 20°; then TOM-Cl, 20°. e) 2-Cyanoethyl diisopropylphosphoramidochloridite, iPr2NEt, 
CH2Cl2, 20°. 57 was prepared according to (Vyle 1998). 

 

II.2.2. Isoguanosine 

Several syntheses of 2'-deoxyisoguanosine and isoguanosine phosphoramidites have 

been published (Chen et al. 2001) (Jurczyk et al. 1998) (Seela et al. 1994). Early, it has been 

demonstrated that the unprotected isoguanosine was incompatible with the phosphoramidite 

chemistry (Switzer et al. 1993). Consequently, several protecting groups have been 

investigated showing that the protection of the O2-position rendered the N6-position 

unreactive (Seela et al. 1997). The result of these studies and the difficulties encountered for 

introduction of acyl-type groups at N6-position has lead of the employment of dialkyl-

formamidine-type protecting groups in addition to N,N-diphenylcarbamoyl for O-C(2) 

(Jurczyk et al. 1998). Among the acyl-groups already investigated, the isobutyryl appeared the 

most suitable, although two different values for the half-life time of deprotection in (25% aq. 
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ammonia and EtOH 3:1 at 55°) have been reported: 40 min. (Ng et al. 1994), and 8 min. 

(Seela et al. 1997).  
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Scheme II.2. a) 1. Me3SiCl, pyridine, 4°; then DMAP, isobutyryl chloride, 20°; 2. AcOH, MeOH, 20°. b) 
Ph2N(C=O)Cl, iPr2NEt, pyridine, 20°; then (MeO)2TrCl, 20°. c) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 20°; then 
TOM-Cl, 75°. d) 2-Cyanoethyl diisopropylphosphoramidochloridite, iPr2NEt, CH2Cl2, 20°. 
 

Despite these reports, we were able to efficiently prepare N6-(isobutyryl)isoguanosine 63 by 

treating carefully dried isoguanosine (24 h at 50° and 0.01 mbar, followed by 4Å molecular 

sieves in Py for 2 h at 25°) first with 10 equiv. Me3SiCl and 1.2 equiv. isobutyryl chloride, 

followed by extraction at 4° and subsequent hydrolysis of the Me3Si-ethers with AcOH in 
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MeOH
2
) (Scheme II.2.). The crude product 63, obtained by evaporation was sufficiently pure 

(1H-NMR: > 90%) to be used directly for the next one-pot reaction sequence. First, the O-

C(2) position was protected with N,N-diphenylcarbamoyl chloride in Py, and then the O-C(5') 

position with (MeO)2TrCl (→ 64, 45% yield from isoguanosine). The 2'-O-TOM protected 

derivative 65 was then prepared under standard conditions (Pitsch et al. 2001) (23% yield, 

(Scheme II.2.)). 

Furthermore, the removal of the nucleobase protecting groups has been investigated on 

the 5’-O-DMT, O2-(N,N-diphenylcarbamoyl)-N6-isobutyrylisoguanosine. Their full cleavage 

has been achieved within 15 minutes under standard conditions (12M MeNH2 in H2O/8M 

MeNH2 in EtOH 1:1 at 20°). The phosphoramidite building block 66 was prepared as 

described above from 65, and isolated in a yield of 56%. 

 

II.3. Conclusion 

In attempts to increase the efficiency of the suppressor tRNA methodology, some 

groups have proposed to “rewrite” the language of protein translation and to create new, 

orthogonal codon/anticodon pairs containing unnatural bases. For this aim, we prepared the 

isoC and isoG phosphoramidite building blocks and resolved some of contradictory reports 

about the stability and the choice of protecting groups.  

    2
) This reaction sequence was carried out in analogy to the preparation of N6-acetyladenosine (Pitsch et al. 

2001).  



CHAPTER III “Increasing the codon-anticodon strength: the wyosine” 

III.1. Introduction. 

The poor efficiency of tRNA suppressor elaborated from tRNA transcripts has been 

mainly attributed to absence of modified nucleosides (Ashraf et al. 1999) (Ashraf et al. 2000) 

(Yarian et al. 2000) (Yarian et al. 2002) (vonAhsen et al. 1997). Beside their role for the 

proper functional folding of the tRNA, these modifications are essential for a correct frame-

reading and therefore for the accuracy of the protein biosynthesis (Agris 2004). This function 

is mainly ensured by the fine-tuning of the codon-anticodon pairing provided by the 

nucleosides at the wobble-position (position 34) and 3’-end adjacent to the anticodon 

(position 37). This latter position is occupied by a purine derivative which correlates with the 

base at position 36 (Chapter IV) (Sprinzl et al. 1998). Therefore, all tRNAs with an uridine at 

position 36 contain a modified adenosine-derivative such as t6A, ms2t6A, m6t6A, hn6A, 

ms2hn6A or g6A at position 37 and all tRNAs with an adenosine at position 36 contain at 

position 37 a i6A, ms2i6A, ms2io6A or a wyosine-derivative. All three STOP codons 

(UAG/UAA/UGA Amber/Ochre/Opal) have a uridine at the first position and the introduction 

of such modifications could be useful for the preparation of a more efficient synthetic 

suppressor tRNAs. Among the different hydrophobic derivatives present at 3’-end adjacent to 

adenosine, wyosine-related compounds are those offering the most extended surface area due 

to their tricyclic structure. All structurally related to guanosine, the different derivatives are 

exclusive for the phenylalanine tRNAs (UUU and UUC codons) and specific for one type of 

organism according to their phylogeny (Zhou et al. 2004). One is present in both eukarya and 

archaea domains (imG), three are unique to archaea (imG-14, imG2, mimG) and the four 

remaining exhibit an amino acid moiety at position C(7) (yW, o2yW, OHyW, OHyW*) and 

are related to eukarya (Figure III.1.). Although most of these nucleosides have been already 

synthesized for structural confirmation, only 4-desmethylwyosine (Ziomek et al. 2002)1) has 

been prepared as phosphoramidite building block. However, wyosine itself is labile towards 

   1
) No synthesis of the corresponding phoshoramidite building block is reported. 
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acid (t1/2 = 95 s at pH 1 and 25°) (Itaya and Harada 1984) and therefore is not fully compatible 

with the automated assembly of RNA sequences2). 
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Figure III.1. Structure of naturally occurring wyosine derivatives. 

 

   2
) Within each cycle of the assembly a detritylation reaction under acidic conditions (e.g. 3% CHCl2COOH in 

(CH2Cl)2 (Pitsch et al. 2001)) is carried out. 
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We investigated the synthetic pathways for wyosine analogues, which could also be used for 

the synthesis of two other recently isolated natural wyosine derivatives lacking the N(4)-

methyl group,  4-desmethylwyosine (imG-14, unsubstituted at C(7)) and isowyosine (imG2, 

carrying a Me-group at C(7)). In this context, we also prepared of 4-desmethyl-5-

methylwyosine, an isomer of the parent wyosine, which is known to be stable under acidic 

conditions (t1/2 = 690 h at pH 1 and 25°) (Itaya and Harada 1984) (Figure III.2.). The 

corresponding phosphoramidite building block was incorporated into a model RNA sequence 

from Moloney murine leukaemia virus (Chapter III.3.2.). This RNA sequence was able of 

self-association (“kissing interaction”) through two C·G base pairs stabilized by two adjacent 

adenines A9 (Kim and Tinoco, Jr. 2000) and in our opinion, this complex is structurally 

related to the codon-anticodon interaction formed between mRNAs and tRNAs. The 4-

desmethyl-5-methyl-wyosine phosphoramidite was successfully incorporated in place of 

adenosines A9 and the thermodynamic properties of the resulting RNA-sequences were 

characterized by NMR-spectroscopy. Unfortunately, no “kissing” formation was observed and 

hence we planned to incorporate the naturally occurring wyosine at the same position. The 

corresponding phosphoramidite was prepared (Chapter III.2.2.) and again incorporated. Since 

it can only be incorporated as last nucleotide at the 5'-end, an original enzymatic ligation 

approach for the incorporation of wyosines into RNA sequences was developed (Chapter 

III.3.2.3.). Again, the NMR analysis of the wyosine-containing RNA sequence revealed no 

“kissing" interaction. In order to investigate the origin of the stability of this interaction, a 

variety of other purine nucleotides were introduced at the same position (Chapter III.3.3.).  
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III.2. Synthesis of phosphoramidite building blocks 

 III.2.1. Synthesis of the 4-desmethyl-5-methylwyosine phosphoramidite  

Our first attempts to introduce the 2'-O-TOM group under established conditions (Pitsch et al. 

2001) into the unprotected nucleotides wyosine (Golankiewicz and Folkman 1983) (Bazin et 

al. 1987) and 4-desmethyl-5-methylwyosine (Golankiewicz and Folkman 1983) (Boryski and 

Ueda 1985) resulted in depurination and the formation of several other unidentified products 

(Scheme III.1.). Whereas addition of Bu2SnCl2 to wyosine 67 resulted in complete cleavage of 

the glycosidic bond, the reaction was compatible with the wyosine analogue but gave the 

desired product among a mixture of unidentified compounds.  
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Scheme III.1. a) Bu2SnCl2, iPr2NEt, (CH2Cl)2, 20°; then TOM-Cl, 20°. 67 was prepared according to 
(Glemarec et al. 1988), 69 according to (Bazin et al. 1987).  

 

These results may be interpreted in terms of the preferred conformation of these nucleosides, 

since it is now established that the introduction of TOM group introduction requires a syn- 

conformation of the base. And indeed, whereas the natural wyosine exhibits exclusively an 

anti-conformation, the analogue preferred the syn-conformation (Sierzputowska-Gracz 1991). 

Therefore, we decided to prepare the 5’-O-DMT, 2’-O-TOM wyosine precursor 71 from the 

5’-O-DMT, 2'-O-TOM protected guanosine 1 (Stutz et al. 2000) (Scheme III.2.).  
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Scheme III.2. a) K2CO3, KI, DMF, 20°; then bromoacetone, –15° to 20°. 1 prepared according to (Stutz et al. 
2000). 
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Under the conditions reported for the formation of 4-desmethylwyosine from guanosine 

(NaH/bromoacetone, DMF, –15° (Kasai et al. 1976)), partial decomposition of 1 was 

observed. This degradation of the product was probably a result of the difficult handling of 

NaH in terms of molar equivalents (estimated concentration in oily dispersion ca. 50%). By 

employing milder conditions (K2CO3 instead of NaH and addition of KI) this problem was 

avoided, but now an efficient N(4)-alkylation of the product 71 was observed (Scheme 

III.3.)
3
). Finally, 71 was prepared in two steps: N(1)-alkylation of 1 with 

K2CO3/bromoacetone/KI in DMF at –15°, followed by work-up and extraction gave crude 72, 

which then was transformed into the protected 4-desmethylwyosine 73 (56% yield) by 

dehydration and cyclisation with 4Å molecular sieves in CH2Cl2 at 20°.  
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Scheme III.3. a) K2CO3, KI, DMF, 20°; then bromoacetone, –15°. b) molecular sieve, CH2Cl2, 20°. 1 prepared 
according to (Stutz et al. 2000). 

All these optimizations permitted to reduce the side product formation to 4% even when the 

reaction was carried out in a 500 mg scale. N(5)-methylation of 71 (Scheme III.4.) with 

K2CO3/MeI in DMF at –20° according to (Boryski and Ueda 1985) gave 74 (90% yield), 

   3
) H-N(4) in desmethylwyosine has a pKa value of 3.24. 
                                              

 68



which was then transformed into the corresponding 4-desmethyl-5-methylwyosine 

phosphoramidite building block 75 (73% yield). 
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Scheme III.4. a) K2CO3, DMF, 20°; then MeI, –15°. b) 2-Cyanoethyl diisopropylphosphoramidochloridite, 
iPr2NEt, CH2Cl2, 20°. 

 

 III.2.2. Synthesis of the wyosine phosphoramidite 

According the planned strategy for the incorporation of a wyosine at the interior of a 

RNA sequence, a 5’-OH-wyosine-ending sequence must be obtained after deprotection, 

subsequently 5'-O-phosphorylated with a phosphokinase, such as T4 PNK and then ligated to 

the 3’-OH position of another sequence (Figure III.3.).  

 

 69



O

O

O N

N

N

N

O

O

N

R

PG

OSiiPr3

PG=suitable protecting group

O

O

HO N

N

N

N

O

OH

N

R

T4 PNK
Kinase

O

OH

O

OH

O

O

O N

N

N

N

O

OH

N

R

Base
R'

O

O

O

OH

Base
R'

T4 RNA Ligase

PO
O O

O

O N

N

N

N

O

OH

N

R

P
O

O
O

+

Deprotection

 
 

Figure III.3. Strategy for the incorporation of wyosine into RNA oligonucleotides.  

 

In order to obtain a wyosine with a free 5’-OH group (after deprotection) several protecting 

groups could be envisaged, including base-labile (e.g. FMOC and various esters) and fluoride-

labile (silyl ethers) groups. It was planned to prepare the wyosine phosphoramidite from the 

intermediate 71, already obtained in the context of the synthesis of the wyosine analogue. 

Prior to N(4)-methylation, all HO-groups had to be protected, e.g. by acetylation. 

Removal of the (MeO)2Tr group of 71 with CHCl2COOH in (CH2Cl)2 gave 76 in 85% yield. 

Treatment of this intermediate with Ac2O in pyridine, followed by selective N(4)-

deacetylation under optimized conditions (Golankiewicz and Folkman 1983), with 

MeOH/H2O/pyridine 1:1:1, resulted in the formation of the 3',5'-di-O-acetylated derivative 77 

(91% yield). Efficient formation of the protected wyosine 78 (70% yield) was achieved by 

N(5)-methylation with CH2I2/Et2Zn in Et2O at 4°, according to (Bazin et al. 1987) (Scheme 

III.5.).  
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Scheme III.5. a) 1. Dichloroacetic acid, CH2Cl2, 20°. b) 1. Ac2O, DMAP, pyridine, 20°; 2. pyridine, MeOH, 
H2O, 20°. c) CH2I2, Et2Zn, Et2O, 4°. 

 

The removal of acetyl protecting groups appeared to be a critical step since the tricyclic 

moiety is peculiarly sensitive towards acids and also towards nulceophilic bases. Under 

strongly basic conditions, the wyosine undergoes a ring opening of the base moiety (Itaya and 

Harada 1984) as confirmed by MS analysis after incubation with the conventionally used 

methylamine (Scheme III.6.). Nevertheless, a methanolic solution of ammonia gave a clean 

cleavage of the acetyl groups without any formation of ring-opened products. The final 

protection of the 5’-O-position with FMOC was unsuccessful. However, the fluoride-labile 

tert-butyldimethylsilyl protecting group could be incorporated under standard conditions, with 
tBDMS-Cl/imidazole (→ 80, 89% yield, from 78). The phosphoramidite building block 81 

was finally obtained in a yield of 70% (Scheme III.7.). 
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Scheme III.6. a) 1. MeNH2, EtOH, H2O, 20° 
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Scheme III.7. a) 1. NH3, MeOH, 20°. b) tBDMS-Cl, imidazole, DMF, CH2Cl2, 4°. c) 2-Cyanoethyl 
diisopropylphosphoramidochloridite, iPr2NEt, CH2Cl2, 20°. 

 

III.3. Incorporation of wyosine phosphoramidites into oligonucleotides  

III.3.1. Investigation of conditions for incorporation  

For avoiding the problem of incompatibility of wyosine with the acidic detritylation 

step of the automated synthesis of oligonucleotides, we designed the compatible wyosine 

analogue 4-desmethyl-5-methylwyosine. However, its incorporation required other 
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adaptations, especially for the oxidation step. The usual conditions involve iodine which is 

incompatible with wyosine and 4-desmethyl-5-methylwyosine, since it results in iodination of 

position 7 (Glemarec, 1988) or even in degradation of the tricyclic moiety under formation of 

N2-methylguanosine (Boryski and Ueda, 1985). So far, only few alternative oxidation 

reagents for automated synthesis have been investigated, and a 10% solution of tert-

butylhydroperoxide in acetonitrile (Hayakawa et al. 1986) has been the most widely employed 

alternative. It is also the most suitable for the incorporation of sensitive nucleosides such as 

thiol substituted derivatives (Sundaram et al. 2000).  

In order to investigate the compatibility of wyosine and of 4-desmethyl-5-wyosine with this 

oxidative agent, we incubated both nucleosides 74 and 80 at room temperature and monitored 

the eventual degradation by MS and TLC analysis. Even after 6 h at room temperature less 

than 5% of degradation has been observed.  

Additionally, deprotection of oligonucleotides under standard conditions requires the use of 

MeNH2 which is known to be incompatible with wyosine and 4-desmethyl-5-methyl-wyosine, 

as described above. Most of the alternatives are based on aqueous or alcoholic solutions of 

NH3, conditions which, as an example, are known to be compatible with the fragile 

dihydrouridine nucleoside (Chaix et al. 1989) (deprotection with 25% aq. NH3/EtOH 1:1 at 

55° overnight). Such conditions were also compatible with the wyosine and 4-desmethyl-5-

methyl-wyosine nucleoside, as experimentally verified.  

After establishing conditions for the incorporation and deprotection of wyosine and 4-

desmethyl-5-methyl-wyosine, a short model RNA sequence, where a π-stacking interaction 

could play an important role, was selected as first synthetic target.   

 

III.3.2. Incorporation into a model sequence 

 III.3.2.1. Introduction 

During a study on a retroviral RNA of Moloney murine leukaemia virus, C.-H. Kim 

and I. Tinoco have observed that a highly conserved GACG tetraloop S1 formed a stable 
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homodimeric “kissing complex” through the formation of only two C·G base pairs (Kim and 

Tinoco Jr. 2000) (Figure III.4.).  
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Figure III.4. The “kissing complex”.  

 
Figure III.5. NMR analysis of the imino protons of the naturally occurring sequence S1 (scale in ppm).  
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This complex is quite stable (Tm = 48°), but its stability is poorly understood (Kim and 

Tinoco Jr. 2000). However, the adenosines 3’-adjacent to the G·C base pair are essential for 

complex formation. This complex was, in our opinion, structurally related to the codon-

anticodon interaction where the adjacent hypermodified purines pay also a great contribution 

to the stability. Thus, we planned to substitute the A9 of the 18mer RNA sequence by our 

wyosine analogue 4-desmethyl-5-methylwyosine, which offers a wider π-stacking by its 

tricyclic structure (Figure III.6.). Later, we have also prepared the corresponding wyosine-

containing RNA sequence (Chapter III.3.2.3.). 

 

 III.3.2.2. Incorporation of 4-desmethyl-5-methylwyosine and NMR analysis 

The preparation of the 4-desmethyl-5-methylwyosine containing RNA sequence S2 

has been carried out with tBuOOH as oxidation reagent (1.1M in MeCN), with a longer 

oxidation time than described (Kumar and Davis 1995). The deprotection and cleavage of the 

sequence from the solid support has been achieved by an overnight incubation with 25% aq. 

NH3/EtOH 1:1 at 55° (Chaix et al. 1989) and the 2'-O-TOM protecting groups were finally 

removed under standard conditions. According to HPLC analysis and ESI-MS 

characterization of the main product, the 4-desmethyl-5-methylwyosine was successfully 

incorporated (Figure III.6. and Figure III.7.). For the subsequent NMR analysis, the purified 

oligonucleotide S2 was finally converted into the sodium salt form. Imino proton NMR 

spectroscopy was then carried out at a concentration of 100 µM in potassium arsenate buffer 

(25mM, pH 7.0) in H2O/D2O 9:1. According to these experiments, no kissing complex 

interaction could be observed at 25° or 10° (Figure III.8.).  
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Figure III.6. HPLC trace of the crude wyosine-analogue containing sequence S2. 
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Figure III.7. ESI-MS analysis of the purified wyosine-analogue containing sequence S2.  
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Figure III.8. NMR analysis of the imino protons of the wyosine-analogue containing sequence S2 (scale in 
ppm).  

 

 III.3.2.3. Incorporation of wyosine and NMR analysis 

 

After these first results with the 4-desmethyl-5-methylwyosine-containing RNA 

sequence S2, which revealed no kissing interaction, we planned to prepare and investigate the 

corresponding wyosine-containing RNA sequence S3. Consequently, we investigated 

strategies for incorporation of wyosine by a combination of chemical and enzymatic methods. 

According to our initial concept, the incorporation of wyosine into RNA sequences would 

include an enzymatic phosphorylation of the free 5’-HO group followed by the ligation with 

another sequence. For preparation of the sequence S3, a ligation of a 8mer RNA sequence S4 

with a 10mer RNA sequence S6, containing a 5’-terminal wyosine would have to be carried 

out (Figure III.9.).  
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Figure III.9. Synthetic approach for the preparation of the wyosine-containing sequence S3.  

 

Unexpectedly, the wyosine-containing sequence S6 underwent a partial decomposition under 

the conditions which have been successfully employed for the deprotection of the 4-

desmethyl-5-methyl-wyosine-containing sequence S2. Therefore, the aqueous solution of 

ammonia has been substituted for a dry 12M methanolic solution of ammonia which has been 

recently employed for incorporation of the sensitive 1-methyladenosine nucleoside 

(Mikhailov et al. 2002). Before further investigations, we checked if under these conditions 

the cleavage of the oligonucleotide from solid support did not constitute a rate-limiting step. 

The experiments were carried out with an uridine immobilized on CPG and revealed a 

complete cleavage within 8h. However, methanolic ammonia was unable to completely 

remove the acetyl protecting groups on guanosines. Therefore, guanosines were introduced 

via the unprotected guanosine phosphoramidite, which had already been successfully 

employed in our group (Stutz et al. 2000). In addition, ammonia is not nucleophilic enough 

for constituting a good acceptor of acrylonitrile which is formed during deprotection of the 

phosphodiesters and can alkylate the nucleobases. Indeed, acrylonitrile has been recently used 

as derivatisation reagent for MS analysis of pseudouridine and other minor components of 

tRNAs (Mengel-Jørgensen and Kirpekar 2002). However, it is known that the cyanoethyl 

protecting groups can be easily removed by washing the solid support with a 10% solution of 

diethylamine in acetonitrile. But again, in our hands this protocol was not compatible with 

dihydrouridine and wyosine nucleosides, and has therefore been successfully substituted by 

diisopropylamine. After this washing-step, the sequence was deprotected and cleaved from 
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the solid support by action of 12M methanolic solution of ammonia for 14h at 20°. After 

recovering of the supernatant and evaporation of the solvent, the residue was incubated with a 

1M solution of Bu4NF in THF for 14h. Successive quenching with 1ml of TrisHCl (pH 7.4), 

partial evaporation of the solvent and desalting on size-exclusion cartidges, the crude 

sequence S6 was purified by AE HPLC. The pure 10mer S6 was quantitatively 5’-O- 

phosphorylated by T4 PNK phosphokinase and isolated by HPLC, giving pure 

oligonucleotide S5. 

The ligation of the fragments S4 and the phosphorylated wyosine-containing S5 was carried 

out with T4 RNA ligase according the instructions of the supplier and addition of 1mM ATP. 

After 24h of incubation at 37°, two RNA sequences were still were still present and only very 

small amounts of a product with a higher retention time was formed. After isolation and MS 

analysis, this product has been identified as the cyclized dimer of the 10mer sequence S3A 

(Figure III.9.).  

Y
C
GU C C CAC

C
Y
C
GUCCCAC

C

 
Figure III.9. Supposed structure of the product formed by ligation of fragments S4 + S5 by T4 RNA ligase.  

 

In our opinion, this product results from autocomplexation of the guanosine-rich 8mer RNA 

sequence S4, which prevents the required duplex formation with the 10mer sequence S5. 

Nevertheless, this first attempt confirmed the possibility of wyosine incorporation into a 

sequence and importantly, the high tolerance of the T4 RNA ligase towards the nature of the 

nucleobase. Consequently, we turned to a template assisted enzymatic ligation for which F. 

Meylan (Meylan 2006) in our group has carried out an intensive optimization.  

For this reaction, a 16mer DNA template S7 was designed and prepared, which is fully 

complementary to the 8mer RNA sequence S4 and which can form seven base pairs with the 

10mer RNA sequence S5; since the tricyclic wyosine can not form any Watson-Crick 
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interactions, an apurinic site derived from 1,3-propandiol (Seela and Kaiser 1987) was 

introduced at the opposing site of the template (Figure III.10.).  

 

 

N

N

N
N

O

H N

NH

O
N

O

O

O

OH

O

O

O

HO

N H
H

H

N

N

N
N

N

O

O

O

O

OH
O

O

O

O

apurinic site propyl linker

  
G    G
  A U
  G 
  G 
  G C
  U A
  G 
  G 
5'       3'

4        15

8           11
       G
     U

     C
     A
 

          3'

          15

            11

     U

     C
     A

         3'

          15

             11

T4 PNK
Kinase

T4 DNA
 Ligase

   
G     
  A 
  G  
  G  
  G  
  U 
  G  
  G
5'

4

8
HO

+

  g _
c     c
  a  t
  g c
  g c
  g c
  t  a
     c
     c
5'

3'
5'

G
G
U
G
G
G
A
G

c
c
a
c
c
c
t
c

]
g
c
a
g
g
g
t

3'       5'

OH

3'

O
O

O

S3

S7

S5
S4

S6

O
P
N

O

N

 

Y C

C
C

C
C

  Y C

     C
     C

    C
     C

  Y C
       G

     C
     C

     C
     C

p

Y
C
G
U
C
C
C
A
C
C

p

Figure III.10. Synthetic approach for the preparation of the wyosine containing sequence (Y9) through template 
assisted ligation (T4 DNA ligase). The propyl phosphoramidite building block was prepared according to (Seela 
and Kaiser 1987).   

 

In a one-pot reaction, the wyosine-containing 10 mer S6 was phosphorylated with the enzyme 

T4 PNK and ATP in the same buffer as employed for T4 DNA ligase. After incubation for 90 

min at 37°, the enzyme was denaturated by thermal treatment (30 min at 60°) and then the 

other 8mer substrate sequence S4 and the template S7 were added. After a slow cooling to 

37°, the enzyme T4 DNA ligase was added and the progress of the ligation reaction was 
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monitored by HPLC. It seemed to be nearly complete after 4 hours, but longer incubation 

revealed disappearance of the product S3 and the formation of higher oligomers. This was 

probably the result of an incomplete denaturation of the enzyme T4 PNK and the subsequent 

phosphorylation of the product sequence. As a consequence, the 10 mer sequence S5 was 

isolated by HPLC after the enzymatic phosphorylation reaction, thereby removing the enzyme 

completely. 

Incubation of the two substrate sequences S4 and S5 (20 µM each) and the template S7 (30 

µM) with T4 DNA ligase (8 Weiss units) in an aqueous buffer (40mM TrisHCl, 2mM MgCl2, 

10mM DTT, 0.5mM ATP) at 37° resulted in clean and efficient (90% conversion) formation 

of the product sequence S3 after 26 h (Figure III.11. and Figure III.12.).  
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Figure III.11. HPLC traces of the reaction mixture for the preparation of wyosine containing sequence, ligation 
t=0 (left) and t=24h (right). 
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Figure III.12. Time evolution of product formation through template assisted ligation (DNA ligase).  

 

According to these conditions, a large-scale ligation with 96 µmol S4 and S5 was carried out 

and 2 mg (18% yield) of the RNA sequence S3 were isolated in pure form according to HPLC 

and ESI-MS analyses (Figure III.13.). 

The efficiency of this ligation was surprising, since the activity of T4 DNA ligase is normally 

affected by base mismatches (Goffin et al. 1987). We concluded that active complex 

formation between the enzyme and the two substrate strands S4, S5 and the template strand 

S7 occurred due to the unique stacking properties of the extended π-system wyosine, thereby 

mimicking the geometry of a normal Watson-Crick base pair.  
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Figure III.13. ESI-MS analysis of the isolated product formed during template assisted ligation with T4 DNA 
ligase.  
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Figure III.14. NMR analysis of the imino protons of the wyosine containing sequence S3 (scale in ppm).  

 

The 18mer wyosine-containing RNA sequence S3 was again analyzed by imino proton NMR 

spectroscopy, but also with this analogue no "kissing" interaction could be detected (Figure 

III.14.). In order to rationalize this result, some computational investigations were carried out 

in collaboration with C. Gossens (group U. Röthlisberger, EPFL). A modelisation of a 

hypothetic “kissing” complex, in which the adenosines A9 have been substituted for wyosine, 

revealed an extremely unfavourable steric interaction, preventing the interaction of both 

hairpins (Figure III.15.).  
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Figure III.15. Modelisation of kissing interaction where naturally occurring adenosines (A9) have been 
substituted for the wyosine-analogue containing sequence (yW9). Line representation (left) and Van der Waals 
volume representation (right). The hydrogen atoms of the wyosine moiety are not represented for clarity. The 
yellow arrow points out the interpenetration of atomic radii.  

 

III.3.3. Further investigations with the "kissing" complex 

In order to eventually better understand the origin of the unexpectedly strong "kissing" 

interaction, we prepared a series of other analogues by introducing a variety of other modified 

nucleosides (Figure III.16.).  
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Figure III.16. List of prepared analogues of the “kissing" complex.  
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First, we limited our study to the adenosine A9 by introduction of naturally occurring 

purines present in tRNAs for which we have already prepared the phosphoramidite building 

blocks (Chapter I): 1-methylguanosine S8, inosine S9, methylguanosine S10, and N2,N2-

methylguanosine S11. We have also prepared the S12 from the 2’-deoxyadenosine. According 

to imino proton NMR spectra, all these analogues are not undergoing formation of the 

complex. We then wondered whether the amino function of A9 was involved in interactions 

with other nucleotides. For this study, other modifications in the immediate environment of 

this amino group were introduced after consulting the X-ray structure of the complex (pdb file 

1F5U). However, neither introduction of 2’-O-Me-deoxycytidine at position C13 S14, 

replacement of C13 by 2’-deoxycytidine S13 or methylation at the amino group of A9 S15 

prevented the formation of the complex (Table III.1.).   

 
            
5'-GGUGGAGXCGUYCCACC-3' 
            
X Y Name m/z calc. m/z found Interaction 
A C S1 _ _ Yes 
MeW C S2 5853.6 5854.1 No 
m1G C S8 5815.6 5816.0 No 
I C S9 5786.6 5787.0 No 
G C S10 5801.6 5802.0 No 
m2

2G C S11 5829.6 5830.0 No 
dA C S12 5769.6 5770.6 Yes 
A dC S13 5769.6 5770.0 Yes 
A mC S14 5799.6 5800.0 Yes 
m6A C S15 5799.6 5800.0 Yes 
      

 

Table III.1. List of “kissing” sequence analogues, ESI-MS characterization and identification of “kissing" 
interactions according to NMR analyses.  

 

III.3.4. Hypothesis 

These results inspired us to give a new interpretation of the "kissing" interaction in 

thermodynamical terms and to rationalize the reported ∆G°37 value of -6.5 kcal mol-1 for 

formation of the complex (Kim and Tinoco Jr. 2000). The authors have commented that this 

value is nearly equivalent to the energy resulting from the 5’-CGCG-3’/3’-GCGC-5’ base 
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pairing according to the nearest neighbour parameters (Turner et al. 1988). As first 

hypothesis, we estimated that the A9 contributed to the stabilization of the complex only 

through its highly favourable π-stacking interaction (Guckian et al. 2000) and reduced the 

observed value of -6.5 kcal.mol-1 by the twice the energetical contribution of a 5’-A-dangling 

motif adjacent to a C·G base pair (-0.5 kcal.mol-1).  

∆G°
37 Full complex = 2*∆G°

37 stacking A on CG + ∆G°
37 CG/GC base pairs in the complex 

The new energy of the C·G base pairs involved in the complex are:   

∆G°
37 CG/GC base pairs in the complex = ∆G°

37 Full complex – 2*∆G°
37 stacking A on CG = 

- 6.5 – (-1.0) = - 5.5 kcal.mol-1 

This value is 1.5 kcal mol-1 higher than the value describing a double 5’-CG-3’/3’-GC-5’ base 

pair which is - 4 kcal mol-1 (Turner et al. 1988).  

For explaining the increase of the C·G base pair stability, we included the contribution 

of the G8 residue which, from NMR refinement carried out by Kim and Tinoco, Jr. (Kim and 

Tinoco Jr. 2000), is placed in direct interaction with the N(7) of G11 (Figure III.14.). 

However, we suspected that this hydrogen bond is not only responsible for the rigidity of the 

tetraloop but also for the strong base pairs. 
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Figure III.17. Relevant interactions involved in the stabilization of the “kissing” complex.  
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Indeed, the binding of a hydrogen to the lone pair of nitrogen N(7) of guanosine should 

reduce the electronic density at this position. This effect has been already investigated by 

computational methods (Burda et al. 1997). During these studies, it has been observed that 

upon metal-ion binding at N(7), the strength of the G·C base pair could be considerably 

increased. Consequently, the H-bond between of the N(2)-amino function of the G8 to the 

N(7) of G11 could be an important contributing factor to the “unexpected stability” of the 

complex. As definitive proof, we confirmed the special contribution of the amino function of 

G8 by replacing it with inosine (sequence S16). Inosine exhibits a simple hydrogen at position 

2 which prevents the formation of the hydrogen bond (Figure III.18.) and consequently, 

prevents the formation of the complex as observed in our NMR study of this sequence. 
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Figure III.18. The introduction of an inosine I(8) S16 in place of guanosine G(8) S1 renders the formation of the 
hydrogen bond between NH2 of G(8) and the N(7) of G11 impossible, and prevents the “kissing” complex 
formation.  

 

III.3.5. Evaluation of stacking stabilization by wyosine 

The template-mediated ligation of the wyosine-containing RNA sequence S5 and the 

RNA sequence S4 worked surprisingly well, given the unusual arrangement of a wyosine 
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facing an apurinic residue at the ligation site (Chapter III.3.2.3.). We concluded that active 

complex formation between the enzyme and the two substrate strands S4, S5 and the template 

strand S7 is peculiarly efficient due to the unique stacking properties of the extended π-

system wyosine, thereby mimicking the geometry of a normal Watson-Crick base pair (Figure 

III.10.). In order to test this hypothesis, we prepared the four analogous 10mer substrate 

strands S17 – S20, containing the canonical nucleosides at the 5'-position, and submitted them 

to the same ligation conditions. The course of these reactions was monitored by HPLC 

(Figure III.19.).  
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Figure III.19. Sequences prepared for evaluation of the influence of stacking on the ligation reaction.  

 

The ligation yields obtained after 24h reaction time are shown in (Table III.2.). The 

efficiency of these reactions varied to a great extent, but only with a terminal cytidine no 

ligation and accumulation of the corresponding 5’AMP-intermediate (Liu et al. 2004) 
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occurred. In contrast, the other nucleotides seem to show a more predictable behaviour. The 

lligation yields correlated very well with the ∆G values of stacking energies for 3'-dangling 

nucleotides stacking on a G.C base pair according to the nearest neighbour model (Turner et 

al. 1988) (Figure III.20., Table III.2.). In other words, the ligation yields reflect the capacity 

of the unpaired nucleotide to stack with the last base pair of the acceptor sequence, thereby 

placing it in favourable orientation for ligation.  

 
Ligation 
Yield (24h) 

- ∆G° calc 
 

Stacking 
motif 

0.37 1.1 GA/C 
0.02 0.4 GC/C 
0.48 1.3 GG/C 
0.21 0.6 GU/C 
   

Table III.2. Ligation ratio and estimated stacking contribution from increment parameterss of the nearest 
neighbour model (Turner et al. 1988).  
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Figure III.20. Configuration at the ligation site.  

 

By plotting the ligation yield after 24 hours against the stacking energy of the 

corresponding dangling motif (value of the nearest-neighbours model) an almost linear 

correlation was obtained (Figure III.18.). By linear extrapolation, we then estimated the 

stacking energy for wyosine to ∆Gstacking = - 2 kcal mol-1 (Figure III.21).  
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Figure III.21. Plot of ligation yield after 24h against stacking energies according to the nearest neighbour 
model. Extrapolation for the wyosine nucleoside gave a stacking energy of approximatively -2 kcal mol-1.  

 

III.3.6. Conclusion 

Our experimental and theoretical investigations have shown that the "kissing" complex 

is not a suitable model for the tRNA-mRNA interaction, since it is governed by interactions 

(such as the cross base pairing of (G8-G11) which do not occur in the anticodon loop. 

However, the results underline the importance of secondary hydrogen bonds to the formation 

and stability of RNA interactions, which could be very important in the decoding process. 

Therefore, we examined in more details the role of wybutosine, a wyosine derivative with an 

amino acid side-chain capable of undergoing such additional hydrogen bond interactions.   

 

III.4. The Wybutosine 

III.4.1. General considerations  

Wybutosine and its derivatives belong to the most elaborated modified nucleosides 

present in tRNAs. The best characterized representative is wybutosine, which is included in a 

highly modified anticodon loop containing also the four other modified nucleosides Cm32, 
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Gm34, Y37 and Ψ39. This arrangement ensures the accurate decoding of the phenylalanine 

UUU and UUC codons. These codons are peculiar among the other codons due to their weak 

base pairing. Hypomodification of the corresponding tRNAs and also of the “complementary” 
AsntRNAs with AAU and AAC anticodons leads to extensive frameshift (Farabaugh 2000). As 

an example, the rabbit reticulocyte PhetRNA, which is a sequence isoform of the rabbit liver 
PhetRNA, displaying a m1G37 in place of wybutosine, exhibits a favoured -1 frameshift 

(Carlson et al. 2001). The structural reasons of these decoding properties could be partially 

explained by a recent NMR study of the synthetic PheASL structure, containing m1G in place 

of wybutosine (Stuart et al. 2003). It has been shown that the Cm32-U33-Gm34 sequence, 

exclusively found in eukaryotic PhetRNAs, is very rigid and orients the Gm34 base in an 

unfavourable conformation for base pairing. The resulting inaccessibility of the Gm34 for 

base pairing is probably maintained upon codon binding, since the A35 and A36 residues are 

relatively mobile in the hypomodified PheASL (Stuart et al. 2003). 

According to our previous considerations, we suggest that the action of wybutosine is 

not limited to its wider π-stacking with the adjacent base pair A36·UIII (Pongs and Reinwald 

1973), since the A35 and A36 are well-structured in the fully modified PhetRNA, in contrast to 

the poorly structured PheASL containing m1G37. Nevertheless, according to ab initio studies 

on the electrostatic potentials of the nucleotides of a Phe-anticodon, wybutosine has electronic 

properties which affect the stability of the anticodon triplet complex. It has been estimated 

that the wybutosine provided a strong energetic stabilization to the A35·UII base pair, of up to 

50% of the intrinsic base pair energy. In contrast, guanine base placed in position 37 does not 

significantly affect the energetic of the adjacent base-pairs (Werneck et al 1998). Therefore, 

by reinforcement of the A·U base pairs, especially of the second one (A35·UII), wybutosine 

strengthen the phenylalanine anticodon/codon interactions and probably induces a 

reorientation of the Gm34 for optimal base pairing. Furthermore, the 2’-O-methylation of G34 

seems favors a C-3’-endo conformation (Venkateswarlu et al. 1999) which allows base 

pairing with U in addition to C (Ashraf et al. 2000). The same methylation could also prevent 

formation of a G·G base pair by favouring the anti-conformation (de Leeuw et al. 1980) over 
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the syn conformation (Söll and RajBhandary 1995). Indeed, TyrtRNAs with an unmethylated 

guanosine in position 34 (Q deficient) are known to partially read through the UAG stop 

codon (see Chapter IV), which could become deleterious in codon split boxes such as 

Phe/Leu. Although Gm34 exists in few other tRNAs, it is never associated with the Cm32 

modification except in the eukaryotic PhetRNA. Consequently, the wybutosine nucleoside is 

important for the structure of the anticodon loop, especially the Cm32-U33-Gm34-A35-A36 

sequence, essentially due to its peculiar electronic properties. Although studies using 

selectively modified PhetRNA ASL have resulted in a better understanding of the role of the 

modifications, the contribution of the wybutosine has never been investigated since it could 

not be synthetically incorporated.  

According the previously presented considerations, wybutosine seems to act 

essentially through its tricyclic structure which affects the electronic potential of the global 

anticodon loop. This hypothesis seems to be validated by the recent isolation of some archaeal 

minimalist derivatives of wyosine lacking the 4-methyl group (Figure III.1.) and 

thermodynamic studies carried out with 4-desmethylwyosine (Ziomek et al. 2002). However, 

wybutosine displays an additional amino acid moiety at position C(7) for which it is difficult 

to attribute a specific role by from the X-ray structure of a correspondingly modified 

PhetRNA. However, the wybutosine derivatives, containing such side-chains, are exclusively 

present in eukaryotes and totally absent in prokaryotes. Consequently, these extended 

modifications could correlate with structural requirements of eukaryotic ribosomes, for 

maintaining the accuracy of translation. Indeed, the decoding process involves fundamental 

interactions of the tRNAs with the 16S rRNA, which serve as reliable phyllogenetic criteria 

(Woese 1990) and eukaryotic tRNAs undergoe more editing processes than those of bacteria 

and archaea. Moreover, a different response to a common frameshifting RNA signal has been 

reported within phylogenetically different organisms. Whereas eukaryotes were sensitive to 

certain tRNA modifications, prokaryotes did not display any frameshifts (Seung and Kang 

2003). Previous computational investigations have led to the hypothesis that the amino acid 

side-chain could significantly reinforce the adjacent A36·UI base pair by providing 
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supplementary hydrogen bonding (de Oliviera Neto et al. 1998) (see also Chapter IV) (Figure 

III.22.). 
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Figure III.22. Wybutosine in interaction with the adjacent A·U base pair according to the proposed model of (de 
Oliviera Neto et al. 1998) and distinction between the interacting part and non-interacting part of the linker.  

 

 

III.4.2. Synthesis of wybutosine analogues  

III.4.2.1. Introduction  

In order to test the hypothesis that secondary hydrogen bonds are important for 

stabilizing the codon/anticodon interaction and in order to understand at which step of the 

decoding process they are operative (tRNA selection, translocation, reading frame, 

proofreading…), it is essential to prepare analogues of wybutosine and to incorporate them 

into tRNAs.  

These nucleosides contain methyl ester side-chains, which are completely 

incompatible with the automated synthesis of RNA sequences. We therefore planned the 

synthesis of analogues where the ester groups were replaced by N-methyl amides, expected to 

be stable under our assembly and deprotection conditions (Figure III.23.).  
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Figure III.23. Synthetic approach for the preparation of wybutosine analogues.  

 

III.4.2.2. Synthesis  

In order to investigate the special properties of the wybutosine nucleoside, several 

attempts for its chemical synhesis have been reported. An efficient alkylation of the C(7) 

iodinated derivative proceeds under Pd catalysis (Itaya et al. 1988). Treatment of the tritylated 

wyosine analogue 74 with N-iodoosuccinimide resulted in formation of products exclusively 

iodinated at the dimethoxytrityl group, as confirmed by the isolation of the non-iodinated 

nucleoside after acidic cleavage of the DMT-group (Scheme III.8.).  
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Therefore, we reconsidered our synthetic strategy and introduced the DMT-group only 

after iodination (Scheme III.9.). The 5’,3’-di-O-diacetyl derivatives of wyosine (78) and 5-

desmethyl-4-methylwyosine (83), were effiently N(7)-iodinated with N-iodosuccinimide, 

which gave a much cleaner reaction than the reported iodine (Boryski and Ueda 1985) and 

were obtained in yields of 67% and 68%, respectively. 

In preliminary studies, the 2’,3’,5’-Tri-O-acetyl-5-desmethyl-7-iodo-4-methylwyosine 

86 (prepared according to (Glemarec et al. 1988)) was alkylated with acrylonitrile in the 

presence of Pd(OAc)2 according to (Itaya et al. 1988).  The resulting 3/2 mixture of Z/E 

derivatives 87 has then been submitted to hydrogenation, but all attempts to reduce it to the 

saturated amine (H2/Pd on C or H2/Pt on C, Raney Ni) failed (Scheme III.10.).  We did not 

carry our further investigations, since the other methods reported for such transformations 

(e.g. HCl / EtOH under reflux (March 1992a)) are not compatible with the sensitive wyosine. 
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Scheme III.10. a) Bu4NCl, NaHCO3, Pd(OAc)2, acrylonitrile, DMF, 20°. 86 was prepared according to 
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III.4.2.2. Synthesis of wybutosine: new approach and new linkers 

In order to overpass these difficulties, we decided to introduce the linkers in a form 

which was as close as possible to the definitive structure and requiring mild conditions for 

their introduction. According to these criteria, two new precursors for linker structures have 

been chosen, N-methylbut-3-enamide and N-allyl-N’-methylurea (Figure III.22.). 

O

RO

RO N

N

N

N

O

OR

N

O
HN

O

O

O O

RO

RO N

N

N

N

O

OR

N

N
HHN

O

NHO

O

RO

RO N

N

N

N

O

OR

N

N
H

O

O

RO

RO N

N

N

N

O

OR

N

HN
NHO

O

RO

RO N

N

N

N

O

OR

N

I

O

RO

RO N

N

N

N

O

OR

N

I

N
H

H
N

H
N

++
O

O  
Figure III.24. New strategy for the preparation of wybutosine analogues.  

 

 The required side-chain precursor N-methylbut-3-enamide 89 was prepared from the 

vinylacetic chloride (Ugi and Beck 1961) and MeNH2 in THF (57% yield (Scheme III.11.). 

The second side-chain analogue consisted in an urea motif and for the preparation of the 

precursor N-allyl-N’-methylurea 92 we developed an access based on the reaction of 
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allylamine with a freshly prepared methylisocyanate solution (95% yield) (Tsoi et al. 1983) 

(Scheme III.11.). 
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Scheme III.11. a) MeNH2, THF, 4°. b) Methylisocyanate, toluene, 20°. 90 was prepared according to (Ugi and 
Beck 1961).  

 

We then first investigated reaction conditions for the introduction of the N-allyl-N’-

methylurea 92 into the wyosine analogue 84. The experimental procedure from literature 

(1.1eq of 92 and heating at 60° (Itaya et al. 1988)), led to a partial decomposition and 

concomitant formation of the deiodinated derivative 83 (Scheme III.12.). The reaction could 

be significantly improved by carrying it out at room temperature and employing at least 2.5eq 

of the alkene reagent 92. Removal of the Pd by filtration on Celite or drying over MgSO4 

resulted in adsorption of the product. However, by avoiding filtration and drying over 

Na2SO4, the N(7)-alkylated wyosine analogue 94 was obtained in a good yield of 60% as a 

mixture of cis/trans isomers. 
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Scheme III.12. a) Bu4NCl, NaHCO3, Pd(OAc)2, 92, DMF, 20°.  

 

Again, it was not possible to reduce the double bond of 94 with H2/Pd or H2/Pt. Therefore, 

this urea-type linker structure was abandoned and an amide-type linker was chosen as next 

synthetic target. This side-chain was expected to interact in a similar manner than the side-

chain of the natural wybutosine (Figure III.22.).  

The reagent N-methylpent-4-enamide 97 for introduction of the new side-chain was prepared 

from commercially available 4-pentenoyl chloride 96 and MeNH2 in THF (→ 97, 85% yield) 

(Scheme III.13.).  

. 

Cl

O

N
H

O

97 (85%)

a)

96  
 

Scheme III.13. a) MeNH2, THF, 4°.  
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By employing the previously optimized cross-coupling conditions, with Pd(OAc)2, 

NaHCO3 and Bu4NCl, 97 was introduced at C(7) of 84 (→ 98, 71% yield) (Scheme III.14.). 

The reduction of the double bond occurred smoothly with H2/Pd and, without purification of 

the intermediates, the reduced product was deacetylated with NH3 in MeOH (→ 99) and then 

5'-O-dimethoxytritylated with DMT-Cl in Py. The C(7)-substituted wyosine analogue 100 

was thus obtained in a yield of 28% (based on 98). Unfortunately, due to the small amount of 

product available and due to time-restrictions, the final synthesis of the corresponding 

phosphoramidite building block could not be investigated. This transformation could be 

carried out or by the conventional procedure with 2-cyanoethyl 

diisopropylphosphoramidochloridite, iPr2NEt or with 2-cyanoethyl 

tetraisopropylphosphoramidite,  5-benzyl-1H-tetrazole 20°. 
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Scheme III.14. a) 97, Bu4NCl, NaHCO3, Pd(OAc)2, DMF, 20°. b) 1. Pd.C, H2, EtOH, 20°; c) NH3, MeOH, 
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III.5. Conclusion  

 

The accurate codon (mRNA) recognition by the anticodon of the tRNA is mainly 

ensured by the fine-tuning of the pairing provided by the nucleosides at the wobble-position 

(position 34) and 3’-end adjacent to the anticodon (position 37) (Agris 2004), often occupied 

by hydrophobic derivatives such as wyosine. With the aim to investigate the nature of this 

interaction, we have prepared and successfully incorporated the wyosine nucleoside into a 

model RNA sequence from Moloney murine leukaemia virus. The synthesis of this wyosine-

containing RNA sequence was achieved through ligation (T4 DNA ligase) of two RNA 

fragments in the presence of a DNA template displaying an apurinic site. Additionally, we 

have also synthesized several analogues of this oligonucleotide, which permitted to highlight 

the interactions important for the formation of the “kissing” complex.  

 



CHAPTER IV “Properties of modified nucleosides of the anticodon loop” 

IV.1. Introduction 

The exact decoding capacities of tRNAs are ensured by a variety of modified 

nucleosides within the anticodon loop. Despite the isolation and characterization of several 

tRNA mutants, which are defective in some modifications, an exact correlation between 

structure of the nucleoside and decoding capacity has not yet been achieved (Agris 2004) 

(Takai and Yokoyama 2003). Therefore, we decided to review the variety of these modified 

nucleosides and tried to understand how substituents of the nucleobase could influence the 

decoding abilities, as revealed by studying modification-defective mutants (Agris 2004). The 

proposed models emphasize potential hydrogen bonding in the close environment of the 

canonical codon/anticodon Watson-Crick base pairs. In this context, the theoretical study of 

the “kissing” complex has highlighted the importance of the secondary weak contacts in the 

stability of nucleobases interactions.  

 

IV.2. N-[(9β-D-ribofuranosyl-9H-purin-6-yl)carbamoyl)]threonine (t6A) 

 IV.2.1. Introduction  

Among the complex nucleosides of the anticodon loop, the most frequent is the t6A 

modification (Sprinzl et al. 1998). Its high conservation in all phyllogenetic domains of life 

(Archaea, Bacteria and Eukarya) (Söll and RajBhandary 1995) aroused several biological 

experiments (Curran 1998) (Grosjean et al. 1998), which permitted to describe its 

biosynthesis (Chheda et al. 1972) (Powers and Peterkofsky 1972) and identify the sources of 

the various components involved in its modification. Adjacent to the 3’-end of the anticodon 

(position 37) in tRNAs reading codons starting with A (Söll and RajBhandary 1995), it 

prevents U36 to wobble (Duke et al. 1968), demonstrating its important contribution for 

proper codon-anticodon recognition (Newmark and Cantor 1968). In 1979, Nishimura 

suggested that this modification was necessary for stabilization of the weak A·U base pair, but 

without more details (Nishimura 1979). Few investigations about the role of this modification 

have been carried out despite the recent X-ray analysis of a tRNALys
UUU anticodon stem-loop 
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(containing the t6A and mnm5s2U modifications) bound to the 30S ribosomal subunit in the 

presence of mRNA (Murphy IV et al. 2004).  

 

In the context of this work, we have indepedently developed a model for the t6A 

interactions in analogy to the model proposed for wybutosine (de Oliviera Neto et al. 1998). 

Wybutosine is a tricyclic nucleoside that contains an extended “amino acid-linker” (see 

Chapter III) which could provide an additional H-bond through the carbamoyl side-chain 

oxygen with one of the hydrogens of the A36 amino group (Figure IV.1.). In our opinion, a 

similar interaction could occur with the carboxylic oxygen of the side-chain of t6A. 
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Figure IV.1. Wybutosine in interaction with the adjacent A·U base pair according the proposed model of (de 
Oliviera Neto et al. 1998). 
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IV.2.2. Computational investigations  

We probed the feasibility of this hypothesis by combining conformational and 

energetical calculations carried out by C. Gossens within the laboratory of computational 

biochemistry (head: U Röthlisberger, EPFL).  

The definition of our data set has been elaborated from a NMR study of a tRNALys 

(pdb file 1FL8) (Sundaram et al. 2000). This NMR structure furnished the coordinates of the 

t6A modification and also permitted to reconstruct the tRNA-mRNA interaction from an 

internal A·U base-pair. Our calculations were carried out in vacuum since the nucleobase 3’-

end adjacent to the anticodon loop (A site) is expected to be in close proximity to the next 

tRNA (P site) so excluding most of the water. Moreover, this localisation within the ribosome 

has been reported to be essentially hydrophobic (Robertson and Wintermeyer 1981). In a first 

approach, we restrained the global geometry by rotation of the amino acid moiety around the 

NH(6)-C(10) bound allowing formation of a hydrogen bound between NH(11)-N(1) as 

observed in X ray data (Parthasarathy 1977) (Figure IV.2.). By rotation around the NH(11)-

C(12) bond, the carboxylate, deprotonated under physiologic conditions, appeared to reach 

the NH2(6) of the nucleobase adenosine (I) of the mRNA. This hydrogen bond, formed 

between the atom oxygen COO- and the proton of the H2N(6) function is, after energy 

minimization about 1.82 Å long, which respects the known geometrical constraints (Steiner. 

2002). Furthermore, during minimization of energy, the hydroxyl function of the aminoacid 

moiety appeared to unexpectedly interact with the second oxygen of the carboxylic acid, 

conferring rigidity to the global structure. However, this interaction, also possible for the 

hn6A derivative, is probably not essential for functionality of the modified nucleoside, since 

certain organisms display a g6A which does not present such hydroxyl groups (Schweizer et 

al. 1970) (Figure IV.3.).   
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Figure IV.2. Proposed model of interaction of t6A with the adjacent A·U base pair. 
 
 

O

HO

HO

OH

N

N

N

N

R1

HN N
H

OH
O

O

OH

R2

R1=

R2= H

R2= S-Me

Symbol

hn6A

ms2hn6A

HN N
H

OH
O

O

OH

R1=

R2= H

R2= S-Me

t6A

ms2t6A

HN N
H

OH
O

O

R1= R2= H g6A

N N
H

OH
O

O

OH

R1=
R2= H m6t6A

 
Figure IV.3. Structure of carbamoyl type adenosine derivatives. 
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We calculated the energy of the AI·U36 base pair and estimated its new energy in 

presence of this supplementary hydrogen bond. For this aim, we calculated (see experimental 

section) the energy of both (t6A37/U36·AI) and (A37/U36·AI) complexes (Figure IV.4.). 

Therefore, while the (A37/U36·AI) complex exhibits an energy of EA/UA = 14.49 kcal/mol, the 

t6A containing complex presents an energy of Et6A/UA = 22.98 kcal/mol giving a stabilization 

energy of 8.49 kcal/mol. (EStab = Et6A/UA - EA/UA). This value, including the contribution of the 

stacking interaction and of the hypothetical additional hydrogen bond, allows the adjacent 

A·U base pair energy to reach that of a G·C base pair (22.98 against 24.05 kcal/mol for a G·C 

base pair). 
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Figure IV.4. Model of complexes used for computational study EA/UA (left), compared to Et6A/UA (right)  
 

  
 

Figure IV.5. Set-up for the estimation of the energy of complex EA/UA (left), compared to Et6A/UA (right)  
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IV.2.3. Conclusion 

 Beyond the increase of the codon-anticodon pairing strength, the additional H-bond 

interaction provided by t6A prevents the possible wobbling of the uridine and therefore 

ensures the reading-frame fidelity. Moreover, if we suppose that the additional interaction 

stabilizes the adjacent A·U to the same base pair energy as a G·C base pair and if this is a 

general trend provided by the modifications 3’-adjacent to anticodon, all first letters of the 

genetic code could be energetically equivalent. Others nucleosides have been found to 

influence the energetic of the U·A base pair, and among them i6A derivatives are the most 

abundant. 

 

IV.3. ms2i6A derivatives  

IV.3.1. Introduction 

 

As noticed above, the weakness of the A·U base pair could be compensated by the 

presence of modified nucleosides at position 37 of the anticodon loop. Among the variety of 

structures, the isoprenylated versions are the most represented (Sprinzl et al. 1998). Within 

this category, different derivatives have been identified and linked to a linear biosynthesis 

beginning with i6A and ending with the ms2io6A derivative (Figure IV.6.). According this 

pathway, the first step consists in prenylation of A37, utilizing ∆2-isopentenyl pyrophosphate 

(IPP or dimethylallyl diphosphate) through a carbocationic intermediate (Poulter and Rilling 

1976) (Poulter et al., 1976) (Poulter and Satterwhite, 1977). The isolation of the modifying 

enzyme dimethylallyl (∆2-isopentenyl) diphosphate tRNA transferase (MiaA) has revealed the 

prerequisite of the A36A37A38 sequence and anticodon helical structure flexibility for 

alkylation (Motorin et al. 1997b). The next step, consisting in methylthiolation of i6A37 to 

ms2i6A37, involves the MiaB and MiaC enzymatic activities (Björk 1995b) (Björk 1995c) 

and hydroxylation is dependent of the MiaE gene only present in S.typhimurium. Among the 

mutants defective in one of these genes, those lacking the isopentenyl group (MiaA) have the 

most severe biological consequences, including decrease of polypeptide chain elongation rates 
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(Diaz et al. 1987) (Ericson et al. 1991) (Hagervall et al. 1990) decrease of translation 

efficiency (Hagervall et al. 1990) or increase of codon context sensitivity. Furthermore, the 

tRNA suppressor harbouring this modification are less efficient (Ericson et al. 1991) 

(Hagervall et al. 1990) (Björnsson and Isaksson 1993) (Bouadloun et al. 1986) (Connolly and 

Winkler 1989) (Petrullo et al. 1983) and the number of translation misreading error rates at 

third or first positions in codons are decreased or increased, respectively.  
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Figure IV.6. Structure of the i6A derivatives in the context of their biosynthetic pathway. 

 

IV.3.2. State of art 

The reasons of these translational consequences have been well investigated 

concluding that the prenyl group acted mainly through an extended stacking interaction of the 

purinic ring. This stabilization is also increased by the intramolecular hydrogen bond 
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N(1)···H-C(11) which has been observed in all conformers of the related free nucleobases 

(Sonawane, et al. 2002) (Figure IV.7.).  
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Figure IV.7. Preferred conformation of i6A derivatives revealing an intramolecular N(1)···H-C(11) hydrogen 
bond. 
 

The importance of this stabilization has been evaluated through preparation of 

synthetic oligonucleotides. Whereas 5’-ACAUGU-3’ exhibits a Tm of 26°, the modified 

counterpart appears to be significantly stabilized with a Tm of 38.1° (5’-ACAUGUi6A-3’) 

(Kierzek and Kierzek 2001). However, the reported stabilization improvement, of around 1.4 

kcal/mol, is probably higher, since in this model sequence the i6A nucleoside stacked on a 

U·A base pair instead of a (naturally occurring) A·U base pair.  

Furthermore, it has been also suggested that the alkyl group could be involved in the 

structuration of the anticodon loop since the consequence resulting from its absence is highly 

dependent of the tRNA and the structure of the anticodon loop. Whereas lack of the ms2i6A 

modification inhibits the ability to suppress codons (Pedersen and Curran 1991), the activity 

of E.coli Phe-tRNA is not affected during the initial selection step but induces a strong 

proofreading (Diaz and Ehernberg 1991). Furthermore, this tRNA is more likely to frameshift 

at UUU-Y sites (Schwartz and Curran 1997). Despite the recent NMR study of the related 

modified ASL, the reasons of this behaviour remain poorly understood. Since this synthetic 

ASL contains the single i6A modification instead of Ψ32, Ψ39 and ms2i6A37 (Cabello-

Villegas et al. 2002), it remains difficult to draw conclusions from this study about the role of 

the thiomethyl group. Nevertheless, according to investigations carried out by Houssier and 

Grosjean on tRNAs duplexes, the thiomethyl moiety increases the stability of the complex 

probably by improvement of stacking interaction (Houssier and Grosjean 1985).  

 110



 

Furthermore, this group appeared to have a stronger effect at the C context (UUU-C) 

(Esberg and Björk 1995). This sensibility supposes that ms2 influences the rigidity of the 

wobble base G34. This hypothesis seems to be well correlated with the signal broadening 

observed for the G34 base in the i6A modified ASL, which contrasts with the well-stacked 

bases of the fully modified anticodon loop containing ms2i6A (obtained from X-ray data). 

Moreover, in the context of a NMR study of the ASL of human tRNA Lys3, it has been 

proposed that ms2 is likely needed to compensate the more dynamic U-turn of the ASL 

displaying t6A instead of ms2t6A (Durant et al. 2005). Furthermore, it has been also proposed 

that ms2 could relax or open the loop and expose the Watson-Crick faces of the anticodon 

nucleotides, thereby reducing the thermodynamic barrier to helix formation. This hypothesis 

could be confirmed by the recent study on synthetic oligonucleotides containing different 

types of alkylated adenosines, such as ms2i6A (Kierzek and Kierzek 2003). The experiments 

carried out with the model hairpin of tRNATrp from E.coli confirmed that introduction of the 

thiomethyl group increases the stability of RNA hairpins relative to hairpins containing only 

N(6)-alkyladenosine. However, this stabilization seems to be strongly influenced by 

magnesium ions as also noticed in the recent study on a i6A modified ASL of Phe-tRNA from 

E.coli (Cabello-Villegas et al. 2002). Despite these reported observations, the role played by 

ions in the stabilisation of tRNA remains largely unknown. 

Beside the demonstrated influences of the prenyl and thiomethyl groups on the decoding 

properties of the tRNA, the hydroxylation seems to have no translational effect, rendering its 

utility questionable. However, some observations suggest that this group could serve as 

“switch signal” from anaerobiosis to aerobiosis. Indeed, it has been observed in 

S.typhimurium that miaE defective mutants were unable to grow aerobically on succinate, 

fumarate, or malate (Persson et al. 1998). However, the exact biological processes remain 

largely unknown but could involve the i6A derivatives as free base or as nucleosides.  
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IV.3.3. Role of related free base: the cytokinins 

The so-called cytokinins are free bases and are known to act as growth factors in 

plants. Moreover, they can also exert a role in several biological processes such as DNA 

replication (Mok et al. 2000). Whereas the cytokinins are mainly produced from AMP in 

plants, in bacteria, the tRNA turnover seems to constitute an important contribution to their 

production (Prinsen et al. 1997). Consequently, the related cytokinins (ms2i6A, ms2io6A) 

issued from the tRNA degradation, could exert a significant effect on the cellular organites 

such as the yeast alcohol dehydrogenase (Figure IV.6.). This enzyme has indeed been 

observed to be influenced by io6A, which inhibits the enzymatic oxidation of ethanol into 

acetic acid (Zikmanis and Kruce 1990).  

 

IV.3.4. Conclusion 

It remains difficult to draw up an accurate scheme of interactions, since the action of 

these compounds remains poorly understood and information is still “highly fragmented” 

(Mok et al. 2000). The present conclusions suggest that the modified nucleosides, usually 

acting for proper codon-anticodon recognition and correct folding of the tRNA, could be also 

involved in metabolic regulation pathway. This supposed second activity of nucleosides has 

been also observed for the queuosine which is probably the most intriguing compound among 

the modified nucleosides.   

 

IV.4. Queuosine  

IV.4.1. Introduction  

Among all known modifications of the tRNA, the queuosine nucleoside and its related 

base, queuine, constitute the most intriguing one. First identified in 1968 from E.coli tRNATyr 

(Goodman et al. 1968), it has been later identified as specific of the aspartate, asparagine, 

histidine and tyrosine tRNAs (Nishimura 1983), before its structure was determined in an-

eleven year investigation by X ray crystallography (Yokoyama et al. 1979). Consisting of a 7-

deazaguanosine residue that is attached to a dihydroxycylopentenediol through a 
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methylaminomethyl linker, it has been conventionally named 7-(3,4-trans-4,5-cis-dihydroxy-

1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. 

The position 2 of the cylopentenediol can sometimes be further modified by a mannose or a 

galactose residue, such as in tRNAAsp and tRNATyr, respectively (Figure IV.8.). Although 

present in mitochondrial, chloroplastic and cytosolic tRNAs of a variety of organisms 

(bacteria, animals, plants), queuosine is noticeable absent in yeast (Kasai et al. 1975) (Katze 

et al. 1982) (Slany and Kersten 1994).  
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Figure IV.8. Structure of queuosine derivatives. 

 

Despite its wide distribution, the process of queuosine incorporation differs according to the 

phyllogenetic membership. In contrast to the eukaryotes organisms which require 

supplementation of the free base from their diet, prokaryotes synthesize queuine de novo. As 

first substrate, the guanosine triphosphate (GTP) is converted into a 7-aminomethyl-7-

deazaguanine (preQ1) or a 7-cyano-7-deazaguanine (preQ0) involving the GTP cyclohydrolase 
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which also acts during dihydroneopterin triphosphate biosynthesis (Figure IV.9.). The preQ1 

is enzymatically incorporated into tRNA by replacing the present guanine base in position 34 

and submitted to further modifications by introduction of an epoxy-dihydroxycylopentyl 

residue (Slany and Kersten 1994). This epoxy-Q (or o-Q) derivative, hypothesized to 

originate from methionine (Katze et al. 1977) (Slany et al. 1993), is converted into the 

definitive queuosine by an uncharacterized enzyme requiring co-enzyme B12 (Phillipson et al. 

1987). None of the biosynthetic intermediates are salvaged by bacteria after the tRNA 

turnover and queuine is lost to the surrounding environment. This metabolic compound serves 

as substrate for the dependent eukaryotic modification system which has been recently 

reviewed (Morris and Eliott 2001). From a highly specific queuine transport system and an 

efficient salvage mechanism, the queuine-tRNA ribosyltransferase (tgt) (TGT, E.C. 2.4.2.29) 

substitutes the G34 base for queuine within the four queuosine modified tRNAs (Figure 

IV.10.). 
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Figure IV.10. Incorporation of queuosine in tRNA in eukaryotic organisms (Morris and Eliott 2001). 

 

 

IV.4.2. Features of the modifying enzyme: queuine-tRNA ribosyltransferase  

As described above, the prokaryotic biosynthesis of queuine requires GTP which is 

also the substrate for the pteridine production in the cell (Werner-Felmayer et al. 2002). The 

main consequence of this “biosynthetic” relation is retrieved in their structures, which are 

quite similar (Figure IV.11.). Therefore, a possible metabolic interference between these two 

substrates towards the tgt enzyme has been investigated and confirmed for several pteridine 

derivatives (Table IV.1.). 
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Figure IV.11. Superposition of queuine and pteridine structures.  
 

tgt inhibition  

Compounds Ki 

pterin 0.05µM 

biopterin 2µM 

Table IV.1. Tgt inhibition by pteridine derivatives. The affinity for the tgt for its substrate (queuine) is almost 
0.1µM (Kersten and Kersten 1990).  
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Although the assays have been carried out in vitro, we can observe an affinity of tgt 

for pteridines of the same order of magnitude than for its natural substrate queuine. 

Consequently, the pteridine level disorders observed in rapidly dividing cells (during 

differentiation or malignant) (Werner-Felmayer et al. 2002), should be responsible for the 

accumulation of hypomodified tRNAs. Similarly, the action of some substances such as 

phorbol esters induces the same hypomodification of tRNAs (Seidi et al. 1986). However, this 

effect is probably linked also to the pteridin metabolism since the phorbol esters induce a 

transient accumulation of neopterin and biopterin which are known to be efficient tgt 

inhibitors (Kersten and Kersten et al. 1990). 

 

IV.4.3. Glycosylated derivatives of queuosine and tRNA turnover 

The cyclopentendiol ring of queuosine can bear further modifications at position 2 by 

addition of mannose and galactose residues in the tRNAAsp and tRNATyr respectively (Kasai et 

al. 1976) (Okada et al. 1977) (Haumont et al. 1987). Exclusive to mammalian cells, it has 

been suggested that these modifications could prevent the rapid tRNA turnover from the 

efficient salvage mechanism which recycle queuine. Since forgotten, this hypothesis seems to 

be confirmed by the recent measurement of turnover rates of these both tRNAs. Eight week-

old germ free mice fed with queuine free diets exhibit a decrease of 15% of queuosine 

modification level (Farkas 1980) (Reyniers et al. 1981) in tRNAAsn and tRNAHis after 4 

weeks. In contrast, the tRNAAsp and tRNATyr modification levels were maintained at 100%. 

As a consequence, the presence of sugar moiety could be understood as “glycosyl tag” for 

reduction of tRNA turnover rate which reduces accessibility of the Qtrase. Moreover, the 

nature of the sugar could correspond to the hydration shell mimicry. The mannose and 

galactose are found in two different tRNAs which differ in their anticodon loop composition 

but are highly conserved among the tRNA sequences. The mannosyl-queuine is related to the 

anticodon sequence manQUC and galactosyl-queuine to galQΨA, respectively (Sprinzl et al. 

1998). 
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IV.4.4. Role of Queuosine in the decoding properties 

Apart from the relatively good knowledge of the biosynthetic pathways for 

introduction of queuine into tRNAs, most of the biological effects induced by this nucleoside 

remain poorly understood (Moris and Elliott 2001) except for the consequences of its absence 

on decoding properties of the tRNAs. Therefore, the tRNATyr defective in queuine and 

displaying a guanosine in place (G34) appeared able to efficiently interact with the UAG 

STOP codon (Pelham 1978).  This process defined as “readthrough”, involves a tRNA which 

misreads a stop codon as sense codon, allowing the synthesis of an extended polypeptide 

which carries novel activities (Atkins et al. 1990). After this first observation for the tobacco 

mosaic virus (TMV) (Pelham 1978), it has been suggested that the queuine tRNA deficiency 

could serve for expression of alternative genes in cells. However, despite several 

investigations (Cassan and Rousset, 2001) (Beier and Grimm 2001), no similar example in 

healthy organism has been reported so far and this possible regulatory pathway looks unlikely 

since most genes essential for E. coli do not end in TAG (Benzer and Champe 1962) (Garen 

and Siddiqi 1962). Apparently, the editing of the tRNA with queuosine prevents suppression 

of stop codons by strict recognition of pyrimidine-ending codons. Furthermore, whereas the 

queuine-deficient tRNAs displaying a guanosine at the wobble position appear to decode 

preferentially the C over U ending codons, the fully modified (+Q) counterpart shows no bias 

for either pyrimidine ending codons. This in vivo experiment has been also correlated by the 

trend observed by Grosjean and coworkers (1978) during their dynamical study of 

complementary-tRNAs complexes (Table IV.2.). These investigations have shown that the 

pairing with queuosine results always in an improvement of the base pair strength. Q·C base 

pairs appear almost as stable as the G·C base pair and the Q·U base pair seems to be nearly 

three times more stable than the G·U counterpart.   
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Half life of tRNA complexes 

Base pairs 

QC QU GC GU 

620ms 200ms 840ms 87ms 

 

Table IV.2. Half-life of tRNA complexes: comparison of Q·C and Q·U base pair to G·C and G·U, respectively.  

 

These properties have been subjected to computational investigations in the context of 

the ribosome with a queuosine modified tRNA (Morris, et al. 1999) and later on the free 

nucleotide itself (Sonavane et al.  2002). The energy minimizations carried out in these both 

studies underlined the presence of an additional hydrogen bond between O(6) of the deaza 

guanine moiety and the amino function (expected to be protonated at physiological pH) 

(Figure IV.12.).  
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Figure IV.12. Model of interaction of the Q·C base pair according the model of (Morris, et al. 1999).  
 

Despite the description of this interaction, the observed decoding properties of 

queuosine have been attributed to a rigidification of the backbone (Morris, et al. 1999). 

Nevertheless, the weakening of the Q·C base pair in comparison to G·C could be described in 

terms of an anticooperative effect of the hydrogen bond (Steiner 2002), or by the presence of 

C(7) deazaguanosine base in place of guanosine which is known to reduce base pair strength 
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(Seela and Driller 1989) (Table IV.3.). According to these two criteria we should expect a 

similar defavourable effect on the Q·U base pair which is surprisingly not observed since this 

base pair is largely more stable than its G·U counterpart. This observation suggests that other 

molecular interactions should occur within the close environment of the queuosine. In order to 

determine the nature of these interactions, we reconstructed a queuosine bound to a uridine in 

a geometry which should be close to that observed for the G·U base pair (Figure IV.13.). For 

this purpose, we combined the X-ray data obtained in the context of a tRNAAsp attached to its 

related aminoacyl-tRNA synthetase (pdb 1C0A) (Eiler et al. 1999), with the data of a well-

defined GU mismatch (pdb 1QES) (McDowell et al. 1997). In this new construct, the major 

groove appeared to be accessible to the HO-group of position 3. At the difference of position 

3, the position 2 of the cyclopentenyl moiety remains free to any glycosylation. The hydroxyl, 

by reaching the O(4) of the uridine of the messenger RNA, should have a stabilizing effect on 

the base pair since it increases the H-N(3) acidity of the uridine. The new favourable display 

of π-electrons and the presence of an additional hydrogen bond can be expected to increase 

notably the strength of the Q·U base pair in comparison to G·U. 
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Evaluation of base pair strength 

Tm of 8mer dc7G  Tm of 8mer dG   

37°C 46°C  ∆Tm = 37/46=0.80 

Half life of tRNA complexes 

GC ending QC ending  

840ms 620ms ∆τ = 620/840=0.74 

 

Table IV.3. Correlation of destabilization induced by C(7) deazaguanine base in place of guanine with the 
reported values of the Q·C base pair stability.  

 

Unfortunately, this hypothesis has not been submitted to computational investigation since the 

calculations required would have taken too long.  

 

IV.4.5. Conclusion 

The proposed model of interaction of the queuosine requires further investigations that 

could be accomplished by the design of analogues and their incorporation into RNA 

sequences through automated synthesis. This challenge will be probably soon possible since 

several advances have been accomplished in the total synthesis of queuine (Oxenford et al. 

2004) (Barnett and Grubb 2000). In contrast to this compound, for which the synthesis has not 

been yet accomplished, some of the modified nucleosides present at the wobble position have 

been already prepared and sometimes incorporated. However, their decoding properties 

remain poorly understood. Often derivatives of uridine, these compounds exhibit peculiar 

decoding properties which seem to be predictable on the basis of structural considerations. In 

this context, we reviewed the large variety of modified pyrimidines present at the wobble 

position and propose models of interaction.  

 

 

 

 121



IV.5. Pyrimidines at the wobble position 34 

IV.5.1. Introduction   

Ribosomal protein synthesis is an extremely accurate process, with only one in ten 

thousands amino acids incorporated incorrectly (Thompson and Karim 1982). The fidelity of 

the translation is mainly influenced by the modifications of the tRNA, especially those present 

in the anticodon loop (Figure IV.14.). Whereas the interaction of the first and second 

nucleosides of the codon (I and II of mRNA) involve the “rigid” Watson-Crick base pairing 

with tRNA (positions 35 and 36), the last position (position 34) display a variety of modified 

nucleosides which permits to multiple bases recognition. This concept of “wobbling” was 

developed by F. Crick (Crick 1966) for inosine and uridine nucleosides. Since then, the 

identification of a large number of modified nucleosides and isolation of their related tRNA 

modification defective mutants have permitted to redefine “Crick’s rules”.  Whereas the 

decoding properties of such mutants are well documented (Agris 2004), the correlation 

between structure of the nucleoside and decoding capacity remains poorly understood (Takai 

and Yokoyama 2003), especially for the unusual pyrimidines.  

To address this issue a series of structural models are proposed for most of the known 

modified pyrimidines (mnm5s2U, mcm5U, mchm5U, cmo5U, f5C, k2C, mchm5U) placing a 

particular role on the previously neglected hydrogen bonds which form the base pair.  
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Figure IV.14. Example of tRNA (Yeast Phe tRNA) displaying several modifications (e.g. m1A, D, m5C, m2G…) 
and carrying an amino acid (aa) at its 3’-end. The bases, 34, 35 and 36 (anticodon loop) interact with the codon 
triplet III, II and I, respectively.  

 

IV.5.2. Description of decoding properties 

IV.5.2.1. Uridines 

IV.5.2.1.1. Unmodified uridine 

The unmodified uridine has been proposed to exhibit extended “wobble” decoding 

capacity for the purines bases A and G, by adopting an original geometry beyond the classical 

Watson-Crick base pairing. This model developed by F. Crick (Crick 1966), based on an 

equal repartition between C2’-endo and C3’-endo conformations of the ribose ring 

(Yokohama et al. 1985) and excluded the U·U and U·C base pair. Although this hypothesis 

has been confirmed by experiments carried out with E.coli cell-free translation assays (Takai 

et al. 1999), U ending tRNAs anticodons of Mycoplasma organism and mitochondria 

organelles (Björk 1998) seem to have the ability to read all four bases of a family box. For 

explaining this result a “two out of three” mechanism has been proposed, where only the two 

first nucleosides are involved in the codon reading (Hagervall 1998). Beside this model, a 

possible U·U base pair has been also invoked. The first includes a water bridge and requires a 

N-glycosidic bond propeller twist unfavourable for π-stacking (Lim 1994) (Figure IV.15). 
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The second model involves the less favorable C2’-endo conformation in a “short wobble” 

conformation, but maintains the stacking interaction (Yokohama and Nishimura 1995) 

(Figure IV.15).  
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Figure IV.15. Models of U-U and U-C base pairs; Top: Requiring a water bridge and a N-glycosidic bond 
propeller twist unfavourable for π-stacking according (Lim 1994), Bottom: U34 should adopt a short C2’-endo 
conformation for base pairing with U or a protonation of C for base pairing with C according (Yokohama and 
Nishimura 1995).  

 

Although both models are viable, it has been suggested that the latter one is 

incompatible with the U·C base pair since it would require a protonated form of C. However, 

a protonated form of base pair, C·+A, has been already reported in some RNA duplexes (Pan 

et al. 1998) even crystallized at neutral pH (Figure IV.16). The observed C·+A base pair could 

explain the observed A-ending codon reading by IletRNA (Grosjean and Björk 2004) in yeast 

mitochondria. Consequently, in this context, the protonation of N(3) of C (adenosine N(1) 

pKa=3.52 and cytidine N(3) pKa=4.17) (Saenger 1988) should also be possible but requires 

further investigations.   
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The observed extended capacity to read all four bases by U34 containing tRNAs seem 

to be possible in the solely context of the mitochondrial ribosome. Indeed, this ability 

observed for mitochondrial tRNAs is totally absent within the cytoplasmic ribosome (Takai et 

al. 1999). However, in cytoplasmic tRNAs, this weakness is compensated by existence of a 

wide diversity of modified pyrimidines at position 34 (Figure IV.17)1). Whereas unmodified 

uridine exhibits no bias for adopting either C2’-endo or C3’-endo conformations, the 

substituent of the modified nucleobase confers unique decoding properties by displacing this 

equilibrium. Despite the wide diversity of original structures, two main categories can be 

distinguished, differing in the nature of substituent at position 5: the methylene bridged 

(xm5U) uridines (often O(2) thiolated: xm5s2U) which recognize the purine ending-codons 

and the oxygen bridged (xo5U) uridines, which recognize U, A and G ending codons (Mizuno 

and Sundalingam 1978) (Table IV.4.). 
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Figure IV.16. Structure of A+·C base pair where adenosine is protonated (Yokohama and Nishimura 1995). 
 
 
 
 
 
 
 

                                                 
1) Chemical structures and abbreviation of modified nucleosides listed in the introduction can also be found in 
(http://medstat.med.utah.edu/RNAmods). 
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Figure IV.17. Diversity of C(5) and E(2) substituted uridines encountered at wobble position (34) of tRNAs. 
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IV.5.2.1.2. xm5U modified uridines 

IV.5.2.1.2.1. xnm5U derivatives 

The phyllogenetic distinction of the eukaryotic and prokaryotic kingdoms is also 

evident in the types of xm5U modification seen at tRNA position 34. Those displaying an 

aminated derivative (xnm5U) are exclusive to prokaryotes and those displaying a carbonyl 

function (xcm5U) are specific to the eukaryotes (Rozenski et al. 1999). This structural 

distinction is also apparent in the decoding specificities. Indeed, it was observed that a yeast 

tRNA Glu, exhibiting a mcm5s2U modification at position 34, was exclusively devoted to the 

GAA codon (Sekiya et al. 1969) and mcm5U34 was also unable to recognize the G-ending 

codon (Percudani 2001). The G-ending glutamate codon was found to be recognized by 

tRNAs with C(34) (Marck and Grosjean 2002), confirming that the eukaryotic xcm5s2U is 

exclusively devoted to A-ending codons.  

On the other hand, the prokaryotic xnm5U modification seem to have decoding 

capacities, which are extended to both A and G purines, as confirmed by several experiments. 

Indeed, a synthetic anticodon stem loop containing the mnm5s2U modification has been 

observed to enhance the A-site binding to the AAA and AAG codons (Yarian et al. 2002). 

Additionally, well-characterized E.coli mutants have enabled measurements of the effects of 

individual modifications on rates of translation. In mnm5s2U, the s2 modification appeared to 

enhance the GAA codon reading with a small effect on GAG, whereas mnm5 reduces GAA 

decoding and increases GAG codon reading (Sundaram et al. 2000).  

To explain these apparently contradictory experimental data, a model has been 

proposed where the pKa values have been estimated (Kazuyuki and Shigeyuki 2003), 

concluding that a partial ionization of the uracil moiety under physiological conditions allows 

a base pairing with GIII (Figure IV.18). A more pronounced effect for the 2-thio derivative 

was also predicted by exhibiting a negative charge on sulphur atom conferring an excellent H-

bond acceptor capacity. However, with respect to the recent X ray structure of a tRNALys
UUU 

stem loop bound to a 30S ribosomal subunit A site, the proposed model seems to be 

incompatible with the observed base pairing geometry (Figure IV.19) (Murphy IV et al. 

 127



2004). In this context, no definitive mechanistic explanation of the action of the mnm5s2U 

nucleoside on decoding properties has been proposed due to the absence of consistent electron 

density (Murphy IV et al. 2004). Nevertheless, the observed local disorder could reflect the 

fluctuation of two H-bonds sharing the NH2
+ moiety between the well-characterized NH2

+ / 

2’-OH U(33) bond (Hillen et al. 1978) and the less obvious NH2
+···O(4) mnm5s2U(34) bond 

(Figure IV.19). This last intramolecular H-bond between the amino subtituent and the O(4) 

carbonyl group of the uracil base was proposed as a tautomeric form of the negatively charged 

mnm5se2U moiety (Ching 1986). The introduction of “additional proton” in the close 

proximity to the O(4) should therefore enhance the N(3)-H proton acidity and consequently 

the H-bond donor character. Different definitions of hydrogen bond between two species A-

H···B exist and, among them, this complex can be also described in terms of acidity of A-H 

and basicity of B (Steiner 2002). An increase of A-H acidity can change a H-bond from weak 

to strong. The strength of the base pairing with GIII is reinforced by the introduction of the O, 

S and Se elements at the Y(2) position through two main effects: a local increase of the N(3)-

H acidity and the enhancement of the Y(2) atomic radius which favours efficient interaction 

with the three H-bonds.  
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Figure IV.18. Model of mnm5s2U·G base pair as proposed by Takai and Yokohama (2003). The electronic 
withdrawal effect of the amine favours the deprotonation of the uridine moiety allowing a base pairing geometry 
close to the Watson-Crick C·G base pair. The deprotonation is particularly pronounced for the 2-thiolated 
derivative. 
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Figure IV.19. Proposed alternative model of mnm5s2U·G base pair deduced from X ray analysis (Murphy IV et 
al. 2004) and with new hydrogen-bond distribution. At physiological pH the protonoted amine is in close vicinity 
to the O(4) allowing hydrogen-bond formation which enhances the H-N(3) acidity and stabilizes the mnm5s2U·G 
base pair.  

 

Although the introduction of the intramolecular H-bond NH2
+···O(4) favours the base 

pairing with GIII, it appears to partially weaken the conventional Watson-Crick base pair with 

AIII (Krüger et al. 1998). This effect is mainly due to the anticooperative effect produced by 

introduction of a second H-bond at the O(4) position (Steiner 2002) which is already involved 

in the base pair with the amino function of A(III) (NH2
+···O(4)·H2N(6)) (Figure IV.20).  

The cmnm5s2U nucleoside, another widely represented modification, has been isolated 

during the determination of the biosynthetic pathway to mnm5s2U (Hagervall et al. 1987) 

(Leipuviene et al. 2004). The relative suppression efficiencies of tRNAs containing each of 

the intermediates have been evaluated, revealing the following order: mnm5s2U (wild type) > 

cmnm5s2U > nm5s2U > s2U (Hagervall et al. 1984). The presence of the additional H-bond 

acceptor COO- creates a bifurcated H-bond pattern which decreases the NH2
+···O(4) H-bond 

strength, reduces the N(3)-H acidity and consequently the suppression efficiency. However, 

the biosynthetic pathway suggests that cmnm5U does not act as the real effecter of the codon 

recognition but reflects the composition of the growth medium. Indeed, the formation of 

mnm5s2U from cmnm5s2U, involving a same polypeptide with two distinct enzyme activities, 

is severely inhibited by magnesium (Hagervall et al. 1987) and the observed cmnm5s2U 

modification could be considered only as a biosynthetic intermediate having a reduced impact 

in the decoding properties.  
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In contrast to the mnm5y2U derivatives, the xcm5U derivatives do not display the 

described H-bond and hence they are unable to recognize GIII and consequently they only 

recognize AIII codons.  
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Figure IV.20. Model of mnm5s2U·A base pair. At physiological pH the protonoted amine is in close vicinity to 
the O(4) allowing hydrogen-bond formation which enhances the H-N(3) acidity and destabilizes the mnm5s2U·A 
base pair through anticooperative effect (Steiner 2002).  

 

 

IV.5.2.1.2.2. xhm5U derivatives 

Two rare nucleosides amongst the modified uridines could be included in the proposed 

model, despite their unique structure: the 5-[S-methoxycarbonyl(hydroxyl)methyl]uridine 

mchm5U and 5-[S-carboxy(hydroxyl)methyl]uridine chm5U. Isolated from posterior silk 

glands of Bombyx mori (silkworm) (Kawakami et al. 1979), chm5U seems to be the result of 

instability of the methylester which suffers partial hydrolysis during the isolation process, and 

mchm5U is most likely the original component in the intact tRNA molecule (Kawakami et al. 

1988). Synthesized for full identification (Nawrot and Malkiewicz 1989), these methylene 

bridged nucleosides display an hydroxyl group which could interact with the O(4) of the 

uridine moiety in same manner as described for mnm5s2U (Figure IV.21). The resulting 

increase in H-N(3) acidity contributes to an efficient reading of GIII codons, in agreement 

with experimental results (Kawakami et al. 1980). This idea is supported by the isolation of 

only two glycine tRNAs, one harbouring the presented modification and the other with a 
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guanosine, without occurrence of a third C34 tRNA (Kawakami et al. 1988) to compensate 

for a weak GIII ending codon reading. Therefore, in interaction with adenosine, the mchm5U 

modification should adopt the same geometry as the one described for the mnm5s2U·A base 

pair (Figure IV.22). 
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Figure IV.21. The mchm5U·G could adopt the same conformational geometry where, the hydroxyl group of the 
C(5) alkyl chain behaves in analogy as the protonated amine encountered in the case of  mnm5s2U·G base pair. 
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Figure IV.22. The mchm5U·A could adopt the same conformational geometry where the hydroxyl group of the 
C(5) alkyl chain behaves analogously to the protonated amine encountered in the mnm5s2U·A base pair. 

 

Moreover, despite synthesis of the corresponding 2-thiolated derivative (Nawrot and 

Malkiewicz 1989), no mchm5(s2)U has been identified so far, contributing to the idea that the 

additional intramolecular H-bond O(4)···Y (Y= NH2
+, HO) is the main contributor to the 

observed decoding properties of the mchm5U and  mnm5s2U modifications .  
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IV.5.2.1.3. xo5U modified uridines 

In contrast to the methylene bridged uridines, the xo5U34 derivatives exhibit extended 

decoding properties. Favoring the base pairing with A, U and G, the diversity of oxygen 

substituted uridines have been recently well reorganized by linking their structure to the 

biosynthetic pathway (Näsvall et al. 2004). The first hydroxylated ho5U nucleoside is further 

modified by side chain extensions: starting with mo5U, followed by cmo5U and finishing with 

mcmo5U (U → ho5U → mo5U → cmo5U → mcmo5U). 

From a measure of the pKa value of pmo5U (Shibaev et al. 1975) and a prediction for 

the other derivatives based on the Hammett equation, (Kazuyuki and Shigeyuki 2003), the 

estimated pKa value was not sufficient to induce a significant ionization of the base moiety 

under physiological conditions, predicting a base pairing restricted to purines (A and G). The 

extended capacity to base pair with U is due to a bias in equilibrium of sugar conformation 

induced by the (xmo5U x = H, COO2-, COOMe) side chain. Whereas the unmodified uridine 

displays no bias for either C2’-endo or C3’-endo conformations, the mo5U and cmo5U 

modifications show a noticeable preference for the C2’-endo conformation (Yokohama et al. 

1985) as measured from thermodynamical investigations for the enthalpy differences between 

C2’- and C3’- endo conformations: 0.1 (pU), -0.28 (pho5U), -0.72 (pmo5U), -0.67 (pcmo5U); 

(values in kcal.mol-1) (Yokohama et al. 1985). This feature explains the G(III) decoding 

ability displayed by the mo5U, cmo5U, and consequently mcmo5U, derivatives (Figure IV.23).  
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Figure IV.23. Structure of the cmo5U-G base pairing where the favoured C2’-endo conformation of cmo5U 
facilitates the base pairing with GIII according to (Yokohama et al. 1985).   
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Furthermore, an unexpected extension of the decoding capacity of ProtRNA for the four 

nucleobases A, C, G and U has been recently observed in S.typhimurium. This anticodon 

contains cmo5U at the wobble position and, in addition to the reading of A, G, U ending 

codon reading, it is able to read CIII codons (Näsvall et al. 2004). However, this ability has no 

real biological significance since the C ending codon is already efficiently read by a ProtRNA 

displaying a G34 at wobble position of its anticodon. This capacity, not observed for the 

structurally close mo5U modification (Takai et al. 1999), is consequently due to the presence 

of the carboxylic moiety.  

However, the mechanistic details of the C(III) decoding remain difficult to draw-up. 

As described above, we could expect the formation of a stable cmo5U-C+ base pair where the 

carboxylic acid function could neutralize the created positive charge of the C+·U base pair 

directly or indirectly, by water molecule mediation (Figure IV.24).  

 

 

cmo5U-C+

N
N

O

O

H O
N

mRNA

N

N

H

H
H

tRNA

O

OO

cmo5UH2O-C+

N
N

O

O

H O
N

mRNA

N

N

H

H
H

tRNA

O
O

O H O
H

 
 

Figure IV.24. Proposed model for the cmo5U-C base pairing where the carboxylic acid function could neutralize 
the created positive charge of the C+·U base pair directly (left) or inderirectly, by water molecule mediation 
(right). 

 

 

 

 133



 

 

IV.5.3. Cytidines  

IV.5.3.1. Lysidine k2C  

The second standard pyrimidine, cytidine, is also modified, but less often than uridine. 

Among the derivatives, the intriguing lysidine has recently been revisited (Soma et al. 2003) 

(Grosjean and Björk 2004) several years after its isolation from E.coli IletRNA (Muramatsu et 

al. 1988). Present in B.subtilis (Matsugi et al. 1996) and Mycoplasma capricolum (Andachi et 

al. 1989), its total synthesis accompanied its first initial characterization (Muramatsu et al. 

1988). Abbreviated to k2C, this modified nucleoside has a lysine moiety instead of the usual 

keto group of C which introduces a delocalized positive charge and allows classical base-

pairing with adenosine. In contrast to the wobbling mechanism which expands the decoding 

property of the tRNAs (e.g. inosine, modified uridines), lysidine is unique in its restricted 

decoding capacity in the crucial split box coding for Methionine and Isoleucine (Grosjean and 

Björk 2004). In parallel with the structural identification of k2C, several tautomers or 

tautomeric forms and base pairing geometries were proposed, but have not been investigated 

further. A model of twisted geometry has also been suggested but the lysine moiety was not 

included in the model (Lim 1994). Among the presented models, the planar geometries are 

likely to be the most energetically favourable because they maintain π-stacking interaction. 

According to this criterion, two configurations of the H-bonds are possible: one in a 

conformation close to that observed for the G·U base pair and another in a more conventional 

A·U Watson-Crick base pair (Figure IV.25).  
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Figure IV.25. The planar geometries in a conformation close to those observed for a G·U base pair (left) and 
another one in a more conventional A·U Watson-Crick base pair (right) which is preferred for electronic and 
steric considerations.  

 

Whereas the first one seems to be prohibited due to steric considerations, the second 

one does not suffer the same restrictions. Moreover, the proposed tautomeric forms 

(Muramatsu et al. 1988) suggest that the N(3) nitrogen is protonated (6/10 of all tautomeric 

forms) and, therefore, the context of a A·U base pair, the H2N(4) function should be in the 

imino form. Although the presented base pair offers an optimal resonance system, it 

represents just one of several possible configurations. This feature probably induces some 

decoding ambiguities within the ribosome when the tRNA is interacting with the codon triplet 

of the mRNA in the crucial split box Ile/Met (AUN). As well as the IletRNA, the elongator 
MettRNA also contains a modified base N4-acetylcytidine (ac4C), weakens the G·C base pair 

by around 50% so that its strength is about the same as A·U. However, its strength is probably 

still stronger than the base pair made by k2C. In order to counter the weakened base pair 

resulting from the “tautomeric ambiguity”, the bulky lysine side-chain might serve to increase 

the global H-bond strength through a possible interaction of the ammonium function with the 

nitrogen N(3) of adenosine (Figure IV.26). In view of the resulting possible tautomeric forms, 

the introduction of a H-bond donor at the position of N(3) should contribute to a 

compensatory stabilization of the k2C·A base pair although this remains to be quantified.  
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Figure IV.26. Although the presented base pair offers an optimal resonance system, it represents one 
configuration among several possibilities leading to a probable decoding ambiguity within ribosome when the 
tRNA is interacting with the codon triplet of the mRNA. The lysine moiety could serve to increase the global 
hydrogen bond strength through a possible interaction of the ammonium function with the nitrogen N(3) of 
adenosine. In view of the resulting tautomers, introduction of a hydrogen bond donor at this position could be 
compensated by significant stabilization of the k2C·A base pair.  

 

IV.5.3.2. 5-Formylcytidine f5C  

The fine-tuning of the decoding properties developed by bacteria is also present in the 

most puzzling organelle of the cell, the mitochondrion. The mitochondrial protein synthesis 

has been extensively studied and many diseases have been associated with dysfunction in 

their gene expression due to dramatic mutagenesis or disorder in tRNA import (Rossignol et 

al. 2003). Besides having their own genetic code, their original tRNAs structures exhibit some 

peculiar modifications such as the 5-formylcytidine (abbreviated f5C) which is present in 

mitochondrial MettRNA of several eukaryotes and decodes AUG and AUA codons. Therefore, 

in contrast to ac4C which prevents AUA codon reading, f5C facilitates this particular decoding 

but without changing the geometry of the A+·C base pair. The structural reasons of these 

abilities could be understood in regard to the case of the A+·C base pair. From X ray analysis 

(Pan et al. 1998) and some NMR studies (Boulard et al. 1995), the A+·C mismatch appeared 

to interact through two H-bonds (Figure IV.27): the “standard” N(6)-H···N(3) bond and 

N+(1)-H···O(2) are formed by protonation of A (Sowers et al. 1986), even though the 

experiments were done at neutral pH (Pan et al. 1998). Further investigations underlined the 
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special contribution of the adjacent adenosine to the stabilization of the A·C* mismatch 

(Allawi et al. 1998); this situation corresponds to the case of the MettRNAs anticodon (C*AU 

where C* is a modified cytidine). In order to control the occurrence of the A+·C* mismatch, 

Nature has developed modifications such as N4-acetylcytidine which prevents this deleterious 

mispairing (Stern and Schulman 1978), or other modifications that enable A+·C* base pair 

formation, such as f5C (Karino et al. 2001). After structural elucidation of the latter (Moriya et 

al. 1994), and determination of its conformational properties, a preference of these two 

modifications for the C-3’ endo form (Kawai et al. 1994) has been recognized. The decoding 

properties are unlikely to be due structural rigidity alone, but also reflect the H-bond acceptor 

character of the N(3) lone pair. The 15N NMR of the labeled nucleoside gave a direct 

estimation of this parameter by chemical shift measurements.  The values of the 15N(3) 

chemical shifts of ac4C and f5dC have been determined and compared with those of the 

cytidine and 2’-deoxycytidine. Whereas ac4C is N(3) deshielded, f5C shows a reinforcement 

of the electronic density at this position, indicating greater H-bond acceptor character for f5C 

and less for ac4C (LaFrancois et al. 1998) (Renaud et al. 1988). Therefore, the modification of 

the same nucleobase with different chemical substituents, such as acetyl and formyl, 

modulates the decoding properties of the tRNA from non-cognate to cognate.  
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Figure IV.27. The geometry adopted for base pairing between f5C and A is probably the same as encountered 
for A+-C, where the N(1) protonation of adenosine is particularly stabilized by the reinforcement of the H-bond 
acceptor character through the increase of local N(3) electronic density due to the presence of the C(5) formyl 
alkyl group.  
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IV.6. Conclusion 

The first concept of “wobbling” developed by F. Crick (Crick 1966) for inosine and 

uridine nucleosides has been several times redefined after the isolation of tRNA modification 

defective mutants. Nevertheless, the correlation between structure of the nucleosides of the 

wobble position and the decoding capacities of the corresponding tRNA remains poorly 

understood (Takai and Yokoyama 2003), especially for the unusual pyrimidines (mnm5s2U, 

mcm5U, mchm5U, cmo5U, f5C, k2C, mchm5U). Our proposed structural models could give 

new insights in the comprehension of decoding process and arouse computational 

investigations that we could unfortunately not perform at this time. Nevertheless, we 

summarized these decoding properties in (Table IV.4.).  

 

 

 
      
First nucleoside  Base pairing ability 
of anticodon     
C, Cm G and A  
k2C A  
ac4C G  
f5C G and A 
   
U U, A, G (and C  
 in mitochondria) 
xnm5U A, G  
mchm5U A, G  
xcm5U A  
xo5U U, A, G  
cmo5U U, A, G and C  
     
   

Table IV.4. Review of decoding properties 

 



CHAPTER V "Synthesis of a truncated E.coli AlatRNA analogue containing 

dihydrouridine and wyosine" 

V.1. Introduction 

Although tRNAs obtained by transcription contain no modifications, all structural 

investigations using thermal melting (Sampson and Uhlenbeck 1988) (Perret et al. 1990) 

(Derrick and Horowitz 1993), chemical and enzymatic probing in solution (Perret et al. 1990) 

(Derrick and Horowitz 1993), NMR spectroscopy (Hall et al. 1989) (Chu and Horowitz 1991) 

(Yue et al. 1994) or X-ray crystallography (Arnez and Steitz 1994) have reported a cloverleaf 

structure in the presence of magnesium ions. However, this structural tolerance has been 

recently questioned by the isolation of a tRNA transcript which requires at least one 

modification, m1A9, for adopting the canonical cloverleaf structure (Helm et al. 1998) (Helm 

et al. 1999). Furthermore, in some cases, absence of modified nucleotides led to loss of 

biological activity by lack of important identity elements for the aminoacyl-tRNA-

synthestases (Muramatsu et al. 1988) (Putz et al. 1994) (Ohtsuki et al. 1996). These 

observations led us to conclude that incorporation of modified nucleosides could not be 

circumvented for production of optimal suppressor tRNAs.  

So far, the preparation of hypermodified tRNAs has been only explored to a very 

small extent, mainly because of the difficulty to incorporate several modified nucleosides at 

the same time. Some artificial, but modified suppressor tRNAs have been synthesized through 

modification of the anticodon loop of natural tRNAs (Wang and Schultz 2005) and two 

chemical syntheses of hypermodified AlatRNAs have been reported. A first rarely known, 

synthesis of the yeast AlatRNA achieved by Wang and coworkers in 1984 (Wang 1984), and a 

second synthesis of the E.coli AlatRNA (Figure V.1.) accomplished in one piece 8 years later 

(Gasparutto et al. 1992). Since then, no more attempts have been reported. The 

characterization of the product was carried out by gel-electrophoresis and by a translation 

assay, which revealed some biological activity. By considering the chemistry employed in this 

pioneering study, we can conclude that the product was formed in very small yield and that a 

full purification was impossible. Nowadays, better synthetic methods, leading to much more 
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full-length sequence and less side-product formation, and better analysis tools, such as LC-

ESI MS are available. Nevertheless, the isolation of pure, synthetically prepared 76mer RNA 

sequences is still impossible, since even the best HPLC columns and conditions are not 

powerful enough to remove minor side-products, which accumulate in longer sequences. 

Futhermore, the fragility of most of the modifications requires an adaptation of the standard 

coupling and deprotection conditions, leading to additional problems. However, shorter RNA 

sequences, up to 50mers, can be efficiently prepared and purified by HPLC and then 

combined by general enzymatic ligation methods. The quality of the products can finally be 

analyzed by mass spectrometry. A successful example of this strategy has been presented for 

the preparation of the short wyosine-containing RNA sequence S3 (Chapter III). We then 

investigated the synthesis of a modified tRNA, derived from E.coli AlatRNA, containing a 

dihydrouridine at position 17, a wyosine at position 37 and a CUA anticodon, complementary 

to the amber STOP codon UAG (Figure V.2.).  
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Figure V.1. Structure of the first tRNA fully chemically prepared (AlatRNA of E.coli) (S24) (Gasparutto et al. 
1992).  
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Figure V.2. Structure of the tRNA analogue S25 planned to be prepared for evaluating different synthetic 
methodologies (sequence derived from E.coli AlatRNA). The arrows show the deviations from the natural 
structure (Y for wyosine).    

 

V.2. Preparation of the artificial truncated tRNA 

V.2.1. Retrosynthesis 

The retrosynthetic approach led to three distinctive RNA fragments consisting of 8, 32 

and 36 nucleotides (Figure V.3.). The T4-DNA ligase mediated ligation of the unmodified 

68mer sequence S26 with the aminoacylated 8mer sequence S27 was optimized by C. 

Denarie in our group (Denarie 2006) and should also efficiently work with modified 

analogues. Therefore, we investigated here the ligation of the two 32mer (S29) and 36mer 

(S28) fragments by blunt-end ligation with T4-RNA ligase according to (Ohtsuka et al. 1981) 

or with T4-DNA ligase in the presence of a suitable template according to Chapter III. 
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Figure V.3. Retrosynthetic approach for the preparation of the tRNA analogue.  

 

V.2.2. Synthesis of the N2-methoxyacetyl protected guanosine phosphoramidite 

The introduction of dihydrouridine in the 36mer sequence S28 and wyosine in the 

32mer sequence S30 required mild deprotection conditions and therefore, in analogy to the 

preparation of the wyosine-containing RNA sequence S6 (Chapter III), we first employed the 
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NH2-C(2) unprotected guanosine phosphoramidite 108 for carrying out the deprotection with 

NH3 in MeOH. However, this building block was not compatible with the assembly of the G-

tetrade present at the 5'-end of the dihydrouridine containing 36mer sequence S28. A more 

systematic study revealed that the number of consecutively incorporated NH2-C(2) 

unprotected guanosines with this building block could not exceed two. In order to overcome 

this severe limitation, we then investigated new guanosine protecting groups, which can be 

cleaved under mild conditions, such as NH3 in methanol. A variety of such protecting groups 

have been reported (Iyer 2000). Among those, acyl-type protecting groups are preferred, since 

they show no side-reactions during assembly. We first attempted to introduce the chloroacetyl 

protecting group into guanosine, since it has been successfully employed for incorporation of 

1-methyladenosine (Mikhailov et al. 2002) (Chapter I) (Scheme V.1.). By carrying out the 

reaction according to the transient silylation strategy (Fan et al. 2004) only a white precipitate 

was formed, which later was identified by MS analysis as the product of chloride substitution 

by pyridine (Scheme V.2.).  
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Scheme V.1. Attempted preparation of N2-chloroacetylguanosine. a) Me3SiCl, pyridine, 4°; then AcCl, DMAP 
(= N,N-dimethylpyridin-4-amine), pyridine, 20°. 
 

This difference of reactivity between 102 and the corresponding 1-methyladenosine derivative 

8 (Chapter I) could be explained by the formation of an intramolecular hydrogen bond 

enhancing the local nucleofuge character of the chlorine (Scheme V.2).  
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Scheme V.2. Side product formation during preparation of N2-chloroacetyl guanosine: supposed structure and 
mechanism.  

 

In a second attempt, we tried the methoxyacetyl protecting group (MAC) which is 

known to be labile under mild conditions (Schulhof et al. 1987). Furthermore, it had been 

already successfully employed for the preparation of p-DNA in our group (Ackermann and 

Pitsch 2002). The 5'-O-DMT, N2-MAC protected guanosine derivative 104 was prepared 

according to standard conditions (Scheme V.3.), but unfortunately, it was not possible to 

introduce the 2'-O-TOM group under a variety of conditions. The same behaviour was known 

from the corresponding N2-tert-butylphenoxyacetyl (PAC)-protected guanosine. According to 

NMR analyses, both (MAC and PAC) derivatives adopt an anti-conformation, whereas the 

related N2-acetyl protected guanosine, which is easily transformed into its 2'-O-TOM 

derivative, adopts a syn-conformation. The same dependance of reactivity on conformation 

was observed for the wyosine and 4-desmethyl-5-methyl wyosine nucleosides (Chapter III). 
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Scheme V.3. Preparation of N2-methoxyacetyl guanosine. a) 1. Me3SiCl, pyridine, 4°; then methoxyacetyl 
chloride, DMAP, pyridine, 4°; 2. AcOH, MeOH, 20°; 3. (MeO)2TrCl, pyridine, 20°. 

 

In order to confirm the cleavage properties of the methoxyacetyl-group under mild 

deprotection conditions, we incubated the derivative 104 in a 12M methanolic solution of 

NH3 and found a half-life of 36 min (k = 0.019 min-1), which is acceptable for the preparation 

of oligonucleotides. It was therefore decided to keep this protecting group and to develop a 

synthesis of the corresponding phosphoramidite building block. Since the introduction of the 

2'-O-TOM group was not possible after the introduction of the N2-MAC group, the reverse 

order of reactions was investigated. 

Acylation of the 5'-O-DMT, 2'-O-TOM protected guanosine 1 with MAC-Cl in Py gave a 

complex mixture of products and this approach was abandoned. It is well-known that the 

acylation of the N2-position of guanosines is facilited by a transient silylation of the O-C(6) 

position and in the next attempts, this strategy was succesfully employed. The remaining 

problem was the choice of protecting group for the 3'-O-position of the sugar moiety. Even 

under the mildest conditions (NH3 in MeOH, –15°), a 3'-O-MAC group could not be 
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selectively removed in the presence of a N2-MAC group and it was not possible to introduce a 

trifluoroacetyl group at the 3'-O-position (Scheme V.4.).  
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Scheme V.4. Approach for the preparation of 5’-O-DMT, 2’-O-TOM, N2-methoxyacetyl guanosine. a) 1. 
Methoxyacetyl chloride, DMAP, pyridine, 4°; then, Me3SiCl, pyridine, 4°; then methoxyacetyl chloride, 
pyridine, 4°. b) NH3, MeOH, -15°. 1 was prepared according to (Stutz et al. 2000). 

 

Another possibility was a 3'-O-trimethylsilyl protecting group, which was first not considered 

for compatibility arguments, since the conditions for its removal seemed not to be compatible 

with the other protecting groups present (5'-O-DMT: labile towards acid, 2'-O-TOM: labile 

towards fluoride, N2-MAC: labile towards base). However, the 3'-O-SiMe3, N2-MAC 

protected guanosine 107 (Scheme V.5) could be efficiently prepared in a one-pot procedure, 

by first silylating 1 with Me3Si-Cl in Py, followed by selective N-acylation of the O-C(3') and 

O-C(6)-silylated intermediate with MAC-Cl. A variety of conditions were then investigated to 

selectively cleave the remaining 3'-O-SiMe3 group (Table V.1.).  
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The recently reported "neutral" conditions with NH4Cl (Shaabani et al. 2002) gave no 

silyl cleavage at 25° but full detritylation at higher temperature (80°). We investigated 

conditions using acidic media but relying on mild acids such as citric acid or acetic acid. We 

obtained finally selective cleavage of the 3'-O-silyl-group with acetic acid (under various 

conditions: acetone: H2O 1:1 AcOH pH 5 or AcOH:MeCN:H2O 1:50:50 at 25°) without 

affecting the dimethoxytrityl group. By combining these methods, the N2-MAC protected 

guanosine 106 could be prepared in 84% yield from 1 and was subsequently transformed into 

the corresponding phosphoramidite building block 108 (Scheme V.5.) Meanwhile, this new 

building block has been employed at several occasions and was, as an example, used for the 

successful preparation of a RNA sequence containing an uridine modified with a 

photocleavable group (Wenter et al. 2006).  

 

 
      

Conditions Temp./Time Observations (TLC) 

AcOH:MeOH 1:9 r.t./ 30 min 5 % of detritylation 

20 % citric acid in MeOH r.t./ 30 min 90 % of detritylation 

Acetone:H2O 1:1 AcOH pH 5 r.t./ 30 min Starting Material 

  r.t./ 48 h Product and 1% detritylaion 

0.6M NH4Cl in MeCN:H2O 7:3  r.t./ 5 h Starting material 

  rx / 30min 100 % of detritylation 

AcOH:MeCN:H2O 1:50:50 r.t./ 5 h Product and 1% detritylaion 

   

 

Table V.1. Conditions investigated for selective removal of the 3’-O-TMS group of 107. 
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Scheme V.5. Preparation of 5’-O-DMT, 2’-O-TOM, N2-methoxyacetyl guanosine phosphoramidite and of its 
activated ester related building block. a) 1. Me3SiCl, pyridine, 4°; then methoxyacetyl chloride, DMAP (= N,N-
dimethylpyridin-4-amine), pyridine, 4°. b) AcOH, MeCN, H2O, 20°. c) 2-Cyanoethyl 
diisopropylphosphoramidochloridite, iPr2NEt, CH2Cl2, 20°. d) Bis(4-nitrophenyl) heptanedioate, DMAP, 
pyridine, 20°.  
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Furthermore, the activated ester building block 109 was prepared (57% yield) and 

immobilized on CPG (Scheme V.5.). Importantly, the reported synthetic strategy could be 

extended to the preparation of any N2-acyl protected guanosine derivative. 

 

V.2.3. Synthesis of the dihydrouridine-containing 36mer RNA sequence S28 

 The 36mer RNA sequence S28, which contains a G-tetrade motive was successfully 

assembled from the N2-MAC-guanosine phosphoramidite 108, but MS analysis revealed a 

remaining MAC-group even when deprotected under our usual, relatively harsh conditions 

(methylamine in ethanol and water). Therefore, additional investigations were carried out on a 

21mer model sequence, representing a truncated version of the 36mer RNA sequence S31-

S33. Under standard conditions with NH3 in MeOH, 13% and 28% of the mono-acylated 

product remained. Since no such problems were reported for the preparation of the wyosine-

containing 32mer sequence S30, this phenomenon was attributed to the G-tetrade motif. 

Desperately, we then investigated combinations of NH2-C(2) unprotected and N2-MAC 

protected guanosine phosphoramidites. Since a successive incorporation of two unprotected 

building blocks is not possible, only a few combinations remained: GMACGNH2GMACGNH2-5’p 

(S31), GNH2GMACGNH2GMAC-5’p (S32) and GNH2GMACGMACGMAC-5’p (S33). RNA sequences 

with all these combinations were assembled, deprotected with NH3 in MeOH and then 

analyzed by HPLC (Figure V.4. and Figure V.5.) and MS. The last combination, with one 

NH2-C(2) unprotected guanosine, followed by three N2-MAC protected guanosines gave the 

best results in terms of efficient assembly and deprotection (Figure V.6.). 
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Figure V.5. HPLC traces of the crude products obtained with different G-tetrad motifs (GNH2GMACGNH2GMAC-5’p 
“gGgG-5’P” (S31) (left), GMACGNH2GMACGNH2-5’p “GgGg-5’P” (S32) (right)).  
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Figure V.6. HPLC trace of the crude product obtained with the optimal combination of guanosine building block 
GNH2GMACGMACGMAC-5’p “gGGG-5’P” (S33). 

 

The optimized conditions developed above were successfully applied to the 

preparation of the 36mer sequence S28, by employing a combination of N2-MAC protected 

guanosine and NH2-C(2) unprotected guanosine phosphoramidites. This latter building block 
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was introduced at the beginning of the G-tetrad by performing a double coupling cycle. The 

immobilized sequence was then washed with a 10% solution of diisopropylamine in 

acetonitrile, deprotected successively with NH3 in MeOH and 1M TBAF in THF, and then 

analyzed by HPLC (Figure V.7.). The main product has been isolated and analyzed by ESI-

MS (Figure V.8.).  
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Figure V.7. HPLC trace of the crude product RNA sequence S28 prepared according the optimized conditions.  
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Figure V.8. ESI-MS analysis of the purified sequence S28.  
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V.2.4. Synthesis of the wyosine-containing 32mer RNA sequence S30 

The wyosine-containing 32mer RNA sequence S30 was successfully assembled 

(HPLC trace and MS analysis, Figure V.9. and V.10., respectively) from N2-MAC-guanosine 

phosphoramidite 108 according to the methodology developed for the preparation of the 

wyosine-containing 10mer RNA sequence (Chapter III).  
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Figure V.9. HPLC trace of the crude product RNA sequence S30 prepared according the optimized conditions.  
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calc.:    10371

 
Figure V.10. ESI-MS analysis of the purified sequence S30.  

 

V.2.5. Ligation of fragments S28 and S29 

The ligation of the two 32mer and 36mer fragments S29 and S28 could be carried out 

or by blunt-end  ligation with  T4 RNA ligase or by template-assisted ligation with T4 DNA 

ligase. The first, T4 RNA ligase based approach has been already explored for the preparation 

of tRNA analogues (Ohtsuka et al. 1981).  

The 5'-O-phosphorylated, wyosine-containing sequence S29 was obtained by 

incubating the purified sequence 30 with ATP and T4 PNK, followed by HPLC purification to 

remove the enzyme. A 1:1 mixture of the two fragments S29 and S28 (final concentration = 

20 µM) was heated to 95° and cooled slowly to 4°. Then, the reaction buffer, ATP and the 

enzyme were added. The ligation reaction was monitored by HPLC (Figure V.11 and V.12). 

Already after a reaction time of 15min at 4°, the 68mer product sequence S26 was formed 

efficiently and isolated by HPLC (80% yield).  
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Figure V.11. HPLC trace of the starting materials S28 + S29 (before addition of  T4 RNA ligase). 
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Figure V.12. HPLC trace of the reaction mixture 15min after addition of T4 RNA ligase to S28 and S29.  
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MS analysis of the isolated product showed a small peak corresponding to the mass of the 

product sequence S26 and a main peak corresponding to (S26 – wyosine base (Figure V.17.)). 

It is well-known that wyosine depurinates easily (Zhao et al. 2003), and therefore this 

fragment was most probably formed during ionization. The same process was not detected for 

the much shorter, wyosine-containing sequences S3, S5 and S6, because their ionization is 

much simpler and can be carried out under milder conditions. A loss of the wyosine-base 

during the enzymatic ligation could be excluded, since under our HPLC-conditions (85°) at 

least a partial fragmentation at the apurinic site would have occurred. Later (see below), this 

68mer RNA sequence S26 was also prepared by T4 DNA ligase and the same product was 

obtained. Therefore, the (unlikely) depurinination by T4 RNA ligase can be completely 

excluded and detection of the apurinic product can be attributed to a MS artifact.  

 

21400 21600 21800 22000 22200 22400

meas.: 21871 

meas.: 22056 
calc.:   22055

 
 
 
Figure V.17. ESI-MS analysis of the isolated product formed by ligation of S28 and S29 by T4 RNA ligase. The 
main peak (m/z: 21871) corresponds to loss of the wyosine nucleobase, which occurred during MS analysis. 
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The template-mediated ligation of S28 and S29 with T4 DNA ligase was carried out under the 

same conditions as developed before for the formation of the 18mer RNA sequence S3 

(Chapter III). The template was designed with the help of F. Meylan in our group (Meylan 

2006) who has shown that 2'-OMe-RNA sequences are often superior templates for such 

ligation reactions. This design was also used for the 18mer template S34, together with an 

abasic 1,3-propanediol moiety opposite the wyosine (Figure V.13.).  
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Figure V.13. Design of the 2'-OMe-RNA template used in the template assisted preparation of S26 with T4 
DNA ligase; ] stands for a 1,3-propanediol moiety.  
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The two starting materials S28 and S29 were mixed with the template (final 

concentration 20 + 20 + 30 µM), heated to 95° and slowly cooled to 37°. Then the ATP and 

the enzyme were added and the course of the reaction was monitored by HPLC (Figure V.14. 

and Figure V.15.). Product formation S26 reached a plateau after 60h at 37°C with around 

80% conversion (Figure V.16.). The product of this ligation reaction was coinjection-identical 

to the product obtained with T4 RNA ligase. 
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Figure V.14. HPLC trace of the starting materials S28 + S29 and the template S34 subjected to template-
mediated ligation with T4 DNA ligase (immediately after addition of enzyme).  
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Figure V.15. HPLC trace of the reaction mixture obtained 57 hours after addition of T4 DNA ligase to the 
mixture of S28, S29 and the template S34. 
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Figure V.16. Time-course of the template-mediated ligation of S28 and S29 with the template S34 and T4 DNA 
ligase.  
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V.3. Conclusion 

Our methods for the synthesis of modified ribonucleoside phosphoramidites, their 

incorporation into RNA sequences and their ligation were successfully employed for the 

synthesis of a truncated tRNA analogue containing two of the most fragile nucleotides 

(dihydrouridine and wyosine). Specifically, a mild deprotection protocol based on the N2-

MAC protected guanosine phosphoramidite and and efficient ligation with T4 RNA and DNA 

ligase was developed. With these methods, probably almost any modified, synthetic tRNA 

could be prepared, since most of the modified nucleosides are chemically more stable than 

dihydrouridine or wyosine, and therefore easier to introduce. Such tRNA analogues, 

containing one or several modified nucleotides could be employed for structural and 

functional studies.  



CHAPTER VI “Preparation of a thiol-containing RNA sequence and aminoacylation 

studies” 

VI.1. Introduction 

There are several techniques for the site-directed incorporation of nonnatural amino 

acids into proteins. A variety of strategies for the preparation of the required aminoacylated 

tRNAs have been developed.  

A very elegant approach is designed as in-vivo process and involves the development 

of artificial aminoacyl-tRNA-synthetases which recognize the artificial tRNA and connect it 

to an artificial amino acid (Wang and Schultz 2005) (Hohsaka and Sisido 2002). The first 

results were obtained with a pair of an amber suppressor tRNATyr and TyrRS from 

Methanococcus jamnaschii orthogonal to any aaRS/tRNA pair of E. coli (Wang et al. 2000) 

(Wang et al. 2001) and has been extended to a variety of non-natural amino-acids such as the 

aromatic analogues 2-naphtylalanine (Wang et al. 2002), p-azidophenylalanine (Chin et al. 

2002a), p-benzoylphenylalanine (Chin et al. 2002b), to spin-labeled, fluorescent, biotin-

containing, electrophilic, allylsubstituted, metal ligands, photocaged and glycosylated (Wang, 

Schultz 2002) aminoacids have been successfully introduced. In this context it has also been 

recognized that a mutated E. coli TyrRS recognizes m-iodotyrosine more efficiently than 

tyrosine (Kiga et al. 2002) and transfecting agents for importing aminoacylated suppressor 

tRNAs in mammalian cells have been developed (Kohrer et al. 2001) (Kowal et al. 2001). 

This method is in principle very elegant but restricts the choice of the amino acid and has to 

be adapted to almost every new combination of tRNA and amino acid.  

The latest approaches involve ribozymes which catalyze the transfer of the amino acid 

of short aminoacylated RNA-fragments to a tRNA (Heckler et al. 1983), or short peptide 

nucleic acid (PNA) sequences, which are complementary to the 3'-end of the tRNA, and carry 

an activated amino acid (connected via a thioester bond and a linker with the PNA), which, 

after duplex formation, is then transferred to the tRNA (Ninomiya et al. 2004).  

The classical and probably still widest used method, however, consists in an T4 RNA ligase 

mediated ligation of a truncated tRNA, lacking the 3'-terminal, highly conserved pCpA 
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residues and a partially protected 3’-O-aminoacylated pCpA dimer (Heckler et al. 1984) 

(Figure VI.1.). Several groups contributed to the development of this methodology, especially 

by improvement of the aminoacylated dimer synthesis. Chamberlin (Bain et al. 1991) and 

Schultz (Robertson et al. 1989) showed that the second cytidine could be replaced by a 

deoxycytidine (dC) and Hecht (Lodder et al. 1998) introduced the iodine removable N-

allyloxycarbonyl protected amino acid. However, as noticed by Sisido and Hohsaka (Sisido 

and Hohsaka 1999) (Hohsaka and Sisido 2002), the synthetic requirements for the preparation 

of these compounds are too difficult for biochemists.  
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Figure VI.1. Aminoacylated tRNA and the classical synthetic approach 
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VI.2. A new concept for the preparation of aminoacylated tRNAs 

VI.2.1.Concept 

In order to facilitate the access to these important and valuable aminoacylated tRNA, we try 

to prepare and identify biologically active tRNA analogues that are spontaneously 

aminoacylated by weakly activated amino acids, ideally under the conditions of in-vitro 

translation reactions. 

The here presented first concept is related to the so-called "native chemical ligation" 

where a new amide bond is formed by a fast intermolecular trans-thioesterification reaction 

between two peptides carrying a N-terminal cysteine and a C-terminal thioester (Dawson et al. 

1994). The analogous process with a 2'-deoxy-2'-thioadenosine derivative and an amino acid 

thioester would result in the formation of a 3'-O-aminoacylated RNA derivative (Scheme 

VI.1.). 

 

O

HO

R4O

SH

A

R1N

SH

R1N

S

R1N

SH

O

H3N H3N NH
R3

O

R3

O

OOH H H

R2S R3

O

O

HO

R4O

S

A O

O

R4O

SH

A

R3

O

R3

O

 
Scheme VI.1. Formation of a amide bond between a cysteine and an amino acid thioester according to the 
"native chemical ligation" (Dawson et al. 1994) (top), as compared to the here presented, analogous formation of 
an ester bond between a 2'-deoxy-2'-thioadenosine and an amino acid thioester (bottom). 

 

In the scope of our retrosynthetic scheme for the preparation of tRNAs (Chapter V), the here 

reported, exploratory studies were carried out with a 8mer RNA sequence S27 identical to the 

3’-terminal sequence of to tRNAAla from E. coli (Figure VI.2.). 
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Figure VI.2. 8mer RNA sequence S27 identical to the 3’-terminal sequence of the E. coli tRNAAla.  

 

VI.2.2. First investigations 

VI.2.2.1. Synthesis of tert-butyl disulfide protected sequence 

Introduction of a 3'-terminal 2'-deoxy-2'-thioadenosine required the preparation of a 

suitably protected and immobilized building blocks, which were prepared from the known, 

protected arabinonucleoside 107 (Marriott et al. 1991) (Scheme VI.2.). Here, the different 

methods for preparation of such building blocks are presented. 

In the first approach, 107 was treated with potassium thioacetate in DMSO. After 

workup, the crude thioacetate derivative was selectively deacylated to the 2’-thioadenosine 

108. We then encountered some difficulties for the preparation of the tert-butyl disulfide 

derivative 110, despite a lot of reported methods. The incubation with t-butylsulfide/O2 in 

presence of a base (Wallace and Schriesheim 1962), reaction of tert-butylsulfide under 

Mitsunobu conditions (Mukaiyama and Takahashi 1968), and activation by 

methoxycarbonylsulphenyl chloride reagent (Rietman et al. 1994) was unsuccessful, although 

these methods are routinely used in peptide syntheses. The only successful method, which 

involved the in-situ formation of a transient tert-butylsulfenyl chloride derivative (Derbesy 

and Harpp 1994), gave the product 110 in a moderate yield of 38%.  
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Scheme VI.2. a) 1. KSAc, DMSO, 20°. b) 1. NaOH, THF, MeOH, H2O, 4°. c) 1. SO2Cl2, tBuSH, pyridine, 
Et2O, -78°; then, 3, THF, pyridine, -78°. d) 1. HF⋅pyridine, pyridine, 20°. e) 1. (MeO)2TrCl, pyridine, 20°. f) 1. 
Bis(4-nitrophenyl) heptanedioate, DMAP, pyridine, 20°. g) 1. Long-chain-alkylamino CPG, iPr2NEt, DMF, 20°; 
2. Ac2O, pyridine, 20°.  107 was prepared according to (Mariott et al. 1991). 
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After cleavage of the silyl-protecting group with HF/Py, extraction and 5'-O-

dimethoxytritylation with (MeO)2Tr-Cl in Py, the protected 2'-deoxy-2'-thio-adenosine 112 

was obtained in 58 % yield. The corresponding activated ester 113 was prepared with bis(4-

nitrophenyl)heptandionate in Py (70% yield). Finally, 113 was immobilized on aminoalkyl-

functionalized controlled pore glass (CPG) with iPr2NEt in DMF, resulting in the solid 

support 114 with a loading of 39µmol/g. 

From 114, 2'-O-TOM protected ribonucleoside phosphoramidites and a commercially 

available phosphate building block, the 8mer RNA sequence -2O3PO-r(CCCCACCA2’SStBu) 

(S35), carrying a monophosphate group at the 5'-end and the disulfide protected 2'-deoxy-2'-

thioadenosine at the 3'-end, was assembled by automated synthesis under standard conditions 

(Pitsch et al. 2001) (Scheme VI.3.). The removal of the nucleobase protecting groups and 

cleavage from the solid support was achieved under our standard conditions (MeNH2 

EtOH/H2O 1:1, 35°, 3 h and 1M NBu4F in THF, 14 h). The crude product was purified by 

anion-exchange (AE) HPLC and desalted. We obtained the pure product S35 in a yield of 

26% (based on solid support 114).  
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Scheme VI.3. a) Assembly of 115 on a oligonucleotide synthesizer with 2'-O-tom protected ribonucleosides and 
3-[(4,4'-dimethoxytrityl)oxy]-2,2-(ethoxycarbonyl)propyl 2-cyanoethyldiisopropylphosphoramidite according to 
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purification. c) TCEP (= tris(2-carboxyethyl)phosphine) 10mM, pH 7.4 TrisHCl. 
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VI.2.2.2. Deprotection and aminoacylation studies. 

The free thiol-substituted RNA sequence S36 was formed in situ by reductive cleavage 

of the remaining disulfide protecting group of S35 (c = 0.5 mM)
1)

 with tris(2-

carboxyethyl)phosphine (TCEP, c = 10 mM, at pH 7.4). According to HPLC, this reaction was 

not complete even after 2h of incubation (Figure VI.3. and Figure VI.4.). Nevertheless, the 

crude reaction mixture was treated with 12 equiv. of the activated amino acid thioester 

thiophenyl phenylalaninate (H-Phe(SPh), 116
2
) (Scheme VI.4.) (added as concentrated 

solution in DMF) at 25°, and the composition was analyzed by AE-HPLC after 40 min, 

revealing occurrence of spontaneous aminoacylation (Figure VI.5.).  
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Figure VI.3. Representative AE HPLC trace (detection at 260 nm) of a disulfide-protected starting RNA 
sequence S35. (Time of disulfide deprotection t = 0).  

                                                 
1) Such a low concentration was chosen to simulate the aminoacylation of analogously modified tRNAs, which 
are usually available and required only in very small quantities 
2) Prepared from commercially available N-(tert-butoxycarbonyl)-L-phenylalanine 4-nitrophenyl ester according 
to (Ryan and Chung 1981). 
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Figure VI.4. Representative AE HPLC trace (detection at 260 nm) of formation of the tert-butyl disulfide-
deprotected S36 from S35 after 1h.  
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Scheme VI.4. a) TCEP in different aq. buffers, see Table VI.1. b) Addition of thiophenyl phenylalaninate (H-
Phe(SPh), 116)  in DMF to buffered aq. solutions, see Table VI.1. c) NaN3 in aq. buffer (pH 5.0), see Figure 
VI.9. 
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Unfortunately, at that time, no ESI-MS analysis was available and the nature of the 

products (mono- S37 or di-acylated S38) could not be determined. Nevertheless, we were 

convinced that aminoacylation occurred, since the parent RNA sequence -2O3PO-

r(CCCCACCA) was completely inert under these conditions. This observation indicated that 

the thiol group is involved in and required for the product formation and that the activated 

amino acid is not interfering with the integrity of the RNA sequence itself.  
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Figure VI.5. AE HPLC trace (detection at 260 nm) of a crude reaction mixture obtained immediately (ca.  1 
min) after addition of 12 equiv. H-Phe(SPh) (116) to S36 (obtained from S35, see above). 
 

 

 

 

 

 

 169  



VI.2.3. Improvements of deprotection  

VI.2.3.1. Synthesis of phenyl disulfide protected sequence 

 

These first results obtained with the tert-butyl disulfide derivative 114 were quite 

promising, but obviously this protecting group was too stable and could never be completely 

cleaved under our conditions. Therefore, we investigated other protecting groups for the 

sulfide moiety, which were easier to cleave. First, the phenyl disulfide derivative 118 was 

prepared (Scheme VI.5.), for which the kinetics of cleavage in presence of a phosphine had 

already been investigated (L. E. Overman et al. 1974). From the corresponding solid support 

121, we carried out an automated synthesis of a 8mer oligonucleotide, but this attempt failed, 

since the phenyldisulfide protecting group was not stable during assembly and/or deprotection 

of the sequence. Consequently, we investigated the linear butyl disulfide, which was expected 

to more labile than the tert-butyl disulfide, due to its reduced steric hindrance, and more stable 

than the phenyl disulfide. 
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Scheme VI.5. a) 1. N-chlorosuccinimide, PhSH, pyridine, Et2O, -78°; then, 3, THF, pyridine, -78°. b) 1. 
HF⋅pyridine, pyridine, 20°. c) 1. (MeO)2TrCl, pyridine, 20°. d) 1. Bis(4-nitrophenyl) heptanedioate, DMAP, 
pyridine, 20°. e) 1. Long-chain-alkylamino CPG, iPr2NEt, DMF, 20°; 2. Ac2O, pyridine, 20°.  
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VI.2.3.2. Synthesis of butyl disulfide protected sequence 

 

For the preparation of the immobilized n-butyl disulfide protected adenosine 

derivative 127, a new synthetic approach was investigated, since the n-butylsulfenylchloride 

can be much more easily obtained than tert-butylsulfenylchloride (Thea and Cevasco 1988). 

The 2'-O-trifluoromethylsulfonyl derivative 107 was treated with 4-methoxybenzylthiol/NaH 

in DMSO, according to a reported method (Eleuteri et al. 1996) offering the 4-methoxybenzyl 

thioether 122 (91 % yield). The efficient formation of the n-butyl disulfide derivative 123 

(86% yield) was achieved by incubation with n-butylsulfenylchloride (prepared according to 

(Thea and Cevasco 1988)) in CH2Cl2/AcOH according to (Eleuteri et al. 1996). The rest of the 

synthesis was carried out in similar manner as described above. After cleavage of the silyl-

protecting group with HF/Py, extraction and 5'-O-dimethoxytritylation with (MeO)2Tr-Cl in 

Py, the protected 2'-deoxy-2'-thio-adenosine 125 was obtained (60 % yield). The 

corresponding activated ester 126 was prepared with bis(4-nitrophenyl)heptandionate in Py 

(68% yield) (Scheme VI.6.). Finally, 126 was immobilized on aminoalkyl-functionalized 

controlled pore glass (CPG) with iPr2NEt in DMF, resulting in the solid support 127 with a 

loading of 30µmol/g (Scheme VI.7.). We then prepared the n-butyl disulfide protected RNA 

sequence S39 and found that complete removal of the protecting group could indeed be 

achieved within 30 min (Table VI.1.). 
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Scheme VI.6. a) 1. 4-methoxybenzenemethanethiol, NaH, DMSO, 10°. b) 1. BuSCl, AcOH, CH2Cl2, 4° – 20°. 
c) 1. HF⋅pyridine, pyridine, 20°. d) 1. (MeO)2TrCl, pyridine, 20°. e) 1. Bis(4-nitrophenyl) heptanedioate, 
DMAP, pyridine, 20°. f) 1. Long-chain-alkylamino CPG, iPr2NEt, DMF, 20°; 2. Ac2O, pyridine, 20°.  
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Sequence: 5'-CCCCACCA-3'

 
 

Scheme VI.8. a) Assembly on a oligonucleotide synthesizer with 2'-O-tom protected ribonucleosides and 3-
[(4,4'-dimethoxytrityl)oxy]-2,2-(ethoxycarbonyl)propyl 2-cyanoethyldiisopropylphosphoramidite according to 
(S. Pitsch et al. 2001) but employing 20 mM I2 in THF/pyridine/H2O 7:2:1 as oxidizing agent. b) 1. 
(iPr)2NH/MeCN 1:9, 20 min; 2. 12M NH3, MeOH, 20°; 3. Bu4NF.3H2O, AcOH, THF; 4. HPLC purification. c) 
TCEP (= tris(2-carboxyethyl)phosphine) in different aq. buffers, see Table VI.1. 

 

Nevertheless, the initially employed conditions for the deprotection of the 8mer from the solid 

support were not optimal and therefore we adapted the deprotection protocol. First, the 

cyanoethyl protecting groups were removed by washing the crude, immobilized sequence 128 

with (iPr)2NH/MeCN 1:9 for 20 min at a flow-rate of 2.5 ml/min, then removal of the 

nucleobase protecting groups and cleavage from the solid support was achieved with 12M 

NH3 in MeOH during 6h at 25°, and finally, the 2'-O-TOM protecting groups were removed 

by 1M Bu4NF.3H2O/0.5M AcOH in THF during 3h at 25°. Even under these optimized 

conditions (required for a complete deprotection), by-product formation (ca. 30%) was 

observed. It has been identified as S39A (from MS analysis), result of the reaction of the 
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partially cleaved disulfide with the release product of the protected 5’-phosphate moiety 

(Scheme VI.8.).  
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Scheme VI.8. Formation of the side-product S39A as deduced from ESI-MS analysis. a) 1. (iPr)2NH/MeCN 
1:9, 20 min; 2. 12M NH3, MeOH, 20°; 3. Bu4NF.3H2O, AcOH, THF; 4. HPLC purification. 
 

After a double HPLC purification (1. anion-exchange (AE); 2. reversed phase (RP)) and 

desalting, the pure product S39 was obtained in a yield of 25% (based on solid support 127). 

The LC-ESI MS spectrum of this product showed only one signal at m/z = 2611 amu (calc. for 

S39: 2611 amu). The HPLC and MS traces of purified S39 are shown in (Figure VI.6a.) and 

(Figure VI.6e.) respectively. 

 

VI.2.4. Aminoacylation studies 3) 

The free thiol-substituted RNA sequence S36 was formed in situ by reductive cleavage 

of the remaining disulfide protecting group of S39 (c = 0.08 mM)
4
) with tris(2-

carboxyethyl)phosphine (TCEP, c = 1 – 10 mM, depending on pH) in various aqueous buffers 
                                                 
3) Carried out in collaboration with M. Meyappan (Postdoc 2003 - 2005). 
4) Such a low concentration was chosen to simulate the aminoacylation of analogously modified tRNAs, which 
are usually available and required only in very small quantities 
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(pH 7.4 – 3.7) at 25° (for conditions see Table VI.1.). This reaction was complete within 30 

min, and S36 was obtained in a purity > 95% according to HPLC and MS analyses (Figure 

VI.6b. and Figure VI.6f., respectively).  

 

In a first set of experiments, the pH dependency of the aminoacylation reaction was 

investigated (see Table VI.1. and Scheme VI.9.). Crude S36 in buffered aqueous solutions (pH 

7.4 - 3.7, obtained from S39 and TCEP as described above) was treated with 12 equiv. of 116
 

(added as concentrated solution in DMF) at 25°, and the composition of the reaction mixtures 

was analyzed by RP-HPLC after 10 and 50 min (for an example, obtained at pH 7.4, see 

Figure VI.3c. (10 min) and Figure VI.6d. (50 min), respectively). Under all conditions, a fast 

formation of two slower migrating (less polar) products was observed, which was in 

agreement with the formation of the monoacylated product S37 and the diacylated product 

S38, respectively. The HPLC analysis was carried out at pH 3.5, where both products S37 and 

S38 were hydrolytically stable
5
). Additional experiments at 37° and with only 3 or 6 

equivalents of 116 were carried out at pH 7.4 and 5.0 (Table VI.1.). The two aminoacylated 

products S37 and S38 were isolated by HPLC and their structure was confirmed by ESI-MS 

(Figure VI.6g. and VI.6h.)
6
). 

 

 

 

 

 

                                                 
5 )All RP-HPLC analyses were carried out at pH 3.5 with a  0.1M Et3N-H3PO4 buffer. At pH values between 4.0 
and 5.5, partial hydrolysis of the diacylated product S38, and at pH values between 5.5 and 7.5 partial hydrolysis 
of both acylated products S37 and S38 was observed. 
6) Our analytical methods (HPLC, MS and hydrolysis studies, see below) do not show whether S37 is the 3'-O- 
or the 2'-S-monoacylated product; however, since esters are thermodynamically much more stable than 
analogous thioesters, and since it is well-known that the migration of acyl-groups between the 2'-O and 3'-O-
positions of ribonucleosides is an extremely fast reaction (Chladek and Sprinzl 1985), we concluded that S37 is 
the 3'-O-monoacylated derivative. 
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Table VI.1. Liberation and aminoacylation of the 2'-deoxy-2'-thioadenosine modified RNA sequence S36: 

Exploratory studies under different conditionsa) 

Conditionsb)  t = 10 minc)  t = 50 minc) 
pH 
 

116 
(equiv.) 

T 
[°C] 

S36 
 

S37 
[%] 

S38 
 

S36 
 

S37 
[%] 

S38 
 

7.4 
6.5 
5.5 
5.0 
4.7 
3.7 
7.4 
7.4 
5.0 
5.0 
5.0 
5.0 
5.0 

12 
12 
12 
12 
12 
12 
  6 
12 
  6 
  3 
12 
 6 
 3 

25 
25 
25 
25 
25 
25 
25 
37 
25 
25 
37 
37 
37 

 

  1 
  3 
  7 
10 
12 
43 
  2 
  1 
27 
54 
  2 
  8 
30 

18 
19 
19 
18 
18 
20 
24 
17 
29 
20 
27 
34 
29 

73 
71 
70 
70 
68 
36 
64 
72 
43 
23 
67 
53 
34 

 

  5 
  3 
<1 
<1 
<1 
18 
  6 
  5 
  1 
15 
  1 
  1 
  4 

37 
24 
10 
10 
10 
26 
78 
41 
33 
35 
32 
35 
41 

46 
64 
86 
87 
87 
55 
10 
42 
65 
47 
64 
60 
50 

a) Detailed procedure in Exper. Part. b) Incubation of S39 (c = 0.085 mM, 40µl) with TCEP (c = 1.0 mM at pH 
7.4, 6.5; 2.5 mM at pH 5.5, 5.0, 4.7; 10 mM at pH 3.7) in aq. buffers (50 mM each; pH 7.4: Tris-HCl, pH 6.5: 
H3PO4-NaOH, pH 5.5, 5.0, 4.7: AcOH-NaOH, pH 3.7: HCOOH-NaOH) at 25° for 30 min, followed by addition 
of 116 (indicated equivalents relative to S39) in DMF (4 µl). c) t = incubation time; quantification by RP-HPLC 
at 260 nm; tR (S36) = 14 min, tR (S37) = 17 min, tR (S38) = 18 min; values relative to sum of all detected peaks. 
For an example of such HPLC traces from a reaction carried out pH 7.4 and 25°, see Fig. VI.6c. and VI.6d. 
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Figure VI.6. Left: RP HPLC traces (detection at 260 nm) of a representative aminoacylation reaction carried out 
at pH 7.4 and 25°: a) the disulfide-protected starting RNA sequence S39, b) 30 min after treatment with TCEP, 
c) 10 min and d) 50 min after addition of 12 equiv. H-Phe(SPh) (116). Right: Deconvoluted ESI-MS spectra 
(neg. mode) of RNA sequences S36 – S39, for procedures see Exper. Part.  
 

At pH-values between 4.7 and 5.5, and at 25°, clean and almost quantitative formation 

of the monoacylated product S37 together with the diacylated product S38 was observed after 

50 min. At higher pH-values of 6.5 and 7.4, some unidentified by-products were formed after 

 178  



50 min. (ca. 10%), but the reactions were complete already after 10 min at 25° ((Figure 

VI.6c.) and (Figure VI.6d.)). With only 3 equiv. of 116, an almost quantitative aminoacylation 

could be observed after 50 min at pH 5.0 and 37°.  

We then focused on two different reaction conditions: the first one typical for in-vitro 

translations, and the second one for the purpose of preparing and isolating aminoacylated 

RNA sequences. In (Figure VI.7a.), the time course of a reaction carried out with S36 (c = 

0.08 mM) and 12 equiv. of 116 at pH 7.4 and 37° is shown. The composition of the reaction 

mixture was analyzed by RP-HPLC and the relative amount of products S37 and S38 was 

plotted against reaction time (Figure VI.7a.). After 2 min already, almost quantitative 

formation of the mono- and diacylated RNA sequences S37 and S38 was observed (Figure 

VI.7b.). Only after about 50 min, they slowly were converted back to the starting material S36 

by hydrolytic cleavage. The plateau between 2 and 50 min indicates the transient nature of the 

aminoacylated species S37 and S38, which are constantly hydrolyzed and re-acylated, until 

the activated amino acid is consumed. The rate constants for the cleavage of the ester bond of 

S37 and the thioester bond of S38 at 37° and pH 7.4 (0.1M Tris-HCl) were determined by 

kinetic studies and are given in (Figure VI.7b.). 

 

Figure VI.7. Aminoacylation reaction carried out at pH 7.4 and 37° with S36 and 12 equiv. H-Phe(SPh) (116); 
a) Plot of the amount of aminoacylated products (S37 + S38) relative to the sum of all assigned RNA sequences 
(S36 + S37 + S38); the data were extracted from HPLC traces. b) RP HPLC trace (detection at 260 nm) of the 
product mixture obtained after 2 min reaction time. 
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Under the same conditions, but at 25°, the rate constant for the hydrolysis of S37 to 

S36 was k = 0.02 min-1, which is about twice the value of an adenosine nucleotide esterified 

with L-Phe (Stutz et al. 2000)
7
).  

 

 
 
Figure VI.8. a) RP-HPLC traces (detection at 260 nm) obtained by incubating an isolated aminoacylation 
product mixture in 0.1M aq. Tris-HCl, pH 7.4, at 37°; b) Independently determined kinetic parameters of 
hydrolysis for the diacylated product S38 and the monocylated product S37, respectively; c) Measured (points) 
and calculated (lines) composition, respectively, of a hydrolysis reaction mixture obtained according to a) at pH 
7.4 and 37°: for details see Exper. Part. 

 

                                                 
7) Under these conditions, the hydrolysis rate of the activated amino acid 116 is k = 0.007 min–1 and 0.07 min–1 
at 25° and 37°, respectively. 
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In order to simulate the conditions of an in-vitro translation reaction, we incubated a 

desalted mixture of reaction products from an acylation reaction
8
) at pH 7.4 (aqueous 0.1M 

Tris-HCl buffer) and 37°. Aliquots were removed at different time intervals and analyzed by 

RP-HPLC (for examples see Figure VI.8a.). In Figure VI.8c., the time-dependent composition 

of the reaction mixture is shown together with the curves calculated from the individually 

determined hydrolysis rate constants (shown in Figure VI.8b.). The hydrolysis of the 

diacylated S38 to the monoacylated S37 occurs twice as fast as the hydrolysis of the latter to 

S36; this results in a predominant occurrence of the relevant monoacylated RNA sequence 

S37 after a short incubation at 37° and pH 7.4 (Figure VI.8c.). 

An efficient acylation reaction between S36 and 116 was observed at pH 5.0 (Table VI.1.), 

where aminoacylated RNAs are considerably stable (Stutz et al. 2000); therefore, we decided 

to optimize the preparation of S37 at this pH-value. In order to minimize the formation of side 

products, we carried out the deprotection and aminoacylation reactions simultaneously. In 

Figure VI.9. the HPLC trace of such a reaction product is shown, which was obtained by 

incubation of S39 (0.08 mM) with TCEP (30 equiv.) and 116 (5 equiv.) at pH 5.0 and 37° for 

30 min. This HPLC trace reveals the clean and almost quantitative formation of the 

aminoacylated products S37 and S38. For the selective cleavage of the thioester bond 

(reaction S38→S37), a variety of different conditions (pH values, nucleophiles) were 

investigated.  

 

                                                 
8) The isolated product mixture was obtained from an acylation reaction of S36 with 116, carried out at pH 5.0 
and at 37°; after 30 min, the reaction mixture was diluted with H2O and desalted on a size-exclusion cartridge by 
elution with H2O. The oligonucleotide containing eluate was stabilized with 1% AcOH and concentrated to a 
smaller volume by lyophilization. 
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Figure VI.9. Conditions for the preparation and isolation of the monoacylated RNA sequence S37 and RP 
HPLC traces (detection at 260 nm) of a) the intermediate and b) the final product mixture. 

 

The best result was obtained by treating the reaction mixture after 30 min with NaN3, keeping 

it for 30 min at 25° and isolating the products by desalting on a size-exclusion cartridge, 

which removes all non-oligonucleotide components. This protocol furnished a product 

mixture containing 90% of the desired monoacylated RNA sequence S37, together with 5% of 

S36 and 5% of S38, respectively (Figure VI.9b.). Lyophilization of this aqueous eluate is 

possible without cleavage of the ester bond, if 1% AcOH is added
9
). 

 

VI.3. Discussion  

Mechanistically, it can be assumed that after formation of the 2'-S-thioester derivative 

a fast and almost irreversible migration of the acyl-group to the 3'-O position occurs (see 

Footnote 7); subsequently, the liberated 2'-SH group can then undergo another acylation 

reaction, resulting in formation of the O,S-diacylated product.  

                                                 
9) It was possible to isolate the product S37 in pure form by RP HPLC (see Exper. Part); however, such a 
purification is not feasible or desirable with analogously prepared aminoacylated tRNA sequences (76mers, 
available in rather small quantities), for which this method was developed. 
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At pH 7.4 and 37°, the biologically relevant O-monoacylated product is formed as 

major product in-situ by hydrolysis of the O,S-diacylated precursor. The O-monoacylated 

product can be prepared efficiently by acylation of the modified RNA sequence at pH 5 and 

37°, followed by selective cleavage of the concommitantly formed O,S-diacylated product 

with NaN3; its isolation is conveniently carried out by desalting on size-exclusion cartridges, 

stabilization of the eluate with 1% AcOH, and lyophilization. 

 

VI.4. Conclusion  

Among the different processes required for the preparation of aminoacylated 

suppressor tRNA the aminoacylation step remains probably the most difficult to carry out. 

Since the first reports of this method, several improvements of this step have been 

accomplished. Whereas some researchers resorted on biological tools by creating a mutated 

tRNA/aminoacyl-tRNA synthetase pair, most of them focussed on chemical strategies. In this 

context, we developed yet another approach, which extends the intriguing concept of "native 

chemical ligation" of oligopeptides to the straightforward acylation of RNA sequences 

containing 2'-deoxy-2'-thionucleotides. The here presented method could be applied to 

translation systems in which a thiol-modified tRNA acts as a catalyst. Our investigations have 

demonstrated that the method was totally compatible with physiological conditions (pH 7.4 

and 37°) and tolerates also larger amino acids, such as biocytin (preparation of the amino acid 

described in Scheme VI.10.). The corresponding 76mer, aminoacylated tRNA was prepared by 

C. Denarie (Denarie 2006) in our group, who first prepared the n-butyl disulfide protected 

tRNA sequence by enzymatic ligation from S39 and a 68mer truncated tRNA sequence and 

then carried out the spontanous aminoacylation with the activated amino acid derivative 129 

according to the here developed methods.  

Whether such modified aminoacylated tRNAs are tolerated by biological systems, 

however, remains to be proven and such tests are currently under way (Denarie 2006).  
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Scheme VI.10. a) iPr2NEt, BOP [= (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium 
hexafluorophosphate], PhSH, DMF, 20°. b) TFA, CH2Cl2, 20°.  
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CONCLUSION 
 

Within this work, a multitude of 2'-O-TOM protected phosphoramidite building blocks 

containing modified nucleobases were prepared by original, highly convergent synthetic 

approaches. Since the 2'-O-TOM group is stable towards a multitude of reagents and reaction 

conditions, most of the modified building blocks were prepared from the already protected 

canonical nucleotides by optimized base transformation reactions.  

Among these modifications, some are not found in Nature, such as isoC, isoG and the 

wyosine-analogue 5-desmethyl-4-methylwyosine. These could be useful for the creation of 

artificial translation systems with orthogonal codons and for investigations involving π-

stacking. The here prepared building blocks of the naturally occurring derivatives m5U, D, I, 

m1I, m6A, m6
2A, i6A, m1A, t6A, m1G, m2G, m2

2G and m5C should be incorporated into tRNAs 

in order to investigate their exact structural and functional role during translation. In this 

context, a truncated 68mer tRNA was prepared which contained the fragile nucleobase 

dihydrouridine (D) and, for the first time, also the acid-sensitive wyosine (imG). The latter 

nucleotide was also incorporated into a RNA sequence, which is forming a particularly stable 

"kissing" interaction. These studies permitted to partially rationalize the structural features 

responsible and required for complex formation. Specifically, the importance of secondary 

interactions for nucleic acid complex formation was impressively demonstrated. Inspired by 

these results, some alternative models for the mRNA/tRNA decoding process, involving 

modified nucleotides, such as t6A were proposed.   

In addition, an optimized synthesis of a modified 8mer RNA sequence containing a 3'-

terminal 2'-deoxy-2'-thioadenosine was developed. It could be shown that such RNA 

analogues are spontaneously and site-specifically aminoacylated with a weakly activated 

amino acid thioester. This concept could be employed for a straightforward aminoacylation of 

analogously modified tRNAs and therefore considerably facilitate the ribosome-mediated 

incorporation of unnatural amino acids into proteins. 

In conclusion, a variety of efficient synthetic strategies and tools for the preparation of 

modified RNAs have been developed, which can be used for physical, structural and 

biological investigations of this highly diverse and fascinating class of biomolecules.  
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EXPERIMENTAL PART 

 

GENERAL 

 

Reagents and solvents (highest purity) from various suppliers, used without further 

purification; [(triisopropylsilyl)oxy]methyl chloride (= TOM-Cl) was prepared according to 

(Pitsch et al. 2001). The 2'-O-TOM-protected ribonucleoside and the corresponding 

phosphoramidites were prepared according to (Pitsch et al. 2001). Py = pyridine, r.t. = room 

temperature (ca. 20°), DMAP = N,N-dimethylpyridin-4-amine, TMS-Cl = Me3Si-Cl, MAC-Cl 

= MeOAc-Cl, AIBN = 2,2'-azobisisobutyronitrile, MS 4Å = 4Å molecular sieves (activated 

overnight at 180° and 0.01 mbar), RedAl = Sodium bis(2-methoxyethoxy)aluminium hydride.  

 

Workup implies distribution of the reaction mixture between CH2Cl2 and satd. aq. NaHCO3 

soln., drying of the organic layer (MgSO4), and evaporation under reduced pressure.  

 

Thin layer chromatography (TLC): precoated silica gel plates from Merck, stained by dipping 

into a soln. of anisaldehyde (10 ml), H2SO4 (10 ml), and AcOH (2 ml) in EtOH (180 ml) and 

subsequent heating with a heat-gun.  

 

Column chromatography (CC): silica gel 60 (230–400 mesh) from Fluka.  

 

NMR-spectroscopy: Bruker 400 MHz (1H: 400 MHz, 13C: 100 MHz, 31P: 162 MHz). 

Chemical shift δ in ppm, relative to external standards (1H- and 13C: Me4Si, 31P: 85% aq. 

H3PO4); coupling constants J in Hz; multiplicities (13C) according to DEPT-spectra.  

 

ESI-MS (positive mode): SSQ 710 (Finnegan), measurements in MeCN/H2O/AcOH 50:50:1.   

 

EI-MS: The GC analysis was performed with a WCOT Fused silica column (30m) coupled to 

a Varian Saturn 2200 mass spectrometer (Varian) for the GC-MS analysis (CP3800).  

 

MALDI-MS (pos.mode): Axima CFR Plus (Kratos/Shimadzu), matrix: 2,4,6-

trihydroxyacetophenone, (NH4)2-citrate. 

 

LC-ESI-MS (neg. mode): Q-Tof-Ultima (Micromass/Waters) coupled to Cap-LC (Waters), 

injection: 2 µl aq. sample (c (RNA) = 2.5 µM, c (EDTA) = 1 mM); chromatography on Xterra 
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RP-C18 column (Waters, 5 µm, 0.32 x 50 mm; flow 8 µl/min, eluent A: 25 mM aq. 

Me2NBu.H2CO3 (pH 8.4); eluent B: MeCN, elution at 60°, sheath-flow 25 µl/min (MeCN)); 

gradient A → A/B 1:1 (15 min.); deconvolution by MaxEnt1-software. 

 

 

Standard desalting 

The purified sequences were desalted by treating with 1M aq. Et3N.AcOH (pH 7, 5 ml) and 

applied to Sepak-cartridges (Waters): after elution of the salts with 0.1M aq. Et3N.AcOH (pH 

7, 10 ml), followed by H2O (20 ml), the Et3NH+-form of the sequences were eluted with 

MeCN/H2O 1:1 (5 ml) and the solvent evaporated to dryness.  

 

 

Transformation into sodium salts 

The Et3NH+-form of RNA sequences were twice dissolved in H2O (2x 1.5 ml), treated with 

NaHCO3 (10 equiv. per phosphate group) and evaporated to dryness. The residue was 

dissolved in H2O (2 ml) and desalted on 2 NAP-columns according to the manufacturer's 

instructions: aq. soln of RNA sequence.  

 

NMR Experiments 

NMR experiments were carried out on a Bruker AV 600 MHz spectrometer equipped with a 5 

mm TX1-HCN cryogenic probe with z-gradients. The RNA samples (amounts determined 

spectrophotometrically) were dissolved in 0.3 ml potassium arsenate buffer (25 mM, pH 7.0) 

in H2O/D2O 9:1. Restricted volume Shigemi tubes were used for all experiments. 1D 1H 

spectra were recorded by combining a water flip-back pulse and 3-9-19 WATERGATE for 

suppression of the water signal. 

 

CHAPTER I 

5’-O-(4,4’-Dimethoxytrityl)-N2-methyl-2’-O-{[triisopropylsilyl)oxy]methyl}guanosine (3).  

A soln. of 1 (501 mg, 0.66 mmol, prepared according to (Stutz et al. 2000)) in Py (8 ml) was 

treated with tms-Cl (200 mg, 2.0 mmol), stirred for 40 min at r.t., treated with 1,3-

benzodithiolylium tetrafluoroborate (275 mg, 1.0 mmol) and stirred for 6 h at r.t. Workup and 

filtration (SiO2 (11 g), hexane/AcOEt 3:7 → AcOEt) gave a mixture of 3'-O-tms and 3'-OH 

derivatives as a yellow foam (576 mg, ca. 88%; TLC (CH2Cl2/MeOH 9:1): Rf 0.48 and 0.45), 

which was dissolved in benzene (6 ml), treated with AIBN (49 mg, 0.3 mmol), 

tris(trimethylsilyl)silane (718 mg, 3.0 mmol) and heated to reflux for 8 h. After evaporation, 
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the residue was treated dissolved in MeOH (0.3 ml), treated with a satd. soln. of NH3 in 

MeOH (2.7 ml) and stirred for 4 h at r.t.. Workup and CC (SiO2 (10 g), hexane/AcOEt 2:3 → 

AcOEt then AcOEt/MeOH 95:5 → 9:1) gave 3 (304 mg, 57% from 1). Pink foam. TLC 

(CH2Cl2/MeOH 9:1): Rf 0.39. 1H-NMR (400 MHz, CDCl3): 0.88–1.08 (m, iPr3Si); 2.78 (br. 

s, MeHN–C(2)); 3.09 (d, J = 3.1, OH–C(3')); 3.44 (m, H2C(5')); 3.77 (s, 2 MeO); 4.24 (m, H–

C(4')); 4.55 (m, H–C(3')); 4.82 (m, H–C(2')); 5.04 (d, J = 3.9, OCH2O); 5.20 (d, J = 3.9, 

OCH2O); 6.06 (d, J = 4.7, H–C(1')); 6.81 (d, J = 8.6, 4 arom. H); 7.30–7.46 (m, 9 arom. H); 

7.69 (s, H–C(8)); 12.06 (br. s, NH). 13C-NMR (100 MHz, CDCl3): 12.3 (d, Me2CH); 18.2 (q, 

Me2CH); 28.2 (q, MeHN–C(2)); 55.6 (q, MeO); 63.8 (t, C(5')); 71.2 (d, C(2')); 82.4 (d, C(3')); 

84.1 (d, C(4')); 86.9 (d, C(1')); 87.1 (s, arom. C); 91.3 (t, OCH2O); 113.6 (d, arom. C); 127.3 

(s, C(5)); 128.3, 128.6, 128.8, 130.5 (4d, arom. C), 136.1, 136.2 (2s, arom. C); 136.3 (d, 

C(8)); 145.0 (s, arom. C); 152.3 (s , C(4)); 153.9 (s, C(2)); 158.9 (s, C(6)); 159.9 (s, arom. C). 

ESI-MS: 787.74 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-N2,N2-dimethyl-2’-O-{[(triisopropylsilyl)oxy]methyl}guanosine 

(5).  

A soln. of 3 (260 mg, 0.3 mmol, obtained from 2 as described above) in Py (2 ml) was treated 

with tms-Cl (46 mg, 0.8 mmol), stirred for 40 min at r.t, treated with 1,3-benzodithiolylium 

tetrafluoroborate (137 mg, 0.5 mmol) and stirred for 6 h at r.t. Workup and filtration (SiO2 

(11 g), hexane/AcOEt 3:7 → AcOEt) gave a mixture of 3'-O-tms and 3'-OH derivatives as a 

yellow foam (288 mg, ca. 94%; TLC (CH2Cl2/MeOH 9:1): Rf 0.54 and 0.50), which was 

dissolved in benzene (3 ml), treated with AIBN (25 mg, 0.15 mmol) and 

tris(trimethylsilyl)silane (359 mg, 1.5 mmol) and heated to reflux for 8 h. After evaporation, 

the reaction mixture was dissolved in MeOH (0.3 ml), treated with a satd. soln. of NH3 in 

MeOH (2.7 ml) and stirred for 4 h at r.t.. Workup and CC (SiO2 (5 g), hexane/AcOEt 2:3 → 

AcOEt then AcOEt/MeOH 95:5 → 9:1) gave 5 (144 mg, 50% from 1). Pink foam. TLC 

(CH2Cl2/MeOH 9:1): Rf 0.45. 1H-NMR (400 MHz, CDCl3): 0.90–1.28 (m, iPr3Si); 3.03 (d, J 

= 3.9, OH–C(3')); 3.16 (s, Me2N); 3.41 (d, J = 3.9, H2C(5')); 3.79 (s, 2 MeO); 4.24 (br. d, J = 

4.7, H–C(4')); 4.52 (br. d, J = 4.7, H–C(3')); 4.78 (t, J = 5.5, H–C(2')); 4.98 (d, J = 4.7, 

OCH2O); 5.16 (d, J = 4.7, OCH2O); 6.03 (d, J = 5.4, H–C(1')); 6.81 (d, J = 9.4, 4 arom. H); 

7.19–7.45 (m, 9 arom. H); 7.66 (s, H–C(8)); 10.64 (br. s, NH). 13C-NMR (100 MHz, CDCl3): 

12.3 (d, Me2CH); 18.6 (q, Me2CH); 38.5 (q, Me2N); 55.6 (q, MeO); 64.1 (t, C(5')); 71.4 (d, 

C(2')); 82.3 (d, C(3')); 84.1 (d, C(4')); 86.7 (d, C(1')); 86.9 (s, arom. C); 91.2 (t, OCH2O); 

113.6 (d, arom. C); 127.3 (s, C(5)); 128.3, 128.6, 128.7, 130.5 (4d, arom. C), 136.1, 136.2 (2s, 
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arom. C); 136.6 (d, C(8)); 144.9 (s, arom. C); 151.9 (s, C(4)); 153.2 (s, C(2)); 158.9 (s, arom. 

C); 159.2 (s, C(6)). ESI-MS: 800.33 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-N1-methyl-2’-O-{[triisopropylsilyl)oxy]methyl}adenosine (7).  

A soln. of 6 (1.00 g, 1.3 mmol) in DMF (15 ml) was treated with MeI (0.08 ml, 1.3 mmol) 

and stirred for 5 days at r.t. Workup, evaporation and crystallization (acetone) gave 7 (1.02 g, 

98%). White solid. M.p. 160° dec. TLC (CH2Cl2/MeOH 95:5): Rf 0.05. 1H-NMR (400 MHz, 

CDCl3): 0.89–1.15 (m, iPr3Si); 1.27 (br. s, HN–C(6)); 3.03 (br. s, OH–C(3')); 3.38 (dd, J = 

3.7, 11.0, H–C(5')); 3.45 (dd, J = 3.7, 10.2, H'–C(5')); 3.66 (s, CH3–N(1)); 3.80 (s, 2 MeO); 

4.29 (d, J = 2.9, H–C(4')); 4.53 (m, H–C(3')); 4.81 (t, J = 5.9, H–C(2')); 4.96, 5.14 (2d, J = 

5.0, OCH2O); 6.03 (d, J = 6.6, H–C(1')); 6.82 (d, J = 8.8, 4 arom. H); 7.20–7.46 (m, 9 arom. 

H); 7.60 (s, H–C(2)); 7.85 (s, H–C(8)). 13C-NMR (100 MHz, CDCl3): 11.8 (d, Me2CH); 17.8 

(q, Me2CH); 35.9 (q, CH3–N(1)); 55.3 (q, MeO); 63.6 (t, C(5')); 71.0 (d, C(2')); 82.4 (d, 

C(3')); 84.3 (d, C(4')); 86.6 (d, C(1')); 86.8 (s, arom. C); 90.8 (t, OCH2O); 113.2 (d, arom. C); 

121.8 (s, C(5)); 126.9, 127.9,  128.0, 128.2, 130.1 (5d, arom. C); 135.63, 135.69 (2s, arom. 

C); 139.3 (d, C(8)); 144.6 (s, arom. C); 145.6 (s, C(4)); 147.3 (s, C(2)); 149.1 (s, C(6)); 158.6 

(s, arom. C). ESI-MS: 770.36 (100, [M + H]+). 

 

N6-Chloroacetyl-5’-O-(4,4’-dimethoxytrityl)-N1-methyl-2’-O- {[triisopropylsilyl)oxy]methyl} 

adenosine (8).  

A soln. of 7 (1.00 g, 1.3 mmol) in Py/ClCH2CH2Cl 1:9 (55 ml) was treated with chloroacetic 

anhydride (890 mg, 5.2 mmol) and stirred for 1 h at –15°. After workup and evaporation, the 

residue was dissolved in MeOH (2 ml) and treated with a satd. soln. of NH3 (7 ml) for 4 h at –

15°. Workup and CC (SiO2 (20 g), hexane/AcOEt 9:1 → AcOEt) gave 8 (0.70 g, 64%). Light 

yellow foam. TLC (CH2Cl2/MeOH 19:1): Rf 0.74. 1H-NMR (400 MHz, CDCl3): 0.99–1.08 

(m, iPr3Si); 3.03 (d, J = 2.9, OH–C(3')); 3.35 (dd, J = 4.4, 10.3, H–C(5')); 3.46 (dd, J = 4.4, 

10.3, H'–C(5')); 3.64 (s, CH3–N(1)); 3.81 (s, 2 MeO); 4.29 (m, H–C(4')); 4.44 (s, ClCH2); 

4.52 (m, H–C(3')); 4.76 (t, J = 5.1, H–C(2')); 4.93, 5.14 (2d, J = 5.1, OCH2O); 6.08 (d, J = 

6.6, H–C(1')); 6.82 (d, J = 8.8, 4 arom. H); 7.20–7.34 (m, 9 arom. H); 7.81 (s, H–C(2)); 7.94 

(s, H–C(8)). 13C-NMR (100 MHz, CDCl3): 11.8 (d, Me2CH); 17.8 (q, Me2CH); 36.8 (q, 

CH3-N(1)); 46.0 (t, CH2Cl); 55.3 (q, MeO); 63.4 (t, C(5')); 71.0 (d, C(2')); 82.7 (d, C(3')); 

84.4 (d, C(4')); 86.5 (d, C(1')); 86.7 (s, arom. C); 91.0 (t, OCH2O); 113.2 (d, arom. C); 122.4 

(s, C(5)); 127.6, 127.9, 128.1, 128.3, 130.1 (5d, arom. C), 135.63, 135.69 (2s, arom. C); 139.3 

(d, C(8)); 144.6 (s, arom. C); 145.6 (s, C(4)); 147.3 (s, C(6)); 149.1 (d, C(2)); 158.6 (s, arom. 

C); 178.09 (s, CO). ESI-MS: 846.74 (70, [M + H]+) 848.74 (30, [M + H]+).  
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5'-O-(4,4'-Dimethoxytrityl)-5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}uridine (10).  

A soln. of 9 (1.00 g, 1.8 mmol obtained according to (Gasparutto et al. 1992)) and iPr2NEt 

(0.78 ml, 4.6 mmol) in ClCH2CH2Cl (35 ml) was treated with Bu2SnCl2 (560 mg, 2.0 

mmol), stirred for 30 min at r.t., treated with TOM-Cl (450 mg, 2.0 mmol) and stirred for 12 h 

at r.t. Workup and CC (SiO2 (30 g), hexane/AcOEt 9:1 → 1:4) gave 10 (500 mg, 38%). Light 

yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.47. 1H-NMR (400 MHz, CDCl3): 1.04–1.16 (m, 
iPr3Si); 1.38 (s, CH3–C(5)); 3.13 (br. s, OH–C(3'));  3.40 (dd, J = 1.5, 11.4, H–C(5')); 3.53 

(dd, J = 1.9, 11.5, H'–C(5')); 3.81 (s, 2 MeO); 4.19 (br. s, H–C(4')); 4.38 (t, J = 5.1, H–C(2')); 

4.48 (br. s, H–C(3')); 5.03 (d, J = 4.5, OCH2O); 5.24 (d, J = 4.5, OCH2O); 6.14 (d, J = 8.3, 

H-C(1')); 6.84–6.86 (m, 4 arom. H); 7.26–7.43 (m, 9 arom. H); 7.66 (br. s, H–C(6)); 8.47 (br. 

s, H–N(3)). 13C-NMR (100 MHz, CDCl3): 12.1 (d, Me2CH); 12.3 (q, CH3–C(5)); 18.2 (q, 

Me2CH); 55.7 (q, MeO); 63.5 (t, C(5')); 70.8 (d, C(2')); 82.9 (d, C(3')); 84.3 (d, C(4')); 86.2 

(s, arom. C); 87.4 (d, C(1')); 91.2 (t, OCH2O); 111.7 (s, C(5)); 113.6 (d, arom. C); 127.6, 

128.2, 128.5, 130.6 (4d, arom. C); 135.6, 135.8 (2s, arom. C); 144.7 (s, C(6)); 150.7 (s, C(2)); 

159.2 (s, arom. C); 163.9 (s, C(4)). ESI-MS: 373.29 (100, [M + H]2+).  

 

5,6-Dihydro-5'-O-(4,4'-dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl}uridine (12).  

A soln. of 11 (7.20 g, 13.0 mmol, obtained according to (Flockerzi et al. 1981)) and iPr2NEt 

(7.9 ml, 46.0 mmol) in ClCH2CH2Cl (50 ml) was treated with Bu2SnCl2 (4.39 g, 14.4 

mmol), stirred for 30 min at r.t., treated with TOM-Cl (0.45 g, 2.0 mmol), and stirred for 25 

min at 80°. Workup and CC (SiO2 (100 g), hexane/AcOEt 9:1 → 1:1) gave 12 (4.37 g, 47%) 

as light yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.61. 1H NMR (400 MHz, CDCl3): 1.09-

1.28 (m, iPr3Si); 2.39–2.57 (m, H2C(5)); 3.04 (d, J = 3.1, OH–C(3')); 3.31–3.44 (m, H2C(6), 

H2C(5')); 3.66–3.72 (m,  H–C(4')); 3.81 (s, 2 MeO); 4.26 (t, J = 5.5, H–C(2')); 4.39–4.40 (m, 

H–C(3')); 5.01 (d, J = 4.7, OCH2O); 5.22 (d, J = 4.7, OCH2O); 6.03 (d, J = 6.2, H–C(1')); 

6.80–6.82 (d, J = 9.4, 4 arom. H); 7.22–7.44 (m, 9 arom. H). 13C NMR (100MHz, CDCl3): 

12.3 (d, Me2CH); 18.2 (q, Me2CH); 31.5 (t, C(5)); 36.8 (t, C(6)); 55.7 (q, MeO); 63.9 (t, 

C(5')); 71.4 (d, C(3')); 79.8 (d, C(2')); 83.2 (d, C(4')); 86.9 (s, arom. C); 87.1 (d, C(1')); 90.9 

(t, OCH2O); 113.6 (d, arom. C); 127.4, 128.3, 128.6, 128.7, 130.5 (5d, arom. C); 135.9, 136.0 

(2s, arom. C); 144.9 (s, arom. C); 152.5 159.0 (2s, C(2), C(4)); 169.9 (s, arom. C). ESI-MS: 

757.38 (100, [M + H]+).  
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5'-O-(4,4'-Dimethoxytrityl)-5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}cytidine (13).  

A soln. of 10 (0.65 g, 0.9 mmol) in Py (3.5 ml) was treated with DMAP (22 mg, 0.17 mmol), 

Ac2O (0.17 ml, 1.77 mmol) and stirred for 3 h at r.t. Workup and evaporation gave a yellow 

solid foam (0.63 g), which was carefully dried (14 h at 60°, 0.05 mbar) and dissolved in 

MeCN (3 ml). Meanwhile, under Ar and at 4°, 4-chlorophenyl phosphorodichloridate (0.65 g, 

2.65 mmol) was added dropwise to a suspension of finely powdered 1H-1,2,4-triazole (1.07 g, 

15.4 mmol, dried by sublimation) in dry MeCN (6 ml). After 15 min at 4°, iPr2NEt (2.3 ml, 

13.3 mmol) was added and after 40 min at r.t., the reaction mixture was again cooled to 4° 

and treated with the MeCN-soln. obtained before (3 ml, containing 0.65 g of the intermediate 

nucleoside). After 6 h at r.t., the soln. was diluted with dioxane (9 ml), treated with satd. aq. 

NH3 (13 ml) and stirred for another 3 h at r.t. Extraction with CH2Cl2/10% aq. citric acid and 

satd. aq. NaHCO3 gave a yellow solid foam (0.62 g) which was dissolved in THF/MeOH 5:4 

(33 ml), cooled to 4° and treated with 2N NaOH (3.7 ml). After 30 min at 4°, the soln. was 

treated with AcOH (0.43 ml) and concentrated to 30 ml. Workup and CC (SiO2 (8 g), 

CH2Cl2 → CH2Cl2/MeOH 19:1) gave 13 (0.60 g, 90%). Colorless foam. TLC 

(CH2Cl2/MeOH 15:185): Rf 0.50. 1H-NMR (400 MHz, DMSO): 1.00–1.14 (m, iPr3Si); 1.49 

(s, CH3–C(5)); 3.26 (br. s, H2–C(5')); 3.74 (s, 2 MeO); 3.96 (dd, J = 5.6, 3.2, H–C(4')); 4.22 

(q, J = 5.2, H–C(3')); 4.27 (t, J = 5.4, H–C(2')); 4.96 (d, J = 5.2, OCH2O); 4.99 (d, J = 5.1, 

OCH2O); 5.05 (d, J = 5.0, HO–C(3')); 5.99 (d, J = 5.8, H–C(1')); 6.89 (d, J = 8.8, 4 arom. H); 

7.22–7.42 (m, 9 arom. H, H–C(6)). 13C-NMR (100 MHz, DMSO): 11.9 (d, Me2CH); 13.3 (q, 

Me-C(5)); 18.1 (q, Me2CH); 55.5 (q, MeO); 63.9 (t, C(5')); 67.1 (d, C(2')); 78.2 (d, C(3')); 

83.4 (d, C(4')); 86.4 (s, arom. C); 87.4 (d, C(1')); 88.8 (t, OCH2O); 102.2 (s, C(5)); 113.7 (d, 

arom. C); 127.3, 128.2, 128.4 130.2 (4d, arom. C); 135.8, 135.9, 138.4 (3s, arom. C); 145.1 

(d, C(6)); 155.6 (s, C(2)); 158.6 (s, arom. C); 165.8 (s, C(4)). ESI-MS: 1491.80 (100, [2M + 

1]+). 

 

N4-Acetyl-5'-O-(4,4'-dimethoxytrityl)-5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}cytidine 

(14).  

A soln. of 13 (0.6 g, 0.80 mmol) in DMF (3.3 ml) was treated with Ac2O (113 mg, 1.1 mmol) 

for 8 h at r.t. Workup and CC (SiO2 (8 g), hexane/EtOAc 4:1 → 3:7) gave 14 (0.55 g, 90%). 

Colorless solid foam. TLC (hexane/AcOEt 1:9): Rf 0.52. 1H-NMR (400 MHz, DMSO): 0.87–

1.08 (m, iPr3Si); 1.13 (s, CH3–C(5)); 2.25 (s, MeCO); 3.26 (br. s, H2–C(5')); 3.74 (s, 2 MeO); 

4.05 (br. d, J ≈ 4.6, H–C(4')); 4.25 (q, J = 4.5, H–C(3')); 4.33 (t, J = 4.7, H–C(2')); 4.99 (d, J = 

5.2, OCH2O); 5.04 (d, J = 5.1, OCH2O); 5.15 (d, J = 5.0, OH–C(3')); 5.99 (d, J = 4.4, H–

C(1')); 6.89 (d, J = 8.8, 4 arom. H); 7.23–7.41 (m, 9 arom. H); 7.82 (br. s, H–C(6)); 9.82 (br. 
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s, NH–C(4)). 13C-NMR (100 MHz, DMSO): 11.9 (d, Me2CH); 13.8 (q, Me-C(5)); 18.1 (q, 

Me2CH); 25.3 (q, MeCO); 55.5 (q, MeO); 63.6 (t, C(5')); 69.2 (d, C(2')); 78.7 (d, C(3')); 83.9 

(d, C(4')); 86.4 (d, C(1')); 88.9 (s, arom. C); 90.4 (t, OCH2O); 113.7 (d, arom. C); 127.3 (s, 

C(5)); 128.2, 128,4, 130.2, 135.7, 135.9 (5d, arom. C); 142.5, 145.0 (2s, arom. C); 152.5 (d, 

C(6)); 155.5 (s, C(2)); 158.6 (s, arom. C); 162.9 (s, C(4)); 171.2 (s, MeCO). ESI-MS: 788.34 

(100, [M + H]+). 

 

5-Bromo-2,4-dichloropyrimidine (15). 

To a mixture of freshly distilled phosphorus oxychloride (3.75 ml, 40.2 mmol) and 

diethylaniline (0.9 ml, 5.4 mmol) was added 5-bromouracil (0.75 g, 3.9 mmol) followed by 

reflux (oil bath 130°) for 1 h 40. The resulted dark red soln. was cooled to 25°, poured on a 

mixture of ice (100ml) and Et2O (100 ml) and stirred for 30 min.  After extraction and 

evaporation of the solvent, the residue was submitted to CC (SiO2 (20 g), hexane/CH2Cl2 1:1 

→ 0:1) afforded 15 (0.7 g, 93%). Light yellow oil. TLC (CH2Cl2): Rf 0.68. 1H-NMR (400 

MHz, CDCl3): 8.70 (s, H–C(6)). 13C-NMR (100 MHz, CDCl3): 118.8 (s, Br–C(5)); 158.8 (s, 

C(2)); 161.4 (s, C(4)); 161.5 (s, H–C(6)).   

 

5-bromo-2,4-di-tert-butoxypyrimidine (16). 
A suspension of potassium tert-butoxyde (2.5 g, 22.2 mmol) in t-BuOH (50 ml) was treated 

dropwise with 15 (1.0 g, 4.4 mmol) and the red suspension was stirred at 25° for 14 h. The 

reaction mixture was poured on water (100 ml) Et2O (100 ml) extracted twice with Et2O (2 x 

100 ml). The combined organic layers were washed with brine and dried over Na2SO4. The 

careful evaporation of the solvent furnished a light yellow oil which has been submitted to CC 

(SiO2 (40 g), hexane/CH2Cl2 9:1 → 1:1). We obtained 16 (0.66 g, 50%). Colourless oil. TLC 

(CH2Cl2): Rf 0.71. 1H-NMR (400 MHz, CDCl3): 1.61 (s, Me3C); 1.67 (s, Me3C); 8.26 (s, 

H–C(6)). 13C-NMR (100 MHz, CDCl3): 28.7 (q, Me3C); 81.2 (s, Me3C); 83.7 (s, Me3C); 

100.0 (s, Br–C(5)); 159.4 (d, H–C(6)); 163.4 (s, C(2)); 166.1 (s, C(4)). EI-MS: 303-305 (100, 

[M]+).  

 

2,3-O-Isopropylidene-5-O-(l-methoxy-l-methyl-ethyl)-D-ribono-l,4-1actone (17) .  

A suspension of D-ribono-l,4-1actone (1.50 g, 10.1 mmol) in dry 2,2-dimethoxypropane (40 

ml) and Na2SO4 (0.75 g) was treated with p-TsOH (30 mg, 0.17 mmol) at 25° for 12 h. After 

neutralization by addition of K2CO3 (48 mg, 0.34 mmol), the reaction mixture was filtered 

off and the filtrate evaporated to dryness. The residue submitted to CC (SiO2 (40 g), 

hexane/CH2Cl2 9:1 → 1:1) and recrystallized from hexane offering 17 (1.06 g, 40%) as 
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colourless needles. TLC (hexane/AcOEt 3:2): Rf 0.74. 1H-NMR (400 MHz, CDCl3): 1.28, 

1.30, 1.37, 1.45 (4s, 4 Me); 3.16 (s, MeO); 3.51 (dd, J = 1.6, 10.8, H–C(5)); 3.74 (dd, J = 2.3, 

10.8, H'–C(5)); 4.66 (dt, J = 1.6, 2.3, H–C(4)); 4.69 (d, J = 5.5, H–C(3)); 4.72 (d, J = 5.5, H–

C(2)). 13C-NMR (100 MHz, CDCl3): 26.8, 25.6, 24.4, 23.9 (4q, 4 Me); 48.8 (q, MeO); 60.2 

(t, C(5)); 75.70 (d, C(2)); 78.5 (d, C(3)); 80.9 (d, C(4)); 100.5 (s, CMe2OC(5)); 113.09 (s, 

CMe2OC(2)C(3)); 174.34 (s, C(1)).  

 

l-C-[2,4-bis(1,1-dimethylethoxy)-5-pyrimidinyl]-5-O-(1-methoxy-1-methylethyl)-2,3-O-(1-

methylethylidene)-α-D-ribofuranose (18).  

A soln. of tert-Butyl Lithium (0.4 ml, ca.0.66 mmol) in (8 ml) of dry THF was cooled to -78° 

and stirred for 30 min giving an intense yellow soln.. Thus, a soln. of 16 (0.101 g, 0.33 mmol) 

in THF (2 ml) was added over 1 h 30 and stirred at -78° for 1 h after the end of addition. The 

reaction mixture was treated with a soln. of 17 (0.83 g, 0.31 mmol) in THF (2 ml) added over 

1 h 30, and stirred at -78° for 2 h. Workup (H2O/Et2O) and CC (SiO2 (10 g), hexane/AcOEt 

4:1 → 1:4) afforded 18 (140 mg, 89%) as a mixture of α/β 1:8. TLC (hexane/AcOEt 1:1): Rf 

0.50. ESI-MS: 485.37 (100, [M + H]+). 

 

 

l-C-[2,4-bis(1,1-dimethylethoxy)-5-pyrimidinyl]-5-O-(1-methoxy-1-methylethyl)-2,3-O-(1-

methylethylidene)-D-ribitol (19). 

Under Argon, a soln. of RedAl® (2 ml, ca. 7 mmol) in CH2Cl2 (60 ml) was cooled to -78°, 

treated dropwise with a soln. of 18 (0.4 g, 0.82 mmol) in CH2Cl2 (10 ml) and stirred at -78° 

for 8 h. Thus, the reaction mixture was allowed to come to 4° 30min, poured on a mixture of 

Et2O (100 ml) and a 10% soln. of potassium sodium tartrate (100 ml) and well stirred until to 

obtain well defined layers. The aqueous layer was extracted with Et2O (3 x 100 ml), the 

combined organic layers were washed with brine (150 ml) and dried over Na2SO4. CC (SiO2 

(40 g), hexane/AcOEt 9:1 → 2:3) afforded 19 (1.5 g, 85%). Colourless foam. TLC 

(hexane/AcOEt 1:1): Rf 0.35. 1H-NMR (400 MHz, CDCl3): 1.34 (s, Me); 1.39 (s, Me2C); 

1.56 (s, Me); 1.60 (s, Me3C); 1.62 (s, Me3C); 3.08 (d, J = 4.7, HO–C(4')); 3.24 (s, MeO); 

3.26 (d, J = 6.7, HO–C(2')); 3.54 (dd, J = 6.8, 9.8, H–C(5')); 3.70 (dd, J = 2.8, 9.8, H'–C(5')); 

4.16 (dd, J = 6.5, 8.2, H–C(3')); 4.24–4.31 (m, H–C(4')); 4.33 (dd, J = 3.9, 6.3, H–C(2')); 5.23 

(d, J = 6.6, H–C(1')); 8.28 (s, H–C(6)). 13C-NMR (100 MHz, CDCl3): 24.8, 24.9, 25.4, 27.3, 

28.8, 29.0 (6q, 10 Me), 49.1 (q, MeO); 63.0 (t, C(5')); 65.6 (d, C(4')); 69.3 (d, C(3')); 77.2 (d, 

C(2')); 78.5 (d, C(1')); 80.3 (s, CMe3); 82.1 (s, CMe3); 100.8 (s, CMe2OC(5')); 108.9 (s, 

 193



CMe2OC(2')C(3')); 116.0 (s, C(5)); 157.2 (d, H–C(6)); 163.7 (s, C(2)); 166.9 (s, C(4)). ESI-

MS: 487.37 (100, [M + H]+). 

 

1,4-Anhydro-l-C-[2,4-bis(1,1-dimethylethoxy)-5-pyrimidinyl]-5-O-(1-methoxy-1-methylethyl)-

2,3-O-(1-methylethylidene)-D-ribitol (20). 

A cold soln. of 19 (1.5 g, 3.06 mmol) in THF (75 ml) was treated with triphenylphosphine 

(1.2 g, 4.59 mmol) and stirred at 25° for 10 min. Thus, the reaction mixture was cooled to 0° 

and treated dropwise with DIAD (0.93 g, 4.59 mmol) followed by stirring at 0° for 8 h. 

Evaporation of the solvent and CC (SiO2 (40 g), hexane/AcOEt 95:5 → 1:1) afforded 20 (1.3 

g, 87%) as Colourless foam. TLC (hexane/AcOEt 1:1): Rf 0.72. 1H-NMR (400 MHz, CDCl3): 

1.36 (s, Me); 1.38 (s, Me2C); 1.60 (s, Me); 1.61 (s, Me3C); 1.65 (s, Me3C); 3.23 (s, MeO); 

3.57 (dd, J = 5.9, 10.5, H–C(5')); 3.69 (dd, J = 3.3, 10.5, H'–C(5')); 4.15 (m, H–C(4')); 4.58 

(br. t, J ≈ 5.3, H–C(3')); 4.64 (dd, J = 4.1, 6.5, H–C(2')); 4.95 (d, J = 3.4, H–C(1')); 8.25 (s, 

H–C(6)). 13C-NMR (100 MHz, CDCl3): 22.0, 22.1, 22.3, 24.4, 24.8, 26.1, 28.1, 28.5, 29.0, 

32.7 (10 q, 10 Me), 49.0 (q, MeO); 61.8 (t, C(5')); 72.6 (d, C(4')); 80.6 (d, C(3')); 81.3 (d, 

C(2')); 82.2 (d, C(1')); 83.6 (s, CMe3); 86.1 (s, CMe3); 100.6 (s, CMe2OC(5')); 114.1 (s, 

CMe2OC(2')C(3')); 114.6 (s, C(5)); 157.3 (d, H–C(6)); 164.3 (s, C(2)); 167.7 (s, C(4)). ESI-

MS: 481.37 (100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)pseudouridine (22). 

A soln. of 19 (200 mg, 0.41 mmol) in AcOH:H2O 7:3 (5 ml) was heated at 65° for 5 h. After 

evaporation of the solvent and coevaporation with water (2 x 5 ml) and toluene (2 x 5ml), the 

residue was dissolved in Py (3 ml), treated with (MeO)2TrCl (152 mg, 0.45 mmol) and stirred 

at r.t. for 12 h. Workup and CC (SiO2 (10 g), hexane/AcOEt 4:1 →  0:1 then AcOEt/MeOH 

9:1 → 1:1) offered 22 (170 mg, 76%). Light yellow solid foam. TLC (CH2Cl2/MeOH 9:1): 

Rf 0.42. 1H-NMR (400 MHz, Acetone): 3.24–3.38 (m, H2C(5’)); 3.80 (s, 2 MeO); 3.90 (br. s, 

HO–C(2’)); 4.06 (q, J = 4.7, H–C(4’)); 4.14 (t, J = 4.7, H–C(3’)); 4.20 (br. q, J ≈ 4.2, H–

C(2’)); 4.72 (d, J = 4.4, H–C(1’)); 4.82 (br. s, HO–C(3’)); 6.90 (d, J = 8.7, 4 arom. H); 7.21–

7.56 (m, 9 arom. H); 7.72 (s, H–C(6)); 10.00, 10.22 (2 br. s, 2 NH). 13C-NMR (100 MHz, 

Acetone): 55.0 (q, 2 MeO); 64.2 (t, C(5’)); 72.1 (d, C(3’)); 75.7 (d, C(2’)); 80.0 (d, C(4’)); 

83.1 (d, C(1’)); 86.3 (s, arom. C); 112.5 (s, C(5)); 113.1, 113.4 (2d, arom. C); 127.0, 128.1, 

128.2, 128.5, 130.4, (5d, arom. C); 136.5, 136.6 (2s, arom. C); 138.6 (d, C(6)); 145.7 (s, arom. 

C); 151.1 (s, C(2)); 159.1 (s, arom. C); 164.5 (s, C(4)). ESI-MS: 569.37 (100, [M + Na]+).  
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5’-O-(4,4’-Dimethoxytrityl)-2',3'-O-bis(trimethylsilyl)pseudouridine (23). 

A cold (4°) soln. of 22 (170 mg, 0.41 mmol) in Py (6ml) was treated with TMSCl (0.16 ml, 

1.24 mmol) and stirred for 3 h at r.t. Workup gave 23 (196 mg, 92%). Yellow foam. TLC 

(hexane/AcOEt 9:1): Rf 0.69. 1H-NMR (400 MHz, CDCl3): 0.03, 0.09 (2s, 2 Me3Si); 3.26 (d, 

J = 10.2, H–C(5’)); 3.66 (d, J = 10.2, H’–C(5’)); 3.97, 3.98 (2s, 2 MeO); 4.12 (br. s, H–C(4’), 

H–C(3’), H–C(2’)); 4.82 (s, H–C(1’)); 6.85 (m, 4 arom. H); 7.22–7.45 (m, 9 arom. H); 7.73 (s, 

H–C(6)); 8.76, 8.25 (2 br. s, 2 NH). 13C-NMR (100 MHz, CDCl3): 0.6, 0.8 (2q, Me3Si); 55.7 

(q, 2 MeO); 62.1 (t, C(5’)); 71.2 (d, C(3’)); 76.3 (d, C(2’)); 80.4 (d, C(4’)); 80.9 (d, C(1’)); 

86.8 (s, arom. C); 113.4 (s, C(5)); 113.6, 113.8 (2d, arom. C); 127.6, 128.3, 128.7, 129.0, 

130.7, 130.8, (6d, arom. C); 136.1, 136.4 (2s, arom. C); 138.7 (d, C(6)); 144.9 (s, arom. C); 

151.5 (s, C(2)); 159.1 (s, arom. C); 162.7 (s, C(4)). ESI-MS: 689.28 (100, [M - H]-).  

 

 

5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(triisopropylsilyl)oxy]methyl}-2',3'-O-bis(trimethyl 

silyl)pseudouridine (24). 

A soln. of 23 (208 mg, 0.30 mmol) in DMF (4 ml) was treated with K2CO3 (198 mg, 1.5 

mmol), stirred for 10 min at r.t., treated with TOM-Cl (669 mg, 3.0 mmol) and stirred for 3 h 

at r.t. Workup gave 24 (303 mg, 93%) without further purification. TLC (hexane/AcOEt 7:3): 

Rf 0.82. 1H-NMR (400 MHz, CDCl3): 0.02, 0.18 (2s, 2 Me3Si); 0.90–0.96 (m, iPr3Si); 1.04–

1.14 (m, iPr3Si); 3.24 (dd, J = 4.6, 10.2, H–C(5’)); 3.45 (dd, J = 3.4, 10.3, H’–C(5’)); 3.81 (s, 

2 MeO); 3.95 (dd, J = 4.2, 7.8, H–C(4’));  4.10–4.25 (m, H–C(3’), H–C(2’)); 4.64 (d, J = 8.8, 

OCH2N(3)); 4.82 (s, H–C(1’)); 5.18 (d, J = 8.8, OCH2N(3)); 5.59 (d, J = 8.8, OCH2N(1)); 

5.68 (d, J = 7.9, OCH2N(1)); 6.82 (m, 4 arom. H); 7.25–7.52 (m, 9 arom. H); 7.58 (s, H–

C(6)). 13C-NMR (100 MHz, CDCl3): 0.6, 0.8 (2q, Me3Si); 12.2, 12.5 (2d, Me2CH); 18.2, 

18.3 (q, Me2CH); 55.6 (q, 2 MeO); 63.4 (t, C(5’)); 65.2 (t, OCH2N(3)); 72.1 (t, OCH2N(1)); 

72.2 (d, C(3’)); 75.9 (d, C(2’)); 80.9 (d, C(4’)); 81.7 (d, C(1’)); 86.4 (s, arom. C); 113.1 (s, 

C(5)); 113.4 (d, arom. C); 127.3, 128.2, 128.9, 130.6, 130.7 (5d, arom. C); 136.3, 136.4 (2s, 

arom. C); 140.1 (d, C(6)); 145.0 (s, arom. C); 150.9 (s, C(2)); 158.9 (s, arom. C); 161.5 (s, 

C(4)). MALDI-MS: 1086.65 (100, [M + Na]+) . 

 

5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(triisopropylsilyl)oxy]methyl}-2'-O-{[(triisopropyl 

silyl)oxy]methyl}pseudouridine (26). 

A soln. of 24 (303 mg, 0.28 mmol) in MeOH (2 ml) was treated with a satd. soln. of NH3 in 

MeOH (6 ml) and stirred for 3 h at r.t. After evaporation, the residue was dissolved in 

ClCH2CH2Cl (7 ml), treated with iPr2NEt (0.15 ml, 1.12 mmol) and Bu2SnCl2 (95 mg, 0.30 
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mmol), and stirred at r.t. After 30 min, the reaction mixture was treated with TOM-Cl (75 mg, 

0.34 mmol), and stirred for 2 h at 65°. Workup and CC (SiO2 (10 g), hexane/AcOEt 19:1 →  

1:1) offered 26 (108 mg, 34%). Light yellow foam. TLC (hexane/AcOEt 4:1): Rf 0.55. 1H-

NMR (400 MHz, CDCl3): 0.81–1.00 (m, iPr3Si); 1.04–1.23 (m, iPr3Si); 3.34–3.46 (m, 

H2C(5’)); 3.78 (s, 2 MeO); 3.99–4.06 (m, H–C(4’));  4.18 (m, H–C(3’), H–C(2’)); 4.55 (d, J = 

8.9, OCH2N(3)); 4.98 (s, H–C(1’)); 5.10 (d, J = 4.7, OCH2O); 5.24–5.30 (m, OCH2N(1), 

OCH2N(3), OCH2O); 5.61 (s, OCH2N(1)); 6.82 (d, J = 8.8, 4 arom. H); 7.19 (t, J = 7.2, 1 

arom. H); 7.30 (t, J = 7.2, 2 arom. H); 7.36 (d, J = 8.5, 4 arom. H); 7.48 (d, J = 7.5, 2 arom. 

H); 7.60 (s, H–C(6)). 13C-NMR (100 MHz, CDCl3): 12.2, 12.3, 12.4, 12.5, 12.7, 13.0 (6d, 

Me2CH); 17.8, 18.0, 18.1, 18.2, 18.3 (5q, Me2CH); 55.5 (q, 2 MeO); 63.3 (t, C(5’)); 65.3 (t, 

OCH2N(3)); 70.4 (t, OCH2N(1)); 72.4 (d, C(3’)); 79.5 (d, C(2’)); 82.1 (d, C(4’)); 84.7 (d, 

C(1’)); 86.5 (s, arom. C); 91.1 (t, OCH2O); 113.0 (s, C(5)); 113.5 (d, arom. C); 127.2, 128.7, 

128.8, 129.0, 130.5 (5d, arom. C); 136.3, 136.6 (2s, arom. C); 139.8 (d, C(6)); 145.3 (s, arom. 

C); 150.8 (s, C(2)); 158.9 (s, arom. C); 161.8 (s, C(4)). MALDI-MS: 1128.7 (100, [M + 

Na]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(pivaloyl)oxy]methyl}pseudouridine (28). 

A soln. of 23 (138 mg, 0.20 mmol) in DMF (2 ml) was treated with K2CO3 (138 mg, 1.0 

mmol), stirred for 10 min at r.t., treated with pom-Cl (90 mg, 0.6 mmol) and stirred for 3 h at 

r.t. After workup and evaporation to dryness, the residue was dissolved in THF (0.5 ml) and 

treated with Bu4NF (1M) in THF (20 ml) at r.t. for 70 sec. The reaction was quenched by 

addition of Py/H2O/MeOH 3:1:1 (1.5 ml). Workup and evaporation of solvent offered 28 

(139 mg, 90%). Light yellow foam. TLC (CH2Cl2/MeOH 199:1): Rf 0.24. 1H-NMR (400 

MHz, CDCl3): 1.15 (s, Me3C); 1.22 (s, Me3C);  3.11 (s, HO); 3.29 (dd, J = 3.5, 10.2, H–

C(5’)); 3.39 (dd, J = 3.7, 10.3, H’–C(5’)); 3.81 (s, 2 MeO); 4.16 (t, J = 6.1, H–C(4’));  4.20–

4.29 (m, H–C(3’), H–C(2’)); 4.69 (s, HO); 4.80 (d, J = 6.0, H–C(1’)); 5.33 (d, J = 10.3, 

OCH2N(3)); 5.60 (d, J = 10.3, OCH2N(3)); 6.00 (d, J = 9.4, OCH2N(1)); 6.03 (d, J = 9.4, 

OCH2N(1)); 6.84 (d, J = 7.8, 4 arom. H); 7.20–7.46 (m, 9 arom. H); 7.70 (s, H–C(6)). 13C-

NMR (100 MHz, CDCl3): 27.2, 27.4 (2q, Me3CCO); 39.3, 43.9 (2s, Me3CCO); 55.7 (q, 2 

MeO); 63.9 (t, C(5’)); 65.1 (t, OCH2N(3)); 71.7 (t, OCH2N(1)); 73.5 (d, C(3’)); 76.3 (d, 

C(2’)); 78.9 (d, C(4’)); 84.8 (d, C(1’)); 86.7 (s, arom. C); 113.6 (d, arom. C); 113.8 (s, C(5)); 

127.3, 128.3, 128.5, 130.5 (4d, arom. C); 136.1, 136.7 (2s, arom. C); 140.5 (d, C(6)); 145.2 (s, 

arom. C); 150.2 (s, C(2)); 159.0 (s, arom. C); 163.5 (s, C(4)); 177.7, 178.2 (2s, Me3CCO). 

ESI-MS: 797.69 (100, [M + Na]+)  
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5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(pivaloyl)oxy]methyl}-2'-O-{[(triisopropylsilyl)oxy] 

methyl}pseudouridine (29). 

A soln. of 28 (290 mg, 0.37 mmol) in ClCH2CH2Cl (15 ml) was treated with iPr2NEt (0.2 

ml, 1.5 mmol) and Bu2SnCl2 (126 mg, 0.41 mmol), and stirred at r.t. After 30 min, the 

reaction mixture was treated with TOM-Cl (100 mg, 0.44 mmol), and stirred for 1.5 h at 65°. 

Workup and CC (SiO2 (10 g), hexane/AcOEt 9:1 →  1:1) offered 29 (90 mg, 25%). Light 

yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.72. 1H-NMR (400 MHz, CDCl3): 0.90–1.12 (m, 
iPr3Si); 1.14 (s, Me3C); 1.20 (s, Me3C);  3.37 (d, J = 7.7, HO); 3.44 (dd, J = 3.9, 14.5, H–

C(5’)); 3.50 (dd, J = 2.0, 10.7, H’–C(5’)); 3.81 (s, 2 MeO); 3.98–4.07 (m, H–C(4’));  4.17–

4.29 (m, H–C(3’), H–C(2’)); 4.66 (d, J = 10.2, OCH2N(3)); 4.97 (s, H–C(1’)); 5.09 (d, J = 

4.7, OCH2O); 5.26 (d, J = 4.7, OCH2O); 5.42 (d, J = 10.3, OCH2N(3)); 5.97 (m, 

OCH2N(1)); 6.84 (d, J = 8.6, 4 arom. H); 7.18–7.40 (m, 9 arom. H); 7.73 (s, H–C(6)). 13C-

NMR (100 MHz, CDCl3): 12.3 (d, Me2CH); 18.2 (q, Me2CH); 27.2, 27.3 (2q, Me3CCO); 

39.2, 39.3 (2s, Me3CCO); 55.6 (q, 2 MeO); 63.1 (t, C(5’)); 65.1 (t, OCH2N(3)); 70.2 (t, 

OCH2N(1)); 71.7 (d, C(3’)); 76.8 (d, C(2’)); 79.0 (d, C(4’)); 82.2 (d, C(1’)); 86.7 (s, arom. 

C); 91.0 (t, OCH2O); 113.0 (s, C(5)); 113.6 (d, arom. C); 127.3, 128.3, 128.8, 129.6, 130.7 

(5d, arom. C); 136.2, 136.4 (2s, arom. C); 141.6 (d, C(6)); 145.3 (s, arom. C); 150.5 (s, C(2)); 

159.0 (s, arom. C); 161.2 (s, C(4)); 177.7, 177.8 (2s, Me3CCO). MALDI-MS: 983.8 (100, [M 

+ Na]+)  

 

5'-O-(4,4'-Dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl}inosine (31).  

A soln. of 30 (1.0 g, 1.9 mmol, prepared according to (Wenter and Pitsch 2003)) in MeOH (2 

ml) was treated with a satd. soln. of NH3 in MeOH (6 ml) and stirred for 3 h at r.t. After 

evaporation, the residue was dissolved in Py (5.5 ml), treated with (MeO)2TrCl (0.78 g, 2.3 

mmol) and stirred for 2 h at r.t. Workup and CC (SiO2 (25 g), hexane/AcOEt 1:1 then 

CH2Cl2/MeOH 99:1 → 9:1) gave 31 (939 mg, 67%). Yellow foam. TLC (CH2Cl2/MeOH 

1:9): Rf 0.50. 1H-NMR (400 MHz, CDCl3) 0.90–1.10 (m, iPr3Si); 3.10 (d, J = 3.1, OH–C(3')); 

3.42 (dd, J = 3.9, 10.2, H–C(5')); 3.47 (dd, J = 3.9, 10.2, H'–C(5')); 3.80 (s, 2 MeO); 4.32 (m, 

H–C(4')); 4.55 (m, H–C(3')); 4.84 (t, J = 4.7, H–C(2')); 4.98 (d, J = 4.7, OCH2O); 5.17 (d, J = 

4.7, OCH2O); 6.17 (d, J = 5.4, H–C(1')); 6.82 (d, J = 8.8, 4 arom. H); 7.30–7.46 (m, 9 arom. 

H); 7.81 (s, H–C(8)); 7.94 (s, H–C(2)); 12.98 (br. s, NH). 13C-NMR (400MHz, CDCl3): 12.2 

(d, Me2CH); 18.2 (q, Me2CH); 55.6 (q, MeO); 63.9 (t, C(5')); 71.4 (d, C(2')); 82.9 (d, C(3')); 

84.8 (d, C(4')); 87.1 (d, C(1')); 87.4 (s, arom. C); 91.3 (t, OCH2O); 113.6 (d, arom. C); 125.7 

(s, C(5)); 127.4, 128.3, 128.6, 129.5, 130.5 (5d, arom. C), 136.0, 136.1 (2s, arom. C); 139.5 
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(d, C(8)); 144.9 (s, arom. C); 145.2 (s, C(4)); 149.3 (s, C(2)); 158.9 (s, C(6)); 159.6 (s, arom. 

C). ESI-MS: 757.34 (100, [M + H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-1-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}inosine (32).  

A soln. of 31 (76 mg, 0.1 mmol) in DMF was treated with K2CO3 (15 mg, 0.1 mmol), stirred 

for 1.5 h at –15°, treated with MeI (31 mg, 0.2 mmol) and stirred for 2 h at r.t. Workup, 

evaporation and CC (SiO2 (2 g), hexane/AcOEt 3:2 → AcOEt) gave 32 (77 mg, 98%). White 

solid. TLC (CH2Cl2/MeOH 19:1): Rf 0.50. 1H-NMR (400 MHz, CDCl3): 1.00–1.12 (m, 
iPr3Si); 2.99 (d, J = 4.7, OH–C(3')); 3.39 (dd, J = 4.2, 10.4 , H–C(5')); 3.43 (dd, J = 3.4, 10.4, 

H'–C(5')); 3.61 (s, CH3–N(1)); 3.78 (s, 2 MeO); 4.29 (q, J = 4.1, H–C(4')); 4.53 (q, J = 4.2, 

H–C(3')); 4.82 (t, J = 5.0, H–C(2')); 4.94, 5.13 (2d, J = 4.8, OCH2O); 6.11 (d, J = 4.9, H–

C(1')); 6.81 (m, 4 arom. H); 7.18–7.35, 7.41–7.47 (m, 9 arom. H); 7.83 (s, H–C(8)); 7.93 (s, 

H–C(2)). 13C-NMR (100 MHz, CDCl3): 12.2 (d, Me2CH); 18.1 (q, Me2CH); 34.5 (q, CH3–

N(1)); 55.6 (q, MeO); 64.0 (t, C(5')); 71.5 (d, C(3')); 82.8 (d, C(2')); 84.8 (d, C(4')); 86.8 (s, 

arom. C); 87.0 (d, C(1')); 91.3 (t, OCH2O); 113.6 (d, arom. C); 125.5 (s, C(5)); 127.29, 

128.23, 128.56, 130.48, 130.51 (5d, arom. C); 136.0, 136.1 (2s, arom. C); 139.2 (d, C(8)); 

145.0 (s, arom. C); 147.5 (s, C(4)); 148.1 (s, C(2)); 157.4 (s, C(6)); 159.0 (s, arom. C). ESI-

MS: 771.40 (100, [M + H]+). 

 

3’,5’-Di-O-acetyl-N6-isopentenyl-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine (34).  

A soln. of 3,3-dimethylallylamine.HCl (264 mg, 2.2 mmol) in Py (5 ml) was treated with 

Et3N (0.6 ml, 4.3 mmol) and 33 (200 mg, 0.3 mmol, prepared according to (Wenter and 

Pitsch 2003)), and stirred for 1 h at r.t. Workup and CC (SiO2 (5 g), hexane/AcOEt 9:1 → 

3:7) gave 34 (200 mg, 89%) as yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.50. 1H-NMR 

(100MHz, CDCl3): 0.89-1.05 (m, iPr3Si); 1.76 (s, CH3); 1.78 (s, CH3); 2.13 (s, MeCO); 2.18 

(s, MeCO); 4.23 (br. s, H2C–NH); 4.37–4.50 (m, H–C(3'), H–C(4’), H2C(5')); 4.86 (d, J = 

4.7, OCH2O); 4.92 (d, J = 4.7, OCH2O); 5.22 (t, J = 6.3, H–C(11)); 5.64 (br. s, H–C(2')); 

6.13 (d, J = 5.7, H–C(1')); 7.88 (s, H–C(8)); 8.47 (br. s, H–C(2)). 13C-NMR (100MHz, 

CDCl3): 12.1 (q, MeC=); 12.2 (d, Me2CH); 18.0 (q, Me2CH); 18.4 (q, Me'C=); 21.2 (q, 2 

MeCO); 26.1 (t, CH2NH); 63.9 (t, C(5')); 71.9 (d, C(3')); 76.7 (d, C(2')); 80.9 (d, C(4')); 87.8 

(d, C(1')); 89.9 (t, OCH2O); 107.6 (s, CH=C); 120.6 (s, C(5)); 137.4 (s, Me2C=); 138.9 (d, 

C(8)); 152.9 (s, C(4)); 153.8 (d, C(2)); 155.1 (s, C(6)); 170.5 (s, COMe); 170.8 (s, COMe). 

ESI-MS: 606.80 (100, [M + H]+).  
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5’-O-(4,4’-Dimethoxytrityl)-N6-isopentenyl-2’-O-{[triisopropylsilyl)oxy]methyl}adenosine 

(37). A soln. of 34 (100 mg, 0.16 mmol, prepared according to (Wenter and Pitsch 2003)) was 

treated with a satd. soln. of NH3 in MeOH (3 ml) for 6 h at r.t. After evaporation, the residue 

was dissolved in Py (0.7 ml), treated with (MeO)2TrCl (67 mg, 0.19 mmol) and stirred for 4 h 

at r.t. Workup and CC (SiO2 (2 g), hexane/AcOEt 8:2 → 3:7) gave 37 (81 mg, 60%). Yellow 

foam. TLC (hexane/AcOEt 1:1): Rf 0.53. 1H-NMR (400 MHz, CDCl3): 0.90–1.06 (m, 
iPr3Si); 1.73 (s, CH3); 1.78 (s, CH3); 2.84 (s, HO–C(3’)); 3.39 (dd, J = 4.7, 10.2, H–C(5')); 

3.47 (dd, J = 3.9, 10.2, H'–C(5')); 3.79 (s, 2 MeO); 4.01 (d, J = 4.7, H–C(4')); 4.22–4.24 (m, 

H2C–NH); 4.69 (d, J = 4.7, H–C(3')); 5.10 (s, OCH2O); 5.22 (t, J = 4.7, H–C(11)); 5.42–5.44 

(m, H–C(2')); 6.17 (d, J = 4.7, H–C(1')); 6.83–6.87 (m, 4 arom. H); 7.22–7.49 (m, 9 arom. H); 

8.13 (s, H–C(8)); 8.19 (br. s, H–C(2)); 12.98 (br. s, NH). 13C-NMR (100MHz, CDCl3): 12.1 

(d, Me2CH); 17.6 (q, Me2CH); 28.8 (q, MeC=); 29.9 (q, Me'C=); 38.4 (t, CH2NH); 54.9 (q, 

MeO); 64.0 (t, C(5')); 70.9 (d, C(3')); 79.7 (d, C(2')); 84.5 (d, C(4')); 86.5 (d, C(1')); 87.5 (s, 

arom. C); 90.2 (t, OCH2O); 109.4 (s, CH=C); 113.4 (d, arom. C); 122.2 (s, C(5)); 127.0, 

128.0, 128.5, 130.4, 130.5 (5d, arom. C), 134.6, 136.4 (2s, arom. C, Me2C=); 139.8 (d, C(8)); 

145.2 (d ,C(4)); 145.6 (s, arom. C); 153.1 (d, C(2)); 155.3 (s, C(6)); 159.1 (s, arom. C). ESI-

MS: 824.37 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-N6,N6-dimethyl-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine 

(35). A soln. of 33 (0.15 g, 0.2 mmol, prepared according to (Wenter and Pitsch 2003)) was 

treated with a 33% soln. of Me2NH in EtOH (3 ml) for 3 h at r.t. After evaporation, the 

residue was dissolved in Py (2 ml), treated with (MeO)2TrCl (89 mg, 0.3 mmol) and stirred 

for 3 h at r.t. Workup and CC (SiO2 (3 g), hexane/AcOEt 3:2 → AcOEt) gave 35 (148 mg, 

80%). Yellow foam. TLC (hexane:AcOEt 1:1): Rf 0.70. 1H-NMR (400 MHz, CDCl3): 1.00–

1.11 (m, iPr3Si); 3.05 (d, J =  4.1, OH–C(3')); 3.36 (dd, J = 4.3, 10.5, H–C(5')); 3.50 (dd, J = 

3.0, 10.5 , H'–C(5'); 3.45–3.58 (br. s, (CH3)2–N(6)); 3.78, 3.79 (2s, 2 MeO); 4.26 (q, J = 3.7, 

H–C(4')); 4.48 (q, J = 4.4, H–C(3')); 4.87 (t, J = 5.0, H–C(2')); 4.99 (d, J = 4.7, OCH2O); 5.15 

(d, J = 4.7, OCH2O); 6.17 (d, J = 5.2, H–C(1')); 6.78–6.82 (m, 4 arom. H); 7.18–7.46 (m, 9 

arom. H); 7.93 (s, H–C(8)); 8.27 (s, H–C(2)). 13C-NMR (100 MHz, CDCl3): 11.8 (d, 

Me2CH); 17.7 (q, Me2CH); 38.4 (q, 2 CH3–N(6)); 55.1 (q, MeO); 63.4 (t, C(5')); 70.7 (d, 

C(3')); 81.8 (d, C(2')); 83.8 (d, C(4')); 86.4 (d, C(1')); 86.8 (s, arom. C); 90.7 (t, OCH2O); 

113.1 (d, arom. C); 120.6 (s, C(5)); 126.7, 127.7, 128.1, 130.0, 135.8 (5d, arom. C); 136.8 (d, 

C(8)); 144.6 (d, C(4)); 144.6, 150.3 (2s, arom. C); 152.4 (d, C(2)); 154.9 (s, C(6)); 158.4 (s, 

arom. C). ESI-MS: 785.41 (100, [M + H]+). 
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5’-O-(4,4’-Dimethoxytrityl)-N6-methyl-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine (36). 

A soln. of 33 (150 mg, 0.2 mmol, prepared according to (Wenter and Pitsch 2003)) was 

treated with a 33% soln. of MeNH2 in EtOH (3 ml) for 3 h at r.t. After evaporation, the 

residue was dissolved in Py (2 ml), treated with (MeO)2TrCl (89 mg, 0.3 mmol) and stirred 

for 3 h at r.t. Workup and CC (SiO2 (3 g), hexane/AcOEt 3:2 → AcOEt) gave 36 (120 mg, 

65%). Yellow foam. TLC (hexane/AcOEt 1:9): Rf 0.60. 1H-NMR (400 MHz, CDCl3): 0.96–

1.05 (m, iPr3Si); 3.06 (d, J = 3.9, OH–C(3')); 3.19 (d, J = 4.5, CH3–N(6)); 3.38 (dd, J = 4.2, 

10.2 , H–C(5')); 3.50 (dd, J = 3.6, 10.2 , H'–C(5')); 3.78 (s, 2 MeO); 4.26 (q, J = 4.0, H–C(4')); 

4.52 (q, J = 4.2, H–C(3')); 4.93 (t, J = 5.0, H–C(2')); 4.98 (d, J = 4.8, OCH2O); 5.14 (d, J = 

4.8, OCH2O); 5.75 (br. s, NH); 6.14 (d, J = 5.4, H–C(1')); 6.78 (m, 4 arom. H); 7.22–7.44 (m, 

9 arom. H); 7.93 (s, H–C(8)); 8.33 (s, H–C(2)). 13C-NMR (100 MHz, CDCl3): 11.8 (d, 

Me2CH); 17.7 (q, Me2CH); 27.7 (q, CH3–N(6)); 55.1 (q, MeO); 63.4 (t, C(5')); 70.8 (d, 

C(3')); 81.8 (d, C(2')); 84.1 (d, C(4')); 86.5 (d, C(1')); 87.0 (s, arom. C); 90.7 (t, OCH2O); 

113.4 (d, arom. C); 120.4 (s, C(5)); 126.8, 127.8, 128.2, 130.0, 135.8 (5d, arom. C); 138.6 (d, 

C(8)); 144.6 (d, C(4)); 153.3 (d, C(2)); 155.5 (s, C(6)); 158.5 (s, arom. C). ESI-MS: 769.91 

(100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-1-methyl-2’-O-{[triisopropylsilyl)oxy]methyl}guanosine (38).  

A soln. of 1 (400 mg, 0.5 mmol, prepared according to (Stutz et al. 2000)) in DMF (4 ml) was 

treated with K2CO3 (79 mg, 0.6 mmol), stirred for 2 h at r.t., treated with MeI (162 mg, 1.1 

mmol) and stirred for 14 h at –15°. Workup and CC (SiO2 (10 g), CH2Cl2/MeOH 99:1 → 

9:1) gave 38 (0.26 g, 63%). Colorless foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.72. 1H-NMR 

(400 MHz, CDCl3): 0.97–1.12 (m, iPr3Si); 1.87 (br. s, NH2); 3.08 (br. s, OH–C(3')); 3.34 

(dd, J = 3.2, 10.2, H–C(5')); 3.52 (br. s, H'–C(5'), CH3–N(1)); 3.79 (s, 2 MeO); 4.27 (br. s, H–

C(4')); 4.58 (br. s, H–C(3')); 4.92 (br. s, H–C(2')); 4.96 (d, J = 4.4, OCH2O); 5.14 (d, J = 5.1, 

OCH2O); 5.94 (d, J = 6.6, H–C(1')); 6.80–6.82 (m, 4 arom. H); 7.20–7.36 (m, 9 arom. H); 

7.65 (s, H–C(8)). 13C-NMR (100 MHz, CDCl3): 11.9 (d, Me2CH); 17.8 (q, Me2CH); 28.1 (q, 

CH3–N(1)); 55.3 (q, MeO); 63.6 (t, C(5')); 71.2 (d, C(2')); 81.6 (d, C(3')); 83.9 (d, C(4')); 85.9 

(s, arom. C); 86.5 (d, C(1')); 90.9 (t, OCH2O); 113.2 (d, arom. C); 118.2 (s, C(5)); 126.9, 

127.9, 128.2, 130.1 (4d, arom. C), 135.7 (s, arom. C); 136.6 (d, C(8)); 144.6 (s, arom. C); 

148.8, 153.1 (2s, C(2), C(4)); 158.6 (s, C(6)). ESI-MS: 786.82 (100, [M + H]+).  

 

3’-O-Acetyl-5'-O-(4,4'-dimethoxytrityl)-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine (40). 

A soln. of 39 (1.0 g, 1.16 mmol, prepared according to (Pitsch et al. 1999)) in Py (9.3 ml) was 

treated with DMAP (14 mg, 0.16 mmol) and Ac2O (143 mg, 1.4 mmol). Workup (1. 10% 
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citric acid, 2. NaHCO3 soln.) after 30 min at r.t. and CC (SiO2 (25 g), hexane/AcOEt 2:3 → 

1:9 (+ 3% Et3N)) gave 40 (0.88 g, 88%). Colorless foam. TLC (hexane/AcOEt 1:9): Rf 0.57. 
1H-NMR (100MHz, CDCl3): 0.88-1.05 (m, iPr3Si); 2.13 (s, MeCO); 3.43 (dd, J = 6.5, 10.4, 

H–C(5')); 3.52 (dd, J = 5.6, 10.4, H'–C(5')); 3.78 (s, 2 MeO); 4.34 (m, H–C(4’)); 4.87 (s, 

OCH2O); 5.19 (dd, J = 5.3, 6.9, H–C(2')); 5.51 (dd, J = 2.5, 5.3, H–C(3')); 5.80 (br. s, NH2); 

6.16 (d, J = 6.9, H–C(1')); 6.78–6.83 (m, 4 arom. H); 7.20–7.45 (m, 9 arom. H); 7.97 (s, H–

C(2)); 8.25 (s, H–C(8)). 13C-NMR (100 MHz, CDCl3): 11.7 (d, Me2CH); 17.6 (q, Me2CH); 

20.9 (q, MeCO); 55.3 (q, MeO); 63.4 (t, C(5')); 72.1 (d, C(3')); 77.0 (d, C(2')); 82.5 (d, C(4')); 

86.2 (d, C(1')); 86.8 (s, arom. C); 89.6 (t, OCH2O); 113.2 (d, arom. C); 120.1 (s, C(5)); 127.0, 

127.9, 128.2, 130.1 (4d, arom. C), 135.6 (s, arom. C); 139.2 (d, C(8)); 144.4 (s, arom. C); 

150.2 (s, C(4)); 153.2 (d, C(2)); 155.4 (s, C(6)); 158.6 (s, arom. C); 170.1 (s, CO). ESI-MS: 

868.35 (100, [M + Na]+). 

 

N6-{{{(1S,2R)-2-{[(tert-butyl)dimethylsilyl]oxy}-1-{[2-(4-nitrophenyl)ethoxy]carbonyl} 

propyl}amino}carbonyl}-5'-O-(4,4'-dimethoxytrityl)-2’-O-{[triisopropylsilyl)oxy]methyl} 

adenosine (41).  

A soln. of 40 (400 mg, 0.5 mmol) in ClCH2CH2Cl (2 ml) was treated with Et3N (250 mg, 2.5 

mmol) and 1,1’-carbonyl-di(1,2,4-triazole) (120 mg, 0.7 mmol), stirred for 10 min at 70°, 

treated with of O-[(tert-butyl)dimethylsilyl]-l-threonine-2-(4-nitrophenyl)ethyl ester (280 mg, 

0.7 mmol, prepared according to (Boudou et al. 2000)) and stirred for 15 min at 70°. After 

workup and evaporation, the residue was treated with a satd. soln. of NH3 in MeOH (5 ml) for 

3 h at r.t. Workup and CC (SiO2 (7 g), hexane/AcOEt 3:2 → AcOEt) gave 41 (326 mg, 56%). 

Colorless foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.25. 1H-NMR (400 MHz, CDCl3): -0.05, -

0.03 (2s, 2 MeSi); 0.91 (s, tBuSi); 0.95–1.06 (m, iPr3Si); 1.09 (d, J = 4.2, Me(γ)); 3.06 (t, J = 

5.7, CH2CH2O); 3.15 (d, J = 3.7, OH–C(3')); 3.14–3.55 (m, H2C(5')); 3.80 (s, 2 MeO); 4.30–

4.60 (m, H–C(4'), H–C(3'), CH(α), CH(β), CH2CH2O); 4.97 (t, J = 5.1, H–C(2')); 5.04 (d, J = 

4.7, OCH2O); 5.19 (d, J = 4.7, OCH2O); 6.24 (d, J = 6.2, H–C(1')); 6.81 (d, J = 8.7, 4 arom. 

H); 7.22–7.44 (m, 9 arom. H); 7.22–7.46 (m, 13 arom. H); 7.98 (d, J = 8.8, 2 arom. H); 8.19 

(s, H–C(8)); 8.42 (s, H–C(2)); 9.99 (d, J = 8.8, NH–C(β)); 10.02 (br. s, NH–C(6)). 13C-NMR 

(100 MHz, CDCl3): -5.4, -4.3 (q, MeSi); 11.8 (d, Me2CH); 17.8 (q, Me2CH); 21.10 (Me(�)); 

25.5, (q, Me3CSi); 34.8 (t, CH2CH2O); 55.2 (q, MeO); 59.6 (t, CH2CH2O); 63.4 (t, C(5')); 

64.6 (d, C(β)); 68.6 (d, C(β)); 70.8 (d, C(3')); 76.6 (d, C(2')); 82.4 (d, C(4')); 84.4 (d, C(1')); 

87.4 (s, arom. C); 90.9 (t, OCH2O); 113.2 (d, arom. C); 120.9 (s, C(5)); 123.6, 126.9, 127.8, 

128.2, 129.7 (5d, arom. C); 130.1 (s, arom. C); 135.7 (s, arom. C); 141.7 (d, C(8)); 144.6 (d, 
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C(2)); 145.5, (s, arom. C); 150.0, (s, C(4)); 150.2 (s, C(6)); 154.2 (s, NHCONH); 158.6 (s, 

arom. C); 170.9 (s, COOCH2). ESI-MS: 1164.37 (100, [M + H]+).  

 

5'-O-(4,4'-Dimethoxytrityl)-N2-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}guanosine 3'-(2-

CyanoethylDiisopropylphosphoramidite) (42).  

A soln. of 3 (75 mg, 0.09 mmol) in CH2Cl2 (1 ml) was treated consecutively with iPr2NEt 

(0.04 ml, 0.23 mmol) and cyanoethyl diisopropylphosphoramidochloridite (27 mg, 0.11 

mmol). After stirring for 14 h at r.t. the mixture was subjected to CC (SiO2 (2 g), 

CH2Cl2/MeOH 1:0 → 94:6 (+ 3% Et3N)): 42 (87 mg, 92%, 1:1 mixture of diastereoisomers). 

Light pink foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.37. 1H-NMR (400 MHz, CDCl3): 0.83–

1.02 (m, iPr3Si); 1.06 (d, J = 6.0, Me2CH)2N); 1.17–1.24 (m, (Me2CH)2N); 1.38 (t, J = 6.6, 

Me2CH)2N); 2.35 (t, J = 6.6, 1 H, CH2CN); 2.61–2.74 (m, 1 H, CH2CN); 3.15 (2d, J = 7.2, 

CH3NH-C(2)); 3.26–3.70 (m, 4.5 H, (MeCH)2N, H–C(5'), POCH2); 3.777, 3.786 (2s, 2 

MeO); 3.82–3.98 (m, 1.5 H, POCH2); 4.32, 4.36 (2br. d, J = 4.1, 1 H, H–C(4')); 4.58–4.65 (m, 

1 H, H–C(3')); 4.92–5.06 (m, 3H, H–C(2'), OCH2O); 6.07 (d, J = 5.8, 0.5 H, H–C(1')); 6.10 

(d, J = 5.9, 0.5 H, H–C(1')); 6.79–6.84 (m, 4 arom. H); 7.16–7.50 (m, 9 arom. H); 7.67, 7.68 

(2s, H–C(8)); 11.9 (br. s, H–N(1)). 31P-NMR (162 MHz, CDCl3): 150.4, 150.9. MALDI-MS: 

986.29 (100, [M + H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-N2,N2-dimethyl-2'-O-{[(triisopropylsilyl)oxy]methyl}guanosine 

3'-(2-Cyanoethyl Diisopropylphosphoramidite) (43).  

As described for 42, with 5 (140 mg, 0.16 mmol), CH2Cl2 (0.7 ml), iPr2NEt (0.07 ml, 0.4 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (58 mg, 0.24 mmol). CC (SiO2 (4 

g), CH2Cl2 → CH2Cl2/MeOH 95:5 (+ 3% Et3N)): 43 (104 mg, 64%, 1:1 mixture of 

diastereoisomers). Light yellow foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.47. 1H-NMR (400 

MHz, CDCl3): 0.95–0.97 (1d, J = 6.6, iPr3Si); 1.04–1.06 (1d, J = 6.6, (Me2CH)2N); 1.17–

1.23 (m, (Me2CH)2N); 1.27–1.34 (t, J = 6.6,  Me2CH)2N); 2.34 (t, J = 6.6, 1 H, CH2CN); 

2.60–2.72 (m, 0.5 H, CH2CN); 2.34 (dt, J  ≈  1, 4.4, 0.5 H, CH2CN); 3.13, 3.14 (2s, Me2N-

C(2)); 3.31–3.70 (m, 5 H, (MeCH)2N, H–C(5'), POCH2, POCH2); 3.786, 3.795 (2s, 2 MeO); 

3.80–3.96 (m, 1.5 H, POCH2); 4.11-4.27  (m, 1 H, POCH2); 4.32 (br. d, J ≈ 3.7, 0.5 H, H–

C(4')); 4.36 (br. d, J ≈ 3.6, 0.5 H, H–C(4')); 4.53–4.60 (m, 1 H, H–C(3')); 4.90–5.06 (m, 3.0 H, 

H–C(2'), OCH2O); 6.03 (d, J = 6.6, 0.5 H, H–C(1')); 6.07 (d, J = 5.8, 0.5 H, H–C(1')); 6.78–

6.83 (m, 4 arom. H); 7.23–7.43 (m, 9 arom. H); 7.67 (br. s, H–C(8)); 10.9 (br. s, H–N(1)). 
31P-NMR (162 MHz, CDCl3): 150.4, 150.9. ESI-MS: 1000.36 (100, [M + H]+). 
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N6-Chloroacetyl-5'-O-(4,4'-dimethoxytrityl)-N1-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl} 

adenosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (44).  

As described for 42, with 8 (400 mg, 0.48 mmol), CH2Cl2 (4 ml), iPr2NEt (0.21 ml, 1.23 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (134 mg, 0.56 mmol). CC (SiO2 

(10 g), hexane/AcOEt 4:1 → 1:4 (+ 3% Et3N)): 44 (462 mg, 93%, 1:1 mixture of 

diastereoisomers)). Colorless foam. TLC (hexane/AcOEt 1:9): Rf 0.75. 1H-NMR (400 MHz, 

CDCl3): 0.95–1.02 (m, iPr3Si); 1.08, 1.19 (2d, J = 7.3, (Me2CH)2N); 2.37 (t, J = 6.6, 1 H, 

CH2CN); 2.66 (t, J = 5.8, 1 H, CH2CN); 3.34 (dt, J = 4.3, 10.5, 1 H, POCH2); 3.57–3.94 (m, 

1 H of POCH2, (MeCH)2N, H–C(5')); 3.81 (s, MeO); 4.35 (d, J = 3.6, 0.5 H, H–C(4')); 4.41 

(d, J = 3.6, 0.5 H, H–C(4')); 4.44 (s, ClCH2); 4.62 (dt, J = 4.9, 10.9, H–C(3')); 4.91–5.01 (m, 

H–C(2'), OCH2O); 6.04, 6.07 (2d, J = 5.9, H–C(1')); 6.79–6.84 (m, 4 arom. H); 7.22–7.38 (m, 

12 arom. H); 7.74 (s, H–C(2)); 7.91, 7.93 (2s, H–C(8)). 31P-NMR (162 MHz, CDCl3) 150.3, 

150.9. MALDI-MS: 1046.74 (70, [M + H]+) 1048.74 (30, [M + H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}uridine 3'-(2-Cyano 

ethyl) Diisopropylphosphoramidite) (45).  

As described for 42, with 10 (400 mg, 0.13 mmol), CH2Cl2 (4 ml), iPr2NEt (0.23 ml, 1.35 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (139 mg, 0.59 mmol). CC (SiO2 

(12 g), hexane/AcOEt 9:1 → 1:4 (+ 3% Et3N)): 45 (500 mg, 98%, 1:1 mixture of 

diastereomers). Colorless foam. TLC (hexane/AcOEt 1:1): Rf 0.71. 1H-NMR (400 MHz, 

CDCl3): 1.00–1.12 (m, iPr3Si); 1.16–1.32 (m, (Me2CH)2N); 1.46, 1.49 (2s, 2 Me–C(5)); 2.36 

(t, J = 6.9, 1 H, CH2CN); 2.64–2.66 (dt, J = 3.1, 6.4, CH2CN); 3.32 (dt, J = 2.5, 7.1, H–

C(5')); 3.46–3.70 (m, 4 H (Me2CH)2N, H'–C(5‘), POCH2); 3.80, 3.81 (2s, 2 MeO); 3.82–3.97 

(m, 1 H, POCH2); 4.20 (br. d, J ≈ 1.5, 0.5 H, H–C(4')); 4.30 (br. d, J ≈ 2.2, 0.5 H, H–C(4')); 

4.45–4.65 (m, H–C(2'), H–C(3')); 4.96–5.06 (m, OCH2O); 6.18 (d, J = 6.6, 0.5 H, H–C(1')); 

6.20 (d, J = 6.5, 0.5 H, H–C(1')); 6.83–6.87 (m, 4 arom. H); 7.25–7.38 (m, 9 arom. H); 7.41 

(br. s, H-C(6)); 7.43 (br. d, H–N(3)). 31P-NMR (162 MHz, CDCl3): 150.2, 150.9. MALDI-

MS: 947.31 (100, [M + H]+). 

 

5,6-Dihydro-5'-O-(4,4'-dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl}uridine 3'-(2-

Cyanoethyl Diisopropylphosphoramidite) (46).  

As described for 42, with 12 (400 mg, 0.54 mmol), CH2Cl2 (5 ml), iPr2NEt (0.24 ml, 1.35 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (160 mg, 0.65 mmol). CC (SiO2 

(10 g), hexane/AcOEt 4:1 → 1:9 (+ 3% Et3N)): 46 (367 mg, 73%, 1:1 mixture of 

diastereomers). Colorless foam. TLC (hexane/AcOEt 7:3): Rf 0.73. 1H-NMR (400 MHz, 
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CDCl3): 1.03–1.10 (m, iPr3Si); 1.15–1.31 (m, (Me2CH)2N); 2.37 (t, 1H, J = 6.6, 1 H, 

CH2CN); 2.50–2.62 (m, 2H, H2C(5)); 2.66 (dt, 1H, J = 1.8, 6.7, CH2CN); 3.22–3.27 (m, 1H, 

H–C(6)); 3.37–3.52 (m, 2H, H'–C(6), H–C(5')); 3.52–3.77 (m, 4 H (Me2CH)2N, H'–C(5), 

POCH2); 3.81, 3.82 (2s, 2 MeO); 3.82–3.97 (m, 1 H, POCH2); 4.12 (br. d, J ≈ 2.2, 0.5 H, H–

C(4')); 4.19 (br. d, J ≈ 2.7, 0.5 H, H–C(4')); 4.39–4.46 (m, H–C(2'), H–C(3')); 4.97 (d, J = 5.0, 

0.5 H, OCH2O); 5.05 (q, J = 4.9, 1.5H, OCH2O); 6.05 (d, J = 5.9, 0.5 H, H–C(1')); 6.07 (d, J 

= 5.7, 0.5 H, H–C(1')); 6.82–6.86 (m, 4 arom. H); 7.23–7.44 (m, 9 arom. H). 31P-NMR (162 

MHz, CDCl3): 150.1, 150.4. MALDI-MS: 935.36 (100, [M + H]+). 

 

 

N4-Acetyl-5'-O-(4,4'-dimethoxytrityl)-5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl}cytidine 

3'-(2-CyanoethylDiisopropylphosphoramidite) (47).  

As described for 42, with 14 (1.20 g, 1.56 mmol), CH2Cl2 (6.3 ml), iPr2NEt (0.60 ml, 3.90 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (444 mg, 1.88 mmol). CC (SiO2 

(30 g), hexane/AcOEt 1:1 → AcOEt (+ 2% Et3N)): 51 (1.42 g, 94%, 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 3:7): Rf 0.75. 1H-NMR (400 MHz, 

CDCl3): 0.97–1.08 (m, iPr3Si); 1.08–1.13 (m, (Me2CH)2N); 2.25 (br. s, MeCO); 2.51 (br. s, 

Me–C(5)); 2.54 (t, J = 5.9, 1 H, CH2CN);  2.75 (br. q, J = 5.9, 1 H, CH2CN); 3.42–3.24 (m, 1 

H of POCH2, (Me2CH)2N, H–C(5')); 3.66–3.82 (m, 1 H, POCH2); 3.73 (s, 2 MeO); 7.85 

(2br. s, H–C(4')); 4.32–4.48 (m, H–C(2'), H-C(3')); 4.89–5.04 (m, OCH2O); 6.00 (d, J = 4.4, 

H–C(1')); 6.87–6.89 (m, 4 arom. H); 7.22–7.43 (m, 9 arom. H); 7.85 (d, J = 8.0, H–C(6)). 
31P-NMR (162 MHz, CDCl3): 149.0, 149.5. ESI-MS: 988.30 (100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(triisopropylsilyl)oxy]methyl}-2'-O-{[(triisopropyl 

silyl)oxy]methyl}pseudouridine 3'-(2-Cyanoethyl Diisopropylphosphoramidite (48).  

As described for 42, with 46 (108 mg, 0.1 mmol), CH2Cl2 (1 ml), iPr2NEt (0.05 ml, 0.27 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (37 mg, 0.15 mmol). CC (SiO2 (5 

g), hexane/AcOEt 99:1 → 4:1 (+ 3% Et3N)): 48 (88 mg, 69%; 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 4:1): Rf 0.65. 1H-NMR (400 MHz, 

CDCl3): 0.84–1.02 (m, iPr3Si); 1.04–1.30 (m, iPr3Si, (Me2CH)2N, CH2CN); 2.55–2.65 (m, 

0.5 H, CH2CN); 3.35–3.47 (m, 3 H, H2C(5’), (Me2CH)2N, POCH2); 3.80 (s, 2 MeO); 4.00–

4.06 (m, H–C(4’));  4.14–4.21 (m, H–C(3’), H–C(2’));  4.58 (d, J = 8.9, OCH2N(3)); 4.99 (s, 

H–C(1’)); 5.10 (d, J = 4.7, OCH2O); 5.24–5.32 (m, OCH2N(3), OCH2N(1), OCH2O); 5.61 

(s, OCH2N(1)); 6.84 (d, J = 8.8, 4 arom. H); 7.19–7.32 (m, 7 arom. H); 7.34–7.40 (m, 7 arom. 
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H); 7.49 (d, J = 7.7, 2 arom. H); 7.60 (s, H–C(6)). 31P-NMR (162 MHz, CDCl3): 150.4, 

150.7. MALDI-MS: 1328.9 (100, [M + Na]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-N1,N3-bis{[(pivaloyl)oxy]methyl}-2'-O-{[(triisopropylsilyl)oxy] 

methyl}pseudouridine 3'-(2-Cyanoethyl Diisopropylphosphoramidite (49).  

As described for 42, with 29 (90 mg, 0.1 mmol), CH2Cl2 (1 ml), iPr2NEt (0.05 ml, 0.27 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (34 mg, 0.14 mmol). CC (SiO2 (5 

g), hexane/AcOEt 199:1 → 3:2 (+ 3% Et3N)): 49 (100 mg, 92%; 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 7:3): Rf 0.50. 1H-NMR (400 MHz, 

CDCl3): 0.87–1.02 (m, iPr3Si); 1.04–1.22 (m, iPr3Si, Me3C, (Me2CH)2N, CH2CN); 2.36–

2.42 (m, 0.5 H, CH2CN); 2.62 (t, J = 6.0, CH2CN); 3.35–3.47 (m, 5 H, H2C(5’), 

(Me2CH)2N, POCH2); 3.80 (s, 2 MeO); 3.98–4.05 (m, 0.5 H, POCH2); 4.18–4.26 (m, 1.5 H, 

H–C(4’), POCH2);  4.36–4.47 (m, H–C(3’)); 4.49–4.70 (m, H–C(2’), ); 4.95–5.05 (m, H–

C(1’)); 5.06 (d, J = 4.7, OCH2O); 5.09 (d, J = 4.2, OCH2N(3)); 5.14 (d, J = 4.2, OCH2N(3)); 

5.26 (d, J = 4.7, OCH2O); 5.42 (d, J = 10.0, OCH2N(3)); 5.95 (d, J = 9.3, OCH2N(1)); 6.85 

(d, J = 8.5, 4 arom. H); 7.16–7.33 (m, 7 arom. H); 7.34–7.38 (m, 7 arom. H); 7.45–7.50 (m, 2 

arom. H); 7.73 (s, H–C(6)). 31P-NMR (162 MHz, CDCl3): 150.3, 150.9. MALDI-MS: 

1184.4 (100, [M + Na]+)  

 

5’-O-(4,4’-Dimethoxytrityl)-1-methyl-2’-O-{[(triisopropylsilyl)oxy]methyl}inosine 3’-(2-

CyanoethylDiisopropylphosphoramidite) (50).  

As described for 42, with 32 (77 mg, 0.1 mmol), CH2Cl2 (2 ml), iPr2NEt (0.04 ml, 0.25 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (30 mg, 0.12 mmol). CC (SiO2 (2 

g), hexane/AcOEt 4:1 → 3:2 (+ 3% Et3N)): 50 (78 mg, 80%, 1:1 mixture of diastereomers). 

Colorless foam. TLC (hexane/AcOEt 8:2): Rf 0.50. TLC (hexane/AcOEt 1:1): Rf 0.50. 1H-

NMR (400 MHz, CDCl3): 0.86–1.05 (m, iPr3Si); 1.16–1.19 (m, (Me2CH)2N); 2.39 (t, J = 

6.4, 1 H, CH2CN); 2.67 (t, J = 6.4, 1 H, CH2CN); 3.32–3.40 (m, 1H, H–C(5')); 3.41–3.51 (m, 

1H, H'–C(5')); 3.51–3.70 (m, 3 H, (Me2CH)2N, POCH2); 3.60, 3.61 (2s, 3H, CH3–N(1)); 

3.79, 3.80 (2s, 2 MeO); 3.84–3.97 (m, 1 H, POCH2); 4.35, 4.41 (2q, J = 3.1, H–C(4')); 4.57–

4.65 (m, H–C(3')); 4.91–4.98 (m, 2H, OCH2O); 5.00–5.04 (m, 1H, H–C(2')); 6.05 (d, J = 6.1, 

0.5 H, H–C(1')); 6.09 (d, J = 6.1, 0.5 H, H–C(1')); 6.75–6.83 (m, 4 arom. H); 7.18–7.44 (m, 9 

arom. H); 7.78 (s, 1H, H–C(8); 7.92, 7.93 (2s, 1H, H–C(2)). 31P-NMR (162 MHz, CDCl3): 

150.06, 150.73. ESI-MS: 971.83 (100, [M + H]+). 
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5'-O-(4,4'-Dimethoxytrityl)-N6-isopentenyl-2'-O-{[(triisopropylsilyl)oxy]methyl}adenosine 3'-

(2-Cyanoethyl Diisopropylphosphoramidite (51).  

As described for 42, with 37 (90 mg, 0.12 mmol), CH2Cl2 (1.5 ml), iPr2NEt (0.05 ml, 0.27 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (21 mg, 0.18 mmol). CC (SiO2 (3 

g), hexane/AcOEt 9:1 → 2:3 (+ 3% Et3N)): 51 (90 mg, 80%, 1:1 mixture of 

diastereoisomers). Light yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.70. 1H-NMR (400 

MHz, CDCl3): 0.86–0.98 (m, iPr3Si); 1.11, 1.14, (2d, J = 6.6, (Me2CH)2N); 1.22 (t, J = 5.5, 

(Me2CH)2N); 1.76 (s, Me); 1.78 (s, Me); 2.39 (t, J = 6.5, 1 H, CH2CN); 2.67 (dt, J = 2.3, 6.7, 

1 H, CH2CN); 3.32–3.72 (m, 1 H of POCH2, (MeCH)2N, H–C(5')); 3.79 (s, 2 MeO); 3.84–

3.99 (m, 1 H, POCH2); 4.22 (br. s, H2C–NH); 4.34 (d, J = 3.7, H–C(4')); 4.40 (t, J = 4.0, H–

C(4')); 4.67–4.74 (m, H–C(3')); 4.94, 4.96 (2d, J = 5.0, OCH2O); 4.97–5.04 (m, OCH2O); 

5.16–5.23 (m, H–C(2'));  5.40 (t, J = 4.7, H–C(11)); 6.13, 6.16 (2d, J = 5.7, H–C(1')); 6.77–

6.82 (m, 4 arom. H); 7.20–7.43 (m, 12 arom. H); 7.92, 7.94 (2s, H–C(8)); 8.28, 8.30 (2s, H–

C(2)). 31P-NMR (162 MHz, CDCl3): 150.1, 150.8. MALDI-MS: 1024.36 (100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-N6,N6-dimethyl-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine 

3’-(2-CyanoethylDiisopropylphosphoramidite) (52).  

As described for 42, with 35 (148 mg, 0.19 mmol), CH2Cl2 (3 ml), iPr2NEt (0.08 ml, 0.47 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (47 mg, 0.23 mmol). CC (SiO2 (3 

g), hexane/AcOEt 9:1 → 1:1 (+ 3% Et3N)): 52 (148 mg, 80%, 1:1 mixture of diastereomers). 

Colorless foam. TLC (hexane/AcOEt 2:1): Rf 0.61. 1H-NMR (400 MHz, CDCl3): 0.88–1.10 

(m, iPr3Si); 1.12–1.20 (m, (Me2CH)2N); 2.37 (t, J = 6.5, 1 H, CH2CN); 2.65 (t, J = 6.4, 1 H, 

CH2CN); 3.45–3.68 (m, 11H, (CH3)2N(6), H2C(5'), (Me2CH)2N, POCH2); 3.77, 3.78 (2s, 2 

MeO); 3.81–3.98 (m, 1 H, POCH2); 4.32, 4..38 (2q, J = 3.1, H–C(4')); 4.67–4.75 (m, H–

C(3')); 4.92–5.01 (m, 2H, OCH2O); 5.14–5.17 (m, 1H, H–C(2')); 6.14 (d, J = 5.5, 0.5 H, H–

C(1')); 6.16 (d, J = 5.2, 0.5 H, H–C(1')); 6.76–6.80 (m, 4 arom. H); 7.20–7.40 (m, 9 arom. H); 

7.88, 7.90 (2s, 1H, H–C(8); 8.22, 8.24 (2s, 1H, H–C(2)).  31P-NMR (162 MHz, CDCl3): 

149.86, 150.54. ESI-MS: 546.29 (100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-N6-methyl-2’-O-{[(triisopropylsilyl)oxy]methyl}adenosine 

3’-(2-Cyanoethyl diisopropylphosphoramidite) (53).  

As described for 42, with 36 (120 mg, 0.16 mmol), CH2Cl2 (3 ml), iPr2NEt (0.07 ml, 0.39 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (39 mg, 0.19 mmol). CC (SiO2 (3 

g), hexane/AcOEt 4:1 → 2:3 (+ 3% Et3N)): 53 (128 mg, 85%, 1:1 mixture of diastereomers). 

Colorless foam. TLC (hexane/AcOEt 1:1): Rf 0.50. 1H-NMR (400 MHz, CDCl3): 0.88–1.10 
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(m, iPr3Si); 1.16–1.26 (m, (Me2CH)2N); 2.37 (t, J = 6.5, 1 H, CH2CN); 2.65 (t, J = 6.4, 1 H, 

CH2CN); 3.20 (br. s, 3H, CH3–N(6)); 3.30–3.33 (m, 1H, H–C(5’)); 3.49–3.70 (m, 4 H, H'–

C(5'), (Me2CH)2N, POCH2); 3.77, 3.78 (2s, 2 MeO); 3.86–3.97 (m, 1 H, POCH2); 4.32, 

4..37 (2q, J = 3.0, H–C(4')); 4.67–4.75 (m, H–C(3')); 4.91–5.01 (m, 2H, OCH2O); 5.16–5.21 

(m, 1H, H–C(2’)); 6.11 (d, J = 5.5, 0.5 H, H–C(1')); 6.13 (d, J = 5.2, 0.5 H, H–C(1')); 6.75–

6.79 (m, 4 arom. H); 7.17–7.41 (m, 9 arom. H); 7.90, 7.92 (2s, 1H, H–C(8); 8.28, 8.30 (2s, 

1H, H–C(2)).  31P-NMR (162 MHz, CDCl3): 149.89, 150.58 ppm; ESI-MS: 546.29 (100, [M 

+ H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-1-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl} guanosine 3'-(2-

Cyanoethyl Diisopropylphosphoramidite) (54).  

As described for 42, with 38 (84 mg, 0.11 mmol), CH2Cl2 (0.5 ml), iPr2NEt (0.03 ml, 0.27 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (22 mg, 0.19 mmol). CC (SiO2 

(1.5 g), hexane/AcOEt 2:3 → AcOEt (+ 3% Et3N)): 54 (61 mg, 58%, 1:1 mixture of 

diastereoisomers). Light yellow foam. TLC (hexane/AcOEt 1:9): Rf 0.34. 1H-NMR (400 

MHz, CDCl3): 0.90–1.00 (m, iPr3Si); 1.06–1.31 (4d, J = 6.5, (Me2CH)2N); 2.35 (t, J = 6.4, 1 

H, CH2CN); 2.69 (t, J = 6.7, 1 H, CH2CN); 2.77 (dd, J = 1.6, 6.3, 0.5 H, H–C(5')); 3.27–3.38 

(m, 0.5 H, H–C(5')); 3.46, 3.47 (2s, 2 Me-N(1)); 3.49–3.72 (m, 4.0 H, (MeCH)2N, H–C(5'), 

POCH2); 3.79 (s, 2 MeO); 3.86–4.25 (m, POCH2); 4.30 (br. q, J ≈ 2, 0.5 H, H–C(4')); 4.38 

(br. t, J ≈ 3, 0.5 H, H–C(4')); 4.58–4.68 (m, 1 H, H–C(3')); 4.73, 4.80 (2s, 1 H, OCH2O); 

4.88–5.15 (m, 1.5 H, H–C(2'), OCH2O); 5.02–5.15 (m, 0.5 H, H–C(2')); 5.89 (d, J = 6.5, 0.5 

H, H–C(1')); 5.96 (d, J = 7.0, 0.5 H, H–C(1')); 6.80–6.82 (m, 4 arom. H); 7.21–7.48 (m, 9 

arom. H, H–C(8)); 7.64, 7.66 (2br. s, HN–C(2)). 31P-NMR (162 MHz, CDCl3): 151.3, 151.6. 

MALDI-MS: 986.31 (100, [M + H]+). 

 

N6-{{{(1S,2R)-2-{[ (tert-butyl)dimethylsilyl]oxy}-1-{[2-(4-nitrophenyl)ethoxy]carbonyl} 

propyl}amino}carbonyl}-5'-O-(4,4'-dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl} 

adenosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (55).  

As described for 42, with 41 (100 mg, 0.08 mmol), CH2Cl2 (1 ml), iPr2NEt (0.05 ml, 0.21 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (24 mg, 0.10 mmol). CC (SiO2 (3 

g), hexane/AcOEt 6:4 → AcOEt (+ 3% Et3N)): 55 (80 mg, 68%, 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 1:9): Rf 0.62. 1H-NMR (400 MHz, 

CDCl3): -0.03, 0.09 (2s, MeSi); 0.97–1.08 (m, iPr3Si, tBuSi); 1.09 (d, J = 6.6, Me(γ)); 1.10–

1.30 (m, (Me2CH)2N); 2.40 (t, J = 5.9, 1 H, CH2CN);  2.67 (t, J = 6.6, 1 H, CH2CN); 3.07 (t, 

J = 6.6, CH2CH2O); 3.35–3.39 (m, 1 H of POCH2); 3.51–3.66 (m, (Me2CH)2N, H–C(5')); 
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3.80–4.00 (m, 1 H, POCH2); 3.79 (s, 2 MeO); 4.32–4.44 (m, H–C(4'), CH2CH2O); 4.54 (d, J 

= 6.6, CH(β)); 4.58 (d, J = 8.8, CH(α)); 4.63–4.73 (m, H–C(3')); 4.96, 4.97, 5.03 (3d, J = 4.4, 

OCH2O); 5.08–5.13 (m, H–C(2')); 6.24 (d, J = 5.1, H–C(1')); 6.26 (d, J = 5.8, H–C(1')); 6.79–

6.84 (m, 4 arom. H); 7.24–7.54 (m, 15 arom. H); 8.06 (d, J = 8.1, 2 arom. H); 8.16, 8.19 (2s, 

H–C(8)); 8.43, 8.44 (2s, H–C(2)); 10.04 (t, J = 9.5, HN–C(6)). 31P-NMR (162 MHz, CDCl3): 

150.8, 150.2. ESI-MS: 1364.30 (100, [M + H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl}inosine 3'-(2-Cyanoethyl 

Diisopropylphosphoramidite) (56).  

A suspension of 31 (1.5 g, 2 mmol) and 5-benzyl-1H-tetrazole (0.43 g, 2.2 mmol, prepared 

according to (Pitsch et al. 2001)) and MS 4Å, in MeCN (10 ml) was treated with 2-cyanoethyl 

tetraisopropylphosphoramidite (1.8 g, 6 mmol). The reaction mixture was diluted CH2Cl2 

(100 ml) and poured into a well-stirred mixture of CH2Cl2 (200 ml) and satd. aq. NaHCO3 

soln. (250 ml). The organic phase was dried (Na2SO4) and evaporated. CC (SiO2 (40 g), 

hexane/AcOEt 1:1 → AcOEt (+ 3% Et3N)) gave 56 (1.75 g, 92%, 1:1 mixture of 

diastereomers). Colorless foam. TLC (hexane/AcOEt 1:9): Rf 0.48. 1H-NMR (400 MHz, 

CDCl3): 0.85–1.00 (m, iPr3Si); 1.18–1.31 (m, (Me2CH)2N); 2.40 (t, J = 6.5, 1 H, CH2CN); 

2.62–2.71 (dt, J = 1.5, 7.6, CH2CN); 3.35–3.41 (m, POCH2); 3.46–3.74 (m, 4 H (Me2CH)2N, 

H–C(5‘), POCH2); 3.79, 3.80 (2s, 2 MeO); 3.85–4.00 (m, 1 H, POCH2); 4.38 (br. d, J = 3.4, 

0.5 H, H–C(4')); 4.43 (br. d, J = 3.6, 0.5 H, H–C(4')); 4.58–4.64 (m, H–C(2'), H–C(3')); 4.92–

5.09 (m, OCH2O); 6.13 (d, J = 6.0, 0.5 H, H–C(1')); 6.16 (d, J = 6.0, 0.5 H, H–C(1')); 6.79–

6.84 (m, 4 arom. H); 7.19–7.47 (m, 9 arom. H); 7.94, 7.95 (2s, H-C(8)); 8.01, 8.04 (2s, H-

C(2));. 31P-NMR (162 MHz, CDCl3): 151.3, 152.1. MALDI-MS: 957.36 (100, [M + H]+). 

 

 

CHAPTER II 

 

5’-O-(4,4’-Dimethoxytrityl)-O2-methyluridine (58).  

A soln. of 57 (4.67 g, 20.6 mmol, prepared according to (Vyle et al. 1998)) in MeOH (100 ml) 

was treated with Et3N (10 ml, 58.4 mmol) and stirred overnight at 70° in an autoclave. 

Evaporation of the solvent gave a white solid which was dissolved in Py (75 ml), treated with 

(MeO)2TrCl (6.93 g, 20.3 mmol) and stirred for 12 h at r.t. Workup and CC (SiO2 (140 g), 

CH2Cl2/MeOH 19:1 → 17:3) gave 58 (6.15 g, 60%). Yellow foam. TLC (CH2Cl2/MeOH 

19:1): Rf 0.15. 1H-NMR (400 MHz, CDCl3): 3.44 (m, H2C(5')); 3.49 (s, OH); 3.78 (s, 2 

MeO); 3.96 (s, MeO–C(2)); 4.19 (d, J = 3.9, H–C(4')); 4.41 (t, J = 4.8, H–C(2')); 4.48 (t, J = 
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5.1, H–C(3')); 5.59 (d, J = 7.7, H–C(5)); 5.95 (d, J = 5.5, H–C(1')); 6.85 (d, J = 8.8, 4 arom. 

H); 7.21–7.41 (m, 9 arom. H); 7.77 (d, J = 7.7, H–C(6)). 13C-NMR (100 MHz, CDCl3): 55.3 

(q, MeO); 55.9 (q, MeO–C(2)); 63.0 (t, C(5')); 71.1 (d, C(3')); 74.7 (d, C(2')); 83.9 (d, C(4')); 

87.2 (s, arom. C); 89.7 (d, C(1')); 113.4 (d, arom. C); 127.1, 128.1, 128.2, 130.1, 130.2 (5d, 

arom. C); 135.1, 135.3 (2s, arom. C); 138.4 (d, C(6)); 144.3 (s, arom. C); 156.3 (s, C(2)); 

158.7 (s, arom. C); 164.1 (s, C(4)); 171.6 (s, arom. C). ESI-MS: 561.27 (100, [M + H]+).  

 

5'-O-(4,4'-Dimethoxytrityl)isocytidine (59).  

NH3 (50 ml) was condensed into an autoclave containing 58 (2.50 g, 4.4 mmol). After 

sealing, the reaction mixture was stirred for 12 h at 65°. Evaporation gave crude 59 (2.07 g) as 

yellow oil.  An analytical sample was obtained by prep. TLC (CH2Cl2/MeOH 9:1). TLC 

(CH2Cl2/MeOH 19:1): Rf 0.18. 1H-NMR (400 MHz, DMSO): 3.20–3.26 (m, H2C(5')); 3.73 

(s, 2 MeO); 4.00 (d, J = 3.0, H–C(4')); 4.07–4.11 (m, H–C(3'), H–C(2')); 5.27 (d, J = 5.1, OH–

C(3')); 5.35 (d, J = 7.4, H–C(5)); 5.52 (d, J = 5.1, OH–C(2')); 5.60 (d, J = 4.4, H–C(1')); 6.89 

(d, J = 8.8, 4 arom. H); 7.22–7.37 (m, 9 arom. H); 7.53 (d, J = 7.3, H–C(6)). 13C-NMR (100 

MHz, DMSO): 55.6 (q, MeO); 63.4 (t, C(5')); 69.9 (d, C(2')); 74.2 (d, C(3')); 83.7 (d, C(4')); 

86.4 (s, arom. C); 90.7 (d, C(1')); 107.4 (d, C(5)); 113.7 (d, arom. C); 127.3, 128.1, 128.4, 

130.2 (4d, arom. C); 135.6 (s, arom. C); 137.4 (s, arom. C); 145.0 (d, C(6)); 155.2 (d, C(2)); 

158.6 (s, arom. C); 169.92 (s, C(4)). ESI-MS: 546.29 (100, [M + H]+).  

 

N2-Acetyl-5'-O-(4,4'-dimethoxytrityl)isocytidine (60).  

A soln. of crude 59 (2.30 g, ca. 4.2 mmol) in Py (18 ml) was treated with TMS-Cl (2.6 ml, 

21.0 mmol). After 90 min at 4°, DMAP (250 mg, 2.1 mmol) and AcCl (0.3 ml, 4.2 mmol) 

were added. After 14 h at r.t., and work-up, the residue was treated with Bu4NF (1M) in THF 

(20 ml) at r.t. for 5 min. Addition of aq. Na-phosphate buffer (0.1M, 100 ml, pH 7), workup 

and CC (SiO2 (60 g), CH2Cl2/acetone 9:1 → 1:1) gave 60 (1.81 g, 63% based on 58). Yellow 

foam. TLC (CH2Cl2/MeOH 19:1): Rf 0.23. 1H-NMR (400 MHz, CDCl3): 2.24 (s, MeCO); 

3.29–3.33 (m, H2C(5')); 3.80 (s, 2 MeO); 3.37–3.46 (m, H–C(3'), H–C(4')); 4.40–4.43 (m, H–

C(2'), OH); 5.62 (d, J = 7.8, H–C(5)); 6.02 (s, H–C(1')); 6.84 (d, J = 7.0, 4 arom. H); 7.24–

7.38 (m, 9 arom. H); 7.92 (d, J = 8.6, H–C(6)); 8.62 (d, J = 3.9, HN–C(2)). 13C-NMR (100 

MHz, CDCl3): 24.5 (q, MeCO)); 55.7 (q, MeO); 59.4 (t, C(5')); 63.4 (d, C(2')); 72.7 (d, 

C(3')); 86.7 (d, C(4')); 87.6 (s, arom. C); 93.5 (d, C(1')); 105.7 (d, C(5)); 113.7 (d, arom. C); 

124.2, 127.6, 128.4, 128.5, 130.4, (5d, arom. C); 135.4, 135.5 (2s, arom. C); 139.9 (d, C(6)); 

144.5 150.1 (2s, arom. C); 153.6 (d, C(2)); 159.1 (s, arom. C); 159.7 (s, C(4)); 184.7 (s, 

MeCO). ESI-MS: 588.36 (100, [M + H]+).  
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N2-Acetyl-5'-O-(4,4'-dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl}isocytidine (61).  

A soln. of 60 (3.50 g, 5.9 mmol) and iPr2NEt (3.50 ml, 20.8 mmol) in ClCH2CH2Cl (35 ml) 

was treated with tBu2SnCl2 (1.99 g, 6.6 mmol), stirred for 30 min at r.t., treated with TOM-Cl 

(1.46 g, 6.6 mmol) and stirred at for 25 min r.t.  Workup and CC (SiO2 (35 g), hexane/AcOEt 

9:1 → 1:1) gave 61 (552 mg, 12%). Light yellow foam. TLC (hexane/AcOEt 1:1): Rf 0.62. 
1H-NMR (400 MHz, CDCl3): 1.00–1.22 (m, iPr3Si); 2.20 (s, MeCO); 3.02 (d, J = 7.8, OH–

C(3')); 3.59 (br. s, H2C(5')); 3.82 (s, 2 MeO); 4.09 (d, J = 7.8, H–C(4')); 4.35 (d, J = 3.9, H–

C(2')); 4.51 (d, J = 4.7, H–C(3')); 5.26 (d, J = 3.9, OCH2O); 5.29 (d, J = 3.9, OCH2O); 5.35 

(d, J = 7.8, H–C(5)); 6.27 (s, H–C(1')); 6.86 (d, J = 8.6, 4 arom. H); 7.29–7.45 (m, 9 arom. H); 

8.29 (d, J = 8.5, H–C(6)); 13.0 (br. s, NH–C(2)). 13C-NMR (100 MHz, CDCl3): 12.3 (d, 

Me2CH); 18.2 (q, Me2CH); 28.8 (q, MeCO)); 55.7 (q, MeO); 61.5 (t, C(5')); 68.6 (d, C(2')); 

82.3 (d, C(3')); 84.0 (d, C(4')); 87.6 (s, arom. C); 89.4 (d, C(1')); 90.4 (t, OCH2O); 105.6 (d, 

C(5)); 113.7 (d, arom. C); 127.6, 128.4, 128.6, 130.5, 130.6 (5d, arom. C); 135.4 (s, arom. C); 

140.2 (d, C(6)); 144.7 (s, arom. C); 152.4 (d, C(2)); 159.2 (s, arom. C); 160.2 (s, C(4)); 185.4 

(s, MeCO). ESI-MS: 774.29 (100, [M + H]+).  

 

N2-Acetyl-5'-O-(4,4'-dimethoxytrityl)-2'-O-{[(triisopropylsilyl)oxy]methyl} isocytidine 3'-(2-

Cyanoethyl Diisopropylphosphoramidite) (62).  

As described for 42, with 61 (100 mg, 0.13 mmol), CH2Cl2 (2 ml), iPr2NEt (0.05 ml, 0.32 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (43 mg, 0.32 mmol). CC (SiO2 (3 

g), hexane/AcOEt 9:1 → 4:6 (+ 3% Et3N)): 66 (60 mg, 50%, 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 1:1): Rf 0.64. 1H-NMR (400 MHz, 

CDCl3): 0.98–1.07 (m, iPr3Si); 1.09, 1.18 (2d, J = 7.0, (Me2CH)2N); 2.20, 2.21 (2s, MeCO); 

2.45 (t, J = 5.7, 1 H, CH2CN);  2.67 (q, J = 6.3, 1 H, CH2CN); 3.44–3.69 (m, 3.5 H, POCH2, 

(Me2CH)2N, H–C(5')); 3.81 (s, 2 MeO); 3.94 (m, 1 H, POCH2); 4.25 (d, J = 6.2, 0.5 H, H–

C(4')); 4.30 (d, J = 6.2, 0.5 H, H–C(4')); 4.34–4.47 (m, H–C(2'), H–C(3')); 5.17 (br. s, 

OCH2O); 5.28 (dd, J = 4.6, 11.2, OCH2O); 5.34, 5.40 (2d, J = 8.1, H–C(5)); 6.54, 6.59  (2d, J 

= 3.1, H–C(1')); 6.81–6.88 (m, 4 arom. H); 7.32–7.44 (m, 9 arom. H); 8.17, 8.23 (2d, J = 8.6, 

H–C(6)); 13.03, 13.06 (2br. s, NH–C(4)). 31P-NMR (162 MHz, CDCl3): 151.2, 151.6. 

MALDI-MS: 974.30 (100, [M + H]+). 

 

N6-Isobutyrylisoguanosine (63).  

Carefully dried (0.01 mbar, 24 h at 50°) isoguanosine (2.83 g, 10 mmol) was suspended in Py 

(50 ml) containing MS 4Å, stirred 2 h at r.t., treated with tms-Cl (10 ml, 80 mmol) and stirred 
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for 2 h at 4°. Then, DMAP (980 mg, 7 mmol) and isobutyryl chloride (1.2 ml, 11 mmol) were 

added. After 12 h at r.t., workup and evaporation, the yellow oil was dissolved in 

MeOH:AcOH 9:1 (50 ml) and stirred  for 3 h at r.t. Evaporation gave  crude 63 (3.41 g) as 

white solid. TLC (CH2Cl2/MeOH 1:1): Rf 0.10. 1H-NMR (400 MHz, DMSO): 1.12 (d, J = 

6.8, Me2CH); 3.00 (sept, J = 6.8, Me2CHCO); 3.55–3.65 (m, H2C(5')); 3.92 (dd, J = 6.7, 3.4, 

H–C(4')); 4.10 (dd, J = 8.2, 4.7, H–C(3')); 4.48 (dd, J = 5.8, 11.2, H–C(2')); 5.18 (d, J = 4.8, 

OH–C(3’)); 5.25 (m, OH–C(5’)); 5.47 (d, J = 5.9, OH–C(2’)); 5.72 (d, J = 5.9, H–C(1')); 8.32 

(s, H–C(8)); 11.92 (br. s, HN). 13C-NMR (100 MHz, DMSO): 22.0 (q, Me2CHCO); 35.1 (d, 

Me2CHCO); 62.3 (t, C(5')); 71.3 (d, C(3')); 74.1 (d, C(2')); 86.6 (d, C(4')); 88.3 (d, C(1'));  

110.0 (s, C(5)); 139.6 (d, C(8)); 152.2 (s, C(4)), 154.7 (s, C(6)); 157.0 (s, C(2)); 179.9 (s, 

NHCO). ESI-MS: 354.29 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-O2-diphenylcarbamoyl-N6-isobutyrylisoguanosine (64).  

A soln. of crude 63 (5.63 g, ca. 15.9 mmol) in Py (250 ml) was treated at r.t. with iPr2NEt 

(3.0 ml, 17.5 mmol) and then with N,N-diphenylcarbamoyl chloride (4.06 g, 17.5 mmol). 

After 30 min at r.t., the reaction mixture was treated with (MeO)2TrCl (5.40 g, 15.9 mmol). 

Workup after 1 h at r.t. and CC (SiO2 (90 g), AcOEt → AcOEt/MeOH 99:1) afforded 64 

(6.09 g, 45% from isoguanosine). Yellow foam. TLC (CH2Cl2/MeOH 17:3): Rf 0.88. 1H-

NMR (400 MHz, CDCl3): 1.28–1.32 (d, J = 7.3, Me2CH ); 3.23–3.33 (m, Me2CHCO, OH–

C(3'), H–C(5')); 3.40 (dd, J = 3.7, 11.0, H'–C(5')); 3.77 (s, 2 MeO); 4.37 (d, J = 3.0, H–C(3')); 

4.43 (br. s, H–C(4')); 4.77 (br. s, H–C(2')); 5.32 (br. s, OH–C(2')); 6.01 (d, J = 5.1, H–C(1')); 

6.75–6.79 (m, 4 arom. H); 7.16–7.39 (m, 19 arom. H); 8.12 (s, H–C(8)). 13C-NMR (100 MHz, 

CDCl3): 19.1 (q, Me2CHCO); 35.8 (d, Me2CHCO); 55.2 (q, MeO); 63.5 (t, C(5')); 72.4 (d, 

C(2')); 75.9 (d, C(3')); 76.9 (d, C(4')); 85.7 (d, C(1')); 90.1 (s, arom. C); 113.2 (d, arom. C); 

120.5 (s, C(5)); 126.6, 126.7, 126.8, 126.9, 127.0, 127.1, 127.8, 127.9, 128.2, 129.2, 135.4, 

136.6 (12d, arom. C); 141.2 (d, C(8)); 144.3 (s, C(4)); 150.3 (s, arom. C); 152.0 (s, CO); 

155.5 (s, C(6)); 158.6 (s, C(2)); 176.3 (s, NHCO). ESI-MS: 851.36 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)-O2-diphenylcarbamoyl-N6-isobutyryl-2'-O-

{[(triisopropylsilyl)oxy]methyl}isoguanosine (65).  

A soln. of 64 (5.90 g, 6.9 mmol) and iPr2NEt (4.2 ml, 24.3 mmol) in ClCH2CH2Cl (28 ml) 

was treated with Bu2SnCl2 (2.32 g, 7.6 mmol), stirred 10 min at r.t., heated to 75°, treated 

with TOM-Cl (1.85 g, 8.3 mmol) and heated for 25 min at 75°. Workup and CC (SiO2 (150 

g), hexane/AcOEt 9:1 → 3:2) gave 65 (1.64 g, 23%). Light yellow foam. TLC (hexane/AcOEt 

1:1): Rf 0.27. 1H-NMR (400 MHz, CDCl3): 0.92–1.21 (m, iPr3Si); 1.32 (d, J = 7.3, Me2CH ); 
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3.19 (s, OH–C(3')); 3.35–3.51 (m, Me2CHCO); 3.74–3.82 (m, H–C(5')); 3.82 (s, 2 MeO); 

3.99 (d, J = 13.2, H'–C(5')); 4.38 (s, H–C(3')); 4.58 (d, J = 4.4, H–C(4')); 4.84 (d, J = 5.1, 

OCH2O); 4.86–4.89 (m, H–C(2')); 5.04 (d, J = 5.1, OCH2O); 5.93 (d, J = 7.4, H–C(1')); 6.85 

(d, J = 4.4, 4 arom. H); 7.10–7.45 (m, 19 arom. H); 8.57 (s, H–C(8)). 13C-NMR (100 MHz, 

CDCl3): 11.8 (d, Me2CH); 17.8 (q, Me2CH, Me2CHCO); 35.8 (d, Me2CHCO); 55.3 (q, 

MeO); 63.3 (t, C(5')); 72.0 (d, C(2')); 81.9 (d, C(3')); 86.5 (d, C(4')); 87.8 (d, C(1')); 89.6 (s, 

arom. C); 90.8 (t, OCH2O); 113.2 (d, arom. C); 121.9 (s, C(5)); 126.6, 126.7, 126.8, 126.9, 

127.0, 127.1, 127.8, 127.9, 128.2, 130.0, 130.1, 135.7, 136.6 (12d, arom. C); 139.5 (d, C(8)); 

143.2 (s, C(4)); 150.7 (s, arom. C); 151.3 (s, CO), 155.4 (s, C(6)); 158.6 (s, C(2)); 176.4 (s, 

NHCO). ESI-MS: 1037.36 (100, [M + H]+). 

 

5'-O-(4,4'-Dimethoxytrityl)-O2-diphenylcarbamoyl-N6-isobutyryl-2'-O-{[(triisopropylsilyl) 

oxy]methyl}isoguanosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (66).  

As described for 42, with 65 (100 mg, 0.096 mmol), CH2Cl2 (0.7 ml), iPr2NEt (0.04 ml, 0.24 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (34 mg, 0.14 mmol). CC (SiO2 (3 

g), hexane/AcOEt 9:1 → 1:1 (+ 3% Et3N)): 66 (70 mg, 56%, 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 1:1): Rf 0.49. 1H-NMR (400 MHz, 

CDCl3): 0.85–1.00 (m, iPr3Si); 1.05 (1d, J = 6.2, (Me2CH)2N); 1.12–1.29 (m,  (Me2CH)2N); 

1.33 (1d, J = 7.0, (Me2CH); 2.34 (t, J = 7.0, 0.5 H, CH2CN);  2.48–2.70 (m, 1.5 H, CH2CN); 

3.32 (dd, J = 5.9, 10.2, 0.5 H, H–C(5')); 3.44–3.73 (m, 4.5 H, (MeCH)2N, (MeCH)2CO, H–

C(5'), POCH2); 3.78, 3.79 (2s, 2 MeO); 3.82–3.92 (m, 1 H, POCH2); 4.30 (d, J = 3.1, 0.5 H, 

H–C(4')); 4.35 (d, J = 3.9, 0.5 H, H–C(4')); 4.57–4.64 (m, 1 H, H–C(3')); 4.85–5.02 (m, 3H, 

OCH2O, H–C(2'), H–C(3')); 6.23 (t, J = 4.7, H–C(1')); 6.78–6.83 (m, 4 arom. H); 7.20–7.42 

(m, 9 arom. H); 8.14, 8.19 (2s, H–C(8)). 31P-NMR (162 MHz, CDCl3): 151.7, 151.8. 

MALDI-MS: 1237.83 (100, [M + H]+). 

 

 

CHAPTER III 

 

N4-Desmethyl-5'-O-(4,4'-dimethoxytrityl)- 2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (71). 

A soln. of 1 (1.00 g, 1.3 mmol) in DMF (12 ml) was treated with K2CO3 (197 mg, 1.4 mmol) 

and stirred at r.t. for 1 h. This suspension was cooled to -15° and successively treated with KI 

(107 mg, 0.6 mmol), bromoacetone (178 mg, 1.3 mmol) and stirred for 8 h. The reaction 

mixture was poured on a cold 10% soln. of ammonium chloride (150 ml) and AcOEt (150 

ml). The aqueous layer was extraction twice with (2 x 150 ml) of AcOEt and the combined 
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organic layers, dried over MgSO4. After evaporation of the solvent, the yellow oily residue 2 

was redissolved in CH2Cl2 (10 ml) and stirred overnight on 4A molecular sieve. Filtration, 

evaporation and CC (SiO2 (30 g), CH2Cl2/Acetone 0:1 → 2:8) offered 71 (588 mg, 56%) as 

green oil and (199 mg, 20%) of 1. TLC (CH2Cl2/MeOH 9:1): Rf 0.53. 1H-NMR (400 MHz, 

CDCl3) ): 1.04–1.11 (m, iPr3Si); 2.26 (s, CH3–C(6)); 3.15 (br. s, HO–C(3'));  3.35 (dd, J = 

3.4, 10.3, H–C(5')); 3.51 (dd, J = 3.2, 10.3, H'–C(5')); 3.77, 3.79 (2s, 2 MeO); 4.29 (dd, J = 

2.6, 3.2, H–C(4')); 4.64 (dd, J = 2.2, 4.4, H–C(3')); 4.95 (d, J = 4.7, OCH2O); 5.08 (t, J = 5.7, 

H–C(2')); 5.13 (d, J = 4.7, OCH2O); 6.02 (d, J = 6.2, H–C(1')); 6.80–6.82 (m, 4 arom. H); 

7.26–7.49 (m, 9 arom. H); 7.81 (br. s, H–C(6)). 13C-NMR (100 MHz, CDCl3): 11.3 (q, CH3–

C(6)); 12.2 (d, Me2CH); 18.2 (q, Me2CH); 55.7 (q, MeO); 64.0 (t, C(5')); 71.7 (d, C(4')); 81.7 

(d, C(2')); 84.4 (d, C(3')); 86.7 (s, arom. C); 86.9 (d, C(1')); 91.4 (t, OCH2O); 104.6 (d, C(7)); 

113.4 (d, arom. C); 117.7 (s, C(9a)); 127.3, 128.3, 128.8, 130.7 (4d, arom. C); 136.1 (s, arom. 

C); 137.9 (d, C(2)); 145.1 (s, C(6));  145.9 (s, C(4a)); 150.2 (s, C(3a)); 152.4 (s, C(9)); 158.9 

(s, arom. C). ESI-MS: 810.30 (100, [M + H]+).  

  

N4-Desmethyl-5'-O-(4,4'-dimethoxytrityl)-N5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl} 

wyosine (74). 

A soln. of 71 (1.00 g, 1.2 mmol) in DMF (15 ml) in a flask prevented from light, was 

successively treated with K2CO3 (198 mg, 1.4 mmol), MeI (0.08 ml, 1.3 mmol) and stirred at 

r.t. for 1.5 h. Workup and evaporation gave 74 (1.00 g, 98%) as yellow brown wax. No 

further purification has been necessary. TLC (CH2Cl2/MeOH 9:1): Rf 0.47. 1H-NMR (400 

MHz, CDCl3) ): 1.02–1.14 (m, iPr3Si); 2.32 (s, CH3–C(6)); 3.15 (d, J = 3.9, HO–C(3'));  3.45 

(br. s, H–C(5'), CH3–N(5)); 3.78 (br. s, 2 MeO, H'–C(5')); 4.28 (dd, J = 1.5, 5.1, H–C(4')); 

4.61 (dd, J = 4.0, 8.2, H–C(3')); 4.84 (t, J = 5.4, H–C(2')); 4.97 (d, J = 4.7, OCH2O); 5.16 (d, 

J = 4.7, OCH2O); 6.16 (d, J = 5.5, H–C(1')); 6.76–6.81 (m, 4 arom. H); 7.17–7.34 (m, 9 arom. 

H); 7.43 (d, J = 7.0, H–C(7)); 7.80 (br. s, H–C(2)); 13C-NMR (100 MHz, CDCl3): 10.6 (q, 

CH3–C(6)); 12.3 (d, Me2CH); 18.2 (q, Me2CH); 28.8 (q, CH3–N(5)); 55.7 (q, MeO); 64.1 (t, 

C(5')); 71.6 (d, C(4')); 82.4 (d, C(2')); 84.2 (d, C(3')); 86.5 (s, arom. C); 86.9 (d, C(1')); 91.3 

(t, OCH2O); 103.9 (d, C(7)); 113.5 (d, arom. C); 117.4 (s, C(9a)); 127.0 (s, C(6)); 127.3, 

128.3, 128.6, 130.5 (4d, arom. C); 136.0, 136.2 (2s, arom. C); 137.1 (s, C(2)); 144.9 (s, 

C(4a)); 146.0 (s, arom. C); 150.3 (s, C(3a)); 152.3 (s, C(9)); 158.9 (s, arom. C). ESI-MS: 

824.30 (100, [M + H]+).  

 

N4-Desmethyl-5'-O-(4,4'-dimethoxytrityl)-N5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl} 

wyosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite (75). 
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As described for 42, with 74 (200 mg, 0.24 mmol), CH2Cl2 (0.8 ml), iPr2NEt (0.1 ml, 0.6 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (67 mg, 0.29 mmol). CC (SiO2 (2 

g), hexane/AcOEt 1:1 → 0:1 (+ 3% Et3N)): 75 (192 mg, 73%; 1:1 mixture of 

diastereoisomers). Yellow foam. TLC (hexane/AcOEt 1:9): Rf 0.42. 1H-NMR (400 MHz, 

CDCl3): 0.91–0.93 (m, iPr3Si); 1.06–1.32 (4d, J = 6.2, (Me2CH)2N); 2.32 (s, CH3–C(6)); 

2.35–2.39 (m, 1 H, CH2CN); 2.65–2.72 (m, 1 H, CH2CN); 3.33–3.52 (m, 3.5 H, CH3–N(5), 

H–C(5')); 3.53–3.69 (m, 4.0 H, (MeCH)2N, H–C(5'), POCH2); 3.78 (s, 2 MeO); 3.86–4.01 

(m, 1 H, POCH2); 4.10–4.28 (m, 0.5 H, POCH2); 4.35 (br. d, J ≈ 2.7, 0.5 H, H–C(4')); 4.41 

(br. d, J ≈ 3.2, 0.5 H, H–C(4')); 4.56–4.67 (m, 1 H, H–C(3')); 4.92 (d, J = 4.9, 0.5 H, 

OCH2O); 4.97 (br. s, 1.5 H, OCH2O); 5.00–5.08 (m, 1 H, H–C(2')); 6.12 (d, J = 6.3, 0.5 H, 

H–C(1')); 6.17 (d, J = 6.2, 0.5 H, H–C(1')); 6.78–6.80 (m, 4 arom. H); 7.18–7.55 (m, 9 arom. 

H, H–C(7)); 7.80 (s, H–C(2)). 31P-NMR (162 MHz, CDCl3): 150.6, 150.9. MALDI-MS: 

1023.87 (100, [M + H]+).  

 

N4-Desmethyl-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (76) 

A soln. of 71 (823 mg, 1.0 mmol) in CH2Cl2 (10 ml) was treated with dichloroacetic acid (0.4 

ml, 6.0 mmol), stirred at r.t. After 15 min, the reaction mixture was quenched with MeOH 

(2.6 ml) on a 10% cold soln. of ammonium bicarbonate (50 ml) and CH2Cl2 (50 ml). The 

aqueous layer was extracted twice with (2 x 150 ml) of AcOEt and the combined organic 

layers was washed with brine. CC (SiO2 (15 g), hexane/AcOEt 1:1 → 0:1) offered 76 (431 

mg, 85%). Light green foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.50. 1H NMR (400 MHz, 

CDCl3): 1.01-1.07 (m, iPr3Si); 2.30 (br. s, CH3–C(6)); 3.05–3.60 (br. s, HO–C(3'), HO–

C(5')); 3.83 (d, J = 11.7, H–C(5')); 4.01 (d, J = 12.5, H'–C(5')); 4.29 (br. s, H–C(4')); 4.57 (d, 

J = 4.2, OCH2O); 4.88–4.95 (m, H–C(2'), OCH2O); 5.08 (d, J = 4.6, H–C(3')); 5.89 (d, J = 

7.3, H–C(1')); 7.76 (br. s, H–C(6)); 11.50 (br. s, H–N(5)). 13C NMR (100MHz, CDCl3): 11.3 

(q, CH3–C(6)); 12.2 (d, Me2CH); 18.1 (q, Me2CH); 63.7 (t, C(5')); 72.2 (d, C(3')); 81.2 (d, 

C(2')); 87.2 (d, C(4')); 89.8 (d, C(1')); 90.9 (t, OCH2O); 104.5 (d, C(7)); 118.1 (s, C(9a)); 

126.5 (s, C(6)); 139.4 (d, C(2)); 145.4 (s, C(4a)); 148.6 (s, C(3a)); 152.1 (s, C(9)). ESI-MS: 

508.32 (100, [M + H]+).  

  

3',5'-Di-O-acetyl -N4-desmethyl-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (77). 

A soln. of 76 (360 mg, 0.7 mmol) in Py (5 ml) was treated with Ac2O (0.4 ml, 6.0 mmol) and 

stirred at r.t. for 2 h. After workup, the solvent was removed under reduced pressure and 

stirred for 2 h Py/H2O/MeOH 1:1:1 (6 ml). Workup, evaporation and coevaporation with 

benzene (2 ml) offered 77 (382 mg, 91%). Yellow foam. No further purification has been 
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necessary. TLC (CH2Cl2/MeOH 9:1): Rf 0.42. 1H-NMR (400 MHz, CDCl3): 0.90–1.10 (m, 
iPr3Si); 2.09, 2.20 (2s, 2 MeCO); 2.38 (s, CH3–C(6)); 4.45–4.47 (m, H2C(5')); 4.50–4.60 (m, 

H–C(4')); 4.84 (d, J = 4.6, OCH2O); 4.89 (d, J = 4.7, OCH2O); 5.23 (t, J = 5.6, H–C(2')); 

5.53 (dd, J = 3.3, 5.0, H–C(3')); 6.01 (d, J = 6.3, H–C(1')); 7.38 (d, J = 5.5, H–C(7)); 7.74 (br. 

s, H–C(2)); 9.77 (br. s, H–N(5)). 13C-NMR (100 MHz, CDCl3): 11.5 (q, CH3–C(6)); 12.1 (d, 

Me2CH); 18.0 (q, Me2CH); 21.2 (q, MeCO); 21.3 (q, MeCO); 64.4 (t, C(5')); 72.2 (d, C(3')); 

76.0 (d, C(2')); 80.7 (d, C(4')); 88.4 (d, C(1')); 89.9 (t, OCH2O); 104.7 (d, C(7)); 118.0 (s, 

C(9a)); 125.6 (s, C(6)); 137.9 (d, C(2)); 146.1 (s, C(4a)); 149.9 (s, C(3a)); 152.3 (s, C(9)); 

170.6, 171.6 (2s, MeCO). ESI-MS: 592.80 (100, [M + H]+).  

 

3',5'-Di-O-acetyl-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (78). 

A light prevented soln. of diiodomethane (1.2 ml, 14.9 mmol) in dry Et2O (9 ml) was treated 

with a 1M soln. of diethylzinc in hexane (7.5 ml, 7.5 mmol) and stirred for 30 min at r.t. The 

clear soln. gave a cloudy white suspension upon addition of DME (0.8 ml, 7.5 mmol). After 

30 min, the reaction mixture was cooled to 4° and a soln. of starting material 77 (0.424g, 0.71 

mmol) in CH2Cl2 (1 ml) was quickly added. After 3 min of stirring, we poured the reaction 

mixture on an ice cold 1M aqueous soln. of ammonium carbonate (50 ml) and CH2Cl2 (50 

ml). The aqueous layer was extracted twice with (2 x 150 ml) of AcOEt and the combined 

organic layers was washed with (100 ml) of a 0.1M soln. of thiosulfate. Drying over MgSO4, 

evaporation and CC (SiO2 (15 g), CH2Cl2/Acetone 99:1 → 95:5 (+ 1% Et3N)) offered 78 

(300 mg, 70%). Yellow foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.38. 1H-NMR (400 MHz, 

CDCl3): 1.00–1.08 (m, iPr3Si); 2.10, 2.23 (2s, 2 MeCO); 2.35 (s, CH3–C(6)); 4.20 (s, CH3–

N(4)); 4.23 (dd, J = 2.6, 12.3, H–C(5')); 4.32 (dd, J = 3.1, 12.1, H'–C(5')); 4.51 (dd, J = 2.2, 

4.2, H–C(4')); 4.90 (dd, J = 4.6, 10.4, OCH2O); 4.93 (dd, J = 4.6, 10.4, OCH2O); 4.97 (t, J = 

4.8, H–C(2')); 5.42 (dd, J = 2.1, 4.9, H–C(3')); 6.20 (d, J = 6.8, H–C(1')); 7.47 (br. s, H–C(7)); 

7.92 (br. s, H–C(2)). 13C-NMR (100 MHz, CDCl3): 12.2 (d, Me2CH); 14.7 (q, CH3–C(6)); 

18.2 (q, Me2CH); 21.1 (q, MeCO); 21.2 (q, MeCO); 34.3 (q, CH3–N(4)); 63.8 (t, C(5')); 71.6 

(d, C(3')); 72.1 (d, C(2')); 77.2 (d, C(4')); 81.8 (d, C(1')); 89.7 (t, OCH2O); 107.1 (d, C(7)); 

117.3 (s, C(9a)); 134.2 (d, C(2)); 138.4 (s, C(6)); 140.1 (s, C(3a)); 142.9 (s, C(4a)); 152.6 (s, 

C(9)); 170.4 (s, 2 MeCO). ESI-MS: 606.83 (100, [M  + H]+).  

 

5'-O-tert-Butyldimethylsilyl-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (80). 

A methanolic (0.5 ml) soln. of 79 (81 mg, 0.13 mmol) was treated with a satd. soln. of NH3 in 

MeOH (2 ml) and stirred for 3 h at r.t. After evaporation to dryness, the residue was dissolved 

in a CH2Cl2/DMF 2:1 (1.1 ml) and treated with imidazole (26 mg, 0.32 mmol). After 5 min, 
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the reaction mixture was cooled to 4° and tBDMS-Cl (26 mg, 0.15 mmol) was added 

followed by stirring at 4° for 1 h. Workup and CC (SiO2 (2 g), CH2Cl2/Acetone 1:1 → 0:1) 

offered 80 (85 mg, 98% from 78). Light yellow oil. TLC (CH2Cl2/MeOH 1:9): Rf 0.75. 1H-

NMR (400 MHz, CDCl3): 0.25, 0.26 (2s, tBuMe2Si); 1.00–1.29 (m, iPr3Si, tBuMe2Si); 2.47 

(br. s, CH3–C(6)); 2.60 (br. s, HO–C(3')); 3.98 (dd, J = 1.6, 11.5, H–C(5')); 4.06 (dd, J = 1.9, 

11.5, H'–C(5')); 4.29 (s, CH3–N(4)); 4.48 (br. s, H–C(4')); 4.58–4.62 (m, H–C(2'), H–C(3')); 

5.00 (d, J = 5.1, OCH2O); 5.28 (d, J = 5.1, OCH2O); 6.39 (d, J = 6.3, H–C(1')); 7.58 (br. s, 

H–C(7)); 8.17 (br. s, H–C(2)). 13C-NMR (100 MHz, CDCl3): –5.6, –5.5 (2q, Me2Si); 11.9 (d, 

Me2CH); 14.3 (q, CH3–C(6)); 17.7 (q, Me2CH); 18.4 (s, Me3C); 26.0 (q, Me3C); 34.3 (q, 

CH3–N(4)); 63.8 (t, C(5')); 71.2 (d, C(3')); 84.9 (d, C(2')); 86.2 (d, C(4')); 86.9 (d, C(1')); 90.9 

(t, OCH2O); 106.6 (d, C(7)); 116.6 (s, C(9a)); 134.7 (d, C(2)); 137.9 (s, C(6)); 139.6 (s, 

C(3a)); 142.6 (s, C(4a)); 152.3 (s, C(9)). ESI-MS: 636.37 (100, [M + H]+).  

 

5'-O-tert-Butyldimethylsilyl-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine 3'-(2-Cyanoethyl 

Diisopropylphosphoramidite (81). 

As described for 42, with 80 (83 mg, 0.13 mmol), CH2Cl2 (1.0 ml), iPr2NEt (0.06 ml, 0.32 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (40 mg, 0.16 mmol). CC (SiO2 (3 

g), hexane/AcOEt 4:1 → 1:4 (+ 3% Et3N)): 81 (75 mg, 70%; 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (hexane/AcOEt 3:7): Rf 0.50. 1H-NMR (400 MHz, 

CDCl3): 0.09–0.13 (m, tBuSi); 0.91–1.00 (m, iPr3Si); 1.17–1.25 (m, (Me2CH)2N); 2.34 (s, 

CH3–C(6)); 2.66 (br. d, J = 5.1, 2 H, CH2CN); 3.65–3.99 (m, 6 H, (MeCH)2N, H2–C(5'), 

POCH2); 4.15, 4.18 (2s, 3 H, CH3–N(4)); 4.34 (br. s, 1 H, POCH2); 4.53–4.61 (m, 1 H, 

POCH2); 4.75–4.81 (m, 1 H, H–C(4')); 4.88–4.90 (m, 0.5 H, H–C(3')); 4.96–4.98 (m, J = 4.9, 

1.5 H, OCH2O, H–C(3')); 5.03 (d, J = 4.8, 1 H, OCH2O); 5.06 (br. s, 1 H, H–C(2')); 6.22–

6.25 (m, 1 H, H–C(1')); 7.46 (br. s, H–C(7)); 8.04 (s, H–C(2)). 31P-NMR (162 MHz, CDCl3): 

149.9, 151.6. MALDI-MS: 836.81 (100, [M + H]+). 

 

3',5'-Di-O-acetyl-N4-desmethyl-C7-iodo-N5-methyl-2'-O-{[(triisopropylsilyl)oxy]methyl} 

wyosine (85). 

A soln. of 77 (0.290 g, 0.44 mmol) in DMF (7 ml) in a flask prevented from light, was 

successively treated with K2CO3 (71 mg, 0.50 mmol), MeI (0.04 ml, 0.50 mmol) and stirred 

at r.t. for 1.5 h. Workup and evaporation gave crude 83. The residue was dissolved in CH2Cl2 

(1.6 ml) and the flask prevented from light. The soln. was successively treated with a 10% 

soln. of NaHCO3 in water (0.4 ml), N-Iodosuccinimide (109 mg, 0.49 mmol) and stirred at 

r.t. for 3 h. After workup the organic layers were washed with a 10% soln. of sodium 

 216



thiosulfate in water (10 ml). Drying over MgSO4 and CC (SiO2 (6 g), CH2Cl2/Acetone 1:0 

→ 4:6) offered 85 (191 mg, 60%, from 85). Yellow foam. TLC (CH2Cl2/MeOH 19:1): Rf 

0.42. 1H-NMR (400 MHz, CDCl3): 0.92–1.02 (m, iPr3Si); 2.09, 2.20 (2s, 2 MeCO); 2.39 (s, 

CH3–C(6)); 3.71 (s, CH3–N(5)); 4.32 (dd, J = 5.5, 11.8, H–C(5')); 4.44 (dd, J = 5.5, 10.2, H–

C(4')); 4.51 (dd, J = 4.7, 11.6, H'–C(5')); 4.87 (d, J = 5.1, OCH2O); 4.96 (d, J = 5.0, 

OCH2O); 5.25 (t, J = 5.2, H–C(2')); 5.59 (t, J = 5.0, H–C(3')); 6.03 (d, J = 4.9, H–C(1')); 7.69 

(br. s, H–C(2)). 13C-NMR (100 MHz, CDCl3): 11.8 (q, CH3–C(6)); 12.2 (d, Me2CH); 18.0 

(q, Me2CH); 21.2 (q, 2 MeCO); 30.5 (q, CH3–N(5)); 64.2 (t, C(5')); 72.1 (d, C(3')); 76.4 (d, 

C(2')); 80.1 (d, C(4')); 88.6 (d, C(1')); 90.2 (t, OCH2O); 108.6 (s, C(9a)); 117.9 (s, C(7)); 

132.4 (s, C(6)); 137.9 (d, C(2)); 146.7 (s, C(3a)); 148.3 (s, C(4a)); 154.3 (s, C(9)); 170.5 (s, 

MeCO); 171.0 (s, MeCO). ESI-MS: 732.32 (100, [M + H]+).  

  

3',5'-Di-O-acetyl-C7-iodo-2'-O-{[(triisopropylsilyl)oxy]methyl}wyosine (84). 

A light prevented emulsion of 83 (141 mg, 0.23 mmol) in CH2Cl2 (0.8 ml) and a 10% soln. 

of NaHCO3 in water (0.2 ml) was treated with N-Iodosuccinimide (57 mg, 0.26 mmol) and 

stirred at r.t. for 3 h. After workup the organic layers were washed with a 10% soln. of sodium 

thiosulfate in water (10 ml). Drying over MgSO4 and CC (SiO2 (6 g), hexane/AcOEt 1:1 → 

0:1 (+ 1% Et3N)) offered 84 (113 mg, 67%). Yellow oil. TLC (hexane/AcOEt 1:9): Rf 0.55. 
1H-NMR (400 MHz, CDCl3): 1.00–1.20 (m, iPr3Si); 2.23, 2.35 (2s, 2 MeCO); 2.47 (s, CH3–

C(6)); 4.27 (s, CH3–N(4)); 4.43 (dd, J = 2.8, 12.6, H–C(5')); 4.48 (dd, J = 2.9, 12.5, H'–

C(5')); 4.63 (dd, J = 2.5, 5.2, H–C(4')); 5.02 (dd, J = 5.6, 6.3, H–C(2')); 5.05 (d, J = 4.9, 

OCH2O); 5.10 (d, J = 4.9, OCH2O); 5.54 (dd, J = 2.5, 5.2, H–C(3')); 6.30 (d, J = 6.7, H–

C(1')); 8.01 (br. s, H–C(2)). 13C-NMR (100 MHz, CDCl3): 14.6 (q, CH3–C(6)); 12.2 (d, 

Me2CH); 18.2 (q, Me2CH); 21.1, 21.2 (2q, 2 MeCO); 34.4 (q, CH3–N(4)); 63.7 (t, C(5')); 

71.6 (d, C(3')); 77.3 (d, C(2')); 81.8 (d, C(4')); 87.2 (d, C(1')); 89.8 (t, OCH2O); 117.6 (s, 

C(7)); 125.4 (s, C(9a)); 134.3 (d, C(2)); 139.5 (s, C(6)); 144.2 (s, C(3a)); 145.2 (s, C(4a)); 

153.3 (s, C(9)); 170.4 (s, MeCO); 170.5 (s, MeCO). ESI-MS: 732.32 (100, [M + H]+).  

 

2’,3',5'-Tri-O-acetyl-N4-desmethyl-N5-methyl-C7-propenitrile-wyosine (95). 

In a light prevented flask, a soln. of 86 (50 mg, 0.09 mmol) prepared according to (Glemarec 

et al. 1988) in DMF (1 ml) was successively treated with NaHCO3 (18 mg, 0.21 mmol), 

NBu4Cl (24 mg, 0.09 mmol), Palladium(II) acetate (2 mg, 0.01 mmol) and acrylonitrile (18 

mg, 0.17 mmol) followed by stirring at r.t. for 6 h. The reaction mixture has been poured on a 

mixture of H2O/AcOEt 1:1 (50 ml) and extracted with AcOEt. The combined organic layers 

were washed with brine, dried over Na2SO4 and the solvent evaporated to dryness giving 
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crude 88 as a mixture of cis:trans isomers.  TLC (CH2Cl2/MeOH 9:1): Rf 0.73. ESI-MS: 

513.32 (100, [M + H]+). 

 

N-Methylbut-3-enamide (89). 

To a cold (4°) 2.6 M soln. of MeNH2 in THF (50 ml, 130 mmol) was added dropwise 3-

butenoic acid chloride (5.0 g, 48 mmol) followed by stirring at 4° for 5min. The precipitate 

filtered and the mother liquids evaporated to dryness, the oily residue has been submitted to 

CC (SiO2 (60 g), CH2Cl2/Acetone 1:0 → 8:2) and offered 89 (2.7 g, 57%). Yellow oil. TLC 

(CH2Cl2/Acetone 1:1): Rf 0.58. 1H-NMR (400 MHz, CDCl3): 2.76 (d, J = 6.7, CH3–N); 2.97 

(d, J = 7.1, CH2CO); 5.13–5.19 (m, H2C=C); 5.83–5.95 (m, HC=CH2); 6.29 (br. s, NH). 13C-

NMR (100 MHz, CDCl3): 26.7 (q, CH3–N); 41.8 (t, H2C–CO); 119.8 (t, H2C=C); 131.9 (d, 

HC=CH2); 171.9 (s, CO). EI-MS: 99 (100, [M ]+).  

 

N-Methyl-N’-propen-2-ylurea (92). 

To a 11 M soln. of MeNCO 93 in Toluene (5 ml, 55 mmol) was added dropwise allylamine 

(3.6 ml, 48 mmol) followed by stirring at r.t. overnight. The solvent has been removed under 

reduced pressure and the oily residue has been submitted to CC (SiO2 (10 g), hexane/AcOEt 

1:1 → 0:1) and offered 92 (5.2 g, 95%). Light brown wax. TLC (CH2Cl2/Acetone 1:1): Rf 

0.41. 1H-NMR (400 MHz, CDCl3): 2.78 (s, CH3–N); 2.97 (br. d, J = 4.7, H2C–CH); 5.11 (dd, 

J = 1.0, 11.0, H–CH=CH); 5.20 (dd, J = 1.7, 17.7, H'–CH=CH); 5.88 (ddd, J = 5.3, 10.6, 15.7, 

HC=CH2). 13C-NMR (100 MHz, CDCl3): 27.5 (q, CH3–N); 43.4 (t, H2C–CH); 116.9 (t, 

H2C=CH); 135.9 (d, HC=CH2); 159.7 (s, CO). ESI-MS: 115.34 (100, [M + H]+).  

 

3',5'-Di-O-acetyl-N4-desmethyl-N5-methyl-C7-(N-Methyl-N’-propen-2-ylurea) -2'-O-{[(tri 

isopropylsilyl)oxy]methyl}wyosine (95). 

In a light prevented flask, a soln. of 84 (80 mg, 0.11 mmol) in DMF (2 ml) was successively 

treated with NaHCO3 (28 mg, 0.33 mmol), NBu4Cl (32 mg, 0.12 mmol), Palladium(II) 

acetate (4 mg, 0.02 mmol) and 92 (25 mg, 0.22 mmol) followed by stirring at r.t. for 6 h. The 

reaction mixture has been poured on a mixture of H2O/AcOEt 1:1 (50 ml) and extracted with 

AcOEt. The combined organic layers were washed with brine and dried over Na2SO4. CC 

(SiO2 (6 g), CH2Cl2/MeOH 1:0 → 19:1 (+1% Et3N)) offered 95 (50 mg, 63%) as cis:trans 

mixture. Light yellow foam. TLC (CH2Cl2/MeOH 19:1): Rf 0.50. ESI-MS: 954.23 (100, [M 

+ H2O+H]+). 
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N-Methylpent-4-enamide (97). 

To a 33% ethanolic soln. of MeNH2 (1.5 ml, 5.4 mmol) was added dropwise pent-4-enoic 

acid chloride (0.2 ml, 1.8 mmol) followed by stirring at r.t. for 24 h. The solvent has been 

removed under reduced pressure giving a light yellow solid which has been extensively 

washed with acetone. The mother liquids have been evaporated to dryness offering 97 (174 

mg, 85%). Light orange oil. 1H-NMR (400 MHz, CDCl3): 2.26 (t, J = 6.3, CH2CO); 2.37 (q, 

J = 7.0, CH2–CH); 2.77 (d, J = 4.7, CH3–N); 4.98 (d, J = 10.2, H–CH=CH); 5.01 (d, J = 

17.2, H'–CH=CH); 5.83–5.95 (m, HC=CH2); 6.07 (br. s, HN). 13C-NMR (100 MHz, CDCl3): 

26.6 (q, CH3–N); 30.1 (t, H2C–HC=); 36.1 (t, H2C–CO); 115.8 (t, H2C=CH); 137.5 (d, 

HC=CH2); 173.6 (s, CO). ESI-MS: 114.32 (100, [M + H]+).  

 

3',5'-Di-O-acetyl-N4-desmethyl-N5-methyl-C7-(N-Methylpent-4-enamide)- 2'-O-

{[(triisopropylsilyl)oxy]methyl}wyosine (98). 

In a light prevented flask, a soln. of 84 (200 mg, 0.28 mmol) in DMF (3 ml) was successively 

treated with NaHCO3 (70 mg, 0.82 mmol), NBu4Cl (96 mg, 0.30 mmol), Palladium(II) 

acetate (12 mg, 0.06 mmol) and 97 (64 mg, 0.54 mmol) stirred at r.t. for 6 h. Thus, the 

reaction mixture was poured on a H2O/AcOEt 1:1 (100 ml) and extracted twice with AcOEt 

(2 x 50 ml). The combined organic layers were washed with brine and dried over Na2SO4. 

CC (SiO2 (6 g), CH2Cl2/MeOH 1:0 → 19:1) offered 98 (140 mg, 71%) as cis:trans 7:10 

mixture. Light yellow foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.63. ESI-MS: 938.23 (100, [M 

+H]+). 

 

3',5'-Di-O-acetyl-N4-desmethyl-N5-methyl-C7-(N-Methylpentamide)- 2'-O-{[(triisopropyl 

silyl)oxy]methyl}wyosine (100). 

To a well-stirred suspension of activated 5% supported Palladium on charcoal (200 mg) in 

EtOH (3 ml) under H2 (balloon) was added a soln. of 98 (140 mg, 0.18 mmol) in EtOH (2 

ml). After 24 h of stirring at r.t., the supernatant was collected by centrifugation and the solid 

suspended in MeOH (5 ml). After centrifugation the supernatant was collected and the 

combined organic layers were evaporated to dryness. The residue was treated with a satd. 

soln. of NH3 in MeOH (6 ml) and stirred for 6 h at r.t. After evaporation to dryness, the 

residue dissolved in Py (4 ml) and treated with (MeO)2TrCl (135 mg, 0.4 mmol) for 12 h at 

r.t. Workup and CC (SiO2 (8 g), hexane/AcOEt 1:1 then CH2Cl2/MeOH 19:1 → 1:9) gave 

100 (50 mg, 28% from 96). Yellow oil. TLC (CH2Cl2/MeOH 19:1): Rf 0.25. 1H-NMR (400 

MHz, Acetone): 0.91–1.07 (m, iPr3Si); 1.69 (m, CH2–CH2 or 2 CH2); 2.19 (t, J = 7.3, CH2–

C(7)); 2.29 (s, CH3–C(6)); 2.72 (d, J = 4.6, CH3–NH); 3.17 (m, H2C–CO or linker number);  

 219



3.38–3.44 (m, H–C(5'), CH3–N(5)); 3.52 (dd, J = 5.6, 10.1, H'–C(5'));  3.77, 3.78 (2s, 2 

MeO); 4.08 (d, J = 4.7, HO–C(3'));  4.28 (q, J = 4.5, H–C(4')); 4.68 (q, J = 4.3, H–C(3')); 5.11 

(br. s, OCH2O); 5.20 (t, J = 5.3, H–C(2')); 6.12 (d, J = 5.4, H–C(1')); 6.75–6.89 (m, 4 arom. 

H); 7.04 (br. s, HN); 7.15–7.49 (m, 9 arom. H); 7.87 (s, H–C(2)); 13C-NMR (100 MHz, 

Acetone): 7.7 (d, CH3–C(6)); 12.1 (d, Me2CH); 17.6 (q, Me2CH); 24.2 (t, CH2–C(7)); 25.3 

(t, CH2); 25.5 (t, CH2); 31.0 (t, CH2–CO); 35.9 (q, CH3–NH); 55.0 (q, MeO); 64.4 (t, C(5')); 

70.9 (d, C(4')); 79.1 (d, C(2')); 84.5 (d, C(3')); 86.4 (s, arom. C); 87.3 (d, C(1')); 90.1 (t, 

OCH2O); 113.3 (d, arom. C); 117.8 (s, C(9a)); 119.9 (s, C(7)); 123.3 (s, C(6)); 127.0, 128.0, 

128.5, 130.5 (4d, arom. C); 136.3, 136.4 (2s, arom. C); 137.5 (s, C(2)); 145.6 (s, C(4a)); 146.3 

(s, arom. C); 149.7 (s, C(3a)); 154.4 (s, C(9)); 159.1 (s, arom. C); 172.9 (s, CO-NH). ESI-MS: 

937.35 ([M + H]+).   

 

Preparation of RNA sequences 

RNA-sequence r(GGUGGGAG-MeW-CGUCCCACC) (S2).  

The assembly was carried out on a Gene Assembler Plus (Pharmacia) from 60 mg solid 

support (loading 32 µmol/g) under standard conditions according to (Pitsch et al. 2001). 

Conventional and modified 75 2'-O-TOM-protected ribonucleoside phosphoramidites have 

been employed. For the oxidation steps, the conventional iodine reagent was replaced with a 

soln. of tBuOOH (1.1M soln. in acetonitrile) and oxidation was carried out with a flow 0.5 

ml/min during 6 min. Cleavage from the solid support and deprotection was carried out with a 

12M aqueous soln. of NH3 in EtOH 1:1 (1ml) for 14h at 55°. By centrifugation, the 

supernatant soln. was separated from the solid support and evaporated, and the residue was 

dissolved in 1M Bu4NF·3H2O soln. in THF (1 ml). After 14h at 20°, 1M TrisHCl buffer (pH 

7.4, 1ml) was added and the soln. concentrated to half volume. The remaining soln. (1 ml) 

was applied on NAP-10 cartridge (Pharmacia) and eluted with H2O. The first 1.5 ml soln. 

was purified by ion-exchange HPLC: AE-HPLC (0 - 50% B in 60 min) flow 2.5 ml/min; 

eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl (pH 7.4), 0.5M 

NaClO4, 6M urea; (detection at 260 nm, elution at 85°): tR 38 min. LC-MS (ESI):  m/z = 

5'854 (calc. 5'854). 

 

DNA-sequence d(GGUGGGACG-_-CUCCCA) (S7).  

The assembly of the sequence was carried out under standard conditions (Pitsch et al. 2001). 

2’-deoxy phosphoramidites from (Glen Research) and propyl phosphoramidite linker 

prepared according to (Seela and Kaiser 1987) were used. LC-MS (ESI):  m/z = 4'731 (calc. 

4'731).  
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RNA-sequence r(GGUGGGAG-X-CGUCCCACC) (S8-S12, S15).  

The assembly of RNA sequences was carried out on a Gene Assembler Plus (Pharmacia), 

from 60 mg solid support (loading 32 µmol/g) and 2'-O-TOM-protected ribonucleoside 

phosphoramidites according to (Pitsch et al. 2001). The modified nucleotides were introduced 

conventionally from the 2'-O-TOM-protected ribonucleoside phosphoramidites X = m1G 54, 

I 56, m22G 43, m6A 53 or 2’-deoxyadenosine dA (Glen Research). After the assembly, the 

solid supports were treated with a mixture of 12M MeNH2 in H2O / 8M MeNH2 in EtOH (1 

ml) for 4h at 35°. Then, the same procedure as described for S2 was applied to the RNA 

sequences S8-S12 and S15. LC-MS (ESI): m/z for X = m1G (calc. 5'816, found 5'816) (S8), I 

(calc. 5'787, found 5'787) (S9), G (calc. 5'801, found 5'801) (S10), m22G (calc. 5'830, found 

5'830) (S11), dA (calc. 5'770, found 5'770) (S12), m6A (calc. 5'800, found 5'800) (S15).   

 

 

RNA-sequence r(GGUGGGAGACGU-X-CCACC) (S13,S14).  

The RNA sequences were prepared as previously described for RNA sequences S8-S12 and 

S15 from 2’-O-TOM, 2’-O-Me (Glen Research) and 2’-deoxy (Glen Research) 

phosphoramidite building blocks. LC-MS (ESI): m/z for X = dC (calc. 5'770, found 5'770) 

(S13), Cm (calc. 5'800, found 5'800) (S14). 

 

RNA-sequence r(GGUGGGA-I-ACGUCCCACC) (S16).  

The RNA sequence was prepared as previously described for RNA sequences S9. LC-MS 

(ESI): m/z = 5'787 (calc. 5'787). 

 

RNA-sequence r(GGUGGGAG) (S4).  

The RNA sequence was prepared under conditions as previously described for S8-S12 and 

S15. The remaining soln. (1 ml) was applied on NAP-10 cartridge (Pharmacia) and eluted 

with H2O. The first 1.5 ml soln. was purified by ion-exchange HPLC: AE-HPLC (0 - 50% B 

in 30 min) flow 2.5 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM 

Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; (detection at 260 nm, elution at 85°). However, the 

fraction containing pure product were treated with 1M aq. Et3N·H2CO3 to a final 0.1M 

concentration and applied to a Sepak-cartridge (conditioned by washing with MeCN (10 ml) 

and 0.1M aq. Et3N·H2CO3 (10ml)). The cartridge was washed with 20mM Et3N·H2CO3 (10 

ml) and the RNA sequence was eluted with MeCN/H2O 1:1 (4ml). In order to completely 

remove the remaining Et3N·H2CO3, 0.5 ml H2O were added to the residue, followed by 
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lyophilisation (this procedure was carried out twice). MALDI MS (neg mode): m/z = 2'645 

(calc. 2'645). 

 

RNA-sequences 5'-monophosphate-r(X-CGUCCCACC) (S17-S20).  

The RNA sequences were prepared under conditions as previously described for S8-S12 and 

S15 from the conventional 2’-O-TOM phosphoramidite building blocks and phosphorylating 

reagent [3-(4,4'-dimethoxytrityloxy)-2,2-dicarboxyethyl]propyl-(2-cyanoethyl)-(N,N-

diisopropyl)-phosphoramidite (Glen Research). The crude sequences were purified by AE-

HPLC (0 - 50% B in 30 min) flow 2.5 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; 

eluent B: 12 mM Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; (detection at 260 nm, elution at 

85°). LC-MS (ESI): m/z for X = A (calc. 3'159, found 3'159) (S17), C (calc. 3'135, found 

3'135) (S18), G (calc. 3'174, found 3'174) (S19), U (calc. 3'135, found 3'135) (S20).  

 

RNA-sequence r(imG-CGUCCCACC) (S6).  

The RNA sequence was prepared as previously described for RNA sequences S9 but 

employing the 2’-O-TOM wyosine phosphoramidite building block 81. Furthermore, a 2’-O-

TOM H2N-C(2) unprotected guanosine phosphoramidite building block, prepared according 

to (Stutz et al. 2000), has been introduced by performing a double coupling cycle. For the 

wyosine building block, the oxidation step has been adapted. The final oxidation was 

achieved with a 1.1M soln. of tBuOOH in MeCN (flow 0.5 ml/min during 18min). The solid 

support was washed with (iPr)2NH/MeCN 1:9 for 20 min (flow-rate 2.5 ml/min). Cleavage 

from the solid support and deprotection was carried out with 12M NH3 in MeOH (1ml) for 

14h at 20°. The supernatant was removed by centrifugation and evaporated to dryness; the 

residue was treated with a THF soln. (1 ml) of Bu4NF.3H2O (1M) for 14h at 20°, diluted with 

aq. Tris.HCl (1 ml, 1M, pH 7.4) and evaporated to a volume of 1 ml. After desalting on a NAP 

cartridge, the crude product was purified by ion-exchange HPLC: AE-HPLC (0 - 40% B in 40 

min) flow 2.5 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl 

(pH 7.4), 0.5M NaClO4, 6M urea; detection at 260 nm, elution at 85°.): tR 30.0 min. LC-MS 

(ESI):  m/z = 3'147 (calc. 3'147). 

 

RNA-sequence 5'-monophosphate-r(imG-CGUCCCACC) (S5). 

The oligonucleotide was dissolved to a final concentration of 20 µM for a volume of reaction 

of 60µl. The phosphorylation reaction was performed according the instructions from the 

supplier (Fermentas). The reaction was performed for 1.5 h at 37°. The crude reaction 

mixture was purified by AE-HPLC. (0 - 40% B in 40 min) flow 2.5 ml/min; eluent A: 12 mM 
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Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; 

detection at 260 nm, elution at 85°.): tR 30 min. LC-MS (ESI): m/z = 3'226 (calc. 3'226). 

 

Analytical HPLC for kinetic monitoring Control: AE-HPLC. (0 - 50% B in 30 min) flow 1.0 

ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl (pH 7.4), 

0.5M NaClO4, 6M urea; detection at 260 nm, elution at 85°. r(imG-CGUCCCACC): tR 20.3 

min, 5'-monophosphate-r(imGCGUCCCACC): tR 21.8 min. 

 

Ligation  

RNA-sequence r(GGUGGGAG-imG-CGUCCCACC) (S3). 

The 8mer S4, 10mer S5 and 16mer template S7 were mixed to a final concentration of 20 µM 

for the substrates and 30 µM for the template (1.5eq). After the addition of PEG 6000 (3µl of 

50% PEG stock soln.) and water (q.s.p. 54 µl), the mixture was heated at 95° for 4 minutes 

and subsequently cooled down to 40° by steps of 0.1° per second and finally to 4° within 

1.5min. After the addition of ligation buffer (40mM TrisHCl, 2mM MgCl2, 10mM DTT, 

0.5mM ATP) and 8 units of ribonuclease inhibitor (Fermentas), the reaction was initiated by 

adding T4 DNA ligase (8 Weiss units) and kept at 37°. For the ligation kinetic, aliquots were 

taken and diluted in 1mL of water and injected into an analytical AE-HPLC. AE-HPLC. (0 - 

60% B in 36 min) flow 1.0 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 12 

mM Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; detection at 260 nm, elution at 85°.). 

r(GGUGGGAG): tR 17.7 min (S4). 5'-monophosphate-r(imG-CGUCCCACC): tR 21.4 min 

(S5). d(GGUGGGACG-_-CUCCCA): tR 24.9 min (S7). r(GGUGGGAG-imG-

CGUCCCACC): tR 26.0 min (S3). LC-MS (ESI): m/z = 5'854 (calc. 5'854). 

 

Preparative ligation for NMR analysis 

160 ligation batches for sequence S3 of 60 µl as described above were performed, purified 

and pooled. The Et3NH+-form of the sequence was transformed into its sodium salt. (0.35 

µmoles, 18% yield) (determined by UV-spectroscopy, ε (260 nm) = 180'900 l.mol-1.cm-1). 
1H-NMR (400 MHz, D2O, c = 100 µM). 

 

NMR Analysis of sequences S2 and S8-S16 

The Et3NH+-form of the sequences were transformed into their sodium salt. Typically 1.56 

µmoles. 1H-NMR (400 MHz, D2O, c = 156 µM).  
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CHAPTER IV 

 

Computational Methods  

All calculations were carried out using density functional theory or the MP2 method as 

implemented in the Gaussian03 package (Frisch et al. 2003). The geometry optimisation was 

performed with B3LYP/6-31+G(d,p) (Becke 1993) (Becke 1988) and the single point 

calculation including BSSE correction were achieved with MP2/6-31+G(d,p).   

The initial coordinates were reconstructed from the NMR refinements of a human tRNALys
3 

backbone (pdb: 1FL8) (bases t6A37 and A36) and by introduction of an A·U base pair taken 

from a base pair within the tRNA (Sundaram et al. 2000). Finally, the geometries have been 

adapted using Materials Studio (Accelrys). Furthermore, in order to reduce time consumption 

of calculations, we limited the system to the solely bases since they provide the π-stacking 

interactions and the hydrogen bond pattern. The sugar-base backbone cut was saturated with 

hydrogen atoms and the corresponding N(9) was kept frozen during the calculation. To keep 

adjacent bases parallel during the geometry optimisation, we kept always three alternating 

atoms fixed in a series of subsequent geometry optimisations. In this way, we relaxed all 

degrees of freedom but kept the backbone and the “π-stacking” frozen. The geometries and 

wave functions were optimized by starting from the NMR refinement structure of 1 or 

modifications thereof. The energetic of the AI·U36 base pair in the complex (t6A37/U36·AI) 

has been estimated and compared to the (A37/U36·AI) complex, revealing the strong 

contribution of this additional hydrogen bonding to the stability. Whereas the (A37/U36·AI) 

complex exhibits an energy of  

EA/UA = 14.49 kcal/mol, 

the t6A containing complex presents an energy of 

Et6A/UA = 22.98 kcal/mol  

giving a stabilization energy of 

8.49 kcal/mol (EStab = Et6A/UA - EA/UA). 

This value, including the contribution of the stacking interaction and of the hypothetical 

additional hydrogen bond, permits the adjacent A·U base pair energy to reach the energy of a 

G·C base pair (22.98 against 24.05 kcal/mol for a G·C base pair).  

It can be noticed that the energy of an isolated A·U base pair calculated in a analogous 

manner gives an energy of EUA = 12.63 kcal/mol. Consequently, the energy of stacking 

provided by the adjacent adenosine is  

 

EStab(π) = EA/UA -EUA = 14.49-12.63 = 1.86 kcal/mol 
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This value is quite low in comparison to the stabilization provided by the presence of t6A 

nucleobase. The best descriptor of the pi-stacking energy being the surface area overlap, the 

stacking provided by the t6A modification does not, in our model system, exceed those from a 

simple adenosine. The extended ureidyl motif is nearly excluded from the surface of the base 

pair and we can therefore estimate the energetical contribution of the solely hydrogen bond, to 

be almost equal to  

 

EStab(H-bond) = EStab(π+H-bond) - EStab(π) = (Et6A/UA - EA/UA) - (EA/UA - EUA) = 

(22.98-14.49) - (14.49-12.63) = 6.63 kcal/mol 

 

which is the same order of magnitude than some already reported values (Steiner 2002). For 

example the stabilization provided by hydrogen bond in the case of CO2H dimer in gas phase 

is E = 7.5 kcal/mol. 

 

CHAPTER V 

 
5’-O-(4,4’-Dimethoxytrityl)- N2-methoxyacetylguanosine (104). 

Guanosine hydrate (1.0 g, 3.32 mmol), dried by twice coevaporation with Py, was suspended 

in Py (25 ml) and CH2Cl2 (75 ml), cooled to 4° and treated with trimethylchlorosilane (3.8 

ml, 29.87 mmol) followed by stirring at r.t. for 2 h. Then, the reaction mixture, was cooled 

again at 4° and methoxyacetylchloride (0.26 ml, 3.65 mmol) added followed by stirring at 4° 

for 4 h. Workup and evaporation gave a yellow oil which has been dissolved in a mixture of 

(AcOH:MeOH) (1:9) and stirred at r.t. for 3 h. Evaporation to dryness and coevaporation with 

toluene gave a light orange oil. The residue was dissolved in Py (100 ml) and treated with 

(MeO)2TrCl (1.35 g, 3.98 mmol). After 12 h at r.t., workup and CC (SiO2 (30 g), 

hexane/AcOEt 1:1 → 0:1 then CH2Cl2/MeOH 19:1 → 4:1) offered 104 (0.85 g, 39%, from 

guanosine). Light colourless foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.31. 1H-NMR (400 MHz, 

CDCl3): 3.28–3.42 (m, H2–C(5'), MeO); 3.58 (br. s, OH–C(2')); 3.76 (s, MeO); 3.99 (s, 

CH2CO); 4.31 (br. s, H–C(2')); 4.43 (br. s, H–C(3')); 4.87 (t, J = 5.1, H–C(4')); 5.91 (d, J = 

6.3, H–C(1')); 6.06 (br. s, HO–C(3')); 6.79 (d, J = 7.8, 4 arom. H); 7.13–7.44 (m, 9 arom. H); 

7.68 (s, H–C(8)); 9.30 (br. s, HN–C(2)); 11.82 (br. s, H–N(1)). 13C-NMR (100 MHz, CDCl3): 

55.9 (q, MeO); 60.1 (q, MeOCH2); 61.1 (t, C(5')); 71.7 (t, CH2OMe); 72.4 (d, C(2')); 77.9 (d, 

C(3')); 85.4 (d, C(4')); 87.1 (d, C(1')); 89.5 (t, OCH2O); 114.0 (d, arom. C); 121.6 (d, C(5)); 

127.5, 128.6, 128.8, 131.0 (4d, arom. C); 136.3, 136.4 (2s, arom. C); 139.0 (d, C(8)); 145.3 (s, 

 225



arom. C); 147.0 (s, C(2)); 148.7 (s, C(4)); 155.9 (s, C(6)); 159.2 (s, arom. C); 172.5 (s, 

COCH2). ESI-MS: 658.32 (100, [M + H]+).  

 

N2-,3’-O-Bismethoxyacetyl-5’-O-(4,4’-dimethoxytrityl)-2’-O-{[triisopropylsilyl)oxy]methyl} 

guanosine (105).  

To a cold (4°) soln. of 1 (780 mg, 1.0 mmol) in Py (10 ml) has been added 

methoxyacetylchloride (120 mg, 1.1 mmol) followed by stirring at r.t. for 3 h. Then, the 

reaction mixture, cooled to 4°, was treated with trimethylchlorosilane (163 mg, 1.5 mmol) and 

stirred for 1 h. Then, methoxyacetylchloride (120 mg, 1.1 mmol) has been added and the 

reaction mixture stirred at 4° for 2 h. Workup and CC (SiO2 (10 g), hexane/AcOEt 3:2 → 

AcOEt) offered 105 (732 mg, 80%). Light yellow foam. TLC (hexane/AcOEt 1:9): Rf 0.58. 
1H-NMR (400 MHz, CDCl3): 0.90–1.00 (m, iPr3Si); 3.32–3.40 (m, MeO, H–C(5')); 3.41–

3.48 (m, MeO, H'–C(5')); 3.79 (s, 2 MeO); 3.97 (s, CH2CON); 4.08 (d, J = 16.6, OCH2O); 

4.15 (d, J = 16.6, OCH2O); 4.29 (dd, J = 2.8, 5.6, H–C(4')); 4.88 (s, CH2COO); 5.12 (dd, J = 

4.8, 6.8, H–C(2')); 5.62 (dd, J = 2.8, 4.8, H–C(3')); 5.97 (d, J = 6.7, H–C(1')); 6.80 (d, J = 8.6, 

4 arom. H); 7.20–7.44 (m, 9 arom. H); 7.84 (s, H–C(8)); 8.78 (br. s, HN–C(2)); 11.80 (br. s, 

H–N(1)). 13C-NMR (100 MHz, CDCl3): 11.7 (d, Me2CH); 17.6 (q, Me2CH); 55.3 (q, 

MeOCH2); 59.4 (q, MeO); 63.1 (t, C(5')); 69.5 (t, CH2OMe); 70.6 (t, CH2OMe); 72.2 (d, 

C(2')); 82.2 (d, C(3')); 86.1 (s, C(4')); 86.8 (d, C(1')); 89.9 (t, OCH2O); 113.3 (d, arom. C); 

122.3 (d, C(5)); 127.0, 128.0, 128.1, 130.0 (4d, arom. C); 135.5 (s, arom. C); 138.0 (d, C(8)); 

144.3 (s, arom. C); 146.3 (s, C(2)); 148.1 (s, C(4)); 155.3 (s, C(6)); 158.7 (s, arom. C); 169.5 

(s, COCH2); 170.7 (s, COCH2). ESI-MS: 916.32 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)- N2-methoxyacetyl-3’-O-trimethylsilyl-2’-O-{[triisopropylsilyl) 

oxy]methyl}guanosine (107). 
1H-NMR (400 MHz, CDCl3): 0.10 (s, Me3Si); 0.97–1.30 (m, iPr3Si); 3.29 (dd, J = 3.9, 10.8, 

H–C(5')); 3.40–3.50 (m, MeO, H'–C(5')); 3.80 (s, 2 MeO); 4.05 (s, CH2CO); 4.17 (br. t, J = 

3.8, H–C(4')); 4.41 (t, J = 4.5, H–C(3')); 4.71 (t, J = 5.0, H–C(2')); 4.89 (d, J = 5.0, OCH2O); 

5.00 (d, J = 4.9, OCH2O); 6.07 (d, J = 5.3, H–C(1')); 6.82 (d, J = 6.8, 4 arom. H); 7.21–7.45 

(m, 9 arom. H); 7.92 (s, H–C(8)); 8.84 (br. s, HN–C(2)); 11.81 (br. s, H–N(1)). 13C-NMR 

(100 MHz, CDCl3): 0.10 (q, Me3Si); 14.6 (d, Me2CH); 18.2 (q, Me2CH); 55.7 (q, 

MeOCH2); 60.8 (q, MeO); 63.3 (t, C(5')); 71.1 (t, CH2OMe); 71.4 (d, C(2')); 78.3 (d, C(3')); 

85.1 (d, C(4')); 86.9 (d, C(1')); 89.4 (t, OCH2O); 113.7 (d, arom. C); 122.7 (d, C(5)); 127.4, 

128.3, 128.6, 130.5 (4d, arom. C); 136.0 (s, arom. C); 138.2 (d, C(8)); 144.8 (s, arom. C); 
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146.5 (s, C(2)); 148.3 (s, C(4)); 155.8 (s, C(6)); 159.0 (s, arom. C); 171.0 (s, COCH2). ESI-

MS: 916.31 (100, [M + H]+).  

 

5’-O-(4,4’-Dimethoxytrityl)- N2-methoxyacetyl-2’-O-{[triisopropylsilyl)oxy]methyl} 

guanosine (106). 

To a cold (4°) soln. of 1 (1.2 g, 1.56 mmol) in Py (16 ml) has been added, over 2 min. 

trimethylchlorosilane (0.6 ml, 4.67 mmol) followed by stirring at r.t. for 2 h. Then, the 

reaction mixture, cooled to 4°, was treated with methoxyacetylchloride (0.16 ml, 1.71 mmol) 

and stirred at 4° for 8 h. Workup and evaporation gave a yellow oil which has been dissolved 

in a mixture of (AcOH:CH3CN:H2O) (1:50:50) and stirred at r.t. for 5 h. Workup and CC 

(SiO2 (10 g), hexane/AcOEt 1:4 → 0:1 then AcOEt/MeOH 98:2 → 4:1) offered 106 (1.1 g, 

84%). Light yellow foam. TLC (CH2Cl2/MeOH 9:1): Rf 0.50. 1H-NMR (400 MHz, CDCl3): 

1.02–1.18 (m, iPr3Si); 3.07 (br. s, HO–C(3')); 3.34–3.39 (m, MeO, H–C(5')); 3.45 (dd, J = 

3.4, 10.6, H'–C(5')); 3.79 (s, 2 MeO); 4.00 (s, CH2CO); 4.28 (br. d, J = 2.6, H–C(4')); 4.53 

(m, H–C(3')); 4.71 (t, J = 5.5, H–C(2')); 4.95 (d, J = 4.7, OCH2O); 5.15 (d, J = 4.7, OCH2O); 

6.04 (d, J = 7.0, H–C(1')); 6.82 (d, J = 6.8, 4 arom. H); 7.21–7.46 (m, 9 arom. H); 7.86 (s, H–

C(8)); 8.85 (br. s, HN–C(2)); 11.78 (br. s, H–N(1)). 13C-NMR (100 MHz, CDCl3): 12.2 (d, 

Me2CH); 18.2 (q, Me2CH); 55.7 (q, MeOCH2); 59.8 (q, MeO); 64.1 (t, C(5')); 71.4 (t, 

CH2OMe); 71.6 (d, C(2')); 83.2 (d, C(3')); 84.7 (d, C(4')); 87.1 (d, C(1')); 91.4 (t, OCH2O); 

113.6 (d, arom. C); 122.5 (d, C(5)); 127.4, 128.4, 128.5, 130.5 (4d, arom. C); 136.0 (s, arom. 

C); 138.0 (d, C(8)); 144.9 (s, arom. C); 146.8 (s, C(2)); 148.6 (s, C(4)); 155.8 (s, C(6)); 159.0 

(s, arom. C); 171.1 (s, COCH2). ESI-MS: 844.39 (100, [M + H]+).  

 

5'-O-(4,4'-Dimethoxytrityl)-N2-Methoxyacetyl-2'-O-{[(triisopropylsilyl)oxy]methyl}guanosine 

3'-(2-Cyanoethyl Diisopropylphosphoramidite (108).  

As described for 42, with 106 (800 mg, 0.95 mmol), CH2Cl2 (5 ml), iPr2NEt (0.4 ml, 2.4 

mmol) and cyanoethyl diisopropylphosphoramidochloridite (269 mg, 1.14 mmol). CC (SiO2 

(25 g), CH2Cl2/Acetone 99:1 → 19:1 (+ 3% Et3N)): 106 (714 mg, 72%; 1:1 mixture of 

diastereoisomers). Colorless foam. TLC (CH2Cl2/Acetone 4:1): Rf 0.73. 1H-NMR (400 

MHz, CDCl3): 0.90–1.00 (m, iPr3Si); 1.02–1.33 (4d, J = 6.6, (Me2CH)2N); 2.36 (t, J = 6.4, 1 

H, CH2CN); 2.68–2.83 (m, 1 H, CH2CN); 3.25–3.45 (m, 4 H, MeOCH2, H–C(5')); 3.46–3.71 

(m, 2.5 H, (Me2CH)2N, POCH2); 3.79 (s, 2 MeO); 3.85–4.02 (m, 3 H, CH2OMe, POCH2); 

4.10–4.26 (m, 1.5 H, POCH2); 4.26–4.32 (m, 0.5 H, H–C(4')); 4.37–4.41 (m, 0.5 H, H–C(4')); 

4.49–4.55 (m, 1 H, H–C(3')); 4.87–5.00 (m, 3 H, OCH2O, H–C(2')); 6.01 (d, J = 6.3, 0.5 H, 

H–C(1')); 6.06  (d, J = 7.0, 0.5 H, H–C(1')); 6.78–6.85 (m, 4 arom. H); 7.19–7.50 (m, 9 arom. 
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H); 7.89, 7.91 (2s, H–C(8')); 8.83 (br. s, HN–C(2)); 11.79 (br. s, H–N(1)). 31P-NMR (162 

MHz, CDCl3): 151.6, 151.9. MALDI-MS: 1044.32 (100, [M + H]+). 

 

5’-O-(4,4’-Dimethoxytrityl)-N2-methoxyacetyl-2’-O-{[triisopropylsilyl)oxy]methyl}guanosine 

3’-(4-Nitrophenyl Heptanedioate) (109). 

A soln. of 106 (170 mg, 0.2 mmol) in Py (2 ml) was treated with DMAP (12 mg, 0.1 mmol) 

and bis(4-nitrophenyl)heptanedioate (490 mg, 1.2 mmol) followed by stirring at r.t. for 14 h. 

Then, the reaction mixture has been evaporated to dryness and co-evaporated twice with 

toluene. CC (SiO2 (4 g), hexane/AcOEt 1:1 → 0:1) offered 109 (127 mg, 57%). Light yellow 

foam. TLC (CH2Cl2/MeOH 19:1): Rf 0.69. 1H-NMR (400 MHz, CDCl3): 0.88–1.06 (m, 
iPr3Si); 1.46–1.54 (m, CH2); 1.70–1.85 (m, CH2); 2.40–2.50 (m, CH2); 2.64 (t, J = 7.0, 

CH2); 3.38 (br. s, MeO, H–C(5')); 3.40–3.45 (m, H'–C(5')); 3.80 (s, 2 MeO); 3.99 (s, 

CH2CO); 4.17 (br. d, J = 3.1, H–C(4')); 4.89 (br. s, OCH2O); 5.11 (t, J = 5.5, H–C(2')); 5.55 

(br. d, J = 3.2, H–C(3')); 6.00 (d, J = 6.3, H–C(1')); 6.81 (d, J = 9.4, 4 arom. H); 7.21–7.43 (m, 

11 arom. H); 7.85 (s, H–C(8)); 8.28 (d, J = 9.4, 2 arom. H); 8.78 (br. s, HN–C(2)); 11.81 (br. 

s, H–N(1)). 13C-NMR (100 MHz, CDCl3): 12.2 (d, Me2CH); 17.9 (q, Me2CH); 24.7, 24.9, 

28.9, 30.1, 34.2 (5t, CH2); 55.7 (q, MeOCH2); 59.8 (q, MeO); 63.7 (t, C(5')); 71.4 (t, 

CH2OMe); 72.2 (d, C(2')); 77.6 (d, C(3')); 83.0 (d, C(4')); 86.5 (d, C(1')); 90.2 (t, OCH2O); 

113.6 (d, arom. C); 122.8 (d, C(5)); 125.6, 127.4, 128.4, 128.5, 129.5, 130.5 (6d, arom. C); 

135.8, 135.9 (2s, arom. C); 138.3 (d, C(8)); 144.8 (s, arom. C); 146.7 (s, C(2)); 148.6 (s, 

C(4)); 155.7 (s, C(6)); 159.0 (s, arom. C); 171.0 (s, COCH2). ESI-MS: 1107.33 (100, [M + 

H]+).  

 

Preparation of RNA sequences 

RNA-sequence 5'-monophosphate-r(GGGGCUAUAGCUCAGCGGGAU) (S31-S33).  

The sequence was assembled from 60 mg of solid support (loading 30 µmol/g) using the 

standard conditions for the assembly of 2’-O-TOM-protected ribonucleoside 

phosphoramidites (Pitsch et al. 2001), but employing a combination of 2’-O-TOM H2N-C(2) 

unprotected guanosine phosphoramidite building block unprotected guanosine and N2-

methoxyacetyl-protected guanosine 108 instead of the standard N2-acetyl-protected 

guanosine. The tetra-G motif has been assembled as described in Chapter V. Furthermore, the 

capping step at the end of each coupling cycle was performed with methoxyacetic acid 

anhydride (Ackermann and Pitsch 2002). After the final detritylation, he solid support was 

washed with (iPr)2NH/MeCN 1:9 for 20 min (flow-rate 2.5 ml/min). Cleavage from the solid 

support and deprotection was carried out with 12M NH3 in MeOH (1ml) for 14h at 20°. The 
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supernatant was removed by centrifugation and evaporated to dryness; the residue was treated 

with a THF soln. (1 ml) of Bu4NF.3H2O (1M) for 14h at 20°, diluted with aq. Tris.HCl (1 ml, 

1M, pH 7.4) and evaporated to a volume of 1 ml. After desalting on a NAP cartridge, the main 

peak of the crude product was isolated by ion-exchange HPLC for MS analysis: AE-HPLC 

(15 - 60% B in 30 min) flow 2.5 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent 

B: 12 mM Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; detection at 260 nm, elution at 85°.): tR 

25.6 min. LC-MS (ESI): m/z = 6'890 (calc. 6'890),   

 

RNA-sequence r(GGGGCUAUAGCUCAGCDGGGAGAGCGCUUGCAUCUA) (S28).  

The sequence was assembled from 60 mg of solid support (loading 30 µmol/g) as described 

above for sequence S33 (See Chapter V) using the standard conditions for the assembly of 2’-

O-TOM-protected ribonucleoside phosphoramidites (Pitsch et al. 2001), The dihydrouridine 

D at position 17 was incorporated with the phosphoramidite building block 46. The crude 

RNA-sequence was analyzed by AE-HPLC (20 - 80% B in 40 min): tR 21.3 min (flow 1.0 

ml/min). The purification was performed by AE-HPLC (20 - 80% B in 60 min): tR 25.4 min 

(flow 2.5 ml/min). LC-MS (ESI): m/z = 11'624 (calc. 11'623). 

 

RNA-sequence r(imG-AGCAAGAGGUCAGCGGUUCGAUCCCGCUUAG) (S30).  

The sequence was assembled from 60 mg of solid support (loading 30 µmol/g) as described 

above for sequence S28 and the wyosine building block was incorporated as described for the 

preparation of the 10mer wyosine-containing RNA sequence S6. The crude RNA-sequence 

was analyzed by AE-HPLC (20 - 80% B in 40 min): tR 20.6 min (flow 1.0 ml/min). The 

purification was performed by AE-HPLC (20 - 80% B in 60 min): tR 23.5 min (flow 2.5 

ml/min). LC-MS (ESI): m/z = 10'370 (calc. 10'370). The phosphorylation of the sequence was 

performed as described above for sequence S5 LC-MS (ESI): m/z = 10'450 (calc. 10'450). 

 

2’-O-Methoxy RNA-sequence m(CCUCUUGCU-_-UAGAUGCA) (S34).  

The assembly of the sequence was carried out on a Gene Assembler Plus (Pharmacia) with 

the 2’-O-methoxy phosphoramidites from (Glen Research) and propyl phosphoramidite linker 

prepared according to (Pitsch et al. 2001).  
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Ligation 

RNA-sequence r(GGGGCUAUAGCUCAGCDGGGAGAGCGCUUGCAUCUA-imG-

AGCAAGAGGUCAGCGGUUCGAUCCCGCUUAG) (S26).  

The 32mer S29, 36mer S28 and 18mer template S34 were mixed to a final concentration of 20 

µM for the substrates and 30 µM for the template (1.5eq). After the addition of PEG 6000 (3µl 

of 50% PEG stock soln.) and water (q.s.p. 54 µl), the mixture was heated at 95° for 4 minutes 

and subsequently cooled down to 40° by steps of 0.1° per second and finally to 4° within 

1.5min. After the addition of ligation buffer (40mM TrisHCl, 2mM MgCl2, 10mM DTT, 

0.5mM ATP) and 8 units of ribonuclease inhibitor (Fermentas), the reaction was initiated by 

adding T4 DNA ligase (8 Weiss units) and kept at 37°. For the ligation kinetic, aliquots were 

taken and diluted in 1mL of water and injected into an analytical AE-HPLC. AE-HPLC. (20 - 

100% B in 29 min) flow 1.0 ml/min; eluent A: 12 mM Tris.HCl (pH 7.4), 6M urea; eluent B: 

12 mM Tris.HCl (pH 7.4), 0.5M NaClO4, 6M urea; detection at 260 nm, elution at 85°). 

m(CCUCUUGCU-_-UAGAUGCA): tR 12.8 min (S34). 5'-monophosphate-r(imG-

AGCAAGAGGUCAGCGGUUCGAUCCCGCUUAG): tR 16.2 min (S29). 

r(GGGGCUAUAGCUCAGCDGGGAGAGCGCUUGCAUCUA): tR 16.6 min (S28). 

r(GGGGCUAUAGCUCAGCDGGGAGAGCGCUUGCAUCUA-imG-AGCAAGAGGUCAGC 

GGUUCGAUCCCGCUUAG): tR 19.0 min (S26) LC-MS (ESI): m/z = 22'056 (calc. 22'055)  

 

CHAPTER VI 

General  

The thiophenyl phenylalaninate (H-Phe(SPh), 116) was prepared according (Ryan and Chung 

1981).  

 

Reversed-phase HPLC (RP-HPLC): Waters Xterra RP18, 5µm (4.6x250mm), flow 1 ml/min, 

eluent A: 0.1M triethylammonium phosphate in H2O (pH 3.5) or 0.1M 

triethylammoniumacetate in H2O (pH 5.5); eluent B: MeCN; elution at 25°, detection at 260 

nm; unless otherwise stated, a gradient of A→A/B 1:1 (30 min) was used. Ion-exchange 

HPLC: Pharmacia Source 15Q (4.6x100 mm), flow 1 ml/min, eluent A: 10mM HOAc/NaOAc 

(pH 5.0) in MeOH/H2O 1:1; eluent B: HOAc/NaOAc, 1M NaCl (pH 5.0) in MeOH/H2O 1:1, 

elution at 25°, detection at 260 nm; a gradient of A→A/B 1:1 (30 min) was used.  

 

2'-Acetylthio-N6-Benzoyl-2'-deoxy-3',5'-O-(1,1,3,3-tetra-isopropyldisiloxane-1,3-diyl) 

adenosine (108).  
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A soln. of 107 (1.15 g, 1.88 mmol, prepared according to (Marriott et al. 1991)) was dissolved 

in DMSO (8 ml), treated with KSAc (1.08 g, 9.4 mmol) and stirred for 10 min at 20°. 

Addition of AcOEt (100 ml) and extraction (1. 10% aq. citric acid, 2. satd. aq. NaHCO3) gave 

crude 108 (1.26 g) as yellow foam (TLC (hexane/AcOEt 1:1): Rf 0.28).  

 

N6-Benzoyl-2'-(tert-butyldithio)-2'-deoxy-3',5'-O-(1,1,3,3-tetra-isopropyldisiloxane-1,3-

diyl)adenosine (110).  

A soln. of crude 108 (717 mg, 1.07 mmol) in THF/MeOH 5:4 (12 ml) was degassed (15 min.) 

by a stream of argon and treated at 0° with aq. 2M NaOH (1.3 ml) for 5 min and thus 

neutralized with AcOH (156 mg, 2.6 mmol). After work-up (10% citric acid/CH2Cl2) we 

obtained crude 109 (TLC (hexane/AcOEt 1:1): Rf 0.39). For the next step, a soln. of 

sulfurylchloride (0.086 mL, 1.07 mmol) in Et2O (5 ml) was treated with an equimolar mixture 

of 2-methylpropanethiol (0.12 mL, 1.07 mmol) and Py (85 mg, 1.07 mmol) in Et2O (1 ml) at 

-78°. After 45 min at -78°, the reaction mixture was treated with a soln. of crude 2'-

thioadenosine derivative 109 (obtained above) and Py (85 mg, 1.07 mmol) in THF (2.5 ml) 

and stirred for 15 min at -78°. Workup and CC (SiO2 (20 g), hexane/AcOEt 4:1 → 1:4) gave 

110 (290 mg, 38%). Light brown foam. TLC (hexane/AcOEt 1:1): Rf 0.31. 1H-NMR (400 

MHz, CDCl3): 1.03–1.18 (m, iPr2Si); 1.23 (s, Me3C); 4.04–4.16 (m, H2C(5')); 4.16–4.23 (m, 

H–C(4')); 4.34 (dd, J = 3.1, 7.2, H–C(2')); 5.27 (t, J = 7.3, H–C(3'));  6.40 (d, J = 3.2, H–

C(1')); 7.47–7.63 (m, 5 arom. H); 8.05 (d, J = 7.4, 2 arom. H); 8.23 (s, H–C(8)); 8.78 (s, H–

C(2)); 9.16 (br. s, HN-C(6)). 13C-NMR (100 MHz, CDCl3): 13.1, 13.3, 13.5, 13.9 (4d, 

Me2CH); 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9, 18.0 (8q, Me2CH); 30.2 (q, Me3C); 48.8 (s, 

Me3C); 57.6 (d, C(2')); 62.2 (t, C(5')); 72.1 (d, C(3')); 84.2 (d, C(4')); 90.9 (d, C(1')); 128.3 (s, 

C(5)); 129.3 (d, arom. C); 133.2 (d, arom. C); 134.1 (s, arom. C); 142.6 (d, C(8)); 150.0 (s, 

C(6)); 151.5 (s, C(4)); 153.1 (d, C(2)); 165.0 (s, PhCO). ESI-MS: 718.32 ([M+H]+). 

 

N6-Benzoyl-2'-(tert-butyldithio)-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)adenosine (112).  

A soln. of 110 (1.0 g, 1.4 mmol) in CH2Cl2 (10 ml) was treated with a soln. of 35% HF in Py 

(60 ml, prepared from 70% HF/Py (30 ml) and Py (30 ml)) for 1h at 20°. After workup and 

evaporation, the residue was dissolved in Py (40 ml) and treated with (MeO)2TrCl (520 mg, 

1.5 mmol) for 1h at 20°. Workup and CC (SiO2 (30 g), hexane/AcOEt 9:1 → 7:3) gave 112 

(460 mg, 40%). Colourless foam. TLC (hexane/AcOEt 1:9): Rf 0.74. 1H-NMR (400 MHz, 

CDCl3): 1.15 (s, Me3C); 2.69 (br. s, OH); 3.42 (dd, J = 3.8, 10.3, H–C(5')); 3.56 (dd, J = 4.7, 

10.4, H'–C(5')); 3.81 (s, 2 MeO); 4.36 (br. s, H–C(4')); 4.54 (dd, J = 5.1, 8.7, H–C(2')); 4.69 

(br. d, J ≈ 4.2, H–C(3')); 6.21 (d, J = 8.7, H–C(1')); 6.83 (d, J = 8.8, 4 arom. H); 7.20–7.37 (m, 
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10 H); 7.45 (d, J = 7.8, 2 arom. H); 7.56 (t, J = 7.6, 1 arom. H); 7.64 (t, J = 7.3, 1 arom. H); 

8.05 (d, J = 7.7, 2 arom. H); 8.21 (s, H–C(8)); 8.71 (s, H–C(2)); 9.01 (s, NH). 13C-NMR (100 

MHz, CDCl3): 30.1 (q, Me3C); 48.7 (s, Me3C); 55.6 (q, MeO); 59.8 (d, C(2')); 64.0 (t, C(5')); 

73.5 (d, C(3')); 86.1 (d, C(4')); 88.2 (d, C(1')); 113.4 (d, arom. C); 123.6 (s, C(5)); 127.5, 

128.2, 128.7, 129.2, 130.4 (5d, arom. C); 133.1, 135.7 (2s, arom. C); 142.5 (d, C(8)); 144.5 (s, 

arom. C); 149.9 (s, C(6)); 152.0 (s, C(4)); 153.1 (d, C(2)); 158.8 (s, arom. C); 164.9 (s, 

PhCO).ESI-MS: 798.29 ([M+H]+). 

 

N6-Benzoyl-2'-(tert-butyldithio)-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)adenosine 3’-(4-

Nitrophenylheptane dioate)  (113).  

A soln. of 112 (170 mg, 0.2 mmol) in Py (4 ml) was treated with DMAP (20 mg, 0.16 mmol) 

and bis(4-nitrophenyl)heptanedioate (472 mg, 1.2 mmol) for 14 h at 20. Evaporation and CC 

(SiO2 (4 g), hexane/AcOEt 2:3 → 1:9) gave 113 (160 mg, 76%). Colorless foam. TLC 

(hexane/AcOEt 3:7): Rf 0.63. 1H-NMR (400 MHz, CDCl3): 1.16 (s, Me3C); 1.50–1.67 (m, 

CH2); 1.70–1.89 (m, 2 CH2); 2.42–2.57 (m, CH2); 2.66 (t, J = 7.3, CH2); 3.50 (m, H2C(5')); 

3.80 (s, 2 MeO); 4.27 (m, H–C(4')); 4.57 (dd, J = 5.7, 8.7, H–C(2')); 5.82 (br. d, J ≈ 5.4, H–

C(3')); 6.30 (d, J = 8.7, H–C(1')); 6.83 (d, J = 8.7, 4 arom. H); 7.20–7.31 (m, 6 arom. H); 7.35 

(d, J = 8.7, 2 arom. H); 7.45 (t, J = 7.4, 1 arom. H); 7.64 (t, J = 7.6, 2 arom. H); 7.66 (t, J = 

7.6, 1 arom. H); 8.07 (d, J = 7.4, 2 arom. H); 8.21 (s, H–C(8)); 8.27 (d, J = 9.0, 2 arom. H); 

8.73 (s, H–C(2)); 9.09 (br. s, NH). 13C-NMR (100 MHz, CDCl3): 24.7, 24.9, 28.9 (3t, CH2); 

29.8 (q, Me3C); 34.3, 34.4 (2t, CH2); 48.4 (s, Me3C); 55.7 (q, MeO); 58.3 (d, C(2')); 63.6 (t, 

C(5')); 75.3 (d, C(3')); 84.3 (d, C(4')); 87.3 (d, C(1')); 89.4 (s, arom. C); 113.7 (d, arom. C); 

122.8 (s, C(5)); 125.6, 127.5, 128.4, 128.6, 129.3, 130.4, 130.5, 133.2 (8d, arom. C); 135.8, 

135.9 (2s, arom. C); 142.2 (d, C(8)); 144.7, 145.7 (2s, arom. C); 149.9 (s, C(6)); 153.2 (s, 

C(4)); 153.2 (d, C(2)); 155.8 (s, arom. C); 159.0 (s, arom. C); 164.9, 172.6, 184.5 (3s, CO). 

ESI-MS: 1061.32 ([M+H]+). 

 

N6-Benzoyl-2'-(tert-butyldithio)-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine 3'-[6-(CPG-

Amino)heptanoate] (114).  

A suspension of LCAA-CPG (1.3 g, 500Å, Millipore), 113 (100 mg, 0.10 mmol) and iPr2NEt 

(0.4 ml) in DMF (4 ml) was shaken for 16 h at 20°. After filtration, the solid was washed with 

DMF and CH2Cl2, suspended in pyridine (1.2 ml) and Ac2O (0.8 ml), and shaken for 2h at 

20°. After filtration, the solid was washed with DMF and CH2Cl2, and dried to give 114: 

loading: 38 µmol/g. 
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RNA-sequence 5'-monophosphate-r(CCCCACC-[2’-(tert-butyldithio)-2’-deoxy]A (S35).  

The sequence was assembled from 60 mg of 114 using the standard conditions for the 

assembly of 2’-O-TOM-protected ribonucleoside phosphoramidites (Pitsch  et al. 2001), but 

employing a modified oxidizing reagent: 20 mM I2 in THF/ Py/H2O 7:2:1. The solid-support 

was subsequently removed from the cartridge and treated with a 1:1 mixture of 12M MeNH2 

in H2O and 8M MeNH2 in EtOH (4 ml) for 6 h at 20°. By centrifugation, the supernatant soln. 

was separated from the solid support, evaporated to dryness, and the residue dissolved in 1M 

Bu4NF.3H2O soln. in THF (4 ml). After 14 h at 30°, 1M Tris.HCl buffer (pH 7.4, 4 ml) was 

added. The soln. was concentrated to 4 ml and desalted on a NAP-column (Pharmacia) 

according to the manufacturer's instructions. The crude RNA-sequence was purified by ion-

exchange HPLC: Pharmacia Source 15Q (4.6x100 mm), flow 2.5 ml/min; eluent A: 12 mM 

Tris.HCl (pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl (pH 7.4), 2M NaCl, 6M urea; detection 

at 260 nm, elution at 25°. AE-HPLC (10 - 30% B in 30 min, 3 injections): tR 17.8 min. The 

fractions, containing pure S35 were pooled (→ 30 ml), treated with 1M aq. Et3N.AcOH (pH 

7, 5 ml) and applied to a Sepak-cartridge (Waters): after elution of the salts with 0.1M aq. 

Et3N.AcOH (pH 7, 10 ml), followed by 10 10mM aq. Et3N.H2CO3 (pH 8.4, 15 ml), S35 

(Et3NH+-form) was eluted with MeCN/H2O 1:1 (5 ml): 40 oD of pure S35 (33% yield based 

on 114). LC-MS (ESI): m/z = 2'611 (calc. 2'611). 

 

 

N6-Benzoyl-2'-deoxy-2'-(phenylthio)-3',5'-O-(1,1,3,3-tetra-isopropyldisiloxane-1,3-diyl) 

adenosine (117). 

A soln. of crude 109 (260 mg, 0.39 mmol) was dissolved in CH2Cl2 (0.79 ml) and added to a 

mixture of thiophenol (0.08 ml, 0.79 mmol) and N-chlorosuccinimide (105 mg, 0.79 mmol) in 

CH2Cl2 (6.2 ml).  After 10 min at 20°, workup and CC (SiO2 (2 g), CH2Cl2 → 

CH2Cl2/AcOEt 3:1) gave 117 (60 mg, 21% from 109). TLC (CH2Cl2/AcOEt 3:7): Rf 0.68. 
1H-NMR (CDCl3): 1.19–1.10 (m, iPr2Si); 4.00–4.10 (m, H2C(5')); 4.16–4.24 (m, H–C(4')); 

4.38 (dd, J = 4.3, 7.5, H–C(2')); 5.20 (t, J = 7.1, H–C(3')); 6.34 (d, J = 4.2, H–C(1')); 7.17 (d, 

J = 7.1, 1 arom. H); 7.22 (t, J = 7.1, 2 arom. H); 7.34 (d, J = 7.3, 2 arom. H); 7.55 (t, J = 7.5, 2 

arom. H); 7.63 (t, J = 7.5, 2 arom. H); 7.97 (s, H–C(8)); 8.05 (d, J = 7.8, 2 arom. H); 8.7 (s, 

H–C(2)); 9.10 (br. s, NH). ESI-MS: 738.29 ([M+H]+). 

 

N6-Benzoyl-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)-2'-(phenylthio)adenosine (119). 

A soln. of 117 (600 mg, 0.8 mmol) in CH2Cl2 (6.4 ml) was treated with a soln. of 35% HF in 

Py (6.4 ml, prepared from 70% HF/Py (3.2 ml) and Py (3.2 ml)) for 1h at 20°. After workup 
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and evaporation, the residue was dissolved in Py (4 ml) and treated with (MeO)2TrCl (340 

mg, 1.0 mmol) for 1h at 20°. Workup and CC (SiO2 (16 g), hexane/AcOEt 7:3 → 3:7) gave 

119 (320 mg, 51%). White foam. TLC (hexane/AcOEt 3:7): Rf 0.34. 1H-NMR (CDCl3): 3.15 

(br. s, OH); 3.39 (dd, J = 4.0, 10.4, H–C(5')); 3.49 (dd, J = 4.4, 10.4, H'–C(5')); 3.79 (s, 2 

MeO); 4.30 (t, J = 3.0, H–C(4')); 4.70–4.75 (m, H–C(2'), H–C(3')); 6.28 (d, J = 8.6, H–C(1')); 

6.80 (d, J = 8.0, 4 arom. H); 7.18–7.34 (m, 10 arom. H); 7.42 (dd, J = 1.2, 8.1, 2 arom. H); 

7.56 (t, J = 7.4, 1 arom. H); 7.64 (t, J = 7.3, 1 arom. H); 7.98 (s, H–C(8)); 8.06 (d, J = 7.3, 2 

arom. H); 8.62 (s, H–C(2)); 9.06 (s, NH). 13C-NMR (100 MHz, CDCl3): 55.7 (q, MeO); 61.0 

(d, C(2')); 64.1 (t, C(5')); 73.6 (d, C(3')); 85.6 (d, C(4')); 88.6 (d, C(1')); 113.6, 113.7 (2d, 

arom. C); 123.8 (s, C(5)); 127.4, 127.5, 128.3, 128.4, 128.6, 129.3, 129.6, 130.5 (7d, arom. 

C); 133.2, 134.1, 135.9, 136.0, 136.1, 139.9 (5s, arom. C); 142.6 (d, C(8)); 144.9 (s, arom. C); 

150.0 (s, C(6)); 152.3 (s, C(4)); 153.1 (d, C(2)); 159.0 (s, arom. C); 165.0 (s, PhCO). ESI-MS: 

798.29 ([M+H]+). 

 

N6-Benzoyl-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)-2'-(phenylthio)adenosine 3’-(4-Nitrophenyl 

heptane dioate)  (120). 

A soln. of 119 (320 mg, 0.4 mmol) in Py (4 ml) was treated DMAP (6 mg, 0.04 mmol) and 

bis(4-nitrophenyl)heptanedioate (950 mg, 2.4 mmol) for 14h at 20°. Evaporation and CC 

(SiO2 (4 g), hexane/AcOEt 9:1 → 1:1) gave 120 (230 mg, 54%). Colorless foam. TLC 

(hexane/AcOEt 3:7): Rf 0.53. 1H-NMR (CDCl3): 1.50–1.61 (m, CH2); 1.75–1.90 (m, 2 CH2); 

2.42–2.57 (m, CH2); 2.67 (t, J = 7.4, CH2); 3.45–3.54 (m, H–C(5'), H'–C(5')); 3.79 (s, MeO); 

4.22–4.27 (m, H–C(4')); 4.78 (dd, J = 5.5, 9.1, H–C(2')); 5.77 (dd, J = 0.8, 5.6, H–C(3')); 6.36 

(d, J = 9.1, H–C(1')); 6.80 (d, J = 8.9, 4 arom. H); 7.04–7.10 (m, 3 arom. H); 7.10–7.16 (m, 2 

arom. H); 7.21–7.33 (m, 9 arom. H); 7.41 (dd, J = 1.5, 8.2, 2 arom. H); 7.56 (t, J = 7.2, 1 H); 

7.93 (s, H–C(8)); 8.07 (d, J = 7.5, 2 arom. H); 8.26 (td, J = 2.0, 9.0, 2 arom. H); 8.64 (s, H–

C(2)); 9.05 (br. s, NH). 13C-NMR (100 MHz, CDCl3): 24.8, 24.9, 29.0 (3t, CH2); 34.4, 34.5 

(2t, CH2); 55.8 (q, MeO); 62.0 (d, C(2')); 64.3 (t, C(5')); 73.8 (d, C(3')); 85.9 (d, C(4')); 88.5 

(d, C(1')); 113.5, 113.6 (2d, arom. C); 124.0 (s, C(5)); 127.3, 127.5, 128.1, 128.5, 128.6, 

129.0, 129.4, 130.2 (7d, arom. C); 132.9, 134.0, 135.5, 136.2, 136.3, 139.7 (5s, arom. C); 

142.4 (d, C(8)); 144.5 (s, arom. C); 151.0 (s, C(6)); 152.4 (s, C(4)); 153.0 (d, C(2)); 155.6, 

159.0 (2s, arom. C); 164.4, 172.2, 185.0 (3s, CO). ESI-MS: 1061.32 ([M+H]+).  
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N6-Benzoyl-2'-(butyldithio)-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine 3'-[6-(CPG-

Amino)heptanoate] (121).  

A suspension of LCAA-CPG (0.5 g, 500Å, Millipore), 120 (50 mg, 0.05 mmol) and iPr2NEt 

(0.2 ml) in DMF (2 ml) was shaken for 16 h at 20°. After filtration, the solid was washed with 

DMF and CH2Cl2, suspended in pyridine (1 ml) and Ac2O (0.4 ml), and shaken for 2h at 20°. 

After filtration, the solid was washed with DMF and CH2Cl2, and dried to give 121: loading: 

34 µmol/g. 

 

N6-Benzoyl-2'-S-[(4-methoxy)benzyl)]-3',5'-O-(1,1,3,3-tetra-isopropyldisiloxane-1,3-diyl)-2'-

thioadenosine (122).  

At –15°, a soln. of 107 (260 mg, 0.44 mmol, prepared according to (Marriott et al. 1991)) in 

CH2Cl2/Py (1ml + 1 ml) was treated with (CF3SO2)2O (0.11 ml, 0.60 mmol). Workup after 

5h at 10° gave the crude 2'-O-trifluormethanesulfonyl derivative of 107 (330 mg, TLC 

(hexane/AcOEt 1:9): Rf 0.50) as brown-orange foam, which was dissolved in DMSO (8 ml). 

For the next step, a suspension of 50% NaH in mineral oil (106 mg, ca. 2.2 mmol) and (4-

methoxy)benzylthiol (343 mg, 2.2 mmol) were added to DMSO (7 ml). After 10 min at 25°, 

the reaction mixture was cooled to 10°, treated with the soln. of  the crude 2'-O-

trifluormethanesulfonyl derivative of 107  (330 mg, obtained above) in DMSO (8 ml) and 

stirred for 10 min at 10°. After addition of AcOEt (100 ml), extraction (1. 10% aq. citric acid, 

2. satd. aq. NaHCO3) and CC (SiO2 (10 g), hexane/AcOEt 9:1 → 1:1) 122 (300 mg, 91%) 

was obtained as yellow foam. TLC (hexane/AcOEt 1:9): Rf 0.71. 1H-NMR (CDCl3): 0.99–

1.12 (m, iPr2Si); 3.75 (s, MeO); 3.78-3.92 (m, H2C(5')); 4.01–4.19 (m, H–C(4'), H–C(2')); 

4.93 (t, J = 6.9, H–C(3')); 5.31 (s, CH2S); 6.22 (d, J = 3.2, H–C(1')); 6.71 (d, J = 8.5, 1 arom. 

H); 7.12 (t, J = 8.5, 2 arom. H); 7.54 (t, J = 7.6, 2 arom. H); 7.62 (t, J = 7.4, 1 arom. H); 8.05 

(d, J = 7.6, 2 arom. H); 8.14 (s, H–C(2)); 8.80 (s, H–C(8)); 9.22 (br. s, NH). 13C-NMR (100 

MHz, CDCl3): 13.0, 13.3, 13.5, 13.8 (4d, Me2CH); 17.3, 17.4, 17.5, 17.7, 17.8, 17.9 (6q, 

Me2CH); 35.5 (t, CH2S); 52.4 (d, C(2')); 55.7 (q, MeO); 61.6 (t, C(5')); 70.8 (d, C(3')); 84.6 

(d, C(4')); 90.6 (d, C(1')); 114.2 (d, arom. C); 123.8 (s, C(5)); 128.3, 129.3 (2d, arom. C); 

129.7 (s, arom. C); 130.2, 133.2 (2d, arom. C); 134.2 (s, arom. C); 141.9 (d, C(8)); 149.9 (s, 

C(6)); 151.3 (s, C(4)); 153.1 (d, C(2)); 159.1 (s, MeOC), 165.1 (s, PhCO). ESI-MS: 750.31 

([M+H]+). 

 

 N6-Benzoyl-2'-(butyldithio)-2'-deoxy-3',5'-O-(1,1,3,3-tetra-isopropyldisiloxane-1,3-

diyl)adenosine (123). Simultaneously, two soln.s, one containing BuSCl (250 mg, 2 mmol, 

prepared according to (Thea and Cevasco 1988)) in CH2Cl2 (10 ml), and the other 122 (300 
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mg, 0.4 mmol) in CH2Cl2 (10 ml), respectively, were added dropwise to a cooled (4°) 

mixture of CH2Cl2/AcOH 1:1 (30 ml). After addition, the ice-bath was removed and the 

mixture stirred for 48h at 25°. Workup and CC (SiO2 (10g), hexane/AcOEt 4:1 → 1:4) gave 

123 (250 mg, 86%) as a light yellow foam. TLC (AcOEt/CH2Cl2 1:4): Rf 0.59. 1H-NMR 

(400 MHz, CDCl3): 0.84 (t, J = 7.0, MeCH2); 1.02–1.17 (m, iPr2Si); 1.20–1.40 (m, CH2); 

1.51–1.63 (m, CH2); 2.63 (t, J = 7.4, CH2S); 4.01 (dd, J = 3.5, 12.5, H–C(5')); 4.12 (dd, J = 

3.5, 12.5, H'–C(5')); 4.16–4.23 (m, H–C(4')); 4.31 (dd, J = 3.2, 7.3, H–C(2')); 5.23 (t, J = 7.3, 

H–C(3'));  6.43 (d, J = 3.2, H–C(1')); 7.55 (t, J = 7.3, 2 arom. H); 7.63 (t, J = 7.3, 1 arom. H); 

8.05 (br. d, J = 7.4, 2 arom. H); 8.24 (s, H–C(8)); 8.79 (s, H–C(2)); 9.14 (br. s, HN-C(6)). 
13C-NMR (100 MHz, CDCl3): 13.1 (q, MeCH2); 13.2, 13.5, 13.8, 13.9 (4d, Me2CH); 17.3, 

17.5, 17.6, 17.8, 17.9, 18.0, 18.1, 18.2 (8q, Me2CH); 21.9 (t, MeCH2); 31.3 (t, CH2CH2); 

38.7 (t, CH2S); 56.7 (d, C(2')); 62.1 (t, C(5')); 71.9 (d, C(3')); 84.3 (d, C(4')); 90.5 (d, C(1')); 

128.3 (s, C(5)); 129.3 (d, arom. C); 133.2 (d, arom. C); 134.1 (s, arom. C); 142.5 (d, C(8)); 

150.1 (s, C(6)); 151.6 (s, C(4)); 153.1 (d, C(2)); 165.0 (s, PhCO). ESI-MS: 718.32 ([M+H]+). 

 

N6-Benzoyl-2'-(butyldithio)-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)adenosine (125).  

A soln. of 123 (206 mg, 0.28 mmol) in CH2Cl2 (2.2 ml) was treated with a soln. of 35% HF 

in Py (2 ml, prepared from 70% HF/Py (1 ml) and Py (1 ml)) for 1h at 20°. After workup and 

evaporation, the residue was dissolved in Py (1.4 ml) and treated with (MeO)2TrCl (114 mg, 

0.34 mmol) for 1h at 20°. Workup and CC (SiO2 (6g), CH2Cl2 → CH2Cl2/AcOEt 1:1) gave 

125 (134 mg, 60%). Colorless foam. TLC (hexane/AcOEt 7:3): Rf 0.34. 1H-NMR (400 MHz, 

CDCl3): 0.80 (t, J = 7.3, MeCH2); 1.17–1.30 (m, CH2); 1.38–1.40 (m, CH2); 2.37–2.54 (m, 

CH2S); 3.15 (br. d, J ≈ 2.2, OH); 3.39 (dd, J = 4.0, 10.4, H–C(5')); 3.49 (dd, J = 4.4, 10.4, H'–

C(5')); 3.79 (s, 2 MeO); 4.30 (t, J = 3.0, H–C(4')); 4.70–4.75 (m, H–C(2'), H–C(3')); 6.28 (d, J 

= 8.6, H–C(1')); 6.80 (d, J = 8.0, 4 arom. H); 7.18–7.34 (m, 8 arom. H); 7.42 (dd, J = 1.2, 8.1, 

2 arom. H); 7.56 (t, J = 7.4, 1 arom. H); 7.64 (t, J = 7.3, 1 arom. H); 7.98 (s, H–C(8)); 8.06 (d, 

J = 7.3, 2 arom. H); 8.62 (s, H–C(2)); 9.06 (s, NH). 13C-NMR (100 MHz, CDCl3): 13.9 (q, 

MeCH2); 21.9 (t, MeCH2); 31.1 (t, CH2CH2S); 39.3 (t, CH2S); 55.7 (q, MeO); 59.7 (d, 

C(2')); 63.9 (t, C(5')); 73.6 (d, C(3')); 85.7 (d, C(4')); 88.3 (d, C(1')); 113.6 (d, arom. C); 123.8 

(s, C(5)); 127.4, 128.3, 128.6, 129.3, 130.5 (5d, arom. C); 133.2, 135.9 (2s, arom. C); 142.6 

(d, C(8)); 144.8 (s, arom. C); 150.0 (s, C(6)); 152.3 (s, C(4)); 153.2 (d, C(2)); 159.0 (s, arom. 

C); 165.0 (s, PhCO). ESI-MS: 778.30 ([M+H]+). 
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N6-Benzoyl-2'-(butyldithio)-2'-deoxy-5’-O-(4,4’-dimethoxytrityl)adenosine 3’-(4-

Nitrophenylheptane dioate)  (126).  

A soln. of 125 (134 mg, 0.18 mmol) in Py (2 ml) was treated with DMAP (12 mg, 0.08 mmol) 

and bis(4-nitrophenyl)heptanedioate (420 mg, 1.04 mmol) for 14h at 20°. Evaporation and CC 

(SiO2 (10g), hexane/AcOEt 3:2 → 1:9) (hexane/AcOEt 3:7) gave 126 (122 mg, 68%). 

Colorless foam. TLC (hexane/AcOEt 7:3): Rf 0.53. 1H-NMR (400 MHz, CDCl3): 0.80 (t, J = 

7.4, MeCH2) 1.16–1.29 (m, CH2); 1.38–1.45 (m, CH2); 1.50–1.57 (m, CH2); 1.74–1.87 (m, 3 

CH2); 2.29–2.51 (m, 2 CH2); 2.66 (t, J = 7.3, CH2S); 3.45–3.54 (m, H2C(5')); 3.79 (s, 2 

MeO); 4.22–4.27 (m, H–C(4')); 4.78 (dd, J = 5.5, 9.1, H–C(2')); 5.77 (dd, J = 0.8, 5.6, H–

C(3')); 6.36 (d, J = 9.1, H–C(1')); 6.80 (d, J = 8.9, 4 arom. H); 7.04–7.10 (m, 3 arom. H); 

7.10–7.16 (m, 2 arom. H); 7.21–7.33 (m, 9 arom. H); 7.41 (dd, J = 1.5, 8.2, 2 arom. H); 7.56 

(t, J = 7.2, 1 arom. H); 7.93 (s, H–C(8)); 8.07 (d, J = 7.5, 2 arom. H); 8.26 (td, J = 2.0, 9.0, 2 

arom. H); 8.64 (s, H–C(2)); 9.05 (br. s, NH). 13C-NMR (100 MHz, CDCl3): 13.9 (q, 

MeCH2); 21.8 (t, MeCH2); 24.7, 24.8, 28.9, 31.1, 34.2, 34.4 (6t, CH2); 39.3 (t, CH2S); 55.6 

(q, MeO); 57.3 (d, C(2')); 63.8 (t, C(5')); 75.5 (d, C(3')); 84.4 (d, C(4')); 87.4 (d, C(1')); 88.9 

(s, arom. C); 113.7 (d, arom. C); 122.8 (s, C(5)); 125.6, 127.5, 128.3, 128.4, 128.6, 129.3, 

130.5, 133.2 (9d, arom. C); 134.0, 135.8 (2s, arom. C); 142.2 (d, C(8)); 144.8, 145.7 (2s, 

arom. C); 150.1 (s, C(6)); 152.5 (s, C(4)); 153.3 (d, C(2)); 155.8 (s, arom. C); 159.1 (s, arom. 

C); 164.9, 171.4, 172.6 (3s, CO). ESI-MS: 1041.29 ([M+H]+). 

 

N6-Benzoyl-2'-(butyldithio)-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine 3'-[6-(CPG-

Amino)heptanoate] (126).  

A suspension of LCAA-CPG (1.3 g, 500Å, Millipore), 126 (122 mg, 0.12 mmol) and iPr2NEt 

(1.3 ml) in DMF (5.2 ml) was shaken for 16 h at 20°. After filtration, the solid was washed 

with DMF and CH2Cl2, suspended in pyridine (1.2 ml) and Ac2O (0.8 ml), and shaken for 2h 

at 20°. After filtration, the solid was washed with DMF and CH2Cl2, and dried to give 127: 

loading: 30 µmol/g. 

 

RNA-sequence 5'-monophosphate-r(CCCCACC-[2’-(butyldithio)-2’-deoxy]A) (S39).  

The sequence was assembled from 60 mg of 127 using the standard conditions for the 

assembly of 2’-O-TOM-protected ribonucleoside phosphoramidites (Pitsch et al. 2001), but 

employing a modified oxidizing reagent: 20 mM I2 in THF/Py/H2O 7:2:1. After the final 

detritylation, the solid support was washed with (iPr)2NH/MeCN 1:9 for 20 min (flow-rate 2.5 

ml/min). Cleavage from the solid support and deprotection was carried out with 12M NH3 in 

MeOH (1ml) for 6h at 20°. The supernatant was removed by centrifugation and evaporated to 
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dryness; the residue was treated with a THF soln. (1 ml) of Bu4NF.3H2O (1M) and AcOH 

(0.5M) for 3h at 20°, diluted with aq. Tris-HCl (1 ml, 1M, pH 7.4) and evaporated to a volume 

of 1 ml. After desalting on a NAP cartridge, the crude product was purified by ion-exchange 

HPLC: Pharmacia Source 15Q (4.6x100 mm), flow 2.5 ml/min; eluent A: 12 mM Tris.HCl 

(pH 7.4), 6M urea; eluent B: 12 mM Tris.HCl (pH 7.4), 2M NaCl, 6M urea; detection at 260 

nm, elution at 25°. AE-HPLC (10 - 30% B in 30 min, 3 injections): tR 17.8 min. The product 

containing fractions were concentrated to ca. 40% of their initial volume and purified by RP 

HPLC (pH 5.5, A/B 9:1→A/B 7:3 (30 min). The pooled product containing fractions were 

evaporated to 1/3 of the volume and finally desalted on a Sepak cartridge: 30 oD of pure S39 

(25% yield based on 6). RP HPLC (pH 3.5): tR 19.8 min (100%); LC-MS (ESI): m/z = 2'611 

(calc. 2'611). 

 

Experiments in Table VI.1. 

General procedure for deprotection of S39 and aminoacylation of S36: To an aq. soln. of S39 

(0.19 mM, 27 µl, concentration determined spectrophotometrically at 260 nm) was added an 

aliquot of the indicated buffer (c = 0.1M, 27 µl) followed by an aq. soln. of TCEP (6 µl, c = 

10, 25 or 100 mM, resulting in 1.0, 2.5 or 25 mM soln.s, resp., see Table, prior to the addition, 

the pH of these TCEP stock soln.s was adjusted with aq. NaOH) in the corresponding buffer 

(c = 50 mM) and incubated at 25°. After 30 min, an aliquot of 20 µl was withdrawn and 

analyzed by RP HPLC (elution at pH 3.5). To the remaining reaction mixture, a soln. of 116 

in DMF (4 µl, c = 10, 5 or 2.5 mM, resulting in 12, 6 or 3 equivalents, resp., see Table) was 

added and incubated at the indicated temperature. Aliquots of 20 µl were withdrawn after 10 

and 50 min and analysed by RP-HPLC (pH 3.5). For experiments at 37°, the crude S36 was 

pre-incubated at 37° before the addition of 116. Identical experiments with the parent RNA 

sequence 
=

O3PO-r(CCCCACCA) were carried out; according to HPLC and ESI-MS analyses, 

no aminoacylated or other products were formed, respectively. 

 

Isolation and characterization of S36: To an aq. soln. of S39 (0.19 mM, 81 µl),  an aq. AcOH-

NaOH soln. (0.1M, 81 µl, pH 5.0) was added, followed by an aq. soln. of TCEP (25 mM, 18 

µl, in 0.05M AcOH-NaOH soln., pH 5.0). After 30 min incubation at 25°, the product soln. 

was desalted on a NAP cartridge. Characterization of S36: RP HPLC (pH 3.5): tR 14.0 min 

(100%, Fig. VI.6b); ESI MS (neg mode, Fig. VI.6f): m/z = 2523 (calc. 2523). 
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Experiment in Figure VI.7.  

To an aq. soln. of S39 (0.19 mM, 27 µl) was added aq. Tris-HCl buffer pH 7.4 (c = 0.1M, 27 

µl), followed by an aq. soln. of TCEP (10 mM, 6 µl, in 0.05M Tris-HCl buffer, pH 7.4). After 

30 min at 25°, an aliquot of 20 µl was withdrawn and analyzed by RP HPLC (elution at pH 

3.5). To the remaining reaction mixture, a soln. of 116 in DMF (10 mM, 4 µl) was added and 

the soln. was incubated at 37°. Aliquots were taken after 2, 10, 20, 40, 50, 80, 120 and 180 

min, respectively, and analyzed by RP-HPLC (pH 3.5, see Fig. VI.7b for an example obtained 

after a reaction time of 2 min). By integration, the ratio of S36, S38 and S37 was determined 

in each chromatogram and the ratio of (S38+S37) / (S36+S38+S37) was plotted against the 

reaction time (Fig. VI.7a). 

 

Hydrolysis studies in Figure VI.8.  

a) Hydrolysis of S38: An aq. soln. of pure S38 (c = 8 µM, 900 µl, obtained by HPLC 

purification and desalting as described above) was incubated for 2 min at 25° or 37°, resp. 

Then, an aq. Tris-HCl soln. (1M, pH 7.4, 100 µl) was added and the incubation was continued 

at 25° or 37°. At different time intervals, aliquots were withdrawn, treated with AcOH (→ pH 

3) and analyzed by RP HPLC (pH 3.5). The integral ratios between signals of S38 and S36 

were translated into individual pseudo-first order rate constants (Fig. VI.8b): k (37°) = 0.075 

min-1; k (25°) = 0.02 min-1. 

b) Hydrolysis of S37: A desalted 3:1 mixture of S37 and S38 (total c = ca. 8 µM, 900 µl, 

obtained at pH 5.0 as described above) was incubated for 2 min at 37°. Then, an aq. Tris-HCl 

soln. (1M, pH 7.4, 100 µl) was added and the incubation was continued at 37°. At different 

time intervals (2, 4, 8, 12 and 24 min), aliquots were withdrawn, treated with AcOH (→ pH 3) 

and analyzed by RP HPLC (pH 3.5). The disappearance of the signal of S37 was translated 

into an pseudo-first order rate constant (Fig. VI.8b): k (37°) = 0.15 min-1. 

Graph shown in Fig. VI.8c: From the rates of hydrolysis k1(S37→S38) = 0.15 min-1 and 

k2(S38→S36) = 0.075 min-1, the line graphs shown in Fig. VI.8c were obtained according to 

the following equations: [S37]t = [S37]0*exp(–k1*t); [S38]t = [([S37]0*k1)/(k1–k2)]*[exp(–

k2*t)–exp(–k1*t)]; [S36]t = [S37]0*(1+[k1*exp(–k2*t)–k2*exp(–k1*t)]/[k2–k1]). The 

experimentally determined amounts of S36, S38 and S37, obtained at different times (see 

above), are also shown in the graph (as points). 

Hydrolysis of 116: A soln. of 116 in DMF (c = 10 mM, 50 µl) was added to  an aq. Tris-HCl 

soln. (0.1M, pH 7.4, 950 µl, pre-incubated at 25° or 37°). At different time intervals, aliquots 

were withdrawn, treated with AcOH (→ pH 3) and analyzed by RP HPLC (pH 3.5, gradient 
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A→B in 30 min, full loop injection). The dissapearance of 116 (tR = 19.3 min) was translated 

into individual pseudo-first order rate constants: k (25°) = 0.007 min-1, k (37°) = 0.07 min-1. 

 

Experiment in Figure VI.9.  

Simultaneous deprotection of S39 and aminoacylation of S36; selective cleavage of S37 to 

S38; isolation and characterization of S38: To an aq. soln. of S39 (0.19 mM, 81 µl),  an aq. 

AcOH-NaOH soln. (0.1M, 81 µl, pH 5.0) was added and the mixture was incubated at 37° for 

2 min. Then, a soln. of 116 in DMF (4 mM, 18 µl) was added, followed by an aq. soln. of 

TCEP (25 mM, 18 µl, in 0.05M AcOH-NaOH soln., pH 5.0). After 30 min incubation at 37°, a 

20 µl aliquot was analyzed by RP HPLC (pH 3.5, see Fig. VI.9a). To the remaining soln., an 

aq. soln. of NaN3 (1.5 mM, 480 µl) was added and incubated for 30 min at 25°. The reaction 

mixture was diluted with H2O (340 µl), desalted on a NAP cartridge and characterized by RP 

HPLC (pH 3.5, Fig VI.9b). The product S38 was obtained in pure form by RP HPLC 

purification at pH 3.5, concentration of the product containing fraction to ca. 60% of its initial 

volume, desalting on a NAP cartridge, followed by immediate addition of AcOH (1% final 

concentration) and lyophilization. Characterization of S38: RP HPLC (pH 3.5): tR 16.9 min 

(100%); ESI MS (neg mode, Fig. VI.6g): m/z = 2671 (calc. 2671). 

 

Isolation and characterization of S37: To an aq. soln. of S39 (0.19 mM, 81 µl), an aq. AcOH-

NaOH soln. (0.1M, 81 µl, pH 5.0) was added. Then, a soln. of 116 in DMF (25 mM, 18 µl) 

was added, followed by an aq. soln. of TCEP (25 mM, 18 µl, in 0.05M AcOH-NaOH soln., 

pH 5.0). After 30 min incubation at 25°, a 20 µl aliquot was analyzed by RP HPLC (pH 3.5), 

which showed S37 and S38 in a 9:1 ratio. The remaining product soln. was desalted on a NAP 

cartridge and stabilized immediately by addition of AcOH (final concentration 1%). 

Characterization of S37: RP HPLC (pH 3.5): tR 16.9 min (S38, 10%) and 18.0 min (S37, 

90%); ESI MS (neg mode, Fig. VI.6h): m/z = 2818 (S37, 90%, calc. 2819) and 2671 (S38, 

10%, calc. 2671). 

 

S-phenyl-Nα-Boc-thiobiocytinate, trifluoroacetate salt. (129).  

A soln. of N(α)-Boc-biocytin (470 mg, 1.0 mmol) in a mixture of dry DMF (10 mL) on MS 

was treated successively with iPr2NEt (130 mg, 1.0 mmol), BOP [(Benzotriazol-1-

yloxy)tris(dimethylamino)phosphonium hexafluorophosphate] (440 mg, 1.0 mmol), 

thiophenol (120 mg, 1.1 mmol) and stirred for 10 min at 20°. Workup and CC (SiO2 (20 g), 

CH2Cl2/MeOH 19:1 → 4:1). The fractions containing the product were collected and 

evaporated (bath 20°) under stream of Argon. (oxidation observed during first attempt) gave 
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129 (440 mg, 78%). Colourless solid. TLC (CH2Cl2/MeOH 1:9): Rf 0.29. 1H-NMR (400 

MHz, CD3OD): 1.39–1.79 (m, 7 CH2, 3 CH3); 2.19 (t, J = 7.3, H2CCO)); 2.72 (d, J = 12.7, 

SCH2); 2.93 (dd, J = 4.9, 12.7, SCH); 4.22 (dd, J = 4.6, 9.6, H–C(α)); 4.30 (dd, J = 4.7, 7.8, 

H–CNH); 4.48 (dd, J = 4.8, 7.7, H–CNH); 7.35–7.48 (m, 5 arom. H). 13C-NMR (100 MHz, 

CD3OD): 23.3 (t, CH2); 25.9 (t, CH2); 27.9 (q, Me3C); 28.5, 28.8, 29.0, 31.5, 35.9, 39.0 (6t, 

CH2); 40.1 (t, CH2S); 48.5, 48.7 (2t, CH2); 55.6 (d, CHS); 61.4, 62.4 (2d, CH2CH–

NHCONH–CH); 80.1 (d, C(α)); 128.3 (s, arom. C); 129.3, 129.4, 134.9 (3d, arom. C); 157.1, 

165.1, 175.0, 201.1 (4s, CO). ESI-MS: 566.34 ([M+H]+). 

 

S-phenyl-thiobiocytinate, trifluoroacetate salt. (130).  

A soln. of 129 (440 mg, 0.78 mmol) in CH2Cl2 (8 mL) was treated with TFA (1.6 mL, 20.8 

mmol) and stirred for 2h at 20°. The solvent has been evaporated to dryness and the residue 

crystallized from Et2O gave 130 (442 mg, 98%). White solid. 1H-NMR (400 MHz, DMF): 

1.30–1.81 (m, 7 CH2); 2.19 (t, J = 7.3, H2CCO)); 2.72 (d, J = 12.7, SCH2); 2.93 (dd, J = 4.9, 

12.7, SCH); 2.00–2.23 (m, CH2); 2.68–2.82 (m, CH2); 3.16–3.25 (m, CH2); 3.64 (br. s, NH3
+) 

4.22 (dd, J = 4.6, 9.6, H–C(α)); 4.27–4.32 (m, CH2); 4.49 (br. t, J ≈ 7.0, H–CNH); 4.63 (t, J = 

6.3, H–CNH); 7.55–7.60 (m, 5 arom. H); 8.90 (br. s, 2 NH). 13C-NMR (100 MHz, DMF): 

47.5, 51.2, 54.0, 55.7, 55.9, 56.9 (6t, CH2); 61.1 (t, CH2S); 63.8, 65.7 (2t, CH2); 81.4 (d, 

CHS); 84.8, 85.5 (2d, CH2CH–NHCONH–CH); 87.1 (d, C(α)); 151.5, 155.2 (2d, arom. C); 

155.7 (s, arom. C); 160.3 (d, arom. C); 188.5, 197.9, 221.2 (3s, CO). ESI-MS: 466.34 ([M-

TFA+H]+).  
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