ATYPED INTERMEDIATE LANGUAGE AND ALGORITHMS
FOR COMPILING SCALA BY SUCCESSIVE REWRITINGS

THESE N° 3509 (2006)

PRESENTEE LE 24 NOVEMBRE 2006

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
Laboratoire de méthodes de programmation
SECTION D'INFORMATIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Philippe ALTHERR

ingénieur informaticien diplomé EPF
de nationalité suisse et originaire de Speicher (AR)

acceptée sur proposition du jury:

Prof. A. Schiper, président du jury
Prof. M. Odersky, directeur de these
Prof. E. Ernst, rapporteur
Prof. C. Petitpierre, rapporteur
Prof. J. Vitek, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Lausanne, EPFL
2006

Remerciements

J’aimerais tout d’abord remercier mon directeur de thése Prof. Martin
Odersky de m’avoir offert la possibilité de réaliser cette thése. Travailler au
sein de son laboratoire fut particulierement intéressant et enthousiasment.
Je le remercie de m’avoir accorder sa confiance méme dans les moments
les plus difficiles. Je le remercie en particulier de n’avoir jamais hésiter a
faire le nécessaire afin de prolonger les différents délais que je m’entétais
a ne jamais tenir.

Je remercie Vincent Cremet avec qui j'ai beaucoup travaillé, particu-
lierement durant les dernieres années. Beaucoup d’idées présentées dans
cette these ont en fait été développées en étroite collaboration avec lui.
J’aime a penser que dans une certaine mesure nous nous sommes mutuel-
lement supervisés durant nos theéses.

Je remercie aussi Michel Schinz avec qui j’ai partagé mon bureau du-
rant de nombreuses années et avec qui j’ai eu d'innombrables et intéres-
santes discussions sur des sujets aussi divers que variés.

Je suis tres reconnaissant a tous mes collegues qui ont contribué a 1'am-
biance presque ludique qui régnait au sein du laboratoire et avec qui j'ai
partagé de nombreuses heures a la fois durant et en dehors du travail. Je
pense tout particuliérement a Sébastien Briais, Daniel Biinzli, Gilles Dubo-
chet, Rachele Fuzzati, Stéphane Micheloud et Christine Rockl.

Je suis également reconnaissant aux autres membres du laboratoire qui
contribuaient eux aussi a la bonne ambiance et plus particulierement a
Matthias Zenger pour les discussions tres animées que nous avons eues.

J’aimerais encore exprimé ma gratitude aux membres de mon jury de
these, Prof. Erik Ernst, Prof. Claude Petitpierre, Prof. André Schiper et
Prof. Jan Vitek pour avoir pris le temps de lire et évaluer ma thése.

Finalement, je remercie mes parents de m’avoir supporté durant toutes
ces années et mon frére René et mes amis Julien et Alex de m’avoir souvent
rappelé qu’il existait aussi autre chose en dehors du travail.

Résumé

Scala est un langage de programmation a usage général développé a
I’EPFL. Il combine des concepts provenant des langages orientés-objets
a d’autres provenant des langages fonctionnels. Scala est fortement typé
est posséde un systéme de types relativement complexe qui incorpore de
nombreux concepts avancés.

Le compilateur Scala est consistuté d’une succession de phases qui ré-
écrivent le code source en des versions de plus en plus simples jusqu’au
stade ol le code peut étre trivialement traduit en code objet. Il est attendu
que chaque phase produise du code Scala correctement typé.

Cette these commence par décrire en détails les constructions les plus
importantes de Scala ainsi que son systéme de types. Elle s’intéresse en-
suite & deux phases de réécriture du compilateur dont I'implantation s’est
révélée beaucoup plus difficile que prévue. En effet, durant le dévelop-
pement du compilateur, il a été découvert que certains programmes ne
peuvent pas étre simplifié en les réécrivant si on se restreint a du code
Scala correctement typé.

Les deux phases posant probleme sont décrites en détails ainsi que les
programmes qui ne peuvent pas étre correctement réécrits. Un langage
intermédiaire typé qui généralise certains aspects de Scala et permet ainsi
de réécrire tous les programmes est décrit. Les deux phases de réécriture
sont ensuite décrites formellement a I'aide de ce langage intermédiaire.

Mots-clés : langage de programmation, compilation, systeme de types,
langage intermédiaire, réécriture de programmes

Abstract

Scala is a general-purpose programming language developed at EPFL.
It combines concepts coming from object-oriented languages with other
ones coming from functional languages. Scala is strongly typed and comes
with a relatively complex type system, which incorporates several ad-
vanced concepts.

The Scala compiler consists of successive phases, which rewrite the
source code into ever simpler versions until the code is simple enough
such that in can be trivially translated into object code. It is expected that
each phase generates well-typed Scala code.

This thesis starts by describing in details the main language construc-
tions of Scala along with its type system. It then focuses on two rewriting
phases whose implementation was much more difficult than expected. In-
deed, during the development of the compiler, it was discovered that some
programs cannot be simplified by rewriting them if the produced code has
to be well-typed Scala code.

The two problematic phases are described in details as well as the pro-
grams that cannot be correctly rewritten. A typed intermediate language
that generalizes some aspects of Scala and thus enables the rewriting of
all programs is described. The two rewriting phases are then formally de-
scribed using this intermediate language.

Keywords: programming language, compilation, type system, interme-
diate language, program rewriting

Contents

1 Introduction 1
11 Scope 1
1.2 The Scala Programming Language 2
1.3 TheJava Virtual Machine 3
14 TheScalaCompiler 3
1.5 Typed Rewritings 5
1.6 ScalaVersions 6
1.7 Outline e 7

2 The Scala Language 9
2.1 SyntacticSugar 9
22 AlJava-likeLanguage 10
2.3 AnObject-Oriented Language 11

2.3.1 Packages, Classes, Traits and Objects 11
232 ClassHierarchy 12
233 ClassMembers 13
234 Constructors. 15
2.3.5 Instance Creations 17
2.3.6 Primitive Values 17
24 TypeSystem 18
25 TypeParameters. 19
251 TypingRules 21
2.6 Parameter Variance 24
2.7 Singleton Types and Stable Paths 25
271 TypingRules 26
28 VirtualTypes. oo 28
281 TypingRules 29
29 RefinedType 30
291 TypingRules 31
2.10 Class Type Parameters vs. Virtual Types 33

2101 Safety.o 34

CONTENTS

2102 Wildcards 35
2.10.3 Constructors. 36
211 InnerClasses e 37
2111 EnclosingInstances 37
2.11.2 InstanceCreations 38
2.11.3 Scala’sInnerClasses 40
2114 TypingRules 42
2.11.5 Qualified Class Types as Refined Types 44
212 MIXINS o o e e e e e 45
213 ExplicitSelf Types L. 46
Lambda Lift 49
3.1 Introduction 49
3.2 Classical Algorithm 52
321 Computing Extra Parameters 52
3.2.2 Adding Extra Parameters and Arguments. 54
3.2.3 Substituting References to Free Variables 55
3.24 Lifting Functions 55
3.3 GeneralizationtoClasses 56
3.3.1 [LiftingLocalClasses 56
332 Constructors. e 57
333 InnerClasses 58
3.34 Local Definitions 58
3.3.5 Generalized Algorithm 60
34 Mutable Variables, 60
35 Typinglssues 62
3.6 Alternative Method 64
Explicit Outer 67
41 Introduction 67
42 BaseAlgorithm 69
43 LostPrivileges L. 71
44 LostQualifiers 72
45 Typinglssues 74
46 ExplicitSelf Types 76
The Core Language 79
51 Introduction 79
52 Syntax 82
521 Symbols 0 82

522 Definitions 85

CONTENTS XI

523 Expressions 86

524 Example L. 88

525 SyntacticSugar 0oL 89

52.6 Stable Expressions 91

5.2.7 Outer Fields vs. Indexed Current Instances 92

528 FlatSyntax. 95

53 Encodings o 97
5.3.1 Classes and Class Members 97

532 SingletonObjects 100

533 Packageso 100

534 JavaClasses 101

535 Types 102

5.3.6 Constructors and Instance Creations 106

54 TypeSystem 109
54.1 Auxiliary Functions 109

542 TypingRules 114

543 Well-FormednessRules 117

55 Advanced Encodings 120
5.5.1 Covariant Fields and Methods 121

552 ExplicitSelf Types 125

5,53 CustomOuterFields 126

56 LambdalLift, 127
5.6.1 Introduction 127

5.6.2 Computation of the ExtraSets 130

5.6.3 Program Rewriting 133

57 ExplicitOuter 136
571 Introduction 136

572 Implementation. 141

6 Scaletta 143
6.1 Introduction 143
6.2 Typing Virtual Types with Inner Classes 144
6.3 UntypedCalculus 145
631 Syntax 146

6.3.2 Semantics 147

633 Examples 149

6.34 SyntacticSugar 150

635 Methods 150

6.3.6 Blocks 152

6.3.7 Functions 152

6.3.8 Safety and Confluence 153

XII CONTENTS
6.39 AliasAnalysis 153

6.4 TypeSystem 154
641 Types 154

642 Annotations e 155

6.4.3 Abstract Evaluation 155

6.44 Well-formedness 157

6.45 AliasAnalysis 158

6.5 Typing Abstract Inheritance 159
6,51 FieldRoles. 160

6.52 Opverriding of Type Fields 160

653 Holes 162

6.54 FormalizingHoles 164

6.5.5 Overriding of Outer Fields 164

6.5.6 Formalizing Class Exclusion 166

6.5.7 Group Exclusion 168

6.6 Encodings 169
6.6.1 Methods 169

6.6.2 Class Constructors 171

6.6.3 Interfacesand Mixins 172

6.6.4 Type Abstractions. 174

6.7 Undecidability and Typing Strategies 175
6.8 Scalettavs. Core Language 176
6.9 RelatedWorks 177
7 Conclusion and Future Work 179
701 Scala 179
72 CoreLanguage 179
7.3 Scalettao 180
Bibliography 181
Index 185

Curriculum Vite 189

List of Figures

51
52
53
54
55
5.6
5.7
5.8
59
5.10
511
5.12
5.13
5.14
5.15
5.16
517
5.18
5.19
5.20
521
522
523
5.24
5.25

6.1
6.2
6.3
6.4
6.5

Core Syntax (nested version) 83
Core Syntax (flatversion) 94
Core Constructor Functions 108
Core Auxiliary Functions 110
Core Auxiliary Functions Implementation (1) 111
Core Auxiliary Functions Implementation (2) 112
Core Auxiliary Functions Implementation (3) 113
Core Typing Relations 114
Core TypingRules (1) 115
CoreTypingRules (2) 116
Core TypingRules(3) 117
Core Well-Formedness Relations 118
Core Well-Formedness Rules (1) 119
Core Well-Formedness Rules (2) 120
Path Equality of Explicit Self Fields 126
Lambda Lift Set Computation Functions 130

Lambda Lift Set Computation Functions Implementation (1) 131
Lambda Lift Set Computation Functions Implementation (2) 132

Lambda Lift Rewriting Functions 133
Lambda Lift Rewriting Functions Implementation (1) 134
Lambda Lift Rewriting Functions Implementation (2) 135
Lambda Lift Rewriting Functions Implementation (3) 136
Explicit Outer Rewriting Functions 140
Explicit Outer Rewriting Functions Implementation (1) . . . 141
Explicit Outer Rewriting Functions Implementation (2) . . . 142
ScalettaSyntaxo o oL 146
Scaletta Semantics oL 147
Scaletta Annotations 155
Scaletta Abstract Evaluation 156
Scaletta Well-Formedness Relations 157

XIV LIST OF FIGURES

6.6 Scaletta Hole Resolution 165
6.7 Scaletta Class Exclusion 167

Chapter 1

Introduction

1.1 Scope

Scala is a new strongly typed general-purpose programming language
with object-oriented and functional aspects. It is a research language de-
veloped by Martin Odersky and his team at EPFL. It incorporates several
advanced concepts from recent research.

However, Scala is not only a research language, it aims also at being
of practical use for large-scale applications. An important library and a
compiler supporting separate compilation and targeting the Java Virtual
Machine were implemented. They are officially distributed since January
2004 and used in several courses at EPFL.

The Scala compiler was designed as a succession of code rewritings
phases. The source code is first parsed into an intermediate language.
This intermediate language is more or less a subset of the Scala language
or, if one prefers, a desugared version of Scala. It is shared by all rewrit-
ing phases. The code is then successively rewritten by each phase, which
simplify it by replacing complex constructs by simpler ones. After the last
phase, the code is simple enough such that it can finally be trivially trans-
lated into code for the Java Virtual Machine.

The intermediate language is a typed one. To our surprise, we dis-
covered during the implementation of the Scala compiler that this posed
several unexpected problems for some of our rewriting phases. Indeed,
with our typed intermediate language there were programs that could not
be rewritten in a type safe way by some of our phases.

This thesis focuses on the problems raised by typed rewritings. First,
the problematic phases and the programs that cannot be rewritten are de-
scribed. The Core language, a typed intermediate language that resolves

2 CHAPTER 1. INTRODUCTION

the issues is then introduced. Finally, the problematic phases are formally
described using the Core language.

1.2 The Scala Programming Language

Scala is a purely object-oriented language; like in Smalltalk, every value is
an object (an instance of some class) and every operation is a method call
(or a message send in Smalltalk terms). Classes can be defined pretty much
everywhere; at the top-level but also within other classes (inner classes),
within code blocks (local classes), even within expressions (anonymous
classes). There is special syntax for classes with exactly one instance (sin-
gleton classes). Classes can inherit from a single class. They can addition-
ally mixin one or more classes. This is similar but more powerful than the
implementation of interfaces in Java.

Scala is also a functional language; every function is also a value. How-
ever, it is not purely functional as objects can have mutable states and
functions can perform side-effects. Like classes, functions can be defined
almost everywhere; within classes (methods), within code blocks (local
functions), within expressions (anonymous functions) but unlike classes,
they cannot be defined at the top-level. Scala supports several other fea-
tures commonly found in functional languages like function closures, par-
tial function applications, algebraic data-types and pattern matching.

The functional aspects are smoothly integrated with the object-oriented
aspects. For example, closures are instances of special classes and alge-
braic data-types are a special kind of classes.

Scala is a strongly typed programming language. Its type system sup-
ports several typing features. These include common features like class
types, function and class polymorphism but also less common features
like variant class type parameters, virtual types, qualified class types and
compound types, which let one specify that a value has to be an instance
of a list of classes. There are even more exotic features like singleton types,
which denote types including exactly one value, refined types, which are
types that express constraints on class members, and explicit self types,
which are annotations that specify the type of the current instance of a
class.

From the beginning, Scala was designed with the aim of making it a
possible successor to Java. It was therefore designed to run on the Java
virtual machine and to inter-operate smoothly with existing Java code. For
example, every Java class can be used as a normal Scala class. Thus, all
Java libraries are directly accessible by Scala programs. Although Scala is

1.3. THE JAVA VIRTUAL MACHINE 3

not an extension of Java, it remains very Java-like. Most Java concepts are
also present in Scala and often have exactly the same syntax, semantics
and/or typing rules.

Chapter 2 gives a much more in depth overview of Scala and its type
system. It is however mainly targeted for compiler writers. An overview
targeted for advanced programmers is available in [20]. There is also more
introductory material available in [28, 21, 19]. Examples relying on ad-
vanced features of Scala are described in [26, 27]. A complete description
of Scala is detailed in the official language specification [22]. The core as-
pects of Scala have been formalized in the vObj calculus [23].

1.3 The Java Virtual Machine

The Java virtual machine [17] is an abstract computing machine. It consists
of a stack, a garbage collected heap and a stack-based processor. Programs
consists of a set of class files and the name of the class containing the
entry point.

Each classfile fully describes a single class. At startup, the Java virtual
machine loads the class file of the class containing the entry point, initial-
izes the class and invokes the entry point method. If other class files are
needed, they are loaded on the fly when the first instruction referencing
them is executed.

The Java virtual machine guarantees that programs will never corrupt
the memory. It achieves this by severely restricting the permitted opera-
tions. For example, neither the heap nor the stack can be directly accessed;
there is nothing like pointer arithmetic. The Java virtual machine also re-
lies on typed code; every class file is first type checked before any of its
method is executed.

The Java virtual machine is very Java centric. A class files is more or
less equivalent to a binary version of a Java 1.0 class with linearized code
(labels and jumps instead of block structures).

1.4 The Scala Compiler

The Scala compiler consists of a front-end and a back-end. Both parts share
the same typed intermediate language. The front-end reads the source
files, checks whether they are syntactically and semantically correct and if
so generates a term of the intermediate language representing the content

4 CHAPTER 1. INTRODUCTION

of the source files. This term is then passed to the back-end, which succes-
sively rewrites it in ever simpler forms and finally compiles it into a set of
class files.

The intermediate language is a striped down version of Scala consist-
ing only of the most fundamental constructs of Scala. It is much simpler
than Scala but remains expressive enough to encode any Scala program.
Although much simpler than Scala, turning it into class files is still not
trivial and requires further processing.

The intermediate language is much simpler than Scala mainly for two
reasons. First of all, several language constructs can be desugared into
more fundamental ones. The second reason has to do with the fact that
within the compiler, all definitions (classes, functions, variables, etc) have
an identity and are represented by a unique symbol. References to defini-
tions like for example in class types, method calls or variable assignments
are represented by references to their unique symbol. This means that ref-
erences are never ambiguous like in Scala where a name analysis is usually
necessary to determine which definition is meant. This reduces consider-
ably the number of required typing rules.

The front-end consists of a parser and an analyzer. The parser reads the
source files, signals syntactic errors and produces a syntactic tree repre-
senting the content of the source files. The analyzer then verifies that the
tree is semantically correct and if so translates it into a term of the inter-
mediate language. In reality the verification and the translation are done
in parallel and many semantic errors correspond to situations where the
translation is impossible. The translation process mainly involves name
analysis, type analysis and type inference. Each one of these three tasks is
complex in itself. In addition to that each one relies on the two other ones.
Therefore all three tasks have to be performed in parallel. This makes the
analyzer one of the most complex part of the compiler.

The back-end consists of several rewriting phases and a code generator.
Each rewriting phase takes a term of the intermediate language and rewrites
it into an equivalent but simpler one. By simpler we mean either that the
new term uses a smaller subset of the intermediate language or that it is
in a form that is easier to translate into class files. The term resulting
from the application of all phases is simple enough to be trivially trans-
lated into a set of class files by the code generator. As all phases simply
rewrite terms of the intermediate language, which is a subset of Scala, the
whole compiler can be viewed as a succession of source to source trans-
formations, which transform the initial Scala program into an equivalent
one that can be trivially compiled into class files.

There are five main rewriting phases: trans match, lambda lift, explicit

1.5. TYPED REWRITINGS 5

outer, expand mixin and type erasure.

The trans match phase translates pattern matching expressions into reg-
ular conditional expressions. The techniques used in the Scala compiler to
perform this translation are described in [9, 8].

The lambda lift phase eliminates local classes and local functions by lift-
ing them into their first enclosing class. Thus, it transforms all local classes
into inner classes and all local functions into methods. This phase is de-
scribed in Chapter 3.

The explicit outer phase eliminates inner classes by lifting them to the
top-level. The lifted classes are augmented with an additional field con-
taining the current instance of their enclosing class. This field is called
the outer field, hence the name of the phase. This phase is described in
Chapter 4.

The expand mixin phase eliminates mixins. This phase has been de-
scribed by Schinz in [29].

The type erasure phase eliminates all the types that are not supported
by the type system of the Java virtual machine. This implies more or less
the elimination of all types that are not class types. Unsupported types
are not really eliminated but rather replaced by (erased to) class types that
approximate the original types. A similar transformation is required to
compile GJ to the Java virtual machine. This transformation has been for-
malized by Igarashi, Pierce and Wadler in [12].

1.5 Typed Rewritings

Using a typed intermediate language has advantages but also some dis-
advantages. An obvious disadvantage is that it forces all code rewritings
to handle not only value expressions but also type expressions. Thus, it
complicates the specification and the implementation of these rewritings.

A typed intermediate language is helpful in the implementation of the
code generator, which translates the intermediate language into class
files. As the class files consists themselves of typed code, it would be
necessary to compute all the required types during the generation of the
class files if the types were not already present in the intermediate lan-
guage. This would obviously complicate the implementation of the code
generator.

The compiler currently performs almost no optimization but it is en-
visaged to add new phases to perform code optimizations. Such phases
can greatly benefit from a typed intermediate language. Indeed, many op-
timizations can be performed only in very specific conditions that often

6 CHAPTER 1. INTRODUCTION

rely on the type of the involved terms. For example, a method call can
be inlined only if it is possible to determine at compile-time which imple-
mentation will be called at runtime. In several contexts, by determining
the type of the receiver object of a call to an abstract method, it is possible
to determine that it is an instance of a class that has a final implementation
of that method. Thus, although the called method is an abstract one, it can
be established which implementation will be called at runtime.

The presence of types complicates the implementation of code rewrit-
ings but at the same time it also eases their debugging. Indeed, if a rewrit-
ing phase contains a bug, chances are great that it will generate ill-typed
code. It is therefore possible to localize many bugs simply by type check-
ing the code resulting from each rewriting phase.

Type checking rewritten code was indeed a very effective way to de-
tect bugs. However, many bugs concerned error in the rewriting of types.
Thus, in some sense, the types were a great bug detection mechanism to
detect bugs in the detection mechanism.

In retrospect, it is unclear whether the presence of types shortened the
development of the compiler by easing the detection of bugs or lengthened
it by introducing many additional bugs. It is however clear that overall
their presence was very positive. Indeed, it made us aware of many inter-
actions between different aspects of the type system that we had not even
imagined. It forced us to formalize some poorly understood aspects of
Scala and this revealed several under-specifications and even some safety
issues that required some changes in the Scala specification.

One thing we discovered during the development of the compiler is
that some of its rewriting phases, namely lambda lift and explicit outer,
cannot be applied to certain combination of features although they can
be applied to each feature considered separately. For example, any Scala
program involving inner classes but no virtual types can be rewritten to
an equivalent Scala program without inner classes but there are programs
involving both inner classes and virtual types that cannot be rewritten to
equivalent Scala programs without inner classes. This is only possible if
some aspects of Scala are generalized. That is why the Core language de-
scribed in Chapter 5 generalizes some aspects of Scala.

1.6 Scala Versions

Scala is a young and dynamic language. Its compiler is actively main-
tained and new versions are regularly distributed. The Scala language
itself is also still evolving but more slowly and only through gradual and

1.7. OUTLINE 7

smooth steps. Nonetheless, since the work for this document began, a new
version of the language called Scala 2 was developed and distributed.

Everything described in this document refers to the version of Scala
now known as Scala 1 and the unqualified name Scala always designates
Scala 1. However, this does not imply that this document does not pertain
to Scala 2. Indeed, the two versions of Scala differ only in small details.
Therefore most things described in this document also apply to Scala 2.

One important change that occurred in the compiler of Scala 2 is the
reordering of the various rewriting phases. In the new compiler, the type
erasure phase comes early and precedes most other phases, including the
lambda lift and the explicit outer phases. This has this advantage that all
these phases do not have to handle the most complex types of the Scala
language and need only to handle very simple types. Thus, the new com-
piler avoids many problems described in this document. There are how-
ever also some disadvantages. For example, some optimizations are pos-
sible only if very specific conditions are fulfilled. Determining whether
these conditions are fulfilled is sometimes tricky and in many cases relies
on the presence of precise typing informations. Thus, erasing types early
may prevent a following optimization phase from performing some op-
timizations by depriving it of sufficiently precise typing informations to
let it determine that the required conditions for these optimizations are
fulfilled.

1.7 Outline

Chapter 2 gives an overview of the Scala language. It focuses on the main
constructs of the language, gives an in depth description of its type system
and describes the relationships between the different language constructs
and how they interact. Chapter 3 and Chapter 4 give a description mainly
based on examples of the lambda lift and the explicit outer phases. They
also describe and explain the code examples whose rewriting produce ill-
typed code. Chapter 5 describes the syntax and the type system of the Core
language and gives a formal description of the lambda lift and the explicit
outer phases based on the Core language. Chapter 6 describes Scaletta,
a calculus that inspired in many ways the design of the Core language.
Finally, Chapter 7 concludes.

Chapter 2

The Scala Language

This chapter gives an overview of the Scala language. It assumes a good
knowledge of Java but no preliminary knowledge of Scala. It is not in-
tended as a Scala tutorial but it should be descriptive enough to let the
reader understand Scala code.

This chapter aims at giving an overview of what has to be compiled by
describing the main language constructs and the type system of Scala. The
typing rules associated with each construct are described and related typ-
ing issues are discussed. The relationships and the interactions between
the different constructs are described and it is explained how some con-
structs can encode others.

2.1 Syntactic Sugar

In this chapter we show that several Scala constructs are merely nothing
more than syntactic sugar. The term syntactic sugar usually describes a
language construct that can be translated into another one at parse time.
We use here a slightly broader definition that includes also constructs that
can be translated into other ones but only during the program analysis.

Let us illustrate that with an example. We consider a Java compiler
composed of a parser, an analyzer and a back-end. The parser translates
the source code into a syntactic tree. The analyzer verifies the tree and
translates it into some intermediate code. Finally, the back-end compiles
the intermediate code into class files.

A typical Java construct that is pure syntactic sugar is the if statement
with no else part. The missing else part is equivalent to an else part with
an empty block. This translation can be done by the parser. Therefore,
neither the syntactic tree nor the intermediate code need to represent if

10 CHAPTER 2. THE SCALA LANGUAGE

statements with no else part.

To call an instance method, an instance has to be provided. However,
it is possible to omit the instance if it is the current instance. For example
the method call £() is legal in the following code.

class C { void £ { £O; } }

The call £() means of course this.f(). This looks like syntactic sugar
but strictly speaking it is not because the translation cannot be performed
by the parser. Indeed, if the method f was static the call would mean
C.£(). It is only during the program analysis when the identifier f is re-
solved that this distinction can be made. The initial call can then be safely
translated into this. f (). Therefore, the intermediate code never needs to
represent calls to instance methods with no instance.

The translation of missing instances, like the translation of missing
else parts, reduces the complexity of the intermediate code by reducing
the number of constructs it has to represent. That is why we call both
constructs syntactic sugar.

2.2 A]Java-like Language

When Scala was designed, one aim was to make it a possible successor
to Java or at least a better alternative to Java. Contrary to many other
languages that had a similar goal like for example Pizza [24, 25] or GJ [4],
Scala was not designed as an extension of Java. Instead, it was designed as
a new language that smoothly inter-operates with existing Java libraries
and programs. Thus, regular Java source code is not valid Scala source
code but once compiled it can be easily used by Scala code.

Although, Scala is not an extension of Java, it remains nonetheless very
Java-like. It can certainly be classified in the same language family as Java.
Scala, like Java, is a general-purpose, strongly typed, object-oriented lan-
guage. They both run on the same virtual machine and thus share the
same garbage-collected memory model. They have also very similar no-
tions of packages, classes and class members and in fact every Java class
is also recognized as a regular Scala class and can be used as such in any
context. Most aspects of Scala are either identical to corresponding Java as-
pects or are extensions or generalizations of such aspects. There are only
a few places where Scala behaves differently from Java.

Even the Scala syntax is very Java-like although this is probably not so
obvious at first sight. However, most discrepancies are mainly due to three
syntactic differences. First of all, contrary to Java where only package and

2.3. AN OBJECT-ORIENTED LANGUAGE 11

class definitions start with a keyword, in Scala all definitions start with
a keyword; method definitions start with the keyword def and field and
local variable definitions start with either the keyword val for immutable
ones or the keyword var for mutable ones. The second difference is that
in Scala types are written after the parameter name, the field name or the
method name and parameter list whereas in Java types are written in front
of them. For example, one writes s: String instead of String s. The
third difference is that in Scala there are no statements, only expressions.
For example, the Scala if behaves like the Java ternary operator ?: and
blocks return the value of their last expression. Both can occur within
expressions. Apart from these differences, the Scala syntax is more or less
an extension of the Java syntax. Thus, most valid Java statements and
expressions are also valid in Scala.

At the time when Scala was designed for the first time, the latest ver-
sion of Java was version 1.4. When Scala was designed to inter-operate
smoothly with Java it was done with that version of Java in mind. Since
then Java has evolved and Java 5 with its support for generic types has ap-
peared. Those generic types are currently not yet supported by Scala. So
when it is stated that Scala smoothly inter-operates with Java, one should
understand that is smoothly inter-operates with Java 1.4. Throughout the
rest of this document, the term Java without any other indication will al-
ways designate Java 1.4 and the term Java 5 will be used to designate the
version of Java with generic types.

2.3 An Object-Oriented Language

From the programmer’s perspective, Scala is a pure object-oriented lan-
guage. Like in Smalltalk, every value is an object (an instance of some
class) and every operation is a method call (or a message send in Smalltalk
terms).

2.3.1 Packages, Classes, Traits and Objects

Classes are defined in packages, which play exactly the same role as in
Java. Every Java package is also a Scala package and vice-versa. All classes
excepted the one at the root of the class hierarchy extend exactly one other
class. Each class may additionally mixin one or more other classes. This is
similar but more powerful than the implementation of interfaces in Java. It
is further described in Section 2.12. For now, we will consider that classes
only inherit from their superclass.

12 CHAPTER 2. THE SCALA LANGUAGE

In Scala, there are no interfaces but traits, which are stateless abstract
classes. In Java terms, traits are interfaces with a superclass and which
may have non-abstract methods. Traits enjoy some privileges when they
are used as mixin classes but are otherwise equivalent to abstract classes.

Each Java class is seen as a regular Scala class and each Java interface
as a regular Scala trait. Their inheritance graph remains the same; super-
interfaces are simply seen as mixed-in traits and interfaces as traits extend-
ing the class Object.

A singleton class is a class of which there exists exactly one instance. An
object definition defines such a class and names its unique instance. Here
is an example:

object MyObject extends /* parents =»/ { /+* body =*/ }

This definition is equivalent to the following ones excepted that vari-
able definitions are not allowed at the top-level and that with the object
definition the underlying class remains inaccessible, which effectively pre-
vents further instantiations. This encoding is also somewhat inaccurate
because it does not reflect the fact that objects are created lazy when they
are accessed for the first time.

val MyObject: MyObject$ = new MyObject$();
class MyObject$ extends /* parents =/ { /* body =/ }

In Scala, the term object designates both any instance of some class and
the unique instance of a singleton class. The context usually makes it clear
which one is intended. If necessary, the term singleton object will be used
to specifically designate the latter one.

2.3.2 Class Hierarchy

The class Any is at the root of the class hierarchy. It has only two predefined
subclasses: AnyVal and AnyRef. It may not be extended by user-defined
classes.

The class AnyVal is the base class of all value classes. Instances of value
classes have no identity and are always passed by value. Value classes can-
not be defined by the user; there are only nine predefined ones: Boolean,
Byte, Short, Char, Int, Long, Float, Double and Unit. The first eight ones
correspond to the eight primitive types of Java : boolean, byte, short,
char, int, long, float and double. The class Unit corresponds more or
less to the Java return type void. It is a normal class whose usage is not
restricted to return types. It has a unique instance denoted () and called
unit. In Scala, all functions have to return some value. Those that would

2.3. AN OBJECT-ORIENTED LANGUAGE 13

be of type void in Java are defined with the type Unit and return the value
(). Java methods of type void are seen as if they were of type Unit.

The class AnyRef is the base class of all reference classes. Instances of
reference classes have an identity and are always passed by reference. All
user-defined classes extend directly or indirectly AnyRef. The Java class
Object is seen as if it extended AnyRef.

The class All is at the bottom of the class hierarchy; it inherits from
all other classes. It can neither be extended nor instantiated. The class
Al1Ref is just above the class All; it inherits from all reference classes. It
too cannot be extended but it has a unique instance: the value null. There
is no class A11Val.

2.3.3 Class Members

Class members include methods, fields and inner classes but also virtual
types. In Java, class members are either static or instance members. In
Scala there are no static members; all members are instance members. An-
other difference is that in Scala the default visibility of a member is public.
The private and protected visibility are available but not Java’s package
private visibility.

Static members of a Java class C are seen as instance members of a
pseudo-object C. For example, like in Java, System.out is a legal expres-
sion but out is seen as an instance member of the pseudo-object System.
The pseudo-object System can only be used as a prefix in a member selec-
tion. It is not a real value and cannot be passed around. Package private
members of Java classes are seen as private members.

Methods and fields are described below. Inner classes and virtual types
are described in Section 2.11 and Section 2.8.

2.3.3.1 Methods

Methods are like in Java and like in Java 5 they are covariant in their return
type; their return type can be refined in subclasses. In the code below, the
class A defines an abstract method f with the return type Any. The class B
implements it and refines its return type to A. The class C overrides it with
a new implementation and further refines it return type to C.

abstract class A { def f(a: A): Any; }
class B extends A { def f(a: A): A =a; }
class C extends B { override def f(a: A): C = this; }

14 CHAPTER 2. THE SCALA LANGUAGE

Note that abstract methods are defined simply by omitting their imple-
mentation and method definitions that override an inherited implementa-
tion must be annotated with the keyword override.

Methods are not contravariant in their parameters; the types of their
parameters cannot be widened although this would be perfectly sound.
For example, the type of the parameter a could be widened to Any in the
class C. This would pose no safety issue. However this conflicts with
method overloading. In many cases it would be unclear whether one in-
tends to overload a method or to override it contravariantly. To avoid such
ambiguities, contravariant method overriding is not supported.

2.3.3.2 Fields

Fields, like methods, can be abstract and can be overridden in subclasses
but their type cannot be refined. In the following example, the class A de-
fines an abstract field v, the class B implements it and the class C overrides
it.

abstract class A { var v: Int; }
class B extends A { var v: Int = 0; }
class C extends B { override var v: Int = 1; }

In an instance of a class that overrides a field, all readings and writings
of that field affect the overriding field. The overridden field is however
still present and, like an overridden method, it can be accessed through
a super call. In our example, each instance of C inherits two fields v; one
initialized to 0 and another one initialized to 1. From within the class C,
the first one is accessible with the expression super.v.

Field definitions are syntactic sugar. Each concrete field defines a pri-
vate field and a pair of getter and setter methods. Abstract fields define
just a pair of abstract getter and setter methods. Field readings and writ-
ings are desugared into calls to the corresponding getter and setter meth-
ods. Our example is desugared into the following code.

abstract class A {
def v: Int;
def v_=(v: Int): Unit;
}
class B extends A {
primitive private var v$: Int = 0;
def v: Int = v$;
def v_=(v: Int): Unit = v§ = v;
}

2.3. AN OBJECT-ORIENTED LANGUAGE 15

class C extends B {
primitive private var v$: Int = 1;
override def v: Int = v$;
override def v_=(v: Int): Unit = v§ = v;

}

The keyword primitive is not a real Scala keyword. In our examples,
it is used to indicate constructs that have already been desugared. In the
last example, it indicates that the two fields v$ are plain Java-like fields.
They will not be further desugared and they are independent fields; none
overrides the other.

The desugared version shows that abstract fields and overriding fields
are implemented through abstract methods and overriding methods. The
real underlying fields are just like in Java.

Immutable fields (defined with val instead of var) are desugared like
mutable ones but with no setter method. Immutable fields are covariant;
their type can be refined in subclasses. This translates into covariant getter
methods.

2.3.4 Constructors

A class definition defines a new class but also an implicit constructor of the
new class. Each class has a list of parameters and its superclass a list of ar-
guments!. The class parameters and the superclass arguments constitute
respectively the parameters and the arguments of the super-constructor
call of the implicit constructor. The class parameters can be referenced by
the superclass arguments but also from anywhere within the class body.
Additional code can be added to the implicit constructor by putting it di-
rectly into the body of the class.

The example below defines a class B with a one-parameter constructor
and a subclass C with a two-parameter constructor. The C constructor first
invokes the B constructor, then initializes the field v and finally prints the
string.

class B(x: Int) { /* ... %/ }

class C(y: Int, z: Int) extends B(y) {
val v: Int =y + z;
System.out.println("Initialized instance of C");
def £f(): Int = z;

}

!Empty lists can be entirely omitted.

16 CHAPTER 2. THE SCALA LANGUAGE

Additional constructors can be defined with method definitions with
no return type and whose name has been replaced with the keyword this.
For example, a zero-parameter constructor could be added to the class C
with the following definition.

def this() = this(0, 0);

The body of explicit constructors has to start with a call to another con-
structor of the current class. Contrary to Java, calls to constructors of the
superclass are not allowed. Indeed, this makes no sense in the presence
of class parameters. In our example, if the zero-parameter constructor di-
rectly invoked the constructor of the superclass B, the parameters y and z
would remain uninitialized. The constructor could possibly initialize the
tield v but it would still be unclear what the method f should return. Ini-
tializing the class parameters is not an option because contrary to what
was stated above, class parameters are in fact accessible from everywhere
within the class excepted from within constructors. And, changing this
would cause more problems than it would solve.

We call primary constructor a constructor that invokes a constructor of
the superclass and secondary constructor one that invokes a constructor of
the same class. In Scala, each class has exactly one primary constructor,
namely the one defined implicitly by the class definition. All explicit con-
structors are secondary ones.

Although the Scala syntax does not allow explicit primary construc-
tors, the compiler internally desugars class definitions into classes with
such a constructor. For example, the class C is desugared into the follow-
ing code.

primitive class C extends B {
private val z$: Int = _;

val v: Int = _;

def this(y: Int, z: Int) {
this.z$ = z;
super(V) ;

this.v = y + z;
System.out.println("Initialized instance of C");

}
def f(): Int = this.z$;

¥

The keyword primitive preceding the class definition indicates that
no implicit constructor is defined. The value _ in the field initializers indi-
cates that the fields are not abstract but remain uninitialized.

2.3. AN OBJECT-ORIENTED LANGUAGE 17

The desugared version shows that extends clauses specify two things:
a superclass and a call to a constructor of that superclass. In our example,
the extends clause B(y) specifies the superclass B and the call super(y).

Desugaring a class definition is not completely trivial because some
parameters may be referenced by code that does not end up in the pri-
mary constructor. For each of these parameters, it is necessary to create
an additional field, which stores the value of the parameter, and all the
problematic references to the parameter must be replaced with references
to this field. In our example, the field z$ had to be added because the
parameter z is referenced from within the method f. The parameter y is
only referenced from within the constructor and therefore requires no ad-
ditional field.

2.3.5 Instance Creations

Instance creations use the same syntax as in Java. It is important to under-
stand that conceptually instance creations, like extends clauses, specify
two things. The first one is the class of which a new uninitialized instance
has to be created. The second one is a constructor of that class and the
arguments with which it has to be invoked to initialize the new instance.
For example, the expression new C(1, 2) can be viewed as a shortcut for
the following expression:

{ val tmp: C = new C; tmp.this(1l, 2); tmp }

2.3.6 Primitive Values

There are neither primitive values nor primitive types in Scala. For exam-
ple, the Scala class Int, which corresponds to the Java primitive type int,
is a perfectly normal class and integer literals are seen as instances of that
class.

There are also no primitive operations. For example the integer addi-
tion is seen as a method of the class Int. In Scala, identifiers are not re-
stricted to alphanumeric character sequences. Furthermore methods with
a single argument can be used as binary operators. Thus, + is an identifier
and the expression x + vy is just an alternate way of writing x.+(y).

Although, from the point of view of the programmer, there are neither
primitive types nor primitive values, the Scala compiler handles types and
values that correspond to Java’s primitive types and values in a special
way and compiles them to the corresponding primitive types and values
of the Java virtual machine.

18 CHAPTER 2. THE SCALA LANGUAGE

2.4 Type System

The Scala type system is defined in a very standard way. It relies on types,
a reflexive and transitive subtyping relation and a typing relation, which
includes the subsumption rule. It distinguishes itself from other type sys-
tems by the diversity and the expressiveness of its types.

The class types constitute the simplest form of types. To every class C
corresponds a type C, which is called a class type. It is the the most precise
type of an instance of the class C. There are several other forms of types.
These are described in the following sections.

The subtyping of class types is defined by the inheritance graph; if a
class C extends a class B, then the type C is a subtype of the type B. The
class A1l inherits from all classes and all classes inherit from the class Any.
The type A1l is therefore a subtype of all class types and all class types are
subtypes of the type Any. These two types constitute therefore the natural
bottom and top types of the type system. We will see that this remains true
even in the presence of the other forms of types.

In the sole presence of class types, the typing rules for most expres-
sions are trivial. We enumerate here the most important ones. The current
instance this of a class C has the type C. An instance creation of a class C
has the type C provided all arguments conform to the declared type of the
corresponding parameters of the invoked constructor. A value is said to
conform to some type if it is of that type. A variable has the type declared
by its definition. A field selection has the type declared by the definition
of the field provided the field is selected on a value that inherits it. A value
is said to inherit a field or more generally a member if it conforms to the
class type of the class that defines the member. An assignment has the
type Unit provided the expression conforms to the type of the assigned
variable. A conditional expression has for type the least upper bound of
its two alternatives provided its condition conforms to the type Boolean.
As long as single inheritance is assumed, the least upper bound of two class
types is the lowest common supertype of the two types. The presence of a
top type guarantees that this type always exists. Finally, a method call has
the type declared by the definition of the method provided the method
is selected on a value that inherits it and the arguments conform to the
declared type of the corresponding parameters.

The above typing rule for method calls is only an approximation of the
actual rule. Indeed, expressed like above, it is not completely satisfactory
because it does not take into account the fact that methods are covariant in
their return type. Let us illustrate this with the two classes defined below
where the method f is abstractly defined in the class A with the return

2.5. TYPE PARAMETERS 19

type A and implemented in the class B with its return type refined to B.

abstract class A { def f(): A; }
class B extends A { def f(): B = this; def g(): B = this; }

With the above typing rule, the expression new B().f() has the type A
because the method f is defined in the class A with the return type A. The
expressionnew B().f().g() is therefore ill-typed because the class A does
not inherit the method g. However, it would be well-typed if the typing
rule for method calls would take into account the fact that g is selected on
an instance of B and that the class B refines the return type of f to B. In fact,
the actual typing rule for method calls does exactly that.

The type of a method call is determined by the method lookup, which
takes as an argument the class C of the receiver’s type. If the class C refines
the type of the called method m, it returns the refined type. Otherwise, if
the class C is the one that defines the method m, it returns the declared
type of m. And otherwise, it recursively invokes itself with the superclass
of C. If the function fails to return a type because it reaches the root of
the class hierarchy, it indicates that the method m is illegally called with a
receiver that does not inherit it.

2.5 Type Parameters

Like Java 5, Scala supports polymorphic classes and methods. These are
defined with a list of type parameters where each parameter has a lower
and an upper bound, which may both reference any parameter of the list.
One or both bounds may be omitted. They respectively default to A11 and
Any. The code below defines a class C and a function £, both with a single
type parameter X whose lower and upper bounds are respectively S and U.

class C[X >: S<: Ul(x: X) { /* ... =/}
def f[X >: S <: Ul(x: X): Unit = /* ... #/;

Method calls of polymorphic methods must provide a type argument
for each type parameter of the method. For example, £[T](t) is a legal
call of f if t is a value of type T and S is a subtype of T and T a subtype of U.
When the compiler is able to infer the type parameters, they can be omit-
ted. However, this does not change the fact that conceptually all method
calls provide a type argument for each type parameter. For example, the
call £(t) is simply desugared (through type inference) into £[T](t).

Similarly, class types of polymorphic classes must provide a type ar-
gument for each type parameter of the class. Such class types are called
parameterized class types. Type arguments must also be provided when a

20 CHAPTER 2. THE SCALA LANGUAGE

polymorphic class is used as a superclass and in instance creations of poly-
morphic classes. The following code illustrates this.

class D[Y >: S <: Ul(y: Y) extends C[Y](V);
val d: D[T] = new D[T](t);

The desugared version of this code is given below. Observe how the
type parameters and arguments remain associated with the classes while
the value parameters and arguments get associated with the constructors.
This shows that extend clauses and instance creations specify a class type
and a constructor call rather than just a class and a constructor call.

primitive class D[Y >: S <: U] extends C[Y] {
def this(y: Y) = super(y);
}
val d: D[T] = { val tmp = new D[T]; tmp.this(t); tmp }

The example also demonstrates that the implicit constructor of poly-
morphic classes is not polymorphic. However, it seems perfectly reason-
able to imagine cases were both the class and its implicit constructor are
polymorphic. For example, one could write the following desugared code:

primitive class E[Z] {
val z: Z = _; val i: Int = _;

def this[V](z: Z, 1: List[V]) = {this.z = z; this.i = 1.length;}
}
val e: E[String] =

{ val tmp = new E[String]; tmp.this[Int]("", List[Int]()); tmp }
List[String] ()

If we try to “sugarize” this, it leads to the code below where the class E
is defined with two distinct lists of type parameters and also instantiated
with two distinct lists of type arguments.

class E[Z][V](_z: Z, 1: List[V]) {
val z: Z = _z; val i: Int = 1l.length;
¥
val e: E[String] = new E[String][Int]("", List[Int]());

Neither class definitions with two type parameter lists nor instance cre-
ations with two type argument lists are allowed in Scala. It is therefore im-
possible to define polymorphic constructors. However, that reflects only a
limitation of the current Scala syntax. It is in no way a fundamental lim-
itation of the computing model underlying Scala. The desugared version
demonstrates it. Another proof is given by Java 5 where defining such
constructors is possible as shown below.

2.5. TYPE PARAMETERS 21

class E<7Z> {
final 7 z; final int i;
<V> E(Z z, List<V> 1) { this.z = z; this.i = 1.size(); }
3
E<String> e = new E<String>(

, new LinkedList<Integer>());

Conceptually, the instance creation has two type argument lists but be-
cause in Java 5 type arguments of method calls are always inferred and
never provided in the source code, only one list appears in the code.

2.5.1 Typing Rules

The subtyping rules for type parameters are very simple. If X is a type pa-
rameter whose lower and upper bounds are T and U, then T is a subtype
of X and X is a subtype of U. There is however a small subtlety illustrated
by the two function definitions below. In principle, both should type check
because in both definitions it can be shown by applying the two subtyping
rules above that X is a subtype of Y and Y is a subtype of Z. However, only
the first definition does type check.

def f[X <: Y, Y, Z>: Y](x: X): Z = x;
def g[X, Y>: X <: Z, Z](x: X): Z = x; // error

The problem with the second definition is that it requires an omniscient
compiler. Indeed, neither X nor Z mention Y in their bounds. The compiler
would therefore have to guess that the bounds of Y must be used to prove
that X is a subtype of Z. This does not happen and the second definition
does therefore not type check.

To determine whether a type is a subtype of another one, the compiler
relies only on the lower and upper bounds of the two types. The lower
(resp. upper) bounds of a type consist of that type followed by the lower
(resp. upper) bounds of its lower (resp. upper) bound. By definition, class
types have neither a lower nor an upper bound. The lower and upper
bounds of a class type consist therefore both of this sole class type.

The definition of lower and upper bounds implies that both consist of a
possibly empty list of type parameters followed by a class type. Unfortu-
nately, this is not perfectly true because the lists can also be infinite lists of
type parameters. For example, in the definition below, the upper bounds
of X and Y are both infinite. To avoid such infinite lists, Scala requires
that each type parameter is lower and upper bounded possibly indirectly
by some class type. These class types are called the lower and upper class
bounds. This restriction has the added benefit that it guarantees that A1l is

22 CHAPTER 2. THE SCALA LANGUAGE

a subtype of any type parameter and that any type parameter is a subtype
of Any. Thus, A11 and Any keep their status of bottom and top types.

def e[X <: Y, Y <: X](x: X): Y =1x; // error

Determining whether a type T is a subtype of some type U can now
be done by computing the upper bounds of T and the lower bounds of U.
The type T is a subtype of U if and only if the two lists share a common
type parameter or if the final class type of the upper bounds is a subtype of
the final class type of the lower bounds. In our initial example, in the def-
inition of f, the upper bounds of X are X, Y and Any and the lower bounds
of Z are Z, Y and All. The type Y is shared by the two lists, X is therefore
a subtype of Z. In the definition of g, the upper bounds of X are X and Any
and the lower bounds of Z are Z and All. The two lists share no common
type and Any is not a subtype of A11. Therefore, X is not a subtype of Z.

When looking for a type shared by the two lists, it is important to com-
pare each upper bound to each lower bound. Indeed, the shared types are
not necessarily the last ones, not even the last type parameters of each list.
It may happen that the two lists “cross” each other. For example, with the
definition below, the upper bounds of X are X, Y, Z2 and Any and the lower
bounds of Z are Z, Y, X2 and A1l. The shared type Y occurs in the middle of
the type parameters of each list.

def h[X <: Y, X2, Y>: X2 <: 72, 72, Z >: Y](x: X): Z = x;

With the introduction of type parameters, testing whether a class type
is a subtype of another one becomes a bit more difficult because type ar-
guments have to be taken into account. Parameter variance, which is dis-
cussed in Section 2.6, adds even more complications. In the rest of this
section we ignore this aspect and consider only classes with invariant type
parameters.

A class type T is a subtype of a class type U of the same class if the type
arguments of T are equal to those of U. Two types are equal if each one is
a subtype of the other one. To compare class types of different classes, the
function base-type is used. This function takes a type R and a class C as
arguments and returns a class type S of the class C such that R is a sub-
type of S or fails if no such class type exists. This function is implemented
as follows. If the type R is not a class type, the function is invoked recur-
sively with the upper bound of R. Otherwise, R is a class type of some
class D. If D is equal to C, R is returned. Otherwise, the function is in-
voked recursively with the declared supertype of the class D, in which all
type parameters of D have been replaced with the type arguments of R.
Finally, if D has no supertype, the function fails. A type T is a subtype of

2.5. TYPE PARAMETERS 23

a class type U of class C if and only if base-type(T, C) returns some type S
and the type arguments of S are equal to those of U.

The introduction of type parameters also affects the typing rules of
field selections and methods calls. The declared types of fields and meth-
ods may contain type parameters and these need to be replaced with ac-
tual types. For example, with the definitions below, the field selection d.vs
is not of type List[X] but of type List[List[Int]].

class C[X]() { var vs: List[X] = Nil; }
class D[Y]() extends C[List[Y]]();
val d: D[Int] = new D[Int]();

The function as-seen-from is used to type field selections and method
calls. This function takes three arguments: a type T, the class C in which
the type T occurs and a type U of an instance of the class C. It returns the
type T in which all type parameters of the class C have been replaced with
the type arguments implied by U. The implied type arguments are those
of the class type returned by base-type(U, C). The type of a field selection
x.v is now defined as the type returned by as-seen-from(T,C,U) where T
is the declared type of the field v, C the class in which v is defined and
U the type of x. For example, the type of d.vs is the one returned by
as-seen-from(List[X], C,D[Int]). The call base-type(D[Int], C) evaluates to
C[List[Int]]. Thus, the parameter X of the class C must be replaced with
List[Int] in the type List[X]. This yields List[List[Int]], whichis the
type of d.vs.

The typing of method calls still relies on the function lookup but this
function needs to be modified to return not only a type T but also the
class C in which this type was found. This type and this class are then
passed to the function as-seen-from along with the type U of the receiver.
The resulting type may still contain type parameters of the method. These
are eliminated by replacing them with the type arguments of the method
call. This finally yields the type of the method call.

A last thing affected by the introduction of type parameters is the com-
putation of the least upper bound of two types. This bound is now ob-
tained by computing the upper bounds of the two types and taking the
first common bound. If there is no such bound, the least upper bound of
their upper class bounds is computed. The least upper bound of two class
types is computed as before by determining their first common superclass.
However, it is now necessary to check that both types have the same type
arguments for that class. If not the next superclass has to be tried. The top
type Any still guarantees that a least upper bound always exists.

24 CHAPTER 2. THE SCALA LANGUAGE

2.6 Parameter Variance

Class type parameters have a variance. A type parameter is covariant if
it is preceded by a +, contravariant if it is preceded by a - and invari-
ant otherwise. Different parameters of the same class may have different
variances. The code below declares a class M covariant in X, a class N con-
travariant in Y and a class 0 invariant in Z.

class M[+X]; class N[-Y]; class O[Z];

When two class types of the same class are compared to determine
whether one is a subtype of the other, the variance of type parameters de-
termines how corresponding type arguments are compared. Arguments
for invariant type parameters have to be equal. For example, the type
O[T] is a subtype of O[U] if and only if T and U are equal. For covariant
type parameters, the argument in the subtype has to be a subtype of the
argument in the super-type. So, M[T] is a subtype of M[U] if and only if
T is a subtype of U. For contravariant type parameters, it is the opposite;
the argument in the subtype has to be a super-type of the argument in the
super-type. Thus, N[T] is a subtype of N[U] if and only if U is a subtype of
T.

The usage of covariant and contravariant type parameters is unsafe if
some restrictions are not enforced. The code below demonstrates this. In
this example, the class D correctly implements the method f. The new in-
stance of D is an instance of C[Int], which is indeed an instance of C[Any]
because C is covariant in X. Finally, the call to f is also well-typed as
the string "A" is indeed an instance of Any. However, the call results in
the evaluation of the expression "A" - 1, which is not well-formed. This
shows that it is unsafe to use a covariant type parameter as the type of a
method argument.

abstract class C[+X] { def f(x: X): Int; }

class D extends C[Int] { def f(x: Int): Int = x - 1; }
val c: C[Any] = new D();

c.f("A");

To ensure type safety, covariant and contravariant parameters are re-
stricted respectively to covariant and contravariant positions. Covariant
positions include type lower bounds, function return types and immutable
value types. Contravariant positions include type upper bounds and func-
tion argument types. There are also invariant positions, which include mu-
table variable types. Invariant parameters can be used in invariant posi-
tions but also in covariant and contravariant ones.

2.7. SINGLETON TYPES AND STABLE PATHS 25

The definition of covariant and contravariant positions is not yet com-
plete. It says nothing about arguments to class types. Arguments for in-
variant parameters are always in invariant positions. The status of the
other arguments depends on the position of the class type itself. If the
class type is in a covariant position, then arguments for covariant parame-
ters are in covariant position and arguments for contravariant parameters
are in contravariant position. If the class type is in a contravariant posi-
tion, then it is just the opposite: arguments for covariant parameters are in
contravariant position and arguments for contravariant parameters are in
covariant position. Finally if the class type is in an invariant position, all
its arguments are also in an invariant position.

All that is fairly complex. Some of this complexity can be removed
by noting that two types are equal if and only if each one is a subtype of
the other one. An invariant parameter may therefore be interpreted as a
parameter that is both covariant and contravariant. Covariant and con-
travariant positions can be interpreted as positions where a type parame-
ter can be used only if it is at least respectively covariant or contravariant.
Finally, invariant positions can be interpreted as positions that are both
covariant and contravariant.

2.7 Singleton Types and Stable Paths

A type can be interpreted as a set of values. For example, with this in-
terpretation, the type String represents the set of all possible instances of
the class String. When a value v is of some type T, it simply means that
v is an element of the set represented by T and if T is a subtype of U, it
means that the set represented by T is a subset of the one represented by
U. These sets are usually infinite but in Scala it is possible to define types
that contain exactly one value. These types are called singleton types.

Given an expression e that evaluates to some value v, the type e. type
stands for the type containing only the value v. This implies that if some
expression has the type e. type its evaluation either does not terminate or
returns v. An expression whose type is a singleton type is called a stable
value.

A singleton type e.type is sound only if successive evaluations of e
always return the same value v. This is not necessarily true because ex-
pressions may have side effects. Therefore expressions in singleton types
are restricted to stable paths, which are expressions for which this property
is always true.

A stable path is by definition either the current instance, an immutable

26 CHAPTER 2. THE SCALA LANGUAGE

variable or the selection of an immutable field on a stable path. Note that
in Scala, class and function parameters are always immutable and form
therefore stable paths.

2.71 Typing Rules

The introduction of singleton types does not fundamentally change the
typing rules, only some local changes are required. A first change is that
expressions p that are also stable paths have now the type p.type in ad-
dition to the type that they would have as a normal expression, which is
called their plain type.

Like type parameters, singleton types need to be taken care of while
typing field selections and method calls. Let us illustrate this with the def-
initions below and the typing of the expression v.y. The field y has the de-
clared type x. type, which is of course a shortcut for the type this.x.type.
The type of v.y is obtained by replacing in the type of y the current in-
stance this with the actual instance v, which gives v.x. type.

class C[X](x: X) { val x: X = _x; val y: x.type = x; }
def f(): C[S‘trll‘lg] = hew C(llll);

val v: C[String] = new C("");

To perform the kind of substitution described above while typing field
selections and method calls, we do not need to modify their typing rules.
Indeed, these rules already rely on the function as-seen-from to replace type
parameters with the adequate type arguments in field and method types.
We can therefore simply adapt this function to also handle singleton types.
We remind that the function as-seen-from takes as arguments a type T, the
class C in which the type T occurs and a type U of an instance of the class C
and returns the type T in which all type parameters of the class C have
been replaced with the type arguments implied by U. From now on, it will
also replace in T all occurrences of this with the instance implied by the
type U. If the type U is a singleton type p.type, the implied instance is p.
Otherwise, the exact identity of the implied instance is unknown. In that
case, there is no stable path to replace the occurrences of this. Therefore,
the function as-seen-from fails if there is at least one such occurrence.

The fact that the function as-seen-from can fail implies that fields and
methods whose type contains a reference to this can only be selected on
stable values. So, v.y is legal because v is of type v.type, but £().y is
illegal because £() is of type C[String], which is not a singleton type.
Note however, that if such a field or method needs to be selected on a non-
stable value, it is always possible to store that value in a immutable local

2.7. SINGLETON TYPES AND STABLE PATHS 27

variable and then select the field or method on that variable.

The following code illustrates two restrictions that apply to singleton
types. First, the value parameters of a function can neither be used in its
return type nor in the types of its parameters. Secondly, the value parame-
ters of a class cannot be used in any type occurring in the definition of any
of its non-private members.

def g[X](x: X): x.type = x; // error
class D[X](x: X) { val y: x.type = x; } // error

It would be possible to lift the restriction on function parameters. That
would imply that the type of a function call can depend on some of its
arguments. These arguments, like the receiver of methods whose return
type reference this, would have to be stable values. For example, if p is a
stable path, g(p) would be of type p. type.

The restriction on class parameters is more fundamental. Lifting it
would require more than just passing stable values as arguments of in-
stance creations. Indeed, given an instance d of D, the type of d.y can
be expressed only if the type of d includes the identity of the parame-
ter x. Thus, the type of an instance of D would have to look something like
DITI(p).

All singleton types are lower bounded by All and upper bounded by
their plain type. This implies that the lower bounds of a type may now also
contain one singleton type and its upper bounds any number of singleton
types. To avoid infinite upper bounds, Scala requires that the type of any
variable is upper bounded by some class type. Without that restriction it
would be possible to define variables like val x: x.type whose type has
an infinite number of upper bounds.

When testing whether a type T is a subtype of a type U, it is now neces-
sary to also check whether the upper bounds of T and the lower bounds of
U contain equal singleton types. Similarly when computing the least up-
per bound of two types, it is now necessary to also look for equal singleton
types.

Two stable paths are equal if their respective singleton types are equal.
Two singleton types are equal if they denote the same value. This is true
if one is an upper bound of the other. It is also true if their respective
stable paths both select the same field on equal stable paths. To determine
whether two singleton types T and U are equal, we compute the upper
bounds of each type and take the stable path of the last singleton type of
each list. The types T and U are equal if and only if the two paths are the
same or if they select the same field on equal paths.

Let us prove that given the definitions below, b.wl.vland b.w2.v2 are

28 CHAPTER 2. THE SCALA LANGUAGE

equal. The upper bounds of b.wl.vl.type are itself and String. The up-
per bounds of b.w2.v2.type are itself, b.w2.v1l.type and String. The
stable paths of the last singleton type of the two lists are b.wl.vl and
b.w2.v1l. We have therefore to show that b.wl. type is equal to b.w2. type,
which is indeed the case as the second one is upper bounded by the first
one.

vl; }
wl; }

class A() { val vl: String = ; val v2: vl.type
class B() { val wl: A = new A(); val w2: wl.type
val b: B = new B();

2.8 Virtual Types

A virtual type is a type declared within a class. Like a type parameter, it has
a lower and an upper bound, which default respectively to A11 and Any.
Subclasses can refine one or both of its bounds or assign it a type with a
type refinement. In the code below, the class C declares a virtual type Xs, the
class D refines its upper bound and the classes E and F assign it a type.

abstract class C[X] { type Xs <: Collection[X]; }
abstract class D[X] extends C[X] { type Xs <: Set[X]; }
class E[X] extends D[X] { type Xs = HashSet[X]; }
class F[X] extends D[X] { type Xs = ListSet[X]; }

When a virtual type is refined, the new lower/upper bound has to be a
super-type/subtype of the previous one. An assignment to a virtual type
can be interpreted as a simultaneous refinement of its two bounds to the
same type. This type has therefore to be both a super-type of the previous
lower bound and a subtype of the previous upper bound. A virtual type
that has already been assigned a type can neither be refined nor assigned
another type. A class can be non-abstract only if all its virtual types have
been assigned a type.

Virtual types can be extracted from instances of their declaring class.
For example, if p is a stable path of type C[Int], p.Xs is a valid type. It
is called a member type. Its lower and upper bounds are, respectively, A1l
and Collection[Int]. In general, the bounds depend on the type of the
stable path. For example, if p was of type D[Int], the upper bound would
be Set[Int] and if it was of type E[Int], the type p.Xs would be equal to
HashSet[Int].

Because of side-effects, successive evaluations of the same expression
may return different instances. If these instances have a common virtual

2.8. VIRTUAL TYPES 29

type, it is not necessarily assigned the same type in all instances. For ex-
ample, an expression e of type C[Int] may return an instance of E[Int]
and later an instance of F[Int] whose virtual type Xs are assigned dif-
ferent types. Thus, e.Xs does not always represent the same type. This
is unsound and for that reason prefixes of member types are restricted to
stable paths. The code below shows what could happen if this restriction
was lifted.

class A { def a(): Unit =
class B { def b(): Unit
abstract class C {

type T; def t(): T; def f(t: T): Unit; }
class CA extends C {

I
~
N’/ S
(e

type T = A; def t(): T = new A(); def f(t: T): Unit = t.a(Q); }
class CB extends C {
type T = B; def t(): T = new B(); def f(t: T): Unit = t.b(); }

var flip: Boolean = false;
def c(): C = { flip = !flip; if (flip) new CA() else new CB(); }
c).£(c).tO)

In the last expression, the expected type and the actual argument types
of the method f are both c().T. The call would therefore be legal if pre-
fixes of member types were not restricted to stable paths. However, the
two calls to c return respectively an instance of CA and one of CB, which
assign different types to the virtual type T. The method f ends up calling
the method a on an instance of B, which has no such method.

2.8.1 Typing Rules

First of all, it is important to understand that a virtual type is always se-
lected on some instance. So, the type T within a class that defines or inher-
its the virtual type T is just a shortcut for the type this.T.

The lower and upper bounds of a member type are computed in a very
similar way to the type of a method call. First of all, like the type of a
method call, the exact bounds depend on the type of the instance on which
the virtual type is selected. The function lookup is therefore overloaded
for virtual types. It works exactly like the one for methods but looks for
type definitions and type refinements instead of method definitions and
method implementations and it returns lower and upper bounds instead
of return types. It handles type assignments as if they were type refine-
ments with identical bounds. Like the return types, the bounds returned
by the function lookup are passed to the function as-seen-from to replace

30 CHAPTER 2. THE SCALA LANGUAGE

all type parameters by actual types and all occurrences of this by actual
instances. The resulting bounds are the lower and upper bounds of the
member type.

Like for type parameters, it is required that each virtual type is lower
and upper bounded, possibly indirectly, by some class type. This is to
avoid infinite lower and upper bounds. More precisely, in each class where
a virtual type T is defined, refined or assigned, it is necessary to check that
this. T is lower and upper bounded by some class type.

Lower and upper bounds of types may now also contain any number
of type members. Subtyping tests and least upper bound computations
must therefore also check whether the two compared lists contain equal
member types. Two member types are equal if and only if they select the
same virtual type on equal stable paths.

In principle, it would be necessary to adapt the function as-seen-from to
handle member types. However, as in order to handle singleton types it
does already replace occurrences of this by actual instances, there is noth-
ing more to do. Fields and methods whose type contain member types,
like those whose type contain singleton types, must be selected on stable
paths because otherwise their type cannot be expressed as there would be
no value with which replace occurrences of this.

2.9 Refined Type

Refined types are to virtual types what parameterized class types are to type
parameters. They can be used to specify the value of a virtual type or to
refine its bounds. Furthermore, they can also refine the return type of a
method with a method refinement or the type of an immutable field with a
field refinement. To illustrate this, let us consider the following class.

abstract class C { type T; val v: Any; def f[X](x: X): Any; }

The refined type C { type T = Set[Int]; } is the type of all values
that are an instance of the class C and whose type member T is equal to
Set[Int]. The type C { type T <: Set[Int]; } is slightly less restric-
tive as it requires only that the type member is a subtype of Set[Int]. Fi-
nally, C { val v: String; def f[X](x: X): Set[X]; } contains a field
refinement and a method refinement that specify that the type of the field v
must be a subtype of String and the return type of the method f a subtype
of Set[X]. A field refinement is in fact a disguised method refinement. In-
deed, it simply refines the return type of the field’s getter method.

2.9. REFINED TYPE 31

Refined types can only be used to specify or refine bounds or types
of members inherited by the base class. They cannot be used to require
the presence of additional members. For example, one could try to des-
ignate with the type C { val w: String; } instances of C that have an
additional field w but this type is not legal.

29.1 Typing Rules

A refined type can be seen as a class type with some additional constraints.
The introduction of refined types requires no modification of the typing
rules but we have to take into consideration that the lower and upper class
bounds of a type can now be refined types. This affects subtyping tests,
the computation of least upper bounds and the function lookup.

The function lookup takes a class and a method or a virtual type and
returns the return type of the method or the bounds of the virtual type in
the given class. If a method or a virtual type is selected on a value whose
type is upper bounded by a refined type, the function lookup should con-
sider its refinements instead of just its class. If this refined type contains
a refinement of the selected method or virtual type, the return type or the
bounds of the refinement have to be returned. Note that a return type or
bounds provided by a refined type do not have to be rewritten by a call to
the function as-seen-from because, unlike types and bounds coming from a
class definition, the refined type is part of the current context.

Testing whether a refined type T is a subtype of another refined type U
is done by comparing the underlying class types and additionally test-
ing that each constraint in U is fulfilled by T. Testing whether a virtual
type bounds constraint type X >: R <: S is fulfilled is done by testing
whether x. X is a supertype of R and a subtype of S where x is a fresh value
of type T. Testing whether a method return type constraint of a method f
is fulfilled is done in a similar way by verifying that the return type of the
method f when selected on a value x of type T is a subtype of the one
specified by the constraint.

With the introduction of refined types, it may now happen that the least
upper bound of two class types is a refined type. This can be illustrated
with the definitions below.

abstract class C[X] { type Xs <: Collection[X]; }
class E[X] extends C[X] { type Xs = HashSet[X]; }
class F[X] extends C[X] { type Xs = ListSet[X]; }

Until now, the least upper bound of E[X] and F[X] was simply C[X].
With refined types, we can do better. Indeed, we can compute the least

32 CHAPTER 2. THE SCALA LANGUAGE

upper bound of the upper bound of Xs in both types. This corresponds to
the least upper bound of HashSet[X] and ListSet[X], which is equal to
Set[X]. The least upper bound of E[X] and F[X] is therefore the refined
type C[X] { type Xs <: Set[X]; }.

The computation of the least upper bound of two class types or re-
tined types T and U is now done by first computing their least upper class
type R as was done until now. Then for each virtual type X inherited by
R, the least upper bound of its bounds in T and U is computed. If this
bound is a subtype of its upper bound in R, it is used to constrain the up-
per bound of X in R. Methods inherited by R and their return types are
handled in a similar way. Lower bounds of virtual types inherited by R
need also to be handled in the same way but for those a greatest lower bound
has to be computed instead of a least upper bound. The computation of
greatest lower bounds is similar to the computation of least upper bounds
but with exchanged roles for upper and lower bounds.

An unfortunate consequence of the introduction of refined types is that
the computation of least upper bounds may now never terminate.

abstract class C { type X; }
abstract class E extends C { type X <: E; }
abstract class F extends C { type X <: F; }

For example, with the definitions above, the least upper bound of E
and F is the infinite type:

C{type X<: C{type X<: C{typeX<: /* ... %/;%} };}

The same problem occurs also with covariant type parameters. For ex-
ample, if the class C had a covariant type parameter instead of its virtual
type X and the classes E and F had respectively C[E] and C[F] for super-
class instead of C, then the least upper bound of E and F would be the
infinite type C[C[C[...]1]].

This implies that the typing of some if-expressions or the inference of
some type arguments, which sometimes requires the computation of least
upper bounds may not terminate. For this reason, the Scala compiler de-
tects computations of least upper bounds that exceed a predefined nesting
level and signals an error. These errors can however always be overcome
by providing an explicit less precise upper bound. An if-expression can be
annotated with an expected type such that the compiler can simply check
that each alternative is of the right type instead of computing their least
upper bound. Type inference of type arguments can be avoided by pro-
viding explicit type arguments.

2.10. CLASS TYPE PARAMETERS VS. VIRTUAL TYPES 33

2.10 Class Type Parameters vs. Virtual Types

Class type parameters and virtual types can be used to solve the same kind
of problems. A solution based on type parameters is often less verbose
than one based on virtual types. But, typing rules for type parameters
are more complex than those for virtual types. Both sets of rules have
to handle lower and upper bounds but rules for type parameters have to
handle all the additional complexity that arises from parameter variance.

We show here that everything that can be expressed with class type
parameters can also be expressed with virtual types and thus demonstrate
that virtual types are indeed as expressive as type parameters. The basic
idea is that each class type parameter becomes a virtual type with the same
bounds. Type arguments of the superclass become type assignments to the
corresponding virtual types and parameterized class types become refined
types. Let us illustrate this with an example.

class C[T] { def £f(O): T = £(); }
class D[U] extends C[U];
val v: C[Int] = new D[Int]();

By applying our transformation to this example, we obtain the code
below.

abstract class C { type T; def f£f(): this.T = £(); }
abstract class D extends C { type U; type T = this.U; }
val vi: C { type T = Int; } = new D() { type U = Int; };

The two classes are now abstract because of the virtual types and the in-
stance creation is now an anonymous class instance creation. The need for
these two modifications could be avoided with two very simple changes
to Scala. First of all, if instance creations were really considered as two step
operations that first create an instance of some type and then initialize it by
invoking one of its constructor, one could write new D{type U = Int;}(),
which creates a new instance of the type D{type U = Int;}. This avoids
the need of an anonymous class, but there is still the problem that we
are creating an instance of an abstract class. This is solved by removing
the obligation to declare a class abstract if it declares or inherits a non-
assigned virtual type and instead check in each instance creation that all
virtual types inherited by the new instance are assigned some type. With
these two changes, one could write the following code:

class C { type T; def f£(): this.T = £(); }
class D extends C { type U; type T = this.U; }
val vi: C { type T = Int; } = new D{ type U = Int; }();

34 CHAPTER 2. THE SCALA LANGUAGE

We still need to describe what to do with variant type parameters.
The variance of a type parameter affects only the transformation of the
arguments of parameterized class types. Arguments for invariant param-
eters are transformed into type assignments of the corresponding virtual
type. Arguments for covariant (resp. contravariant) parameters are in-
stead transformed into refinements of the upper (resp. lower) bound of
the virtual type. If in our example both classes were covariant in their pa-
rameter, the transformation would yield the code below. It differs from
the code above only in the type of v.

class C { type T; def f(): this.T = £(); }
class D extends C { type U; type T = this.U; }
val v: C { type T <: Int; } = new D{ type U = Int; }();

The relationship between type parameters and virtual types described
in this section was first described by Thorup and Torgerson in [32].

2.10.1 Safety

In Section 2.6 we have seen that variant type parameters are safe only if
some restrictions are placed on their usage. There are no similar restric-
tions on the usage of virtual types but we are able to present a way of
transforming any type parameter into a virtual type. Does this mean that
virtual types are unsafe? The answer is no and the reason is that the re-
strictions put on the usage of variant type parameters are somewhat too
strong. Let us illustrate this with the transformation of the example of
unsafe code given in Section 2.6.

abstract class C { type X; def f(x: this.X): Int; }

class D extends C { type X = Int; def f(x: Int): Int = x - 1; }
val c: C { type X <: Any; } = new D();

c.f("A");

The definition of the class C is here perfectly well-formed because vir-
tual parameters are restricted to neither covariant nor contravariant posi-
tions. They can be used everywhere where a type is expected. The defini-
tions of the class D and of the value v are also well-formed but the method
call is not. The type of the argument "A" is String, which is a subtype of
Any. The expected type of the argument is c.X, which is also a subtype of
Any. So, both types are subtypes of Any, but they are otherwise unrelated.
Nothing lets us deduce that String is a subtype of c.X. The method call is
therefore ill-typed and thus there is no safety issue.

A consequence of the absence of restrictions on the usage of virtual
types is that virtual types are more expressive than type parameters. In

2.10. CLASS TYPE PARAMETERS VS. VIRTUAL TYPES 35

the previous example, we could declare a method that is illegal with type
parameters. One could object that the definition of this method in the
class C is not very useful. Indeed, given an instance of type C, it will never
be possible to invoke the method because it is impossible to obtain an
argument of the right type. This is true for this example but it is not true in
general. For example, if the class C was augmented with a method x that
returns a value of type this.X, its result could be passed as an argument
to the method f. The expression c.f(c.x()) in the code below is well-
formed.

abstract class C {
type X;
def f(x: this.X): Int;
def x(): this.X;
}
class D extends C {
type X = Int;
def f(x: Int): Int = x - 1;
def x(): Int = 0;

}
val c: C { type X <: Any; } = new D();
c.f(c.x0));

All that demonstrates that the restrictions on the usage of variant type
parameters are too strong. These restrictions are needed because when a
type is provided as an argument for some type parameter, it is always as-
sumed that the parameter is equal to the provided type. If instead that was
assumed only for invariant parameters and it was otherwise assumed that
the parameter is lower-bounded by the provided type for contravariant
parameters and upper-bounded for covariant parameters, then the restric-
tions could be lifted.

2.10.2 Wildcards

In Java 5, there is no notion of parameter variance; all class type parame-
ters are invariant. Instead, there are wildcards[35], which can replace type
arguments in class types. They indicate that we are not interested by the
exact type of the corresponding type parameters.

Let us consider a class C with a single type parameter X. The type C<T>
is the type of all instances of C whose parameter X is equal to T. If we are
not interested by the type T we can replace it by a wildcard: C<?> is the
type of all instances of C. Wildcards can have either an upper or a lower

36 CHAPTER 2. THE SCALA LANGUAGE

bound: C<? extends T> is the type of all instances of C whose parameter X
is a subtype of T and C<? super T> is the type of all instances of C whose
parameter X is a super-type of T.

All Java’s wildcards can be expressed with Scala’s virtual types. For
instance, the types C<? extends T> and C<? super T> translate respec-
tivelytoC {type X <: T}and C {type X >: T} and the type C<?> trans-
lates to C.

Java’s wildcards are a bit more expressive than Scala’s type parameters
with variance and usually also a bit more verbose. But, they are less ex-
pressive than Scala’s virtual types. For example, here is what we get if we
try to rewrite the last example of the previous section in Java.

abstract class C<X> { int f(X x); X x(); }
class D extends C<Integer> {
int f(Integer x) { /* ... */ };
Integer x() { /* ... =/}
}
C<?> c = new D();
c.f(c.x()); // error

The two class definitions and the value definition are well-typed, but
not the method call. Both, the type of the argument and the expected type
are C<?>, but that is not enough. Indeed, the call is safe only if the type
parameter X of the two types are equal and this is not true for two arbitrary
values of type C<?>. In Scala, the call is possible because the compiler is
able to determine that in both types, the parameter X is equal to c.X.

2.10.3 Constructors

Although we stated that virtual types were more expressive than type pa-
rameters, there is one place where type parameters are more expressive
than virtual types: constructors. Here is an example:

class C[X](x: X) { val x: X = x; }

If we try to rewrite this with a virtual type, we obtain something like
this:
class C(_x: this.X) { type X; val x: this.X = _x; }

This is not legal because the current instance is not available within the
parameter of the class. On one hand, this makes sense because syntacti-
cally the class parameters are not within the class body. On the other hand,

if we desugar the class definition, we obtain the code below, which seems
perfectly legitimate. One could therefore argue that the code above should

2.11. INNER CLASSES 37

be accepted. This would make virtual types strictly more expressive than
type parameters.

primitive class C {

type X;

val x: this.X = _;

def this(_x: this.X) = { super(); this.x = _x; }
}

2.11 Inner Classes

A class can be defined directly within another one. Such a class is called
a nested class. Compared to other top-level classes, nested classes have
privileged rights to access the members of their enclosing class; because
they are defined within it, they may access all its private and protected
members even if they are otherwise unrelated to it. If in addition to that,
the nested class may also access the current instance of its enclosing class,
it is called an inner class. Nested classes that are restricted from that are
called static nested classes. In Scala, all nested classes can access the current
instance of their enclosing class. Therefore all nested classes are also inner
classes. This contrasts with Java where both kinds of nested classes can be
defined.

Within an inner class the current instance of its enclosing class is called
the current enclosing instance or simply the enclosing instance. Given an in-
stance x of an inner class, it is called the enclosing instance of x.

The remaining of this section reminds some facts about inner classes
and describes the specificities of Scala’s inner classes. As the different as-
pects of inner classes are slightly more entangled in Scala than in Java, we
first start by reminding some facts about Java’s inner classes.

2.11.1 Enclosing Instances

In Java, within an inner class I nested in a class C, the expression C.this
denotes the current instance of the enclosing class C. The code below de-
fines an inner class I nested in a class C. The inner class makes explicit
the presence of the enclosing instance by defining the field outerI and
initializing it with that instance.

class C { class I { final C outerI = C.this; } }

The field outerI is here explicitly defined but every inner class really
has a hidden field that holds its enclosing instance. The syntax C.this is

38 CHAPTER 2. THE SCALA LANGUAGE

just a way of accessing this hidden field. In fact, an inner class is nothing
more than a static nested class with an additional hidden field holding its
enclosing instance. We call this field the outer field of the inner class.

An inner class defined within another inner class can access the current
instance of both of its enclosing classes. For example, within the class M
defined below, the expression C.this denotes the current instance of its
(indirectly) enclosing class C. By definition, this instance is equal to the
enclosing instance C. this of its (directly) enclosing class I. In other words,
within the class M, C. this is equal to this.outerM.outerI.

class C {
class I {
final C outerI = C.this;
class M {
final I outerM = I.this;
}
}
}

Although the nesting of inner classes may be arbitrarily deep and an in-
ner class may reference the current instance of any of its enclosing classes,
a single outer field per class is always sufficient to access all these in-
stances. For example, let us consider a top-level class Cy and n inner
classes Cq, ..., C, where each inner class C; is defined in the class C;_1. Let
us also assume that each inner classes C; has an outer field outerC;. The
enclosing instance C;.this within the class C, is then equal to the value
returned by the expression this.outerC,.,...,.outerC;,;. This demon-
strates that with explicit outer fields, any enclosing instance expression
C.this can be desugared into a succession of field selections.

2.11.2 Instance Creations

To create a new instance of an inner class I, an instance of its enclosing
class C has to be provided. In Java, the syntax expr.new I(args) is used
to that effect. It creates a new instance of the class I whose enclosing in-
stance is the result of the evaluation of the expression expr. The enclosing
instance may be omitted if the instance creation is enclosed, possibly in-
directly, in a subclass D of C. In that case, the expression new I(args) is
desugared into D.this.new I(args). We illustrate this by augmenting
the class C above with the two fields defined below. The value i is an in-
stance of the class I whose enclosing instance is the current instance of the
class C (the expression new I() is syntactic sugar for this.new I()) and

2.11. INNER CLASSES 39

the value m is an instance of the class M whose enclosing instance is the
value i.

final I i
final I.M m

new I1();
i.new M();

Every inner class introduces a single outer field, but an instance of an
inner class may have several outer fields because it inherits one from each
inner class it is an instance of. For example, every instance of the class J
defined below has two outer fields, namely outerI and outerJ, and every
instance of the class N has the two outer fields outerM and outerN.

class C {
class I {
final C outerI = C.this;
class M {
final I outerM = I.this;
}

class N extends M {
final I outerN = I.this;
N(I i) { i.super(); }
b
b
class J extends I {
final C outerJ = C.this;

}

final I i = new I();

final J j = new J();

final I.N n = i.new N(j);
}

For the same reason instance creations of inner classes require an en-
closing instance, super constructor calls of inner classes also require an
enclosing instance. The syntax expr.super(args) is used for these su-
per constructor calls where expr must evaluate to an instance of the en-
closing class C of the super class. Like with instance creations, the en-
closing instance may be omitted if there is an enclosing class D that is a
subclass of C. In that case, the expression super(args) is equivalent to
D.this.super(args).

In the code above, the class J has no explicit constructor; it gets a de-
fault constructor containing a call to the super constructor super(), which
is here equivalent to C.this.super(). This implies that for any instance
of class J, its two outer fields hold exactly the same value. The constructor
of class N specifies that the enclosing instance of its superclass Mis its argu-

40 CHAPTER 2. THE SCALA LANGUAGE

ment i. Therefore, the two outer fields of a given instance of class N may
hold different values. For example, for the value n, n.outerN is equal to i
while n.outerM is equal to j. In fact, the two values are even of different

types.

2.11.3 Scala’s Inner Classes

In Scala, an inner class I whether it occurs in a type, in an extends clause
or an instance creation must always be qualified by a type T. The syntax
of qualified class types is the following: T#I. The class qualifier T specifies the
type of the enclosing instance of the class I. It has to be at least a subtype
of the enclosing class of I. As class qualifiers are often singleton types,
there is a less verbose syntax for these cases: p.I can be used instead of
p.type#l. Furthermore, if p is simply an enclosing instance C.this it can
be entirely omitted. Here are some examples:

class C() { class I(); }

class D() extends C() { class J() extends D.this.I(); }
val d: D = new D();

class K extends d.J();

val j: d.J = new d.JQ);

In an extends clause, the qualifier of the superclass plays two roles. It
indicates the type of the enclosing instance inherited from the superclass
and it specifies also that instance. For that reason, it has to be a single-
ton type. For the same reasons, the qualifier of the instantiated class in
instance creations has also to be a singleton type. This can be observed
in the following desugared version of the code above. The field outerJ
denotes the implicit outer field of the inner class J.

primitive class C {
def this() = super();
primitive class I {
def this() = super();
b
¥

primitive class D extends C {
def this() = super();
primitive class J extends D.this.I {
def this() = D.this.super();
b

}
val d: D = { val tmp = new D; tmp.this(); tmp }

2.11. INNER CLASSES 41

primitive class K extends d.J {
def this() = d.super();
b
val j: d.J =
{ val tmp = new d.J; tmp.outerJ = d; tmp.this(); tmp }

One can see that the d of the instance creation new d.J() is used in
both the type of the new instance and the initialization of the outer field of
that instance. Similarly, the d in the extends clause of the class K appears in
the supertype of K and in the call to the constructor of the superclass. To be
more in line with the desugared version of inner class instance creations,
this call could also be desugared as follows:

def this() = { this.outerJ = d; super(); }

With the usage of singleton types as class qualifiers it is possible to
specify the exact value of inherited and instantiated inner classes. For ex-
ample, in the previous example the type system knows that for any in-
stance of K, its inherited outer fields from I and J are both equal to d.
Being able to know the exact value of an outer field and thus prove that
different outer fields necessarily contain the same value is very useful, if
not vital, in the presence of virtual types. For example, in the code below,
the method call g(£()) is legal only because it can be proven that for any
instance of J, the outer field it inherits from the class I is equal to the one
it inherits from the class J. Thus, within the class J, the return type of the
method f and the type of the parameter of the method g are both equal to
D.this.T and the method call is therefore legal.

abstract class C() {
type T;
abstract class I() { def £f(): T; }

}
abstract class D() extends C() {

def g(t: T): Unit = ();
abstract class J() extends I() { def test(): Unit = g(f()); }
}

If like in Java 5 it would only be possible to specify that the outer field
inherited from I is of type D, the call would not be possible.

The usage of singleton types makes it possible to give a much more
precise type to inherited outer fields in Scala than in Java. But strangely, in
Scala, it is impossible to be just as precise as in Java. Or, in other words, in
Scala, it is impossible to be as imprecise as in Java. For example, it is im-
possible to write valid Scala code whose desugared version would be the

42 CHAPTER 2. THE SCALA LANGUAGE

following one although this code seems perfectly legitimate. This impos-
sibility is however only due to the Scala syntax, which forces us to use one
class qualifier to specify two conceptually different things: the compile-
time qualifier of the superclass and the runtime enclosing instance of the
superclass.

primitive class C {
primitive class I;
}
primitive class D extends C {
def this() = super();
primitive class J extends D#I {
def this(d: D) = d.super();
3
}

One could try the code below but it is illegal because in extends clauses,
class parameters are available only in the arguments of the superclass, not
in its qualifier. If this code was legal it would still be more precise than the
code above as the type system would still know the exact identity of the
enclosing instance of the superclass. It would also be very problematic as
the supertype of the class J would depend on one of its value argument.
This poses similar problems to field and method types referencing class
value parameters discussed in Section 2.7.1.

class C() { class I(); }
class D() extends C() { class J(d: D) extends d.I(); }

2114 Typing Rules

Class qualifiers are covariant; T#C is a subtype of U#C if and only if T is
a subtype of U. This tells us how to compare two class types of the same
inner class. For class types of different classes, the comparison still relies
on the function base-type but this function must now not only compute
the type arguments of a given class implied by a given type but also its
qualifier if the class is an inner class.

Until now the supertype of a class type T of some class C was com-
puted simply by replacing in the declared supertype of the class C all type
parameters of C with the type arguments provided by the type T. The
problem with inner classes is that their declared supertype may contain
type parameters of enclosing classes and also references to the current in-
stance of these classes. These parameters and current instances must all
be replaced with the types and instances implied by the type T. This looks

2.11. INNER CLASSES 43

suspiciously like what the function as-seen-from does. And, a call to that
function is also exactly what is required here. Indeed, if C is an inner class,
its declared supertype can be seen as a type that occurs in the enclosing
class B of C. It is therefore normal that it is handled like the declared type
of fields and methods of the class B. If S is the declared supertype of C and
U is the qualifier of the class C in T, then the supertype of T is obtained by
computing as-seen-from(S, B, U) and replacing in the resulting type all the
type parameters of C by the type arguments of T. If C is a top-level class,
then the supertype of T is computed as before.

The function as-seen-from needs also to be updated. Indeed, types oc-
curring in an inner class may not only reference the instance and the type
parameters of the current class but also those of all its enclosing classes.
All these references need also to be replaced with some actual instances
and types. Assuming the function is invoked with the arguments T, C and
U where T is the type to rewrite, C the class where it occurs and U the type
of an instance of C the function works as follows. First, if T contains refer-
ences to the current instance of C, U has to be a singleton type p.type and
all those references are replaced with p. Then, the type S = base-type(U, C)
is computed and all type parameters of C in T are replaced with the type
arguments of S. This is just the same as before. It yields a type T". If C
is a top-level class, the type T’ is returned. Otherwise, C is an inner class
defined within some class B and the type S has a class qualifier R that is
a subtype of B. The result of the function as-seen-from is the result of the
recursive call as-seen-from(T', B, R).

Let us apply all this to the typing of the expression j.f() in the context
of the definitions below.

class C[V]() {
class I[W]() {
def f(): Tuple4[V, C.this.type, W, I.this.type] = f();
b
ks
class D[X]() extends C[X]() {
val c: C[List[X]] = new C[List[X]1]1();
class J[Y]() extends c.I[Y]();

}
val d: D[Int] = new D[Int]();
val j: d.J[String] = new d.J[String]();

The type of j.£() is computed with the call
as-seen-from(Tuple4[V, C.this.type, W, I.this.type], I,j.type)

The instance I.this is of course replaced with j. For the other arguments

44 CHAPTER 2. THE SCALA LANGUAGE

of Tuple4, we have to compute base-type(j.type, I). The type j.type is
upper bounded by d.J[String] whose supertype is obtained by comput-
ing
as-seen-from(c.I[Y],D,d.type)

and replacing Y with String. The type c.I[Y] is in fact a shortcut for
D.this.c.I[Y] and the actual instance of D.this is d. Thus, the super-
type of d.J[String] is d.c.I[String]. This lets us replace the third ar-
gument of the Tuple4 with String. It tells us also that the actual instance
for C.this is d.c. To compute the actual type for V, we have to compute
base-type(d.c.type, C). This yields C[List[Int]], which lets us conclude
that the type of j.£() is

Tuple4[List[Int], d.c.type, String, j.type]

We have seen that fields and methods whose type contains singleton
types or member types can only be selected on stable paths because oth-
erwise their type cannot be expressed. With inner classes, this gets even
worse. Indeed, there are situations where a field or a method cannot be
used at all. For example, in the function test below, the type of the
method call i.f() cannot be expressed. This call is therefore forbidden
although it seems perfectly legitimate.

abstract class C() {
type T;
class I() { def f(): C.this.T = f(); }

}
def test(i: C#I): Unit = { 1.fO); O }

This situation is a bit frustrating because, in principle, we know what
the type of the method call is: it is the type T of the enclosing instance of i.
With explicit outer fields, it would be i.outerI.T. So, the only problem
here is that without explicit outer fields, this type cannot be named.

2.11.5 Qualified Class Types as Refined Types

If outer fields were explicit, it would be possible to replace qualified class
types with refined types. Indeed, the type T#I could be replaced with
the refined type I { val outerl: T; }. With this scheme, subclasses of
inner classes would implicitly refine the outer field of their superclass. For
example, the definition

class J() extends p.I() { /* ... =/ }

would be translated into the following one

2.12. MIXINS 45

class J() extends I() { val outerI: p.type = p; /* ... #/ }

2.12 Mixins

In order to overcome the limitations of single inheritance, Scala supports
mixin composition. This is similar to the implementation of interfaces
in Java but more powerful because unlike interfaces mixed-in classes can
contain implemented methods.

The code below defines an abstract class Map and two implementa-
tions HashMap and TreeMap. It defines also a trait SynchronizedMap, which
contains the additional behavior (code) needed to transform any Map into
a synchronized Map. A synchronized HashMap is obtained by defining a
subclass of HashMap that mixes-in the trait SynchronizedMap. The same
trait can be reused in the same way to define a synchronized version of
TreeMap.

abstract class Map[K,V]() {
def insert(k: K, v: V): Unit;
def lookup(k: K): Option[V];

ks
class HashMap[K,V]() extends Map[K,V]() { /* ... =/ }
class TreeMap[K,V]() extends Map[K,V]() { /* ... %/ }

trait class SynchronizedMap[K,V]() extends Map[K,V]() {
override def insert(k: K, v: V): Unit =
synchronized (this) { super.insert(k, v); }
override def lookup(k: K): Option[V] =
synchronized (this) { super.lookup(k); }

3
class SynchronizedHashMap[K,V]()

extends HashMap[K,V]() with SynchronizedMap[K,V]();
class SynchronizedTreeMap[K,V]()

extends TreeMap[K,V]() with SynchronizedMap[K,V]();

The traits and the mixin composition mechanism of Scala are loosely
modeled on the description of traits as composable units of behavior by
Scharli [31, 30]. In Scala, normal classes can also be used as mixins but in
a more limited way. While traits can be inherited multiple times through
different inheritance paths, mixed-in classes can only be inherited once by
a given class. This restriction is needed to avoid ambiguities that could
arise if the class has a state. For example, it would be necessary to deter-

46 CHAPTER 2. THE SCALA LANGUAGE

mine whether the state should be duplicated or not. And, if the state is not
duplicated, it must be decided which inheritance path will initialize it.

With mixins, it may happen that a value should be a subtype of two
different class types. For example, one could define a trait LoggedMap,
which logs all operations of the class Map. It could then happen that in
some context, a value has to be an instance of both traits SynchronizedMap
and LoggedMap. This can be expressed with compound types. For example,
the type of a Map from Int to String that is both synchronized and logged
is the following one:

SynchronizedMap[Int,String] with LoggedMap[Int,String]

With the introduction of mixins and compound types a class can be in-
herited through different paths. This needs to be taken into account in the
implementation of the function base-type. It raises also some new typing
issues. For example, a trait with a type parameters that is inherited more
than once through different inheritance paths could be inherited with dif-
ferent type arguments. This must be forbidden. Similarly, a virtual type
could be refined in different ways through different inheritance paths. In
that case, there must be a refinement that refines all others. There are also
some semantics issue. For example, a class can inherit multiple implemen-
tations for a same method. In that case there must be a way to determine
which one will be used.

2.13 Explicit Self Types

Class definitions can specify an explicit self type. This type specifies the
type of the current instance this. In the code below, the class BaseNode
is defined with the explicit self type Node. It implies that within the class
BaseNode, the current instance this has the type Node instead of the type
BaseNode that it would have in the absence of explicit self type. The im-
plementation of the method self is therefore legal.

abstract class Graph() {
type Node <: BaseNode;
abstract class BaseNode(): Node { def self(): Node = this; }
}
class LabeledGraph() extends Graph() {
type Node = LabeledNode;
class LabeledNode() extends BaseNode();
}

2.13. EXPLICIT SELF TYPES 47

Without explicit self type, it would be impossible to implement the
method self within the class BaseNode. Instead, it would be necessary to
implement it in the subclass LabeledNode. If there were other subclasses,
it would be necessary to repeat the implementation in each subclass.

Any subclass of a class with an explicit self type must be defined such
that the type of its current instance this is a subtype of the explicit self
type of its superclass. This may imply that it needs itself an explicit self
type. Any class with an explicit self type has also to be abstract.

It is important to understand that the explicit self type of a class applies
only to its current instance. For example, the current instance of the class
BaseNode can be passed where an instance of Node is expected but not any
arbitrary value of type BaseNode. The explicit self type of a class is not a
supertype of that class.

The example above demonstrates that with explicit self types it is pos-
sible to avoid some code duplication but it remains rather academic. An
more realistic example and probably also a more convincing one of the
usefulness of explicit self types can be found in [27].

Chapter 3
Lambda Lift

Local function and class definitions are not supported by the Java virtual
machine. This chapter describes how they are transformed into method
and inner class definitions. The technique used to perform this transfor-
mation is similar to the well-known lambda lifting technique [15] used to
lift local function definitions to the top-level in functional languages.

3.1 Introduction

Functions are usually implemented with a stack. Each time a function is
invoked, a new portion of the stack is allocated to the function. This stack
portion is called the function’s activation record. It constitutes the working
memory of the function and contains, among other things, the function’s
arguments, local variables and return address. It is deallocated when the
function returns.

For global functions, all the values accessed by their code are either
global values or can be found in their activation record. That’s different
for local functions, at least if like in Scala local functions may reference
the arguments and the local variables of their enclosing functions. Those
values will not be found in the function’s own activation record but in the
activation record of the corresponding enclosing function. Let us illustrate
this with the following functions.

def fold(1ls: List[Int], z: Int, f: (Int, Int) = Int): Int = {
def loop(x: Int, ys: List[Int]): Int =
if (ys.isEmpty) x else loop(f(x, ys.head), ys.tail);
loop(z, 1s)
b

The local function loop contains the expression f(x, ys.head), which

50 CHAPTER 3. LAMBDA LIFT

references three variables: f, x and ys. Two of those, x and ys, are of its
own arguments and can therefore be found in its own activation record,
but £ is an argument of the enclosing fold function. It has to be retrieved
from an activation record of that function. This implies that each time the
loop function is invoked, it must be passed a reference to the activation
record of its enclosing fold function.

One technique to implement local functions is to transform them into
global functions but with an additional argument containing a reference
to the activation record of their enclosing function. Local functions with
more than one enclosing function can retrieve the activation record of non-
directly enclosing functions by starting with the one received as an argu-
ment and extracting from it the one of the next enclosing function and so
on, until the desired one is reached.

A major drawback of this technique is that it does not work for local
classes. Local classes could be augmented with an additional field con-
taining a reference to the activation record of their enclosing function. The
problem is that instances of local classes may still exist after the enclosing
function has returned. Such instances would have a reference to a deallo-
cated activation record. The same problem arises if functions are first class
values and references to local functions outlive the invocation of their en-
closing function. Those problems could be solved by allocating activation
records on the heap and letting the garbage collector take care of them in-
stead of automatically deallocating them on function returns, but that is a
rather radical change that is also prone to introduce space leaks.

Another drawback of this technique is that it is usually not expressible
in the source language because activation records are usually not directly
accessible by the programmer. This prevents the compiler from perform-
ing a source to source transformation to eliminate all local functions and
thus simplify the work of the rest of the compiler.

Lambda lifting is a technique that avoids these problems. This technique
transforms a functional program with local function definitions into a pro-
gram consisting only of global, possibly recursive, function definitions. It
was first described by Augustsson in [3] and later formalized by Johnsson
in [15]. It is similar to the technique described above but instead of pass-
ing down to the local functions the activation record of their enclosing
function, it passes them down the value of all variables of their enclosing
functions that they access.

In our example, the loop function accesses the argument f of the en-
closing fold function. The value of this argument can be passed down to
the loop function by augmenting it with an additional argument f$. The
problematic reference to f can then be replaced with a reference to this

3.1. INTRODUCTION 51

new f$ argument. The whole loop function definition can then be moved
to the top-level. This yields the following code.

def loop(f$: (Int, Int) => Int, x: Int, ys: List[Int]): Int =
if (ys.isEmpty) x else loop(f$, f$(x, ys.head), ys.tail);

def fold(ls: List[Int], z: Int, f: (Int, Int) => Int): Int =
loop(f, z, 1s);

The lambda lifting technique works also for local classes; local classes
are augmented with fields containing the values of the accessed variables
of the enclosing functions. If some instances of a local class outlive the
invocation of their enclosing function, they can still refer the variables of
that function through their local copy in the additional fields.

Another advantage of this technique is that it can be expressed as a
source to source transformation.

The lambda lifting technique has however also some disadvantages in
comparison to the technique based on explicit activation records. First of
all, it does not work for mutable variables. As variables of enclosing func-
tions are accessed through local copies, modification of those variables
would only have a local effect. Another disadvantage of this technique is
that it usually requires more stack space. In our example, the loop func-
tion was augmented with a single argument, but a local function that ac-
cesses several variables of its enclosing functions, needs an extra argument
for each of it whereas with the explicit activation records technique only
one extra argument is needed. This may significantly increase the used
stack space, especially for recursive functions, because each recursive call
requires its own copy of those variables.

On the Java virtual machine, the programmer has no direct access to
the stack. For example, it is impossible to create a reference to some stack
position. This prevents the application of the technique based on explicit
activation records. Therefore, the Scala compiler systematically uses the
lambda lifting technique to eliminate local functions and local classes even
when the usage of an explicit activation record would be more appropri-
ate.

Scala functions do not appear on the top-level but within classes; there-
fore, local functions and local classes are not moved to the top-level but
into their next enclosing class. In some sense, each class successively acts
as the top-level for its methods and thus local functions are turned into
new methods and local classes into new inner classes.

Section 3.2 describes the classical lambda lifting algorithm for func-
tional languages. Section 3.3 describes how the technique is generalized to
classes and Section 3.4 how mutable variables are treated. Types and sev-

52 CHAPTER 3. LAMBDA LIFT

eral typing issues are discussed in Section 3.5. Finally, Section 3.6 presents
an alternative method, which reduces the stack usage and can also solve
some typing issues.

3.2 Classical Algorithm

The classical lambda lifting algorithm transforms a set of nested function
definitions into a set of global function definitions. It assumes that all vari-
ables are immutable. The algorithm consists of four successive steps. First,
the set of variables for which an extra parameter is needed is computed for
each local function. Local function definitions are then augmented with
those extra parameters and calls to those functions are accordingly aug-
mented with extra arguments. Then, in the body of each local function,
all references to variables for which the function got an extra parameter
are replaced with references to those parameters. Finally, all local func-
tion definitions are moved to the top-level. The first step is the most com-
plex one. The three others are rather straightforward and are usually per-
formed all at once in real implementations.

3.2.1 Computing Extra Parameters

The set of variables for which a function needs an extra parameter in order
to be lifted to the top-level is called its extra set. In our example, the extra
set of the function loop is just its unique free variable f. The extra set of a
function contains always all its free variables but it is generally not limited
to those variables. It may also contain variables that would be free within
the function but do not actually occur in its body. This is illustrated by the
following example.

def f(u: Int, v: Int, w: Int): Int = {
def g(x: Int): Int = x + v;
def h(y: Int): Int = g(y) + i(v);
def i(z: Int): Int = { def jOO: Int = h(z) + w; jO }
i(uw)
}

The function h contains no free variables but it calls the function g,
which contains the free variable v. If g is augmented with an extra param-
eter for the variable v in order to lift it to the top-level, its call in h has to
be augmented with the extra argument v. Thus, v becomes free in h and
has to be included in its extra set. This demonstrates that the extra set of a
function depends on the extra set of the functions it calls.

3.2. CLASSICAL ALGORITHM 53

The extra set of a function f has to contain all the free variables that
occur in the body of f. Furthermore, it must also contain all the variables
that occur in the extra set of the functions called by f and that are free in f.
The constraint that such variables are free in f is not necessarily satisfied
for extra sets of nested functions. For example, the function i calls the
function j whose extra set contains z but z is not free in i and is therefore
not added to its extra set.

The call set of a function consists of all the functions called in its body.
Together, the call sets of all functions form the call graph of the program.
The extra sets are computed by first initializing the extra set of each func-
tion with its free variables and then visiting each node of the call graph.
For each visited function f and each function g in its call set, the variables
of the extra set of ¢ that are also free in f are added to the extra set of
f. If the call graph is cyclic, the graph traversal needs to be repeated un-
til a fixed point is reached, which necessarily happens as there is a fixed
number of variables in the program. If the graph is acyclic only one traver-
sal is needed, provided called functions are always visited before calling
functions.

The array below gives the call sets and the successive extra sets of the
four local functions of our example. The successive extra sets are com-
puted here by visiting the functions in alphabetical order.

function | call set | extra set 0 | extra set 1 | extra set 2 | extra set 3
g € % \% \% %
h g, i € \Y Vv, W Vv, W
i j € W v, W Vv, W
b h W, Z V,W,Z V,W,Z V,W,Z

Danvy and Schultz observed in [7] that functions that are defined in the
same scope and that are strongly connected! in the call graph necessarily
have identical extra sets. They show that this implies that it is always
possible to simplify the call graph in order to remove all cycles and thus
enable the computation of the call sets in a single graph traversal.

The call graph is simplified in two steps. First all calls to nested func-
tions are removed from the call graph such that the call set of any func-
tion f contains only functions defined in the same scope as f or in an en-
closing scope. In counterpart, the call set and free variables of each func-
tion are augmented with those of its nested functions.

!Nodes of a directed graph are strongly connected if there is a path from each node to
every other node.

54 CHAPTER 3. LAMBDA LIFT

In our example, the call from i to its nested function j is removed. In
counterpart, the call set and the free variables of i are augmented with the
call to h and the free variable w of j.

function | call set | free variables
g € v
h g, i €
i h W
J h W, Z

Strongly connected functions in the new call graph are necessarily de-
fined in the same scope. Such functions always have identical extra sets.
It is therefore possible to treat them as a single function whose call set
and free variables are the union of those of the individual functions. This
removes all the cycles from the call graph. All extra sets can then be com-
puted with a single traversal of the new graph.

In our example, the functions h and i are strongly connected. If they
are merged, all the extra sets can be computed with a single traversal of
the call graph by first visiting, g, then the merged h and i and finally j.

function | call set | free variables | extra set
g € v v
h,i g w vV, W
J h W,z V,W,Z

3.2.2 Adding Extra Parameters and Arguments

Once the extra sets of all functions are known, the function definitions are
augmented with a new parameter for each variable in their extra set. At
the same time, all function calls are also augmented with a new argument
for each variable in the extra set of the called function. The new argu-
ments are nothing else than the variables in the extra set themselves. The
transformation of our example yields the code below.

def f(u: Int, v: Int, w: Int): Int = {
def g(v$g: Int, x: Int): Int = X + v;
def h(v$h: Int, w$h: Int, y: Int): Int = g(v, y) + i(v, w, V);
def i(v$i: Int, w$i: Int, z: Int): Int = {
def j(v$j: Int, w$j: Int, z$j: Int): Int = h(v, w, z) + w;
jv, w, z)
b

i(v, w, u)

3.2. CLASSICAL ALGORITHM 55

The transformed program is valid only if the variables added in the
function calls are indeed accessible at the call sites. This is necessarily
true. Indeed, the added variables are in the extra set of the called func-
tions. They are therefore free in those functions and thus defined in the
same scope or an enclosing scope of where the functions are defined. As
functions can only be called from the same scope or one nested in the scope
of its definition, the variables are also accessible at the call sites.

3.2.3 Substituting References to Free Variables

With the addition of extra parameters and arguments the references to
free variables have not suddenly vanished. On the contrary, the extra ar-
guments have probably increased their number. However, all functions
have now an extra parameter for each reference to a free variable occur-
ring in their body. All references to free variables can therefore be elimi-
nated simply by replacing them with references to the corresponding extra
parameter. This results in the code below for our example.

def f(u: Int, v: Int, w: Int): Int = {

def g(v$g: Int, x: Int): Int = x + v$g;

def h(v$h: Int, w$h: Int, vy: Int): Int
g(v$h, y) + i(v$h, w$h, v);

def i(v$i: Int, w$i: Int, z: Int): Int = {
def j(v$j: Int, w$j: Int, z$j: Int): Int =

h(vj, wj, z$j) + ws$j;

jvi, wi, z)

}

i(v, w, u)

}

3.2.4 Lifting Functions

Function bodies reference now exclusively parameters and local variables
of their function. Nesting is therefore no longer relevant. All nested func-
tions can be moved to the top-level. This gives the following code for our
example.

def f(u: Int, v: Int, w: Int): Int = i(v, w, u);

def g(v$g: Int, x: Int): Int = x + vig;

def h(v$h: Int, w$h: Int, y: Int): Int = g(v$h, y)+i(v$h, w$h, v);
def i(v$i: Int, w$i: Int, z: Int): Int = j(vi, wi, z);

def j(v$j: Int, w$j: Int, z$j: Int): Int = h(v$j, wj, zj) + w$j;

56 CHAPTER 3. LAMBDA LIFT

3.3 Generalization to Classes

In Scala, there are not only local functions but also local classes. This
section describes how the lambda lifting technique is generalized to lo-
cal classes. It is important to keep in mind that lambda lifting aims only
at eliminating local definitions, not inner classes, which remain in place.
In fact, lambda lifting preserves the nesting of classes; if a class is nested
within some class it will still be after lambda lifting. Thus references to
enclosing instances are unaffected by lambda lifting.

3.3.1 Lifting Local Classes

Like local functions, methods of local classes can reference free variables.
For example, in the code below, the method m of the local class D references
the free variable x.

abstract class C() { def m(): Int; }

def f(x: Int): C = {
class D() extends C() { def m(): Int = x; }
new D()

}

In order to lift a local class, all references to free variables in its methods
must be eliminated. Treating methods like normal functions and augment-
ing them with extra parameters obviously does not work. Our example
would be transformed into the code below where the class D is no longer a
correct implementation of C.

abstract class C() { def m(): Int; }
class D() extends C() { def m(x$D: Int): Int = x$D; }
def f(x: Int): C = new D();

When a local class is lifted, the signature of its methods cannot be
changed. References to free variables are instead eliminated by adding
a new field to the local class for each referenced free variable. To initialize
these new fields, constructors of the class are augmented with extra pa-
rameters and instance creations with extra arguments. This produces the
following code for our example.

abstract class C() { def m(): Int; }
class D(val _x$D: Int) extends C() {
val x$D: Int = _x$D;
def m(): Int = this.x$D;

}
def f(x: Int): C = new D(X);

3.3. GENERALIZATION TO CLASSES 57

3.3.2 Constructors

Although constructors look like special methods, they are treated very dif-
ferently. First of all, unlike methods, their signature changes when their
class is lifted; they get extra parameters for the extra fields of their class.
The second difference is that references to free variables within construc-
tors do not contribute to the extra fields of their class. They contribute only
to the extra parameters of the constructor in which they occur. In fact, con-
structors are treated as if they were functions defined in the same scope as
their class. The following example illustrates this.

class C(m: Int);
def f(x: Int, y: Int): C = {
class D(n: Int) extends C(n: Int) {
val v: Int = x;
def this() = this(y);
}
new D()
}

When lifting a class, it is important to consider its desugared version.
The desugared version of our example is given below. It clearly shows
that the references to the free variables x and y occur both in constructors
of D.

primitive class C { def this(m: Int) = {} }
def f(x: Int, y: Int): C = {
primitive class D extends C {
val v: Int = _;
def this(n: Int) = { super(n); this.v = x; }
def this() = this(y);
b
new D()

}

As the references to x and y occur in constructors, they should only
contribute to the extra parameters of these constructors and not to the ex-
tra fields of D. This is indeed the case, as demonstrated by the code below
were D has been lifted to the top-level.

primitive class C { def this(m: Int) = {} }

primitive class D extends C {
val v: Int = _;
def this(x$D: Int, n: Int) = { super(n); this.v = x$D; }
def this(x$D: Int, y$D: Int) = this(xD, yD);

58 CHAPTER 3. LAMBDA LIFT

}
def f(x: Int, y: Int): C = new D(X, V);

3.3.3 Inner Classes

Inner classes are not lifted out of their enclosing class. They remain in
place but possible references to free variables contribute to the extra fields
of their enclosing class and are replaced with references to these fields.

def f(x: Int): Any = {
class D() { class E() { def m(): Int = x; } }
new D()

}

In the code above, the inner class E references the free variable x. In the
lambda lifted code below, this reference is replaced with a reference to the
extra field x$D of the enclosing class D.

class D(_x$D: Int) {
val x$D:Int = _x$D;
class E() { def m(): Int = D.this.x$D; }

}
def f(x: Int): Any = new D(x);

3.3.4 Local Definitions

Methods and inner classes of a local class can themselves contain local
definitions. In that case the local definitions are first lifted within the local
class and only then the local class is lifted. The lifting of the local defini-
tions turns the functions and the classes constituting them into methods
and inner classes of the local class. During this lifting, all references to
free variables defined in an enclosing scope of the local class are treated as
references to global variables and are thus left unmoditfied.

In the code below, the method m of the local class D contains a local
function g and a local class E. The function g references the variables x and
y, which are both free. The first one is defined in an enclosing scope of the
local class D while the second one is defined within D.

def f(x: Int): Any = {
class D() {
def m(y: Int): Any = {
def g(): Int = x + v;
class E() { def n(): Int = g(); }

3.3. GENERALIZATION TO CLASSES 59

new E()

}

}
new D()

}

Before the class D is lifted out of the function f, the function g and the
class E are first lifted out of the method m. This turns them into a method
and an inner class of D. During this operation, the reference to the vari-
able x in the body of the function g is treated as if it was a reference to
a global variable and is left unmodified. The result of this first lifting is
given below.

def f(x: Int): Any = {
class D() {
def g(y$g: Int): Int = x + y$g;
class E(_y$E: Int) {

val y$E: Int = _y$E;
def n(): Int = D.this.g(E.this.y$E);
}
def m(y: Int): Any = new E(Y);
}
new D()

}

At this point, the class D can be normally lifted out of the function f.
This leads to the following code.

class D(_x$D: Int) {
val x$D: Int = _x$D;
def g(y$g: Int): Int = D.this.x$D + y$g;
class E(_y$E: Int) {

val y$E: Int = _y$E;

def n(): Int = D.this.g(E.this.y$E);
}
def m(y: Int): Any = new E(Y);

}
def f(x: Int): Any = new D(x);

It is of course possible to perform the two steps described here in a
single one. In that case, it is important to recognize that the initial extra
set to which a reference to a free variable contributes depends not only
on the location of the reference but also on the place where the referenced
variable is defined. If the reference is separated from the definition by
at least one enclosing class then it contributes to the initial extra set of

60 CHAPTER 3. LAMBDA LIFT

the outermost of those enclosing classes. Otherwise, it contributes to the
initial extra set of the function in which it occurs.

In our example, the variables x and y are both referenced in the body
of the function g but only y contributes to the initial extra set of g. The
reference to the variable x contributes to the initial extra set of the class D,
which encloses the reference and separates it from the definition of x in
the function f.

3.3.5 Generalized Algorithm

When classes are taken into account, the lambda lifting algorithm stays
the same except that extra sets are also computed for local classes and
local classes are augmented with an extra field for each variable in their
extra set. Like local functions, local classes are attributed a call set and the
extra sets of local classes are computed the same way as the extra sets of
local functions.

Constructors of local classes are treated like local functions defined in
the same scope as their class. While computing extra sets, it is important
to remember that a constructor is implicitly called in each instance cre-
ation. Furthermore, the extra set of each primary constructor has to be
augmented with its class. Indeed, in the step “parameter and argument
addition”, the bodies of primary constructors have to be augmented with
code to initialize the extra fields of their class.

Methods and inner classes are not treated like local functions and local
classes but are considered as a part of their enclosing class. They remain in
place and contribute to the free variables and the call set of their enclosing
class. So the free variables of a local class are all the free variables that
occur in its methods and in methods of its inner classes. Similarly, the call
set of a local class is the union of the call sets of all its methods and the
methods of its inner classes.

The presence of classes does not change the fact that strongly connected
definitions defined in the same scope have identical extra sets. It is there-
fore still possible to compute all the extra sets with a single graph traversal.

3.4 Mutable Variables

In Scala, unlike in Java, references to free variables in local definitions are
not restricted to be immutable. This is problematic because in lifted def-
initions references to free variables are replaced with references to copies
of the originally referenced variables. Thus, after lambda lifting there are

3.4. MUTABLE VARIABLES 61

several instances of the same variables and modifications to one instance
are not reflected by the other ones.

In the example below, the function loopl updates the variable sum. If
it was lifted to the top-level, it would only have access to a copy of the
original variable. Modifications to that copy would have no effect on the
original variable and the function loop2 would always be called with sum
equal to 0.0.

def normalize(list: List[Float]): List[Float] = {
var sum: Float = 0.0;
def loopl(ls: List[Float]): Unit =
if (!1s.isEmpty) {sum = sum + 1ls.head; loopl(ls.tail)}
def loop2(ls: List[Float]): List[Float] =
if (1s.isEmpty) Nil else (1ls.head / sum)::loop2(ls.tail);
loopl(list); loop2(list)
ks

Interestingly, mutable fields pose no problem because they are always
accessed through a reference to their enclosing object. It may happen that
this reference gets duplicated but never the field itself. This provides a
solution for the mutable variables that are modified in local definitions.
These variables are replaced with mutable fields elem of instances of the
class Ref defined below.

class Ref[Elem] (_elem: Elem) { var elem: Elem = _elem; }

More precisely, before lambda lifting, all variables v of type X ini-
tialized with x that are referenced in at least one local definition are re-
placed with immutable variables v of type Ref[X] and initialized with
new Ref[X](x). Furthermore all references to v are replaced with refer-
ences to v.elem. After that, local definitions can be lambda lifted as usual.

def normalize(list: List[Float]): List[Float] = {
val sum: Ref[Float] = new Ref[Float](0.0);
def loopl(ls: List[Float]): Unit =
if (!1s.isEmpty)
{sum.elem = sum.elem + ls.head; loopl(ls.tail)};
def loop2(ls: List[Float]): List[Float] =
if (1s.isEmpty) Nil else (1s.head / sum.elem)::loop2(ls.tail);
loopl(list); loop2(list)
3

62 CHAPTER 3. LAMBDA LIFT

3.5 Typing Issues

Until now we considered only value variables but functions and classes
can have type parameters that can be referenced by any nested definition.
Local definitions may therefore contain references to free type variables.
These are eliminated just like references to free value variables by taking
them into account while computing the extra sets of the local definitions.
These are then augmented with an extra type parameter for each type vari-
able in their extra set. And, function calls and class types are accordingly
augmented with extra type arguments.

Because types can contain references to free type variables, they must
be taken into account in the computation of the extra sets. Singleton types
and member types contain both a stable path and can therefore reference
free value variables. These references must also be taken into account in
the computation of the extra sets. Indeed, it may happen that the only
reference to a free value variable in a local definition, like the reference
to x in the class D below, occurs in a type of that definition. In that case,
the variable still must be added to the extra set of the definition because
otherwise the type in which it occurs could not be correctly expressed in
the lifted definition.

abstract class C() { type T; def t(): T; }

def f(x: C): String = {
class D() { def m(t: x.T): String = t.toString(); }
new D) .m(x.t())

}

The lifted class D is given below. The type of the parameter t clearly
relies on the added field and could not be correctly expressed without it.

class D(_x$D: C) {

val x$D: C = _x$D;

def m(t: this.x$D.T): String = t.toString();
}

It is worth flagging the extra parameters and fields that are added only
because they occur in some type. Indeed, when types are erased in the
type erasure phase of the compiler, all singleton types and all member
types are eliminated. Thus, after type erasure, the flagged extra parame-
ters and fields are no longer referenced and can safely be removed.

The fact that some value parameters or fields are added only because
of some types is annoying. Even more annoying is the fact that there are
several situations where the lifted type is invalid even with the extra pa-
rameters and fields. The different kinds of problems are illustrated by the

3.5. TYPING ISSUES 63

local definitions of the following example.

abstract class C() { type T; }
abstract class D[X]();
def f(x: C): Any = {
def g[T <: x.T](t: x.T): x.T = t;
class E() extends D[x.T]();
new E()
}

The lifted version of the function g is given below. It shows that the
bound of T, the type of t and the return type all three reference the ar-
gument x$g. All this is illegal because function arguments can only be
referenced from within the function body. However, lifting this restric-
tion seems not completely unreasonable and the fact that valid Scala code
produces such functions gives credit to this. For the function g, it would
imply that in all its calls, the first value argument has to be a stable path p
of type C. Its second value argument would have to be of type p.T. The
type argument would have to be a subtype of that type. The result of the
call would be of type p.T.

def g[T <: x$g.T]1(x$g: C, t: x$g.T): x$g.T = t;

It might seem that the lifted version of the class E is the following one,
but this is not correct.

class E(x$E: C) extends D[x$E.T](x$E);

Indeed, we know that the value parameters of a class correspond to
the value parameters of its primary constructor. Referencing them in the
supertype of the class just makes no sense. The correct lifting of the class E
produces the following definition:

class E(_x$E: C) extends D[E.this.x$E.T](_x$E) {
val x$E: C = _x$E;
}

In this definition the supertype of the class E depends on its current
instance. This is illegal in Scala, because the supertype of a class is not
considered as a type that occurs within the class. It may therefore not
reference the current instance of the class. However, here again, it is not
completely unreasonable to change this. It would imply that the base type
of class D of a type T (base-type(T,D)) can only be computed if T is a single-
ton type p.type. This base type would be D[p.x$E.T], which is a perfectly
reasonable type.

64 CHAPTER 3. LAMBDA LIFT

It is interesting to note that if the class D had a virtual type X instead of
its type parameter X, there would be no problem at all. The lifted definition
would be the following one.

class E(_x$E: C) extends D(_x$E) {
val x$E: C = _x$E;
type X = E.this.x$E.T;

}

Note that the type assigned to the virtual type X is exactly the same as
the one passed to the type parameter X in the previous definition.

3.6 Alternative Method

When several local definitions are defined in the same block, it may be
profitable to introduce a local class in the block and move all the local
definitions into the new class. This transforms the local definitions into
fields, methods and inner classes of the new class. Here is the result of this
operation for the example of Section 3.4.

def normalize(list: List[Float]): List[Float] = {
class L() {
var sum: Float = 0.0;
def loopl(ls: List[Float]): Unit =
if (!1s.isEmpty) {sum = sum + ls.head; loopl(ls.tail)};
def loop2(ls: List[Float]): List[Float] =
if (1s.isEmpty) Nil else (1ls.head / sum) :: loop2(ls.tail);
3
val 1: L = new L();
1.1loopl(list); 1.loop2(list)
¥

The new class L contains no free variables and can be moved without
modification to the top-level. This produces better code than what would
have been obtained without the class L. Both versions use an instance of an
auxiliary class; the new instance of L replaces here the new instance of Ref.
But, in this version, the functions loopl and loop2 get no extra parameter
whereas in the other version both get an extra parameter for the variable
sum. One could argue that in this version the two functions get an extra
implicit parameter containing the current instance of L. That is true, but in
the other version, the functions would also end up in some class and thus
have an implicit parameter containing the current instance of that class.

3.6. ALTERNATIVE METHOD 65

This example shows that the addition of extra parameters to lifted func-
tions (and also extra fields to lifted classes) can be avoided by introducing
an auxiliary class. The extra parameters are then replaced with fields of
the auxiliary class. This has a little cost for immutable fields, which must
be dereferenced whereas with the extra parameters they are directly ac-
cessible. The cost for mutable variables remains the same as they would
anyway be dereferenced from an instance of Ref. Furthermore, if there are
several mutable variables, multiple instances of Ref are replaced with a
single instance of the auxiliary class.

There are several factors that are in favor of the usage of an auxiliary
class. If the local functions are recursive, the cost of the instance creation
of the auxiliary class is spread over all the recursive calls. If there are many
free variables, the auxiliary class can significantly reduce the stack usage.
If the free variables are accessed rarely, for example only in leaf calls, then
the additional cost of dereferencing them is largely compensated by the
avoided cost of passing the extra arguments in each function call.

The usage of an auxiliary class can also help when there are some typ-
ing issues with the lifting of the local definitions. The code below shows
the last example of the previous section where the two problematic local
definitions have been moved into an auxiliary class L.

abstract class C() { type T; }
abstract class D[X]();
def f(x: O): Any = {
class L() {
def g[T <: x.T](t: x.T): x.T = t;
class E() extends D[x.T]();

}
val 1: L = new L();
new 1.EQ)

}

The class below is the result of the lifting of the class L. The method g
and the class E no longer present a typing issue.

class L(_x$L: C) {
val x$L: C = _x$L;
def g[T <: L.this.x$L.T](t: L.this.x$L.T): L.this.x$L.T = t;
class E() extends D[L.this.x$L.T]1();

}

This example shows that the usage of an auxiliary class can indeed
avoid certain typing issues. However, introducing an auxiliary class and
thus some real runtime costs just to avoid typing issues is somewhat dubi-

66 CHAPTER 3. LAMBDA LIFT

ous. Unlike the extra parameters introduced only because of some single-
ton type or member type, these auxiliary classes cannot be easily removed
during type erasure.

Although systematically introducing an auxiliary class just to avoid
typing issues would be foolish, there are cases where the usage of an aux-
iliary class would translate into faster code. However determining when
this would be the case is not an easy task and requires some good heuristic.
The Scala compiler does currently never introduce auxiliary classes.

Chapter 4

Explicit Outer

Although Java supports inner classes since version 1.1, the Java virtual
machine still supports only top-level classes. This chapter describes how
inner classes are eliminated by augmenting them with an explicit outer
field and lifting them to the top-level.

4.1 Introduction

After lambda lifting all classes are either top-level classes or inner classes.
As the Java virtual machine provides no support for inner classes, it is
necessary to lift all of them to the top-level. One could try to somehow
lambda lift inner classes to the top-level. There are however several dif-
ferences between the lambda lifting of local classes and the lifting of inner
classes to the top-level.

First of all, an inner class can have several enclosing classes and it may
reference the current instance of each of them. These references to enclos-
ing instances are like references to free variables. So, lambda lifting an in-
ner class would add as many extra fields as there are referenced enclosing
instances. However, this is unnecessary and may waste a lot of memory.
Indeed, adding to each inner class a single explicit outer field containing
the instance of its directly enclosing class is enough. Indirect enclosing
instances can still be reached through a chain of outer field selections.

Like lambda lifted local classes, lifted inner classes need an extra type
parameter for each free type variable X they reference. For example, if
the class D, defined below, is lifted to the top-level, it needs an extra type
parameter for the type parameter T.

class C[T]() { class D() { def £f(): T =£f(Q; } }
val c: C[String] = new C[String]l();

68 CHAPTER 4. EXPLICIT OUTER

val d: c.D = new D();

Class types of lifted classes must of course provide corresponding extra
type arguments. In our example, the type of d must be augmented with
an extra type argument for the extra type parameter of the class D. For
local classes, the extra argument for an extra parameter corresponding to
a free variable X is simply X. This is different for inner classes. Indeed,
unlike class types of local classes, class types of inner classes can occur
anywhere. They are not restricted to the scope or nested scopes of the one
where the class is defined. It may therefore happen that X is not even a
valid type in the scope where the class type is. In our example, it would
clearly be illegal to augment the type of d with the type argument T. For
class types of inner classes, the extra type arguments have to be computed
from their class qualifier. The adequate extra argument for the type of d
is String because the extra argument corresponds to the type parameter T
of the enclosing class of D and this parameter is equal to String in the type
of the prefix c of D in the type of d.

When a class is lambda lifted, the number of extra fields and also the
number of extra parameters of its constructors depend on the number of
free variables referenced in its body. An implementation change that re-
moves or adds references to free variables can change these numbers. This
is problematic for inner classes because an inner class can be referenced
from anywhere and not only from the same scope or from a nested scope
of the one where it is defined. For example, it may happen that an inner
class is defined in a file and extended or instantiated in another one. With
separate compilation, these two files can be compiled at different times. In
principle, only interface changes should force the recompilation of depen-
dent files, but if an implementation change modifies the number of extra
parameters of the constructor of the lifted inner class, it will force the re-
compilation of all files that extend or instantiate this class. To avoid this,
inner classes are systematically augmented with an explicit outer field and
their constructors with an extra parameter to initialize it even if they never
reference any of their enclosing instances.

Finally, when an inner class is lifted to the top-level, it loses the privi-
leges it enjoyed as a member of its enclosing class. For example, within an
inner class, any private member of any of its enclosing classes can be refer-
enced. When the inner class is moved to the top-level, it loses this privilege
and the references are no longer valid. This is resolved by adding access
methods to the enclosing classes and by replacing the references with calls
to these methods.

Section 4.2 describes the base algorithm used to lift inner classes to the

4.2. BASE ALGORITHM 69

top-level. Section 4.3 describes how the the problems posed by the loss of
privileges are solved. Section 4.4 describes how qualifiers of inner class
types are replaced with additional type arguments. Section 4.5 discusses
some typing issues that remain and Section 4.6 some specific issues related
to explicit self types.

4.2 Base Algorithm

Conceptually, inner classes are lifted to the top-level in three steps but
these can easily be performed all at once in an implementation. During
the first step, all inner classes are augmented with an explicit outer field
and an extra type parameter for each type parameter of all their enclosing
classes. And, all constructors of inner classes get an extra value parame-
ter, which is used to initialize the explicit outer field. At the same time,
class types and constructor calls of inner classes are augmented with cor-
responding arguments.

The second steps affects only the body of inner classes. It replaces all
references to type parameters of enclosing classes with references to the
corresponding extra type parameter of the inner class. Furthermore, ref-
erences to the directly enclosing instance are replaced with references to
the explicit outer field and references to indirectly enclosing instances are
replaced with chains of outer field selections.

During the third step, all inner classes are moved to the top-level. At
the same time, the qualifiers of class types and the prefixes of constructor
calls are dropped.

Let us first illustrate the lifting of inner classes with the three following
classes.

class CO[X0]() {
class C1[X1]1() {
class C2[X2]10) {
def print(): Unit = {

System.out.println(C2.this);
System.out.println(Cl.this);
System.out.println(CO.this);

i3 3

The lifted definitions are given below. Observe that the two lifted
classes C1 and C2 get both a single explicit outer field but an extra type
parameter for each type parameter of all their enclosing classes. Observe
also how the references to enclosing classes have been replaced with se-
lections of outer fields on the current instance.

70 CHAPTER 4. EXPLICIT OUTER

class CO[X0]() {}
class C1[X0$CO0,X1](_outer$Cl: CO[X0$CO]) {
val outer$Cl: CO[X0$CO] = _outer$Cl;
}
class C2[X0$C0,X1$C1,X2](_outer$C2: C1[X0$CO,X1$C1]) {
val outer$C2: C1[X0$C0,X1$C1] = _outer$C2;
def print(): Unit = {
System.out.println(C2.this);
System.out.println(C2.this.outer$C2);
System.out.println(C2.this.outer$C2.outer$Cl);
}
}

Let us now illustrate with the code below how class types, class exten-
sions and class instantiations of inner classes are affected.

class DO[YO]() extends CO[List[YO0]]();
val dO: DO[Int] = new DO[Int]();

class D1[Y1]() extends dO.C1[List[Y1]]1();
val dl: D1[Long] = new D1[Long]();

val c2: dl1.C2[Float] = new d1.C2[Float]();

The same code after inner class lifting is given below. Observe that the
prefix of the constructor call in the extends clause of D1 and in the instance
creation of C2 and the qualifier of the C2 class type have all been dropped.

class DO[YO]() extends CO[List[YO0]]();
val dO: DO[Int] = new DO[Int]();
class D1[Y1]() extends C1l[List[Int],List[Y1]](d0);
val dl: D1[Long] = new D1[Long]l();
val c2: C2[List[Int], List[Long], Float] =
new C2[List[Int], List[Long], Float](dl);

The extra value argument of the inner class constructor calls are sim-
ply the dropped constructor prefixes. The computation of the extra type
arguments of inner classes is less trivial. The extra type arguments of su-
perclasses and instance creations are computed from the constructor prefix
and those of class types from the class qualifier. The extra arguments are
the arguments of the enclosing classes implied by the constructor prefix
or the class qualifier. For example, the extra argument of the superclass
of D1 is obtained by computing base-type(d0. type, C0), which evaluates to
CO[List[Int]]. Thus, the extra type argument of C1is List[Int].

The extra type arguments of the class type and the instance creation
of C2 are obtained by computing base-type(dl.type, C1). Note that this
computation is performed with not yet lifted definitions. It evaluates to

4.3. LOST PRIVILEGES 71

d0.C1[List[Long]]. Thus, the argument corresponding to the parame-
ter of the class C1 is List[Long]. For the argument corresponding to the
parameter of CO an additional computation of base-type(d0. type, CO) is re-
quired. More generally, the computation of the extra arguments for an
inner class with n enclosing classes requires n successive base-type compu-
tations.

4.3 Lost Privileges

Inner classes enjoy the same privileges when they access members of their
enclosing classes as these enclosing classes themselves. There are three
of these privileges. First of all, inner classes can access private member
of their enclosing classes. They can also access protected members de-
fined in a different package. Finally, they can call method implementa-
tions inherited and possibly overridden by their enclosing classes (calls
like C.super.f(...)). All these privileges are lost when the inner classes
are lifted to the top-level.

In the code below, the method i of the inner class I uses the three priv-
ileges. First, it calls the implementation of the method f inherited and
overridden by its enclosing class B . Then, it calls the private method h of
B. Finally, it calls the protected method g inherited by B.

package foo;
class A() {
def f(x: Int, y: Int): Int = X + V;
protected def g(): Int = O;
}
package bar;
class B() extends foo.A() {
override def f(x: Int, y: Int): Int = x - y;
private def h(): Int = 1;
class I() { def i(): Int = B.super.f(h(), g()); }
}

The definition of the lifted class I is given below. The call to h is clearly
illegal as h is a private method of outer$I. The same is true for g, which is
a protected method defined in a different package. Things are even worse
for the super-call to f. There is not even a syntax to express it. The syntax
f@A is not legal Scala. It is used here to indicate that the lookup for the
implementation of f should start in the class A.

class I(_outer$I: B) {

72 CHAPTER 4. EXPLICIT OUTER

val outer$I: B = _outer$I;
def i(): Int = outer$I.f@A(outer$I.h(), outer$I.g());
}

One way to eliminate these illegal references would be to simply de-
clare them legal. The analyzer would check that the source code contains
no illegal reference but later phases would be allowed to generate such
references. In fact, that is exactly what is done for virtual types. Unfor-
tunately, the same is not possible for methods because the Java virtual
machine verifies at runtime that no private or protected methods are ille-
gally called. Furthermore, the Java virtual machine supports only method
super-calls on the current instance. For these reasons, calls to private and
protected methods on enclosing instances and also method super-calls on
enclosing instances are replaced in lifted classes with calls to access meth-
ods added to the corresponding enclosing classes. The code below shows
the definitions of B and I resulting from the lifting of I.

class B() extends foo.A() {
override def f(x: Int, y: Int): Int = x - y;
private def h(): Int = 1;
def accessBsuper$f(x: Int, y: Int): Int = super.f(x, v);
def accessBg(): Int = g(Q);
def accessBh(): Int = h();
}
class I(_outer$I: B) {
val outer$I: B = _outer$I;
def i(): Int = outer$I.access$B$super$f(
outer$I.access$B$h(), outer$I.accessBg());

Note that field references are never problematic because fields are al-
ways accessed through their getter and setter methods. It is therefore
never necessary to generate access methods for fields.

4.4 Lost Qualifiers

When inner classes are lifted to the top-level, the qualifiers of their class
types are dropped. The qualifiers are not entirely lost as the extra type
arguments of class types are computed from their qualifier but the exact
type and identity of the enclosing instances are lost. This is sometimes
problematic. For example, let us consider the following code.

class 0() {

4.4. LOST QUALIFIERS 73

type T;
class I() { def f(): 0.this.T = this.f(); }
def g(i: this.I): this.T = i.f();

}

The type of i.£f() is this.T (obtained by replacing 0.this with this
in 0.this.T). It corresponds to the declared type of g. The expression
i.f() is therefore a legal body of g. Consider now the definitions of I and
0 resulting from inner class lifting.

class I(_outer$I: 0) {
val outer$I: O = _outer$I;
def f(): this.outer$I.T;

}
class 0() {

type T;
def g(i: I): this.T = i.f();
¥

The type of i.£() is here i.outer$I.T (this.outer$I.T with this re-
placed with i). It would be a subtype of this.T, the declared type of g, if
it could be established that i.outer$I is equal to this. Unfortunately, the
declared type O of outer$I does not let us establish that. The expression
i.f() is therefore no longer a legal body of g.

The problem comes from the fact that class qualifiers are dropped dur-
ing the class lifting. Before lifting, the parameter i is declared as an in-
stance of I whose enclosing instance is of type this.type. After lifting, it
is still an instance of I but its enclosing instance is just some instance of 0.

The class qualifiers should be conserved by the class lifting. This is
done by adding to inner classes an extra type parameter corresponding to
the type of their enclosing class. This produces the following definitions
for our example.

class I[0$this <: 0] (_outer$I: 0$this) {
val outer$I: O$this = _outer$I;
def f(): this.outer$I.T;
}
class 0() {
type T;
def g(i: I[this.type]): this.T = i.f();
}

The type of i.outer$I is now this.type. The path i.outer$I is there-
fore equal to this and i.f() is again a legal body of g.

74 CHAPTER 4. EXPLICIT OUTER

Inner classes with multiple enclosing classes get an extra type parame-
ter for each of their enclosing classes. Indeed, the parameters correspond-
ing to the indirectly enclosing classes are needed to express the bound of
the parameter corresponding to the directly enclosing class, as illustrated
in the following example.

class A() { class B() { class C(); } }

The lifted versions of the above classes are given below. Observe that
in the lifted version of C, the type parameter A$this is needed to express
the upper bound of its second type parameter B$this.

class A(Q) {}

class B[A$this <: A](_outer$B: A$this) {
val outer$B: A$this = _outer$B;

}

class C[A$this <: A, B$this <: B[A$this]](_outer$C: B$this) {
val outer$C: B$this = _outer$C;

}

4.5 Typing Issues

Unfortunately the additional type parameters do not solve all problems.
Indeed, the lifting of classes whose parameter bounds or types reference
an enclosing instance produces illegal types. Let us illustrate this with
the following code where the type T, a shorthand for P.this.T, of the
parameter _t of the class Q references the enclosing instance of Q.

abstract class P() { type T; class Q(_t: T) { val t: T =_t; } }

The definitions resulting from the class lifting are given below. The
type of the parameter _t now illegally references the current instance of Q.

abstract class P() { type T; }

class Q[P$this <: P](_outer$Q: P$this, _t: this.outer$Q.T) {
val outer$Q: P$this = _outer$Q;
val t: this.outer$Q.T = _t;

¥

The reference to the current instance could be avoided by replacing
the type of the parameter _t with _outer$Q.T. This is however even more
problematic because class value parameters are accessible only in the body
of the class and not in the bounds and the types of its parameters. Fur-
thermore, the value _t would no longer be a legal initializer of the field t.
Indeed, the type _outer$Q.T is not a subtype of this.outer$Q.T because

4.5. TYPING ISSUES 75

there are no typing rules that can be applied to establish that the paths
_outer$Q and this.outer$Q are equal.

Another way to avoid the reference to the current instance is to replace
the type of the parameter _t with P$this.T. The reference to the type
parameter P$this is legal but not the selection of the virtual type T because
virtual types must always be selected on stable values. However, if the
type parameter P$this is marked as being of a special kind that can only
be instantiated with a singleton type, the selection can be allowed. The
type P$this.T becomes then a legal one and the value _t remains a legal
initializer of the field t. Indeed, as P$this represents a singleton type and
outer$Q is of that type, the paths P$this and this.outer$Q necessarily
denote the same value and are therefore equal. Thus, the type P$this. T is
a subtype of this.outer$Q.T and _t a legal initializer of t. So, with this
solution, the lifted definition of the class Q is well-formed. Unfortunately,
this is not true for its class types. Indeed, there are class types for which
there is not singleton type for the parameter P$this. For example, the type
P#Q becomes after class lifting Q[P] where P is not a singleton type.

The best solution to solve the problem posed by the reference to the cur-
rent instance seems to be to simply allow references to the current instance
in the bound and the types of class parameters as was already argued in
Section 2.10.3.

The lifting of inner classes can also generate class definitions whose
supertype references the current instance, which is illegal. This happens
when an inner class references an enclosing instance in its supertype. The
class N defined below is such a class. Its fully desugared supertype is
L.this.M[L.this.T].

abstract class L() {

type T;

class M[X]();

class N() extends M[T]();
}

The result of class lifting is given below. The first type argument in the
supertype of the class N could possibly be replace with L$this but that is
not the case for the path this.outer$N in its second type argument.

abstract class L() { type T; }
class M[L$this <: L, X](_outer$M: L$this) {
val outer$M: L$this = _outer$M;
}
class N[L$this <: L](_outer$N: L$this)
extends M[this.outer$N.type, this.outer$N.T](_outer$N)

76 CHAPTER 4. EXPLICIT OUTER

{
val outer$N: L$this = _outer$N;

}

Here again, it seems that the best solution is to simply allow references
to the current instance in class supertypes as was already argued in Sec-
tion 3.5.

4.6 Explicit Self Types

The explicit self type of a class applies only to the current instance of that
class. This is problematic because class lifting replaces references to the
current instance of enclosing classes by references to outer fields. Let us
illustrate the problem with the definitions below. Note that the call of the
method g in the body of the method f is legal only because the class 0 has
the explicit self type P.

class 0(): P { class I() { def f(): Int = O.this.g(); } }
class P() extends O() { def g(): Int = 0; }

val o: O = new P();

val i: 0.1 = new 0.I();

Class lifting produces the code below where the call of the method g
is no longer legal. Indeed, the field outer$I is of type 0$this, which is
upper bounded by 0 but 0 is not a subtype of P as the explicit self type P of
the class 0 only applies to its current instance.

class 00): P {}

class P() extends O() { def g(): Int = 0; }

class I[0$this <: 0] (_outer$I: 0$this) {
val outer$I: 0$this = _outer$I;
def f(): Int = this.outer$I.g();

¥

val o: O = new PQ);

val i: I[o.type] = new I[o.type](0);

Replacing the upper bound of the parameter 0$this by the explicit self
type of the class 0 is not a solution. It would make the call to the method g
legal. However, at the same time, the type I[o.type] of the variable i
would become illegal because the type 0 of the value o is not a subtype of
P.

Changing the type system to consider the explicit self type of a class as
a supertype would make the call to the method g legal but such a change
raises many other problems because it introduces cycles in the subtyping

4.6. EXPLICIT SELF TYPES 77

relationship. In our example, the explicit self type P of the class 0 would
become a supertype of 0 but 0 is already a supertype of P as the class P is
a subclass of 0.

One solution is to use access methods like for private and protected
members (Section 4.3). However, unlike for private and protected mem-
bers, these methods do not perform something that could not be done
elsewhere. Indeed, each of these methods would end up, after the type
erasure phase, simply casting the current instance to the explicit self type
and calling the accessed method. For example, the access method for the
method g in the class 0 would simply cast the current instance of 0 to P and
call the method g. This cast could also be done elsewhere; in the class I,
the outer field outer$I could be cast to P and thus the method g could be
called directly. In this case, access methods introduce unneeded runtime
overhead for the sole benefit of delaying the insertion of type casts. So
it seems more advantageous to directly insert these casts and avoid the
overhead of the access methods.

Another solution that avoids early introductions of casts and intro-
duces no runtime overhead exists but it requires some small changes to
the analyzer, the type system and the back-end. It assumes that all classes
inherit two special members: a virtual type Self and an implicit field
self. These two members are used to encode explicit self types. The up-
per bound of the virtual type Self is refined in every class to the type of
the current instance. This type is equal to the explicit self type if the class
has one. The field self is an immutable field of type Self initialized with
the current instance. Thus, for any expression e, the expression e.self re-
turns the same value as e and is of type e.Self. The analyzer is modified
to add to each class definition the adequate refinement of its virtual type
Self, to remove all explicit self types and to replace all current instances of
the form C.this that occur in a context that relies on the explicit self type
of the class C by the member selection C.this.self. Thus, the analyzer
would transform the definition above of the class 0 to the following one:

class 0() {
type Self <: P;
class I() {
type Self <: I;
def f(): Int = O.this.self.g();
3
}

This definition contains no explicit self type and lifting the class I to the
top-level poses no problem. The type system needs to be modified such

78 CHAPTER 4. EXPLICIT OUTER

that it understands that for any stable path p, the paths p and p.self are
equal. Finally, the back-end needs to be modified such that it compiles any
expression e.self like it would compile the expression e with possibly an
additional cast if needed.

Chapter 5

The Core Language

Transformations like lambda lift and explicit outer cannot be expressed in
a fully type safe way as Scala to Scala transformations because the transfor-
mation of some programs yields ill-typed Scala code. The Core language
is a typed intermediate language for Scala compilers. It generalizes some
aspects of Scala in such a way that all transformations needed to compile
Scala code can be expressed as Core to Core transformations. This chapter
describes the syntax and the type system of the Core language, the encod-
ings used to translate Scala code into Core code and a Core version of the
lambda lift and the explicit outer transformations.

5.1 Introduction

The Core language is a typed intermediate language that can be used to ex-
press all code transformations needed to compile Scala code as well-typed
Core to Core transformations. The design of the Core language was driven
by two rather contradictory constraints: the language had to be both sim-
ple, in order to simplify the implementation of the code transformations,
and expressive enough to encode Scala programs.

There are several ways in which the Core language is simpler than
Scala. Some simplifications are possible because the Core language is
only intended as an intermediate language and not as a programming
language. Compared to Scala, the Core language consists of a very lim-
ited number of constructs. For example, the Core language has no notion
of type parameters; those are encoded with virtual types. This tends to in-
crease the size of programs, as virtual types are much more verbose than
type parameters. This encoding would be very cumbersome in a program-
ming language but it poses no problem at all in an intermediate language

80 CHAPTER 5. THE CORE LANGUAGE

because the encoding is done by the compiler. On the contrary, it simplifies
all parts of the compiler that handle intermediate code because all those
parts do not have to handle type parameters, they only need to handle
virtual types.

Many simplifications are also possible because the Core language is
only intended to be used after the program analysis. For example, the
program analysis tries to infer all type arguments that were omitted in
function calls. It is therefore possible to make type arguments of function
calls mandatory in the Core language. Indeed, if some type arguments of a
function call are missing in the Scala source code, either the analyzer suc-
ceeds in inferring them and can thus create a corresponding Core function
call with no missing type arguments, or it fails and reports a compilation
error. In that case, the compilation stops after the program analysis and
no Core function call needs to be created.

In Scala, the names of entities, like classes, functions or variables, have
a unique role: they are a means of designating the entity of which they are
the name. Different entities may have the same name if they are defined
in different contexts. A same name may therefore designate different en-
tities in different contexts. For example, two packages foo and bar can
both contain a class named C. In that case, the class name C is ambiguous;
it can designate both classes. The meaning of the class name C depends
on the context in which it occurs, namely the current package and the list
of imported class names. The determination of the entity designated by
each name is the task of the name analysis, which is a part of the pro-
gram analysis. During the program analysis, the compiler creates a symbol
for each entity defined in the program. The task of the name analysis is
to replace each name by a reference to the symbol of the entity it desig-
nates. It is a compilation error if the name analysis cannot determine a
unique entity for each name. Thus, after the program analysis, either the
name analysis succeeded and each name could be resolved to a unique
entity and replaced by a reference to the corresponding symbol or it failed
and the compilation stopped with one or more error messages. This im-
plies that in programs that pass the program analysis entity names are no
longer relevant; each one has been replaced by a reference to the symbol of
the unique entity it designates. In the Core language, identifiers represent
the symbol of the different entities rather than their name. It is therefore
assumed that all entities have a globally unique identifier. The usage of
symbols instead of names has the advantage that any entity, in any con-
text, can be designated unambiguously by its symbol. This leads to much
simpler typing rules because they do not have to incorporate name reso-
lution aspects.

5.1. INTRODUCTION 81

The definition of a new member, the refinement of an inherited mem-
ber and the implementation or overriding of an inherited member are con-
ceptually three different notions but Scala uses the same syntax for all
three. Let us illustrate this with the code below.

abstract class A { type T <: Any; def £f(): Int; }
abstract class B extends A { type T <: Number; def £(): Int = 0; }

The class A defines a new type T and a new method f. Although it uses
the same syntax, the class B does neither define a new type T nor a new
method £. Instead, it refines the upper bound of the type T inherited from
A and implements the method f also inherited from A. Thus, T and f are
bindings in B and fresh binders in A. In Scala, the exact meaning of a mem-
ber declaration can only be determined during the program analysis by
examining the inherited members of the class in which it occurs. The Core
language avoids these difficulties by using three different constructs for
the three different notions.

Other difficulties are avoided with additional annotations. For exam-
ple, the type of a conditional expression is the least upper bound of the
types of its two branches but the least upper bound of two types does not
always exist (Section 2.9.1). Conditional expressions of the Core language
are therefore annotated with their type. For similar reasons, block expres-
sions are also annotated with their type. Indeed, the type of a block is
determined by the type of its last expression. This type may contain refer-
ences to local members of the block. These references must be eliminated
because the type of the block must be valid in the scope enclosing the
block where the block members are not available. This is done by widening
the type of the last expression of the block, which consists in computing
the least upper bound of the type that does not reference any members of
the block. This least upper bound, like the least upper bound of two types,
does not always exist. Block expressions are therefore annotated with their
type in order to avoid its computation.

Finally, the Core language is also simpler than Scala because it is less
constrained than Scala. The well-formedness of a Core program guaran-
tees more or less only that all operations performed by the program are
legal; it guarantees that members are selected on values that inherit them,
that arguments in function calls are of the right type and number, that vari-
ables are assigned with values of the right type, etc. The well-formedness
of a Scala program guarantees much more; it guarantees that variables
are initialized before they are read, that new instances are initialized by a
constructor before they are used, that only non-abstract classes are instan-
tiated, that private and protected members are never accessed from scopes

82 CHAPTER 5. THE CORE LANGUAGE

that are not entitled to do so, etc. All these constraints are not enforced by
the Core language. In fact, the Core language does not even have a notion
of uninitialized variables, constructors, abstract members and private or
protected members.

There are also some aspects on which the Core language is more gen-
eral or more expressive than Scala. For example, the Core language has a
notion of record, which unifies some aspects of the global scope, classes,
functions and blocks. There are also the value parameters of functions,
which can be referenced by the bounds and the types of the parameters
and by the return type, while in Scala only type parameters can be refer-
enced.

5.2 Syntax

The Core language relies on six different kinds of entities: a unique root
context, classes, functions, blocks, value variables and type variables. The
syntax of the language is given in Figure 5.1. It consists of symbols, defi-
nitions and expressions; symbols are a means to identify and reference the
different entities, definitions define the entities by specifying their symbol
and attributes and expressions describe the types and the values of the
language.

Overlined metavariables denote lists of metavariables. For example, C
is a shorthand for Cy,...,C, with n > 0. The length of a list is obtained
with the syntax |C| and empty lists are denoted by €. Note that C and C
can be used simultaneously and denote n + 1 different metavariables.

5.2.1 Symbols

All entities, including blocks, are identified by a globally unique symbol.
The identifying symbol of an entity is specified in the definition of the
entity. The root context, which has no explicit definition, is identified by
the predefined symbol Root. Thanks to these globally unique symbols,
any entity can be referenced by its symbol in any expression in an unam-
biguous way and independently from the context in which the expression
occurs.

A record is an entity consisting of a list of members. It can be instan-
tiated into values through which its members can be accessed. Every
member definition has access to an instance of the record, known as the
current instance of the record, and has thus access to all other members
of its record. There are four different kinds of records: the root context,

5.2. SYNTAX

83

Symbols

Record P,Q,R = Root|C|f|b

Class AB,C = ...

Function f,g =

Block b = ...

Value u,v,w = outer@R | ...

Type U, V,W = Outer@R| ...

Member m,n,0 = f|v|V

Definitions

Program P = C:F;V

Class C — class C extends C{C;F:V:T:0}

Function J = def f{f}TI(V): X=x

Value v = |[mutable| val v: X

Type T = type V>: X<:Y

Expressions

Value x,Y,z, = this(k) enclosing context

p,q,r | p.v variable evaluation

| p.v=x variable assignment
| p.f [X] ») function application
| new X instance creation
| if [X](x) yelsez conditional
| {b: X|C:F;V:x} block
| x; sequence

Type X,Y,Z = p.type singleton type
| p.V abstract type
| R{O} record type
| bottom bottom type

Signature S, T = : X value signature
| > X<:Y type signature

Refinement O = overridem S refinement

Miscellaneous

Integer ij,kl = 012,...

Figure 5.1: Core Syntax (nested version)

classes, functions and blocks. Class instances are explicitly created by in-
stance creation expressions. Function and block instances are implicitly
created when they are called or entered. The root context is instantiated
only once before the program evaluation starts. In implementation terms,

84 CHAPTER 5. THE CORE LANGUAGE

class instances correspond to the chunks of memory allocated on the heap
to store their state, function and block instances correspond to their acti-
vation records on the stack and the root context instance corresponds to
the static data of the program. Instances are always passed by reference.

Record members are of three different kinds: functions, value variables
and type variables. For a class, they correspond to its methods, fields and
virtual types. For a function, the value and type variables correspond to
its value and type parameters. The members of a function never include
functions. For a block, function and variables correspond to its local func-
tions and local variables and for the root context they correspond to the
global functions and the global variables of the program.

The unification into records of the root context and all classes, functions
and blocks has for consequence that all functions and variables become
methods and fields of some record. Thus, functions and variables must
always be selected on an instance of some record, even if they correspond
to function parameters or to local or global functions or variables. This
means that there are no free bindings. Or, more precisely, there is only
one free binding, namely the current instance of the innermost enclosing
record. This instance is the only value that is directly accessible by any
expression. Everything else has to be accessed by successive selections
from that instance.

Every entity is owned by some record. This record is called the owner of
the entity. For all entities, excepted the root context, the owner of the entity
is the record in which the entity is defined. For functions and variables,
the owner is also the record of which the entity is a member. The root
context, which is the outermost record and thus has no enclosing record,
is by definition its own owner.

Every record R has two implicit members: an outer value field identified
by the symbol outer@R and an outer type field identified by the symbol
Outer@R. The outer value field holds a reference to the current instance
of the enclosing record of R and the outer type field holds the type of that
instance. In the case of the root context, which has no enclosing record,
the outer value field contains a self reference to the root context. Thus, the
outer value field of a record R always contains an instance of the owner of
R and the outer type field the type of that instance.

Thanks to the implicit outer fields, the current instance of any enclos-
ing record is always accessible through successive outer field selections
on the current instance of the innermost enclosing record. The Core lan-
guage does therefore not need a special syntax, like Java’s syntax C.this,
to access the current instance of indirectly enclosing records.

Classes, like functions and variables, are always defined within some

5.2. SYNTAX 85

record but classes are not regarded as members of their enclosing record
because, unlike functions and variables, classes do not necessarily have to
be used in conjunction with an instance of their enclosing record. Indeed,
calling or accessing functions and variables makes sense only if an instance
of their record is provided because their definitions have access to such an
instance (the current instance) but it is, for example, perfectly legitimate
to express the type of all instances of some class without specify anything
about their enclosing instance. Therefore, instead of considering classes
as members of their enclosing record, classes are seen as entities that hold

a reference to an instance of their enclosing record, namely in their outer
field.

5.2.2 Definitions

A program consists of a list of global classes C, a list of global functions ¥
and a list of global variables V. Global functions and global variables can-
not be directly defined in Scala but they may be produced by the desug-
aring of some constructs. For example, the desugaring of each top-level
object produces a global variable. Furthermore, all static methods and all
static fields of Java classes are mapped to global functions and global vari-
ables. Finally, literals are also mapped to global variables. For example,
the integer literal 0 is mapped to the global variable int$0.

A class is defined by a symbol C and a list of superclasses C. It con-
tains a list of inner classes @, a list of methods ¥, a list of fields V, a list
of virtual types T and a list of refinements O. The member definitions F,
V and T all define new members while the refinements O refine inherited
members. A Scala member declaration, for example a type declaration
type V >: X <: Y, depending on whether it defines a new member or
refines an inherited one, is translated into a member definition or a refine-
ment of the overridden member.

A function is defined by a symbol f, a list of overridden functions f, a
list of type parameters 7, a list of value parameters 7, a return type X and
a body x. An important difference with Scala functions is that in a Core
function not only its type parameters but also all its value parameters can
be referenced in the bounds of the type parameters, in the types of the
value parameters and in the return type of the function. Another differ-
ence is that there are no abstract functions as functions always have a body.
Abstract Scala methods are translated into functions that recursively call
themselves with the same arguments. The list of overridden functions f
specifies which functions are overridden by the defined function f. It may

86 CHAPTER 5. THE CORE LANGUAGE

be non-empty only if f is a method of some class C. Furthermore, all func-
tions in f must be inherited by C. Whenever a function in f is called on an
instance of C, the body of f is evaluated instead of its own one. Thus, the
implementation of f overrides the implementation of the functions f.

A value variable is defined by a symbol v and a type X. The variable
is mutable if and only if its definition includes the modifier mutable. Un-
like in Scala, variable definitions do not include an initializer expression.
Thus, global and local variables and class fields must always be explicitly
initialized before they are read. Function parameters are automatically
initialized by function calls.

A type variable is defined by a symbol V, a lower bound X and an
upper bound Y. Scala type variables defined with a type value instead of
type bounds are translated into type variables with equal bounds.

5.2.3 Expressions

Expressions describe values and types but also refinements and signa-
tures. Refinements are used in class definitions and in record types to spec-
ify which and how inherited members are refined. Signatures are used in
refinements to specify the new attributes of the refined member.

The type system of the Core language requires that some value expres-
sions are such that successive evaluations always return the same value.
These expressions are called stable value expressions or simply stable expres-
sions. In the syntax, the typing rules and all other formal descriptions,
value expressions that need to be stable are denoted by the metavari-
ables p, q and r while plain value expressions are denoted by x, ¥ and
z.

5.2.3.1 Value Expressions

The current instance is denoted by the keyword this. Unlike in Scala,
it does not necessarily designate an instance of a class. It designates an
instance of the innermost enclosing record. So, within a method, it does
not designate an instance of the class of the method but an instance of the
method itself. The class instance may however still be accessed through
the outer field of the method.

Strictly speaking, the syntax this is syntactic sugar because the Core
syntax requires that the keyword this is suffixed with a non-negative in-
teger index. This index only plays a role within record types; elsewhere it
has to be equal to zero. The exact meaning of the index and the desugaring
of this are explained in Section 5.2.7.

5.2. SYNTAX 87

The syntax for variable evaluations and variable assignments requires
that the variable is selected on some value. This results from the fact
that not only classes but also functions, blocks and the root context are
regarded as different kinds of records. Thus, fields but also function pa-
rameters, local variables and global variables must always be selected on
an instance of their respective record.

Variable assignments are used both to initialize variables, including
immutable ones, and to update the value of initialized mutable variables.
Some code transformations need to handle variable assignments differ-
ently depending on whether they initialize a variable or update its value.
It is therefore assumed that for any given variable assignment it is possible
to determine whether it corresponds to a variable initialization or not.

The syntax for function applications is similar to Scala’s syntax for
method applications. Like variables, functions must always be selected
on some value because not only methods but also local and global func-
tions are record members. One difference with Scala’s syntax is that type
arguments are mandatory; there is no type inference. Another difference is
that value arguments have to be stable expressions. This is due to the fact
that the value parameters of a function can be referenced in the parameters
and the return type of the function.

An instance creation expression creates a new instance of a type X. It
does not call any constructor. All fields of the new instance, including its
outer fields, are therefore uninitialized and must be explicitly initialized
before they are evaluated.

A conditional expression consists of a condition x, two alternatives y
and z and a type X, which specifies the type of the whole expression. Its
presence avoids the need to compute the least upper bound of the type
of the two alternatives in order to determine the type of the conditional
expression.

A block is defined by a symbol b and a type X. It contains a list of local
classes @, a list of local functions F, a list of local variables V and a value x.
The evaluation of a block expression evaluates x and returns the resulting
value. The symbol b is needed to express the type of the block’s current
instance within its members F and V and its value x. It is also needed in
the syntax of the symbols of its outer value and type fields. The type X
specifies the type of the whole expression. It is expressed in the context
of the block’s owner; within X, this denotes an instance of the block’s
owner. Its presence avoids the need to widen the type of the value x in
order to compute the type of the block expression.

The sequence expression evaluates two expressions x and y one after
the other and returns the value returned by the second one.

88 CHAPTER 5. THE CORE LANGUAGE

5.2.3.2 Type Expressions

Singleton types are exactly like in Scala and abstract types are like Scala’s
member types. As all type variables, whether they are virtual types or
function type parameters, are record members, abstract types are not only
used to reference virtual types but also function type parameters.

A record type consists of a list of record symbols R and a list of refine-
ments O. It combines in a single construct Scala’s notions of class types,
compound types and refined types. A value of the record type is such that
it is an instance of all the records R. Furthermore, its members are such
that the constraints specified by the refinements O are fulfilled.

In Scala, compound types specify a list of inherited classes. Core record
types are more general and specify a list of inherited records. This is
needed because record types must also be able to describe instances of
records that are not classes. For example, within a function f, the current
instance this has the type f {}.

The Core language has no special classes, like Any and All, that play
the role of top and bottom types. Instead, the type {} (a record type with
an empty list of records and an empty list of refinements) is a natural top
type and there is an explicit bottom type bottom.

5.2.3.3 Refinements and Signatures

A refinement consists of a member symbol m and a signature S. It speci-
fies that in the class or the record type in which the refinement occurs the
attributes of the inherited member m are superseded by those specified in
the signature S.

There are two kinds of signatures: value signatures, which are used in
conjunction with value variables and functions, and type signatures, which
are used in conjunction with type variables. The type X of a value sig-
nature refines the type or the return type of the refined value variable or
function. The types X and Y of a type signature refine the lower and upper
bounds of the refined type variable.

5.2.4 Example

To illustrate the syntax of the Core language, we consider the translation
of the following Scala code.

class Math {
def factorial(n: Int): Int = {
def loop(a: Int, i: Int): Int =

5.2. SYNTAX 89

if (i > n) a else loop(a * i, i + 1);
loop(1, 1);
b
3

The result of the translation is given below. It is very similar to the
original Scala code. In fact, the declarations of the class Math, the method
factorial and the local function 1loop remain unchanged. The conditional
expression is just augmented with the type of its branches while the block
expression is augmented with an identifying symbol local and the type
of its result.

class Math {
def factorial(n: Int): Int = {local: Int |
def loop(a: Int, i: Int): Int =
if [Int](this.i > this.outer@loop.outer@local.n) this.a
else this.outer@loop.loop(this.a * this.i, this.i + 1);
this.loop(1, 1);
}
}

Most differences occur in parameter references and function calls. They
are mainly due to the fact that not only classes but also blocks and func-
tions are regarded as a kind of record with a current instance and that their
parameters, local variables and local functions are accessed through that
instance like fields and methods of classes. For example, within the func-
tion loop, the expression this denotes the current instance or activation
record of that function and not the current instance of the enclosing class
Math. Its parameters a and i are accessed by selecting them on its current
instance. Similarly, the local function loop is called like a method by select-
ing it on the current instance of its enclosing block. In the recursive call,
this instance is accessed through the outer field outer@loop of the func-
tion loop. Outer fields are also used in the reference to the parameter n to
access the current instance of the function factorial.

5.2.5 Syntactic Sugar

The Core code of the previous section is not perfectly conform to the syn-
tax of the Core language. Indeed, it uses some syntactic sugar. First of all,
the indexes that should suffix every occurrence of the keyword this are
omitted. It happens that here all these indexes are equal to zero. Then,
several empty clauses and empty lists are omitted: empty extends clauses,
empty lists of overridden functions, empty lists of type parameters and

90 CHAPTER 5. THE CORE LANGUAGE

type arguments and empty refinement clauses (Int instead of Int {}) are
all omitted. Furthermore, the keywords val and type are omitted in pa-
rameter definitions. Finally, the Core syntax contains neither infix binary
operators nor literals. Like in Scala, the expression x + vy is syntactic sugar
for the method call x.+(y) where + is the symbol of the called method.
And, literals replace references to predefined global variables to which
they are mapped. For example, the literal 1 replaces a reference to the pre-
defined global variable int$1. The Core code of the previous section with
all syntactic sugar removed is given below.

class Math extends /* epsilon */ {
def factorial{}[](val n: Int {}): Int {} = {local: Int {} |
def loop{}[](val a: Int {}, val i: Int {}): Int {} =
if [Int {}](this(0).i.>[](this(0) .outer@loop.outer@local.n))
this(0).a
else
this(0) .outer@loop.loop[](
this(0).a.*[](this(0).1),
this(0).i.+[](
this(0) .outer@loop.outer@local.outer@factorial
.outer@ath.int$1));
this(0) .1loop[](
this(0) .outer@local .outer@factorial.outer@ath.int$1,
this(0) .outer@local.outer@factorial.outer@ath.int$1);

This code is syntactically correct but rather hard to understand; it is
obfuscated by all the details required by the Core syntax. These details
are very useful to describe formally the type system and code transforma-
tions but in code examples they are more a nuisance as they can be easily
inferred by the reader and do otherwise only obfuscate the code. The syn-
tactic sugar described above is therefore used in code examples. In addi-
tion to that, the syntax R.this is used. It designates the current instance
of the enclosing record R. For example, the expression factorial.this.n
could replace the reference to the parameter n. Furthermore, type argu-
ments of function calls and the type of conditional expressions and block
expressions that can easily be inferred are omitted. Block symbols that are
never referenced are also omitted. Finally, current instances that can be
easily inferred are also omitted. Thus, the reference to the parameter n
could be as simple as n.

Thanks to all this syntactic sugar, most examples of Core code look like
Scala code. The syntactic sugar is however not systematically used but

5.2. SYNTAX 91

only in code parts that are not directly related to the current matter.

5.2.6 Stable Expressions

With the syntactic sugar described in the previous section, the Core code
of Section 5.2.4 becomes syntactically correct but it would not type check
because the arguments of the recursive call to the function loop are not sta-
ble. Indeed, the type system of the Core language requires that all member
qualifiers but also all value arguments of function calls are stable expres-
sions.

In principle, a stable expression is any value expression such that suc-
cessive evaluations always return the same value. This is however unde-
cidable for an arbitrary expression. The Core type system does therefore
only recognize a subset of all those expressions, namely the current in-
stances and the selections of immutable variables on stable expressions.
Thus, the expressions a * i and i + 1 are not recognized as stable ex-
pressions and can therefore not be directly used as arguments of a function
call. To make call to the function loop legal, an auxiliary block with two
auxiliary local variables must be used. This is demonstrated in the code
below.

class Math {
def factorial(n: Int): Int = {local: Int |
def loop(a: Int, i: Int): Int =
if [Int](this.i > this.outer@loop.outer@local.n) this.a
else {b0: Int |
val vO: Int;
val vl: Int;
v0O = this.outer@0.a * this.outer@h0.i;
vl = this.outer@0.i + 1;
this.outer@0.outer@loop.loop(this.v0, this.vl);
b
this.loop(1, 1);
¥
}

Transforming non-stable member qualifiers and function arguments
into stable expressions is trivial but it makes the code much more verbose.
Non-stable member qualifiers and function arguments are therefore used
in some code examples as a kind of syntactic sugar.

92 CHAPTER 5. THE CORE LANGUAGE

5.2.7 Outer Fields vs. Indexed Current Instances

Every record R has an implicit outer type field Outer@R and an implicit
outer value field outer@R. The implicit definitions of these fields are the
following ones where the record P is the owner of the record R.

type Outer@R >: bottom <: P {};
val outer@R: this.Outere@R;

These definitions imply that the outer field outer@R contains an in-
stance of the owner P of the record R. Within the record R, this instance is,
by definition, the current instance of the enclosing record P. Thus, the ex-
pression P. this is syntactic sugar for the expression this.outer@R. More
generally, the current instance Q. this of an indirectly enclosing record Q
is by definition the instance obtained by successively selecting the outer
tield of the record R and all enclosing records that separate R from Q.

Like outer fields, indexed current instances are a means to select en-
closing instances but in the context of record types. Indeed, each record
type introduces a current instance, namely the instance that the record
type describes. This instance can be referenced within the record type. It
must therefore be possible to distinguish the current instance of the dif-
ferent record types, which can be arbitrarily deeply nested, and the one of
the current class. That is the role of the index suffixing the keyword this.
To illustrate this, we consider the Scala code below.

abstract class C { type T; type U; }
abstract class D { type V; val c: C { type U >: T <: V; }; }

The type of the field c is a record type or a refined type in Scala terms.
It specifies that the field ¢ of any instance of the class D must contain an
instance of the class C whose virtual type U is lower bounded by its own
virtual type T and upper bounded by the virtual type V of the instance of
the class D. This record type clearly references two different instances: the
instance of the class C whose virtual type Uis refined and the instance of the
class D whose field ¢ contains the first instance. In other words, the lower
bound T is syntactic sugar for the expression this.T where the expression
this denotes the current instance of the class C whose virtual type U is
refined and the upper bound V is syntactic sugar for the expression this.V
where the expression this denotes the current instance of the class D. The
expression this denotes here two different instances. This cannot be and
that is why the keyword this is suffixed by an index. This index indicates
which one of the possible current instances is designated. If the expression
is nested within n record types, 0 designates the current instance of the
innermost record type, n — 1 the current instance of the outermost record

5.2. SYNTAX 93

type and n the current instance of the innermost enclosing record. Indices
greater than 7 are not allowed and cannot be used to designate the current
instance of further enclosing records. Given this definitions, it is possible
to translate the code above into unambiguous Core code:

class C { type T; type U; }
class D { type V; val c: C { override U >: this(0).T
<: this(1).V; }; }

Many code example use the keyword this without suffix. This ex-
pression always designates the current instance of the innermost enclos-
ing record. Thus, it is syntactic sugar for the expression this(n) where n
is the number of enclosing record types.

Implicit outer fields and indexed current instances are both used to
access enclosing instances. Would it be possible to get rid of one of these
two mechanisms by generalizing the other one?

One could try to get rid of indexed current instances. In our example,
the lower bound of U would become this.T but how could we replace the
expression this(1) of the upper bound? The expression this.outer@c is
clearly wrong as the enclosing record of C is the root context and not the
class D. We could try to treat record types like a new kind of record, name
them (give them a symbol) and use their implicit outer fields. It is however
unclear how it would be possible to create instances that do inherit those
fields as classes can only inherit from other classes and not from record
types. Naming record types is also problematic because typing rules tend
to rewrite record types into new ones, which would require fresh names
whereas the type system of the Core language never needs to create fresh
names. For example, if d is an instance of the class D, the expression d.c
has the type C { override U >: this.T <: d.V; }.

One could also try to get rid of implicit outer fields by generalizing
the usage of indexed current instances to reference the current instance of
enclosing records. This does not work either, at least if like in Scala, it is
possible to designate instances of inner classes without specifying their ex-
act enclosing instance, like in the following example where the variable d
contains an instance of the inner class D whose enclosing instance is un-
known.

class C { type T; class D { val v: T; } }
val d: C#D;

The Core version of this code is given below.

class C { type T; class D { val v: this(0).outer@.T; } }
val d: D {};

94

CHAPTER 5. THE CORE LANGUAGE

Symbols

Record P,Q,R = Root|C|f|b

Class AB,C = ...

Function f. 8 =

Block b = ...

Value u,v,w = outer@R| ...

Type U, V,W = Outer@R | ...

Member mno = f|lb|lv|V

Definitions

Program P =D

Definition =~ D = R defines &

Entity € = C|F|IB|V|T

Class C — class C extends C {O}

Function F = def f{f} [V1(@): X=x

Block B = block b: X=x

Value 3% = [mutable] val v: X

Type T = type V>: X<:Y

Expressions

Value x,Y,z, = this(k) enclosing context

p,q,r | p.v variable evaluation

| p.v=x variable assignment
| p.f[X1(p) function application
| p.b block evaluation
| new X instance creation
| if [X]1(x) yelsez conditional
| x5y sequence

Type X,Y,Z = p.type singleton type
| p.V abstract type
| R{O} record type
| bottom bottom type

Signature S, T = : X value signature
| >:X<:Y type signature

Refinement O = overridem S refinement

Miscellaneous

Integer ijk1 = 01,2,...

Symbol z = Rlov|V

Expression e = x|X|S|O

Environment I’ = X

Substitution ¢ = €lop—q|lo,X—Y

Figure 5.2: Core Syntax (flat version)

5.2. SYNTAX 95

If the implicit outer fields were replaced by indexed current instances,
the class D would no longer have implicit outer fields and the expression
this(0) .outer@D would be replaced by the expression this (1). With this
change, it would no longer be possible to type the expression d. v although
v is obviously a member of d. Indeed, the only possible type of this expres-
sion is d.outer@D.T.

Thus, implicit outer fields and indexed current instances are both nec-
essary. This can be understood by the fact that these two mechanisms
describe two different kinds of relationships. The implicit outer fields de-
scribe the fact that given an instance of an enclosed record it is possible to
retrieve an instance of its enclosing record. The indexed current instances
describe the fact that the members of an instance are constrained by other
instances (the current instances of the enclosing record types and records).
In general, given an instance that conforms to a record type it is not possi-
ble to retrieve an instance that conforms to an enclosing record type or an
instance of an enclosing record.

5.2.8 Flat Syntax

With the syntax described in Figure 5.1, ownership is expressed through
nesting; every entity is syntactically nested in the record that owns it. This
is very intuitive and eases the reading and writing of Core code but it has
also a drawback: the separation between definitions and expressions is
not perfect. Indeed, a block expression also plays the role of a definition; it
defines a new block and introduces a fresh block symbol. Furthermore, it
contains nested classes, functions and variables. Thus, it is untrue that ex-
pressions only reference symbols; they also define new symbols through
block expressions and their nested definitions. This slightly complicates
the description of the typing rules but the main problem is that it severely
complicates the description of code transformations. Indeed transforma-
tions like lambda-lifting that lift entities like classes and functions into en-
closing records cannot be described as processes that simply transform
every definition and expression into a new one because definitions and
expressions may contain nested entities that have to be lifted out. Thus,
the lambda-lifting of a definition or an expression should return a new
one plus a set of lifted entities, which must then be plugged into the right
enclosing record.

Figure 5.2 describes a flat syntax where ownership is no longer implic-
itly specified through nesting but explicitly in every definition. A program
consists of a list of definitions where every definition describes an entity &

96 CHAPTER 5. THE CORE LANGUAGE

and specifies its owner R. With this syntax, definitions and expressions
are truly separated; all definitions are gathered in the list constituting the
program and expressions only reference already defined symbols. Lifting
an entity into an enclosing record is as simple as modifying its owner in
its definition. It is no longer needed to literally move code around.

As all definitions are gathered in the list constituting the program,
classes no longer contain the definition of their inner classes and their
members, only their refinements remain in their body. Similarly, functions
no longer contain type and value variable definitions in their parameter
lists. The definitions are replaced with the symbols of the parameters. The
presence of these symbols is slightly redundant as the list of parameters
of a function could be easily inferred from the list of variables owned by
the function. Even the order of the parameters could be inferred from the
order of the variables in that list. However, the presence of these symbols
simplifies the description of some typing rules and some code transforma-
tions.

Block expressions are affected in two ways by the flat syntax. First of
all, like classes, blocks no longer contain the definitions of their nested en-
tities. Thus, the body of a block consists only of a value expression. Then,
the flat syntax distinguishes the definition of blocks from their evaluation.
A block is a new kind of entity, which is defined at the top-level like any
other function or variable. The evaluation of a block is similar to a func-
tion call without arguments. It specifies the block b to evaluate and an
instance p of its owner. So, blocks, like functions and variables, are se-
lected on an instance of their owner and constitute therefore a new kind of
record member.

The transcription into the flat syntax of the Core code of Section 5.2.4 is
given below. Observe how all entities, including function parameters, are
defined at the top-level and how the block expression that constituted the
body of the function factorial has been replaced with the block evaluation
this.local and a block definition at the top-level.

Root defines class Math;
Math defines def factorial(n): Int = this.local;
factorial defines val n: Int;
factorial defines block local: Int = this.loop(l, 1);
local defines def loop(a, i): Int =
if [Int](this.i > this.outer@loop.outer@local.n) this.a
else this.outer@loop.loop(this.a * this.i, this.i + 1);
loop defines val a: Int;
loop defines val i: Int;

5.3. ENCODINGS 97

The code above is a good example of the fact that code using the flat
syntax is much harder to understand than the same code using the nested
syntax. Therefore, all examples are given with the nested syntax although
all formal descriptions of the type system and the code transformations
use the flat syntax. It should be clear that the two versions differ only in
their syntax but are otherwise equivalent. It is true that the flat version is
slightly more expressive. For example, it is possible to define blocks that
are owned by a class or evaluate the same block at two different locations
with the flat syntax but not with the nested one. However, there are no
fundamental differences and if needed these small additional freedoms
could easily be forbidden by adding adequate constraints to the rules of
program well-formedness.

As the flat syntax is used in all formal descriptions it introduces also
some auxiliary notions that are used in those descriptions. The metavari-
able X is used to range over any kind of symbol and the metavariable ¢
to range over any kind of expression. Environments and substitutions are
used in some typing rules. An environment I" consists of a list of types. A
substitution ¢ replaces stable expressions by other stable expressions and
types, which are always abstract types, by other types, which may be of
any kind.

5.3 Encodings

This section describes how Scala code is encoded into Core code. It de-
scribes also how existing Java code is seen from Core code. The possibility
to access existing Java code is needed because Scala code can access exist-
ing Java code. The same must therefore be true for Core code.

5.3.1 Classes and Class Members

The encoding of classes and class members is straightforward. There are
only some subtleties in how the implementation, overriding and refine-
ment of inherited members are encoded. All this is illustrated with the
Scala code below.

abstract class A {

type T;
def f(t: T): T;
val v: String;

}

abstract class B extends A {

98 CHAPTER 5. THE CORE LANGUAGE

type T <: Object;
def f(t: T): T = t;
val v: String = "B";
¥
class C extends B {
type T = String;
override def f(t: T): T = v;
override val v: String = "C";

}

The class A defines a virtual type T, an abstract method f and an ab-
stract field v. The class B refines the upper bound of the virtual type T
and implements the method f and the field v. The class C definitely as-
signs a type to the virtual type T and overrides the implementation of the
method f and the field v. The Core version of these three classes is given
below. It assumes that the three Scala classes have no constructor at all.
Indeed, the encoding of constructors is non-trivial and is described sepa-
rately in Section 5.3.6.

class A {
type T1 >: bottom <: {};
def f1(t1: T): T1 = fl(tl);
def vi(): String = v1();
}
class B extends A {
override T; >: bottom <: Object;
def £H{f1}(t2: T1): T1 = t2;
def vo{v1}(): String = v$;;
val v$,: String; // initialized to "B" in constructor
}
class C extends B {
override T; >: String <: String;
def f3{fr}(t3: T1): Ty = v30);
def v3{v,}(): String = v$3;
val v$3: String; // initialized to "C" in constructor

}

Classes are mapped to corresponding classes with the same class hier-
archy. Thus, classes that mixin other classes are mapped to classes with
more than one superclass. Inner and local classes are encoded like top-
level classes but are mapped to inner and local classes.

Virtual type definitions are mapped to type variable definitions while
refinements and definite type assignments of inherited virtual types are
both mapped to refinements of inherited type variables. In this context, a

5.3. ENCODINGS 99

definite type assignment of a virtual type is regarded as a refinement of its
two bounds to the assigned type. Thus, the definition, in the class A, of the
virtual type T is mapped to the definition of the type variable T;. And, the
refinement, in the class B, and the definite type assignment, in the class C,
of the virtual type T are both mapped to refinements of the inherited type
variable T;.

Method definitions are mapped to function definitions. If the method is
abstract, the body of the function consists of a simple recursive call to itself
with its own parameters as arguments. Thus, the definition, in the class A,
of the abstract method f is mapped to the definition of the function fj,
which recursively calls itself.

The implementation and the overriding of an inherited method are
both encoded as if they were definitions of new methods excepted for
the fact that the functions to which these methods are mapped override
the inherited function that corresponds to the implemented or overrid-
den method. Thus, the implementation, in the class B, of the function £
is encoded by the definition of the function f,, which overrides the inher-
ited function f;, which corresponds to the implemented method f. And,
the overriding, in the class C, of the method f is encoded by the defini-
tion of the function f3, which overrides the inherited function f,, which
corresponds to the overridden method f. With this encoding, a single
method can be mapped to several functions. For example, any instance
of the class C inherits the three functions f;, f» and f3, which all corre-
spond to the method f. Any of these three functions could be called on
an instance of the class C, but all would yield the same result because the
function f3 overrides the two others. Indeed, the function f3 explicitly
overrides the function f;, which itself explicitly overrides the function f;.
So, by transitivity, the function f3 also overrides the function f;.

Fields are encoded in two steps. They are first desugared as described
in Section 2.3.3.2 and then the resulting getter and setter methods and
the primitive fields are encoded. The getter and setter methods are en-
coded like normal methods and definitions of primitive fields are mapped
to definitions of value variables. For recollection, the definition of a field
is desugared into the definition of a primitive field and the definition of
a getter and a setter method, which read and update the primitive field.
If the field is immutable, the setter method is omitted. If the field is ab-
stract, the primitive field is omitted and the getter and setter methods are
made abstract. The implementation and overriding of inherited fields are
desugared in the same way but implementations and overridings of inher-
ited getter and setter methods are generated instead of definitions of new
ones. In our example, the definition, in the class A, of the abstract field v

100 CHAPTER 5. THE CORE LANGUAGE

is encoded by the definition of the function v;. The implementation, in
the class B, of the field v is encoded by the definition of the value variable
v$, and the definition of the function v,, which overrides the inherited
function v;. The overriding, in the class C, of the field v is encoded by the
definition of the value variable v$3 and the definition of the function vj,
which overrides the inherited function vy.

The encoding of covariant methods and covariant fields is more com-
plex and is described in Section 5.5.1.

5.3.2 Singleton Objects

A singleton object is mapped to a class, a value variable and an access
function; the class contains the inner classes and the members of the object,
the value variable stores the unique instance of the class and the access
function initializes the variable, if needed, and returns its content. All
references to the object are mapped to calls of the access function. For
example, an object 0 is mapped to the code below and any reference to the
object 0 is mapped to the function call 0$£().

class 0$C { /* inner classes and members of the object O */ }
val 0$v: 0$C;
def 0$f(): O$v.type = { if (0$v == null) O$v = new 0$C; O$v };

The type of the access function 0$f is not simply the record type 0$C
but the singleton type 0$v.type. This lets the type system establish that
all calls to the access function always return the same value.

5.3.3 Packages

From a programmer’s perspective, packages are perceived as special ob-
jects that can never be passed as a value but can only be used to select
package members. For example, if an object O is defined in a package foo,
the object 0 can be referenced with the expression foo.0 but it is forbid-
den to use the expression foo as a value, to pass it as a function argument,
for example. For programmers, this encoding is very attractive because a
package can be regarded as a kind of restricted object and this decreases
by one the number of different notions to learn.

For the compiler, this same encoding is much less attractive. Indeed, at
runtime, there exist no values that correspond to packages. So, the expres-
sion foo in a selection like foo.0 does not represent any real value. No
code needs to be generated for it and it could simply be dropped. In fact,
that is exactly what is done.

5.3. ENCODINGS 101

Packages are almost completely ignored by the Core language. Any
entity defined in a package is mapped to an entity owned by the root con-
text. The identity of the package in which the entity was defined is there-
fore lost. The only aspect of packages that is kept is the fact that each one
defines a new namespace. Thus, if two classes with the same name are de-
fined in two different packages, they are mapped to two different classes
with different symbols. This encoding has the advantage that there exists
only a single value that does not really exist at runtime and for which no
code needs to be generated: the unique instance of the root context.

Although the Core language has no notion of package, the compiler
should somehow remember for each class the package in which it was
defined such that when the code generator finally generates a class file
for each class, it can place it in the right package.

5.3.4 Java Classes

The encoding of Java classes is even more straightforward than the one
of Scala classes; classes, methods and fields are respectively mapped to
classes, functions and value variables. There are no getter and setter meth-
ods for fields. The only difficulty comes from the fact that in addition
to inner classes and instance members Java classes can also contain static
classes and static members as illustrated by the class below.

public class Java {

public staticclass C { /~ ... */ }
public static String f() { /* ... =/}
public static String v;

public class D { /+ ... =/ }

public String g() { /* ... */ }
public String w;

Static entities, like entities defined in packages, are mapped to entities
owned by the root context. All other entities remain in place. The Core
version of the class Java is given below.

class Java {
class D { /+ inner classes and instance members of D =/ }
def g(): String = { /* ... =/ }
mutable val w: String;
¥
class C { /+ inner classes and instance members of C =/ }
def f(): String = { /* ... =/}

102 CHAPTER 5. THE CORE LANGUAGE

mutable val v: String;
/# static classes and static members of D =/
/* static classes and static members of C */

This encoding is very different from the one perceived by program-
mers. From a programmer’s perspective, each Java class is mapped to
a class and an object of the same name. The class contains all the inner
classes and instance members of the Java class while the object contains
all the static classes and static members. The encoding of the class Java is
given below.

class Java {
class D { /* inner classes and instance members of D */ }
object D { /* static classes and static members of D =*/ }
def g(): String = { /* ... =/}
mutable val w: String;

¥

object Java {
class C { /* inner classes and instance members of C %/ }
object C { /* static classes and static members of C */ }
def £f(): String = { /* ... =/}
mutable val v: String;

}

This encoding has the advantage that static members can be accessed
like in Java. For example, one can call the static method f with the expres-
sion Java.f(). For the compiler, this encoding has the same disadvan-
tages as the encoding for packages: it creates many objects, like the object
Java, for which there exist no values at runtime.

5.3.5 Types

The encoding of most types is straightforward. Singleton types and mem-
ber types are trivially mapped to equivalent singleton types and abstract
types. Class types, compound types and refined types are all mapped to
record types. The sole types that must be encoded are type parameters
and parameterized class types because there are no type parameters, and
also qualified class types because classes have no qualifier in record types.

Function type parameters, like function value parameters, are mapped
to members of the function’s record. They are referenced by selecting them
on the current instance of the function. Function type parameters and
function return types can be referenced by the bounds and the types of the
function parameters. Therefore, the keyword this designates the current

5.3. ENCODINGS 103

instance of the function and not its enclosing record in the bounds and
the types of its parameters and in its return type. Thanks to this, it is
possible to reference the type parameters but also the value parameters of
the function. It is therefore possible to encode the following Scala code.

class C { type T; val t: T; }
def f[X <: Cl(x: X, v: x.T): x.type = Xx;

The Core version is given below. If the expression p is an instance of the
class C, the expression £(p, p.t) is a legal call of the function £. Its type
is p.type. This type contains one of the arguments of the function call.
The expected type of the second argument is p.T. It contains also the first
argument of the function. These occurrences must be stable expressions
and that is the reason why value arguments of function calls must be stable
expressions.

class C { type T; val t: this.T; }
def f[X <: C](x: this.X, y: this.x.T): this.x.type = this.x;

Class type parameters and parameterized class types are encoded as
described in Section 2.10. This implies that each type parameter, whether
it is covariant, contravariant or invariant is mapped to a virtual type with
the same bounds. A reference to a type parameter is mapped to a selec-
tion of the corresponding virtual type on the current instance of its class.
Parameterized class types become record types with a refinement of the
virtual types corresponding to its type parameters. Arguments that corre-
spond to covariant parameters become the upper bound of the refinement.
Arguments that correspond to contravariant parameters become the lower
bound of the refinement. And, arguments that correspond to invariant
parameters become the lower and upper bounds of the refinement. Simi-
larly, the type arguments of the supertype of subclasses of parameterized
classes become refinements but here all arguments become the lower and
the upper bound of the refinement. The difference is due to the fact that
in a supertype, the type arguments provide the effective values of the type
parameters while in a class types the type arguments specify a constraint
on the expected value of the type parameters. And, in fact, the variance
of a type parameter specifies which kind of constraint is applied: covari-
ant means constrain the upper bound, contravariant means constrain the
lower bound and invariant means constraint both bounds. To illustrate all
this, we consider the Scala code below.

abstract class C[+X, Y, -Z] {
def x(): X; def v(): Y; def z(): Z;
}

104 CHAPTER 5. THE CORE LANGUAGE

abstract class D extends C[Int, Int, Int] {
def c(): C[Int, Int, Int];
}

This code is translated to the following Core code:

class C {

type X; type Y; type Z;

def x(): this.X; def y(): this.Y; def z(): this.Z;
}
class D extends C {

override X >: Int <: Int;

override Y >: Int <: Int;

override Z >: Int <: Int;

def c(): C {
override X <: Int;
override Y >: Int <: Int;
override Z >: Int -

Wildcard type arguments of Java 5 [35] can also be encoded. An ex-
tends wildcard like <? extends X> becomes a refinement of the upper
bound and a super wildcard like <? super X> becomes a refinement of
the lower bound. A normal type argument of Java 5 becomes a refinement
of both bounds. This shows that with its wildcards, Java 5 is more flexible
than Scala as any type parameter can be upper bound, lower bound or as-
signed (lower and upper bounded) while in Scala it is decided once for all
in the definition of the parameter which kind of constraint will be applied
to that parameter. On the other hand, Scala is much less verbose to express
covariance and contravariance. To illustrate the encoding of wildcards we
translate the Java 5 code below.

abstract class C<X, Y, 7> {
public abstract C<? extends Int, Int, ? super Int> c();

¥

The Core version:

class C {
type X; type Y; type Z;
def c(): C {
override X <: Int;
override Y >: Int <: Int;
override Z >: Int -

5.3. ENCODINGS 105

Qualified class types are mapped to recored types as described in Sec-
tion 2.11.5. For example, the class type p.C is mapped to the record type
C { override Outer@C <: p.type; }. Similarly, supertypes that contain
qualified class types are mapped to a refinement of the outer type field of
the superclass. But, here, both bounds are refined by the qualifier. The
reason is the same as for parameterized class types: in the super type, the
qualifier is the effective value of the enclosing instance while in a class
type it is only a constraint imposed on the enclosing instance.

It is important to understand that in Scala, almost all class types are
qualified because most unqualified class types are implicitly qualified. For
example, if I is an inner class, the type I is legal only if there is an enclos-
ing class D that is a subclass of the enclosing class of I and the type I is
syntactic sugar for the type D.this.I. Even the class type of top-level and
local classes are implicitly qualified by the current instance of the root con-
text or the function or block in which they are defined. Or, at least, their
encoding requires a refinement of their outer field corresponding to such
a qualifier. To demonstrate this, we consider the following Scala code.

val v: String;
abstract class C { def f(): v.type; }
def g(c: C): v.type = c.f();

If it is assumed that the class type C is unqualified, this code is trans-
lated to the Core code below.

val v: String;
class C { def f(): this.outer@f.outer@C.v.type; }
def g(c: C {}): this.outer@g.v.type = this.c.f();

With this translation, the body of the function g is not of the right type.
Indeed. its type is this.c.outer@C.v.type. Thus, it would be neces-
sary to prove that this.c.outer@C and this.outer@g designate the same
value but there is nothing that can lead us to that conclusion unless the
type of the parameter c is replaced by the following one:

C { override outer@C >: this.outer@g.type <: this.outer@g.type; }

The sole class types that can be translated into record types without re-
finements are those of the form C#I where the class C is the enclosing class
of the inner class I. Such a type designates an instance of I without any
additional constraint on its enclosing instance other than the one already
expressed by the implicit definition of its outer type fields, which specifies
that it must be an instance of the enclosing class C.

The encoding of Java class types never requires any refinements. In-
deed, the fact that inner classes can be qualified is only used during the

106 CHAPTER 5. THE CORE LANGUAGE

name analysis to determine which inner class is designated. Thus, the Java
type D.I is translated into the Core type I {} even if the class D is a sub-
class of the enclosing class of the inner class I. The reason why the class D
can be forgotten is that the Java type system has neither virtual types nor
singleton types and is therefore unable to exploit in any useful way a bet-
ter knowledge of an enclosing instance. Note however that including the
refinement would not hurt.

With Java 5, things are slightly different because the qualifier of an in-
ner class may specify the type parameters of an enclosing instance. Those
cannot simply be dropped. If the class C has a type parameter T and an
inner class I, then the type C<String>.I is translated into the following
record type:

I { override outer@I <: C { override T >: String <: String; }; }

This corresponds also to the translation of the Scala type C[String]#I.
The exact class of the enclosing instance is still irrelevant and can still be
dropped. For example, if the class D was a subclass of C that assigns String
to T, the Java type D. C could be translated to the same record type as above.

5.3.6 Constructors and Instance Creations

Classes have no constructors in the Core language and instance creations
do not implicitly call any initialization function. Constructors must there-
fore be encoded as normal functions and these must be explicitly called
after each instance creation.

A constructor is encoded as a function defined in the same record as its
class. It receives the instance to initialize as an argument. This is slightly
different from Scala where constructors are members of their class and ini-
tialize the current instance. One reason to place constructor outside rather
than inside classes is that it simplifies the implementation of lambda lift-
ing. Indeed, free variables of a constructor are not free variables of its class
while free variables of a method are free variables of its class. By moving
functions corresponding to constructors out of the class they initialize, it
is no longer necessary to distinguish between functions corresponding to
constructors and those corresponding to normal methods. Another rea-
son is that it is assumed that each function that corresponds to a primary
constructor implicitly initializes the outer value field of the new instance.
Thus, every constructor must have access to at least two instances: the new
instance to initialize and the enclosing instance to put in the outer field. So,
one of these two instances must necessarily be passed as an argument.

5.3. ENCODINGS 107

To encode the constructors of a class, the class is first desugared into
a primitive class as described in Section 2.3.4 and the constructors are
then normally mapped to Core functions excepted for the fact that they
are moved into the enclosing record of their class and all occurrences of
this are replaced by references to an additional value parameter contain-
ing the instance to initialize. For example, let us consider the Scala class
below.

class C[T](u: T) { val t: T = u; }
This class is first desugared into the following primitive class:
primitive class C[T] { val t: T; def this(u: T) = this.t = u; }

This class is then encoded into the Core code below. Note how the
class type parameters are accessed through the instance to initialize in the
constructor.

class C { type T; val t: T; }
def c(that: C { override Outer@C >: this(1l).outer@c.type
<: Root; }, u: that.T): Unit =
that.t = u;

The type of the parameter that, which contains the instance to ini-
tialize, specifies that its outer type field must be lower bounded by the
enclosing instance of the constructor c. This is needed because the func-
tion ¢ corresponds to a primary constructor and thus implicitly contains
the following initialization:

that.outer@C = this.outer@c

This initialization would not type check in the absence of the lower bound.
Let us now consider a subclass with a primary and a secondary con-
structor:

class D(v: Int) extends C[Int](v) { def this() = this(0); }
The desugared Scala version is the following:

primitive class D extends C[Int] {
def this(v: Int) = D.super(v);
def this() = this(0);

}

And, the Core version is given below. The verbose refinements of the outer
type field have been left out. They are identical to the one of the construc-
tor ¢ but with C replaced with D and with c replaced with d; and d,.

108 CHAPTER 5. THE CORE LANGUAGE

class D extends C { override T >: Int <: Int; }
def di(that: D { /* ... %/ }, v: Int): Unit = c(that, v);
def dy(that: D { /* ... %/ }): Unit = dy(that, 0);

The encoding of each instance creation requires an auxiliary block con-
taining an auxiliary value variable. The instance creation is mapped to
the new block. The body of the block first initializes the auxiliary variable
with a new instance of the class. The constructor is then called with this
new instance. Finally, the block returns the new instance. Let us illustrate
this with the following Scala code.

def £f(): C[Int] = new D();

This code is encoded into the Core code below. Note that the type of the
local variable must refine the outer type field of the class D because other-
wise, the call to the function d; would not be legal.

def f(): C { override T >: Int <: Int; } ={ b: D {} |
val tmp: D {
override Outer@ >: Root.this.type <: Root.this.type; };
this.tmp = new D {
override Outer@ >: Root.this.type <: Root.this.type; };
Root.this.dy(this.tmp);

this.tmp

¥

is-constructor(f) Returns whether the function f is a constructor.

is-primary-constructor(f) Returns whether the function f is a primary
constructor.

initialized-class(f) Returns the class whose instances the construc-
tor f initializes.

self-value(f) Returns the value argument of the construc-
tor f, which contains the instance to initialize
(in the examples: the argument that).

Figure 5.3: Core Constructor Functions

Functions corresponding to constructors need to be handled in a spe-
cial way in some operations of the code transformations. For example,
code transformations must ensure that functions corresponding to con-
structors are lifted along with their class. It must therefore be possible to
recognize them. That is why it is assumed that the functions described in
Figure 5.3 exist.

5.4. TYPE SYSTEM 109

5.4 Type System

This section describes the type system of the Core language. First, it in-
troduces some auxiliary functions that are used in the formal description
of the type system. These functions are also used in the implementation
of the code transformations described in Section 5.6 and Section 5.7. The
type system is then described in two steps: first all the typing rules and
then all the well-formedness rules.

5.4.1 Auxiliary Functions

Figure 5.4 contains the specification of all the auxiliary functions that are
used in the type system. It describes also some functions that are only
used in the code transformations of Section 5.6 and Section 5.7. The imple-
mentation of the auxiliary functions is given in Figure 5.5, Figure 5.6 and
Figure 5.7.

The implementation of the auxiliary functions are given in a kind of
pseudo-code, which is also used in the formal description of the code
transformations. This pseudo-code is a very simple functional language
with pattern matching. To avoid any confusion between pseudo-code ex-
pressions and Core code expressions, the latter ones are systematically en-
closed in double brackets. For example, the expression is-stable([this(0)])
describes a call to the auxiliary function is-stable with the Core expression
this(0) as argument. The Core code within double brackets can refer-
ence pseudo-code variables or call auxiliary functions. These variables
and functions are distinguished from Core code by their italic font. For
example, the expression [p.v] represents a Core variable selection whose
qualifier is the content of the pseudo-code variable p and whose variable
is v. The expression [outer@uwner(f)] represents the outer value field of
the owner of the function referenced by the pseudo-code variable f.

The first auxiliary functions are fully described by their description and
their implementation and do not need any additional comment.

The function lookup returns the signature of the selection of the mem-
ber m on a value of type R{O}. The returned signature corresponds to
the most refined one that can be found in the type R {O}. If one of the
refinements O refines the member 1, its signature is returned. Otherwise,
a record that refines the member m is searched among the records R and
their inherited records. If such a record is found, the signature of its refine-
ment of the member m is returned. Otherwise, if no such record is found,
the signature declared in the definition of the member m is returned. The
search for a record that refines the member m examines the records R and

110 CHAPTER 5. THE CORE LANGUAGE

symbol (D) Returns the symbol defined by the definition D.
definition(X) Returns the definition of the symbol X.
owner(X) Returns the record in which the symbol X is defined.
R<Q Returns whether the record R inherits from the record Q.
is-mutable(v) Returns whether the value variable v is mutable.
is-stable(x) Returns whether the value expression x is stable.
signature(m) Returns the declared signature of the member m.
lookup(m, R,O) Returns the signature of the member m when it is se-
lected on a value of type R{O}.

sink(e, 1) Sinks the expression e by i nesting levels. This function
increments all free this indices in the expression e by 1.
lift(e, p) Lifts the expression e by one nesting level and replaces

occurrences of this(0) by the expression p. This func-
tion decrements all free this indices in the expression e
by one.

subst(e, o) Returns the expression resulting from the application of
the substitution ¢ to the expression e.

map-D(F,D) Returns the definition resulting from the application of
the function F to all subexpressions of the definition D.
The function F is passed a record R and an expression e
and has to return an expression. The record R corre-
sponds to the current record of the expression e.

map-e(F,e,I) Returns the expression resulting from the application of
the function F to all subexpressions of the expression e.
The integer [is the nesting level of the expression e. The
function F is passed an expression ¢’ and an integer I’ and
has to return an expression. The integer I’ corresponds to
the nesting level of the expression ¢'.

Figure 5.4: Core Auxiliary Functions

their inherited records from right to left and from child records to parent
records. In principle, the retained record is the first found one. However,
a later record may still be retained if it refines the member m and further-
more inherits from the formerly retained record. In the implementation
of the function lookup, the variables S and R are used to keep track of the
currently retained signature and the record in which it was found. They
are updated each time a refinement of the member m is found in a record
that inherits from R. The search starts with the signature found in the def-
inition of the member m and the owner of that definition. The returned

5.4. TYPE SYSTEM 111

symbol(D) = case D of [P defines £] = case € of
[class C extends C {O}] = C

[def f{f}[V1(®): X=x] = f

[block b: X =x] =b
[[mutable| val v: X] =0
[type V>: X<:Y] =V

definition(X) = case X of
[Root] = undefined
[outer@R] = [R defines val outer@R: this(0).Outer@R]
[Outer@R] = [R defines type Outer@R >: bottom<: owner(R) {}]
otherwise = the definition D defining the symbol X

owner(X) = case X of
[Root] = [Root]
otherwise = case definition(X) of [P defines £] = P

R < Q= (R =Q)V case definition(R) of [P defines] = case £ of
[class C extends C{O}] = 3i,C; < Q
otherwise = false

is-mutable(v) = case definition(v) of [P defines V] = case V of
[mutable val v: x] = true
otherwise = false

is-stable(x) = case x of
[this(k)] = true
[p.v] = is-stable(p) N —is-mutable(v)
otherwise = false
signature(m) = case definition(m) of [P defines] = case € of

[def fF{f}[V1(@®): X=x] = [: f{}]

[block b: X =x] = [: b {}]
[[mutable| val v: X] = [: X]
[type V>: X<:Y] = [>: X<:Y]

Figure 5.5: Core Auxiliary Functions Implementation (1)

signature corresponds to the final value of S.

The functions sink and lift are used in conjunction with record types.
They are used to move expressions inside and out of record types. This
usually requires the modification of the index of some current instances.
For example, let us consider the two following classes:

112 CHAPTER 5. THE CORE LANGUAGE

lookup(m, R,O) = if 3S, [override m S] € O then S else
aux(owner(m), signature(m), R) where aux(R,S,R) =
letn = |R|inif n = 0 then S else let R = Ry,...,R,_1 in
case definition(R,) of [P defines £] = case £ of
class C extends C{O}if C<R =
3T, [override m T] € O ? aux(C,T,R') : aux(R,S, (R, C))
otherwise = aux(R,S,R)
sink(e,i) = aux(e,0) where aux(e,]) = case ¢ of
[this (k)] if k > | = [this(k+ 1]
otherwise = map-e(aux,e,l)
lift(e, p) = aux(e,0) where aux(e,1) = case ¢ of
[this (k)] if k = [= sink(p,1)
[this (k)] if k > [= [this(k —1)]
otherwise = map-e(aux,e,l)
subst(e,0) = aux(e,0) where aux(e,l) =
if 3p3q,[p — q] € o Ne =sink(p,l) = sink(q,l)
if 3X3Y, [X — Y] € 0 Ne = sink(X, 1) = sink(Y,I)
otherwise = map-e(aux,e,l)

Figure 5.6: Core Auxiliary Functions Implementation (2)

class C { type T; }
class D { type U; }

The type this(0).T is a valid type within the class C. If we want to spec-
ify the type of an instance of the class D whose type variable U is upper
bounded by this type, we cannot simply use this type as the upper bound
of a refinement of U. Indeed, the type D { override U <: this(0).T; }
is not well-formed because we try to select T on the refined instance D,
which has no such type variable. The problem is that when a type or
an expression is moved inside a record type the indexes of its current in-
stances must be updated; all indexes that are free in the expression must
be increased by one for each record type in which they are moved. Thus,
the correct type is D { override U <: this(1).T; }. The function sink
moves an expression ¢ inside i record types. The function /ift moves an
expression out of one record type. In that case, the index of all current in-
stances of the record and record types enclosing the record type of which
the expression is moved out must be decreased by one. Furthermore, all
current instances of the record type of which the expression is moved out

5.4. TYPE SYSTEM 113

must be replaced by some instance of that type. That is why the function
lift takes a stable expression p as an argument. It is used to replace all
these current instances. For example, if p is a stable expression of type
D { override U <: this(1).T; }, then the type p.U has not the signa-
ture <: this(0).T but the signature <: p.T.

map-D(F, D) = case D of [P defines] = case € of
[class C extends C{0}] = [class C extends C{F(C,0)}]
[def f{f}[V1(@): X=x] = [def f{f}[V1(@): F(f,X)=F(f,x)]

[block b: X =x]
[[mutable| val v: X]
[type V>: X<:Y]

map-e(F,e,l) = case e of
[this (k)]
[p.7]
[p.v=x]
[p.fIX1(P)]
[p.b]
[new X]

[if [X](x) y elsez]
[x;y]

[p.type]

lp-V]

[R{O}]

[bottom]

[: X]

[>: X<:Y]

[override m S]

= [block b: F(P,X)=F(b,x)]
= [[mutable| val v: F(P, X)]
= [type V>: F(P,X)<: F(P,Y)]

= [this(k)]

= [F(p,1).7]

= [F(p,1).v=F(x,1)]

= [[F(Pzg-f[F(Y,l)](F(?J))]]
(
(

= [F(p,1).0]
= [new F(X,)]

= [if [F(X,I)1(F(x,1)) F(y,1) else F(z,1)]
= [F(x,1); F(y,1)]

= [E(p,1)-type]

= [F(p,1).V]

= [R{F(O,1+1)}]

= [bottom]

= [: F(X,1)]

= [>: F(X,I)<: F(Y,1)]

= [override m F(S,1)]

Figure 5.7: Core Auxiliary Functions Implementation (3)

The functions map-D and map-e are used to map a function F to all
subexpressions of a definition D or of an expression e. The integer / in the
function map-e indicates the number of record types in which the expres-
sion e is nested. In the case of the function map-D, the function F takes two
arguments: the subexpression to transform and the symbol of the record
enclosing this subexpression. This record corresponds to the record whose
current instance is designated by the expression this in the subexpression.
In the case of the function map-e, the function F takes also two arguments:

114 CHAPTER 5. THE CORE LANGUAGE

the subexpression to transform and the number of record types in which
it is nested.

5.4.2 Typing Rules

Figure 5.8 describes the various typing relations used in the type system.
The typing rules are given in Figure 5.9, Figure 5.10 and Figure 5.11.

I'p.m S The member m selected on the expression p has the signa-
ture S.

I' = X <Y The type X is a subtype of the type Y.

I'=S < T The signature S refines the signature T.

I' p ~q The expression p designates the same value as the expres-
sion 4.

I' = x € X The expression x has the type X.

Figure 5.8: Core Typing Relations

All relations have an environment I", which consists of a non-empty list
of types. The first type is the type of the enclosing record and the following
ones, if any, are the types of the enclosing record types from the outermost
to the innermost.

There is a single rule to determine the signature of a member m selected
on an expression p (SG-MBR). This rule checks that the expression p is
stable. This check is needed because the expression p may end up in the
returned signature. The rule also checks that the member is selected on an
value that inherits it.

The subtyping relation is reflexive (<-REFL) and transitive (<-TRANS).
Singleton types are subtypes if they designate the same value (<-SNGEQ).
Similarly, abstract types are subtypes if they select the same type vari-
ables on the same value (<-ABSEQ). The type bottom is a subtype of any
singleton type (<-SNGLw) and any record type (<-RECLw). A singleton
type is a subtype of any type of its value (<-SNGUP). An abstract type
is a supertype of its lower bound (<-ABSLw) and a subtype of its upper
bound (<-ABsUP). The subtyping of record types (<-RECUP) is the only
non-trivial rule. A record type X is a subtype of another record type Y if
it inherits from all the records specified by Y and if in addition to that, for
every member refined by Y, it has a more refined signature than the one
specified in Y.

The comparison of signatures is defined for type signatures (<-TPSIG)
but not for value signatures. This has for consequence that only type vari-

5.4. TYPE SYSTEM 115
Member Signature I'tp.mS
is-stable I'+peR{O R; < owner(m
(SG-MbR) (p) 14 0y R (m)
I' = p.m lift(lookup(m, R, O), p)
Subtyping I'-X<Y
(=<-REFL) Ir-X=<Y r-y<=z
(=-TRANS) r-X=<X r-X<=2z
(<-SNGEQ) I'tp~g I'Ep~g
(=-ABSEQ) ' p.type < q.type 'tp.V<gq.V
(<-SNGLw) I'FpeX
(=-SNGUP) I' - bottom < p.type I'kp.type < X
(<-ABSLW) I'Ep.V>:X<Y I'Ep.V>:X<:Y
(=-ABsUP) 'eEX=<p.V I'kp. V<Y
(<-RECLW) —
I' F bottom < R {O}
VQeQ,dReR,R<Q I"¥T,R{O}
Vi, 3S,T" F this(0) .m; SAT' S < T;
(=-ReEcUP) — — ——
I'F R{O} < Q{overridem T}
Signature Comparison I'-S<T
r-Xx <X rcy <Y
(=-TPSIG) ; ;
I''E>: X<: Y <>:X'<:Y

Figure 5.9: Core Typing Rules (1)

ables can be refined in record types and not value variables or functions.
The reasons for this restriction are explained in Section 5.5.1.

The value equality relation is reflexive (~-REFL), symmetric (~-Sym)
and transitive (~-TRANS). Two values are the same if they select the same
value variable on equal values (~-MBREQ). If a value has a singleton type
for type then it necessarily designates the same value as the singleton type
since singleton types designate exactly one value (~-SUBTP).

The value typing relation includes the subsumption rule (€-SuB). Any
well-typed stable expression has its own singleton type for type (e-STB).
The type of a current instance is given by the environment (e-THs). The
call to the function sink is needed to adapt the type from the environment

116 CHAPTER 5. THE CORE LANGUAGE

Path Equality I'kp~yg
(~-REFL) Fbgmp Trp~r Thre~
(~-SYM) 9~Pp p~r r~q
(~-TRANS) I'Ep~p TI'Fp~g I'p~qg
(~-MBREQ) I'tp~q I'Fpeq.type
(~-SUBTP) I'kp.o~g.v I'ktp~q

Figure 5.10: Core Typing Rules (2)

to the current nesting level. The type of a variable evaluation is the type
of the variable (e-MBR). The typing rule for variable assignments (e-Ass)
checks that the assigned value conforms to the type of the variable. The
type of the assignment is Unit. The typing rule of function applications
(e-Arp) first determines the signature of the selected function. This is done
to check that the qualifier is stable and that it inherits the function. The
rule then checks that the type arguments are well-formed and that the
value arguments are stable and well-typed. Finally, the rule checks that
the type and value arguments conform to their bounds and types. For
this, the outer type and value fields of the function and its type and value
parameters must be replaced by the actual type and values in the declared
bounds and types of the parameters of the function. The substitution ¢ is
built therefore. The type of the function application is its declared return
type with its outer fields and its parameters replaced with the actual types
and values. The typing rule of block evaluations (e-BLK) constrains the
qualifier of the block to the expression this(0). This corresponds to what
can be expressed with the nested syntax. The signature of the block is
determined to check that the block is inherited by its qualifier. The type of
the block is its declared type. The typing rule of instance creations (e-NEw)
restrains the type of new instances to record types of a single class. This
corresponds to what can be done in Scala. The typing rule checks that the
instantiated type is well-formed and that all the most refined signature of
all its type variables have equal lower and upper bounds. The type of the
instance creation is the instantiated type. The typing rule for conditional
expressions (e-IF) checks that the condition is of type Boolean and that the
two alternatives are of the declared type of the conditional expression. The
type of the conditional expression is its declared type. The typing rule for
sequences (€-SEQ) checks that both expressions are well-typed. The type
of the sequence is the type of its second expression.

5.4. TYPE SYSTEM 117
Value Typing
(e-su) TI'FxeX reX <Yy I'tpeX is-stable(p)
(e-STB) 'txeY I'kpep.type
(e-THS) i< |Z|—n r-p.v:X
(€-MBR) Z + this(n) € sink(Z;,n +1) r'tpoveX

I'kp.v:X I'FxeX is-mutable(v)
(e-Ass) -
I'tp.v=x € Unit {}
I'tp.f:f{y TFXo THFPEP.type
definition(f) "=" P defines def f{f}[V1(?): X=x
signature(V) ™" >: X' <: Y signature(v) "=" : 7/
o1 = this(0).V — X, this(0).Outer@f — p.type
07 = this(0).7 — P, this(0) .outer@f — p ¢ = 0y,0,
Iesubst(X,0) <X T'FX=<subst(Y,0)
T+ € subst(Z,0)
(e-APP) - ;
I'tp.fI[X1(p) € subst(X',0)
I' this(0).b : b{}
definition(b) "=" P defines block b: X = x
(e-BLK) -
I'-this(0).b € X
r'-C{0to I'"=T,C{0}
VV,3X, VS, I’ - this(0) .VS=T"F>: X<: X < S
(e-NEw) — —
I'-new C{O} € C{O}
(c-1IF) I'Xo¢ I' - x € Boolean{} I'y,zeX
e-IF
I'-if [X](x) yelsezec X
I'Ex,yeXY
(€-SEQ)
TFxyey

Figure 5.11: Core Typing Rules (3)

5.4.3 Well-Formedness Rules

Figure 5.12 describes the various well-formedness relations used in the
type system. The well-formedness rules are given in Figure 5.13 and Fig-

ure 5.14.

118 CHAPTER 5. THE CORE LANGUAGE

I' = X o The type X is well-formed.

I' 'S o The signature S is well-formed.

I' F O ¢ The refinement O is well-formed.

f{g} ¢ The function f is a well-formed override of the function g.
Eo The entity € is well-formed.

Po The program P is well-formed.

Figure 5.12: Core Well-Formedness Relations

The well-formedness relations for expressions have the same kind of
environment as all the typing rules. The other relations do not need any
environment. This corresponds to the fact that all definitions are global in
the Core language and thus do not depend on any environment.

The type bottom is always well-typed (¢-BOT). A singleton type is well-
formed if its value is well-typed and stable or equivalently if its value is
of its own type (¢-SNG). An abstract type is well-typed if it has a signature
(0-ABS), which implies that the qualifier is well-typed, stable and inherits
the type variable. A record type is well-formed if its refinements are well-
formed and if for any member it inherits there exists a signature that is
more refined than all other possible signatures of that member when it is
selected on an instance of the record type (¢-REC).

A value signature is well-formed if its type is well-formed and upper
bounded by some record type (¢-VLSIG). The second constraint is to avoid
cyclic definitions of value variables like val v: v.type. A type signature
is well-formed if its bounds are well-formed and its lower bound is lower
bounded by bottom and its upper bound upper bounded by some record
type (o-TPSIG). The last two constraints are to avoid cyclic definitions of
type variables like type V >: V <: V.

A refinement of a type variable is well-formed if it has a well-formed
type signature (¢-TPREF). The signature determination is done to check
that the current record does inherit the type variable. There is no rule
for refinements of value variables or functions. It is therefore impossible
to refine value variables of functions. The reasons for this restriction are
explained in Section 5.5.1.

The rule (o-IMPL) defines when a function f is a correct overriding of a
function g. The first line checks that the owner of f inherits from the owner
of ¢ and thus inherits the function g. The rest of the rule checks that the
body of the function g could be replaced by a call to the function f with the
parameters of the function g. This implies that any call to the function g
could be replaced by a call to the function f. Note that this does not imply

5.4. TYPE SYSTEM 119

Type Well-Formedness I'EXo
(¢-BoT)
(¢-SNG)
(o-ABS)

I'Epep.type T'Ep.V>:X<Y
I' - bottom ¢ I' = p.type ¢ I'Ep. Vo

'Y r R{O} I'~00
!
Vm,3S,YT, T I this(0).m T = (F =5<T >

I''+this(0).m S
(¢-REC)

I'-R{O}o
Signature Well-Formedness I'ESo

I'-Xo I'-X,Yo
(-ViSiG) I'F X <R{O} T Fbottom<X TIFY<R{O}

(o-TPSIG) I'F:Xo I'kF>:X<:Yo
Refinement Well-Formedness I'-0o
I'Fthis(0).V>: X<:Y I'F>: X<:Yo

I' - override V>: X<:Y o

(o-TPREF)

Figure 5.13: Core Well-Formedness Rules (1)

that f and ¢ must have the same parameters and return types. In fact, the
overriding function is covariant in its return type and contravariant in its
parameters.

A class is well-formed if it does not inherit from itself, its refinements
are well-formed and its own record type is well-formed (¢-€). The last
check is needed to ensure that for all members of the class, there is a sig-
nature that is more refined than all other signatures of that member when
it is selected on an instance of the class. A function is well-formed if its de-
clared return type is well-formed, its body conforms to its declared return
type and that each overridden function is a well-formed overriding (o-5).
The first line of constraint of the rule checks that all variables owned by
the function are also parameters of the function. A block is well-formed
if its type if well-formed in the context of the owner of the block and the
body of the block conforms to its declared type (¢-B). A value variable is
well-formed if its type is well-formed (¢-V). A type variable is well-formed
if its bounds are well-formed (¢o-7).

A program is well-formed if all its entities are well-formed (o-).

120 CHAPTER 5. THE CORE LANGUAGE
Overriding Well-Formedness f{g}o
R,Q = owner(f,g) R#Q R<Q
definition(g) "=" def ¢{g}[V1(0): X=x
i, g {override Outer@g >: bottom<: R{}}
Z this(0) .outer@g. f[this(0).V]1(this(0).7) € X
(o-IMPL)
fAg}e
Entity Well-Formedness
(0-8) -C;<C C{}FOo €erFC{}o
o= ——
class C extends C {O} ¢
V ={V |owner(V)=f} 7= {v]owner(v) = f}
(0-9) f{IF:Xo f{FxeX fAfyeo
def f{f}[V1(@®): X=xo
= owner(b) P{}FXo
(0-B) b{}F x € subst(X,this(0) — this(0).outer@b)
<>_
block b: X=x ¢
VP,v # outer@P VP,V # Outer@P

R = owner(v) R = owner(V)
(0-V) R{}F:Xo R{}F>:X<:Yo
(o-7) [mutable| val v: X o type V>: X<: Yo
Program Well-Formedness

Eo
(o-P) = —
P defines € ¢

Figure 5.14: Core Well-Formedness Rules (2)

5.5 Advanced Encodings

This section describes some additional encodings that are more involved
than those described in Section 5.3. Some of them also require small ex-
tensions of the type system.

5.5. ADVANCED ENCODINGS 121

5.5.1 Covariant Fields and Methods

Thanks to the rule (o-IMPL), a function that overrides the implementation
of another function can refine its return type covariantly. It can even refine
the bounds and the types of its parameters contravariantly. For example,
the code below where the function f; overrides the implementation of the
function f; is perfectly well-formed although the two functions have dif-
ferent return types and parameters of different types.

class C {
def f1(x1: Int): Any = Xxq;
}
class D extends C {
def fr{f1}(x1: Any): Int = O;
}

Although the implementation of the function f; is overridden by the
function f;, which refines its return type covariantly, the function f; is
not truly covariant in its return type. Indeed, the expression p.f;(q) is of
type Any even if the value p is of type D. This comes from the fact that lists
of overridden functions are only used at runtime to implement dynamic
dispatch but are completely ignored by the type system. Thus, the Core
language does not support truly covariant methods. However, combined
with a smart name analyzer covariant functions can be simulated. Indeed,
in Scala the overridden and the overriding functions necessarily have the
same name. In our example, both functions would be named f. A smart
name analyzer could resolve the name £ in the expression p.£(g) to the
symbol f; if the value p is of type C and to the symbol £, if it is of type D.
Thus, the expression p.f(g) would have the type Int if the value p is of
type D.

The Core language does not support covariant fields, either. One could
try to simulate them the same way as covariant methods. This would
require that fields, like methods, come with a list of overridden fields. One
could then for example write the code below where the field v, overrides
the field vy in the class D. This would mean that each time the field vy is
accessed on an instance of the class D, the content of the field v; is returned
or assigned.

class C {
val v;i: Any;

}

class D extends C {
val vo{vi}: Int;

}

122 CHAPTER 5. THE CORE LANGUAGE

A smart name analyzer could here again resolve the name v in the ex-
pression p.v to the symbol vy if the value p is of type C and to the symbol v;
if it is of type D. Thus, the expression p.v would have the type Int and not
just Any if the value p is of type D.

This is however not very satisfactory because fields can occur within
types where the name analyzer is of no help to simulate covariance. For
example, let us assume that the class C contains the method definition be-
low and consider the expression p.g().

def g1(): v;.type = vq;

A name analyzer will resolve the function g to the symbol g; even if
the value p is of type D because there is no function that overrides the
function g; in the class D. The expression p.g() has therefore the type
p.vi.type and its upper bound is Any and not Int even if the value p is of
type D. The name analyzer is here of no help because it is not involved in
the computation of type upper bounds.

To obtain the right upper bound, one solution would be to allow field
refinements. One could then add the refinement below to the class D. The
expression p.g() would then have the type p.v,.type, which is indeed
upper bounded by the type Int. The refinement below could also be im-
plicit given the fact that the field v, overrides the field v;.

override vi: vp.type;

Allowing arbitrary field refinements without changing anything else is
however unsafe. Indeed, it makes it impossible to ensure that the value of
a field assignment conforms to the type of the assigned field. For example,
the code below would be well-typed. The expression p.1i;("foo"), too.
Even if the value p is of type D and even though in that case the field
assignment in the body of the function i; assigns to the field v; a value
that does not conform to its refined type. For this reason, field refinements
are not allowed in the Core language.

class C {

val vq: Any;

def i{(x;: Any): Unit = vq = Xq;
¥

class D extends C {
override vi: Int;

¥

Covariant fields can be encoded even though field refinements are not
available and without changing any typing rule. The idea is to define

5.5. ADVANCED ENCODINGS 123

along with each field a type field that holds the type of the field. For exam-
ple, in the code below, the type field V; holds the type of the field v;. The
class D refines the type of the field v; to Int by refining the upper bound
of the type field V;. The class E definitely assigns the type of the field v;
to Int. In this code, unlike in the code above, the method i is ill-formed
because here the value x; does not conform to the type of the field v; but
the method j; is well-formed. The expression p.v; = 0 is ill-typed if the
value p is of type C or D but it is well-typed if the value p is of type E.

class C {
type Vi <: Any;
val vq: Vy;
def i1(x1: Any): Unit = v; = xq; // error
def ji(y1: Vi): Unit = vq = vq;
}
class D extends C {
override V; <: Int;
}
class E extends D {
override V; >: Int <: Int;

}

This technique is applied to make outer fields covariant. That explains
why there is an outer type field for each outer value field. There is an alter-
native to the simulation of covariant methods, presented at the beginning
of the section, that is based on the same technique, but it works only par-
tially. Indeed, the return type of a function can reference its parameters
and those are not available in the refinement of a type field that would
hold the return type of the function. In Scala, one can define the following
methods.

class C() {
def f[T](): Collection[T] = f[T]1(Q);
}
class D() extends C() {
override def f[T](): List[T] = f[T]1(Q);
}

Encoding these methods would only be possible if type fields could
have type parameters. One could then write the following code.

class C() {
type F1[X;] <: Collection { override Elem <: Xj; }
def fl[Tl](): Fl[Tl] = fl[Tl]();

3

124 CHAPTER 5. THE CORE LANGUAGE

class D() extends C() {
override F{[X;] <: List { override Elem <: Xj; }
def £,{f1}[T2]10): F2[T2] = £2[T210;

}

In the Scala compiler, covariant fields are however not handled with
the technique described above. Indeed, the Scala compiler desugars fields
into access methods and primitive fields and replaces field covariance with
method covariance. To illustrate this, let us consider the Scala code below
where the field v is covariantly refined in the subclass D.

class C() {
val v: Any = "";

}

class D() extends C() {
override val v: Int = O;

}

This Scala code is encoded into the following Core code where the def-
initions of the constructors of the two classes have been omitted.

class C {

val v$;: Any;

def vi(): Any = v$;;
}
class D {

val v$>: Int;
def vo{vi}(): Int = v$y;
}

Now let us assume that the following method is added to the Scala
class C.

def £(): v.type = v;

How should this method be encoded in the Core language? A first
try yields the code below. This code is however not well-typed because
the body of the function does not conform to its return type. Further-
more, even if it did, it would be impossible to establish that the expression
p.£1() has the type Int even if the value p is of type D.

def £f1(): v$;.type = v1(;

The Scala compiler encodes the Scala method £ to the following Core
method.

def f100: vi().type = v1();

5.5. ADVANCED ENCODINGS 125

Strictly speaking, the return type of this method is ill-formed because
the expression v; () is not stable. The Scala compiler does however con-
sider that calls to getter methods are stable. This could in principle be
generalized to any function whose returned value is guaranteed to be al-
ways the same provided it is called with the same qualifier and the same
arguments.

With this encoding, the Scala expression p.f() would have the Core
type p.v1() .type. This type is however still not upper bounded by the
type Int even if the value p is of type D. In the Scala compiler, this is
obtained by adding to the class D the equivalent of the following function
refinement, which states that the return type of the function f; is upper
bounded by the type v, () . type.

override fi: f { override Result@f; <: vo().type; }

5.5.2 Explicit Self Types

The Core language has no notion of explicit self types and these cannot
be directly encoded. To encode the explicit self types as proposed in Sec-
tion 4.6, the Core language must be slightly extended.

First of all, it must be assumed that each class inherits the value vari-
able self and the type variable Self, which are implicitly defined as fol-
lows:

type Self >: this.type <: {};
val self: this.Self;

It must also be assumed that the value variable self is automatically ini-
tialized at instance creation with a reference to the new instance and can
therefore never be explicitly initialized.

Given these variables, explicit self types can be encoded. Every class C
should override the upper bound of the type variable Self. If the class
has an explicit self type X, it should override the upper bound with X and
otherwise it should override it with the type C {}. Furthermore, when
translating from Scala to Core, everywhere where the explicit self type of a
value x is needed for type checking, the expression x should be translated
to x.self.

This last operation has for consequence that identical values may be
mapped to different expressions. Therefore, the rule described in Fig-
ure 5.15 needs to be added to let the type system recognize that these two
expressions designate the same value.

126 CHAPTER 5. THE CORE LANGUAGE

Path Equality |[I'Fp~g
(~-SELF)

I'p.self ~p

Figure 5.15: Path Equality of Explicit Self Fields

5.5.3 Custom Outer Fields

In Scala, list operations like for example mapping or filtering operations
are implemented as methods of the class List. There are also some op-
erations like flattening or unzipping operations that are not implemented
as methods of the class List although they would perfectly fit in the class
List. The problem with these functions is that they do not work on any
list but only on lists of a particular type. For example, only lists of lists can
be flattened and only lists of tuples can be unzipped. In Scala it is impos-
sible to express such constraints and that is why these functions have to
be implemented in a companion object where the list to flatten or to unzip
is passed as an argument.

With a small extension of Scala, it would be possible to express these
operations as methods of the class List. This is demonstrated in the code
below where the methods flatten and unzip have each a guard that spec-
ifies a constraint on the type parameter of the receiving instance of the
class List. A similar extension of C# is described in [10].

abstract class List[+X] {

def flatten[A](): List[A] if X <: List[A];

def unzip[A,B](): Pair[List[A],List[B]] if X <: Pair[A,B];
}

The same result can be achieved in the Core language by augmenting
function definitions with a guard that specifies the upper bound of their
implicit outer type field. This upper bound used to be implicitly defined to
R {} where the record R is the owner of the function. The explicit bound
specified in a guard can be any subtype of this type. This allows the fol-
lowing definitions of the functions flatten and zip.

class List {
type X;
def flatten[A](): List { override X <: A }
if List { override X <: List { override X <: A; }; };
def unzip[A,B](): Pair {
override X0 <: List { override X <: A; };
override X1 <: List { override X <: B; }; }

5.6. LAMBDA LIFT 127

if List { override X <: Pair {
override X0 <: A; override X1 <: B; }; };

This extension requires the modification of the function definition such
that for outer type fields of functions it returns the upper bound specified
in the guard of the function definition. The typing rule of function calls
must be augmented to additionally check that the type of the receiver
is indeed a subtype of the function’s outer type field. The rule of well-
formedness for functions must also be augmented to additionally check
that the explicit upper bound specifies an instance of the owner of the
function.

The same extension could also be done for classes. This would allow
the specification of inner classes whose enclosing instance is more con-
strained.

5.6 Lambda Lift

This section gives a formal description of the lambda lift transformation
described in Chapter 3.

5.6.1 Introduction

The lambda lift transformation for Core code is based on the classical algo-
rithm described in Section 3.2 and the generalizations to local classes and
mutable variables described in Section 3.3 and Section 3.4. It consists of
two stages. During the first stage the extra set of each local class and each
local function is computed. This corresponds to the first step of the clas-
sical algorithm. The set of mutable variables that are referenced by local
definition and whose value must therefore be boxed in a mutable field of
an auxiliary object is also computed during this stage. During the second
stage, the program is rewritten with all local classes and functions lifted
into their first enclosing class or the root context. This corresponds to the
last three steps of the classical algorithm.

The objects used to box the value of mutable fields that are referenced
by local definitions are all instances of the class Ref whose Scala definition
is the following one:

class Ref[Elem](_elem: Elem) { var elem: Elem = _elem; }

This translates to the following Core definitions:

128 CHAPTER 5. THE CORE LANGUAGE

def ref(
that: Ref { override Outer@Ref >: Root.this.type <: Root; },
_elem: this.that.Elem): Unit =
this.that.elem = this._elem;
class Ref { type Elem; mutable val elem: this.Elem; }

To illustrate the transformation, we consider the transformation of the
Core version of the following Scala code:

def f[X](x: X): X ={
class C() { def g(): X = x; }
class D() extends C() {}
var v: Int = 0;
def hO: X={v=1; x}
h(Q)

The Core version is the following one:

def f[X](x: this.X): this.X = {b: this.X |
def c(that: C {
override Outer@C >: this.outer@c.type <: b {};
}): Unit =
{}
class C {
def g(): this.outer@g.outer@C.outer@.X =
this.outer@g.outer@C.outer@b.x;
3
def d(that: D {
override Outer@ >: this.outer@d.type <: b {};
}): Unit =
this.outer@d.c(this.that);
class D extends C { override Outer@C = this.outer@D.type; }
mutable val v: Int;
def h(): this.outer@h.outer@.X =
(this.outer@h.v = 1; this.outer@h.outer@b.x);
this.v = 0;
this.h()

In the Core example above and the following ones, the syntactic sugar
override V = X stands for the expression override V >: X <: X.

An important difference with the Scala version is that references to
free variables become variable selections whose prefix consist of one or
more implicit outer field selections. For example, the reference to the free

5.6. LAMBDA LIFT 129

variable x in the body of the function h is replaced with the expression
this.outer@h.outer@b.x in the Core version. This has the interesting
side effect that it is possible to determine whether a referenced variable
is free just by examining the outer fields occurring in its qualifier. For ex-
ample, the reference to the variable x contains the outer field of the func-
tion h. Thus, as it is necessary to leave this function to access the variable x,
it means that the variable x is free in it.

The result of the transformation of the code above is the following one:

def c[X$c](x$c: this.X$c, that: C {
override Outer@C >: this.outer@c.type <: Root {};
override X$C = this.X$c;
}): Unit = this.that.x$C = this.x$c;
class C {
type X$C;
val x$C: this.X$C;
def g(): this.outer@g.X$C = this.outer@g.x$C;
b
def d[X$d](x$d: this.X$d, that: D {
override Outer@ >: this.outer@d.type <: Root {};
override X$D = this.X$d;
}): Unit = this.outer@d.c[this.X$d](this.x$d, this.that);
class D extends C {
type X$D;
override Outer@C = this.outer@D.type;
override X$C = this.X$D;
3

def h[X$h](x$h: this.Xh, vh: Ref {
override Outer@Ref = this.outer@h.outer@f.type;
override Elem = Int;
}): this.X$h = (this.v$h.elem = 1; this.x$h);

def f[X](x: this.X): this.X = {b: this.X |
val v: Ref {
override Outer@Ref = this.outer@b.outer@f.type;
override Elem = Int; };
this.v = new Ref {
override Outer@Ref = this.outer@b.outer@f.type;
override Elem = Int; };
this.outer@b.outer@f.ref(this.v, 0);
this.h[this.outer@b.X] (this.outer@.x, this.v)
3

130 CHAPTER 5. THE CORE LANGUAGE

5.6.2 Computation of the Extra Sets

Figure 5.16 contains the specification of the functions implementing the
computation of the extra sets. It describes also the functions needed to
compute the set of mutable value variables whose value must be boxed in
an instance of the class Ref. The implementation of the functions is given
in Figure 5.17 and Figure 5.18.

extra-set(R) Returns the set of type and value variables for which an ex-
tra variable is needed in the record R.

refed-vars() Returns the set of mutable value variables whose value must
be boxed in an instance of the class Ref.

free-vars(R) Returns the set of type and value variables that are free in
the record R and that are referenced by it or by a record en-
closed in R.

call-set(R) Returns the set of records whose extra sets must be included
in the extra set of the record R.

refs-P(P) Returns the set of all free references in the program .

refs-E(E) Returns the set of all free references in the entity €.

refs-e(e) Returns the set of all free references in the expressions e.

refs-m(p, m) Returns the set of all free references in the selection p.m.

Figure 5.16: Lambda Lift Set Computation Functions

The functions extra-set and refed-vars are the two ones that are used
by the program rewriting algorithm. The functions free-vars and call-set
compute the set of free variables and the call set of a record R needed to
compute its extra set. The sets of free variables computed by free-vars are
also used to implement the function refed-vars.

The functions refs-P, refs-E, refs-e and refs-m are needed to compute the
results of the functions free-vars and call-set. All of these four functions
return a set of free references where each free reference is a pair consisting
of a record R and a member m. The record R is either a local class or a local
function and the member m is a member that is free in the record R and
that is referenced by it or by a record enclosed in it.

The implementation of the functions refs-P, refs-€ and refs-e is straight-
forward. All the interesting code is in the function refs-m. A reference to a
free member can generate more than one free reference. Indeed a variable
can be referenced from within a function that is itself nested in another
function. If the variable is free in both functions then the variable refer-
ence generates two free references: one for each function. However, there

5.6. LAMBDA LIFT 131

refs-P(P) = case P of [R defines &] = |Jrefs-E(E)
refs-E(E) = case € of
[class C extends C {O}] = |Jrefs-¢(O)
[def f{f}[V] (0): X=x]| = refs-e(X) Urefs-e(x)
[block b: X =x] = refs-e(X) U refs-e(x)
[[mutable| val v: X] = refs-e(X)
[type V>: X<: Y] = refs-e(X) Urefs-e(Y)
refs-e(e) = case e of
[this (k)] =€
[p.outer@R] = refs-e(p)
[p.v] = refs-m(p,v)
[p.v=x] = refs-m(p,v) U refs-e(x)
[p-FIX1(P] = refs-m(p, £) U (Urefo-e(X)) U (U refo-e(p))
[p-b] = refs-e(p)
[new X] = refs-e(X)
[if [X1(x) y else z]] = refs-e(X) U refs-e(x) U refs-e(y) U refs-e(z)
[x;v] = refs-e(x) U refs-e(y)
[p.type] = refs-e(p)
[p.Outer@R] = refs-e(p)
Ip.V] = refs-m(p, V)
[R{O3}] = (Jrefs-e(O)
[bottom] =€
I: X] = refs-e(X)
[>: X<:Y] = refs-e(X) Urefs-e(Y)
[override m S] = refs-e(S)
refs-m(p, m) = case owner(m) of
(f|b) = aux(p) where aux(p) = case p of
[p.outereC] = {(C,m)}
[p.outer@f] = {(f,m)} Uaux(p)
[p.outer@b] = aux(p)
otherwise = ¢
otherwise = refs-e(p)

Figure 5.17: Lambda Lift Set Computation Functions Implementation (1)

is not one free reference for every local function or local class that sepa-
rates the current instance from the referenced variable. Indeed, local func-

132 CHAPTER 5. THE CORE LANGUAGE

extra-set(R) = Computed from free-vars(R) and call-set(R) with
Danvy and Schultz’s algorithm [7] (see Section 3.2.1)
refed-vars() = {v | is-mutable(v) A 3R, v € free-vars(R)}
free-vars(R) = {V | (R, V) € refs-P(P)} U{v | (R,v) € refs-P(P)}
call-set(R) = {f| (R, f) € refs-P(P)}uU
is-primary-constructor(R) ? {initialized-class(R)} : €

Figure 5.18: Lambda Lift Set Computation Functions Implementation (2)

tions and classes that are themselves nested in a class do not need an extra
variable because they can use the one of the enclosing class. This is illus-
trated by the code below that contains several nested classes and functions
and a single variable reference. For simplicity, blocks were ignored but in
principle each block should have its own symbol and the reference to the
variable x should contain selections of the outer fields of these blocks. The
reference to the variable x generates the following free references: (g, x),
(h,x), (C,x). The pairs (m,x), (D,x), (n,x) and (o,x) are not included be-
cause the records m, D, n and o can all access the extra value field of the
class C in the lifted code.

def f(x: Int): Int = {
def g(): Int = {
def h(): Int = {
class C {
def m(): Int = {

class D {

def n(): Int = {

def o(): Int =

this.outer@o.outertn.outerdD.outer@m
.outer@C.outerch.outerdg.x;

The implementation of the function free-vars simply collects for a given
record all the variables for which there exists a free reference from the
record to the variable. Similarly the function call-set collects all the func-

5.6. LAMBDA LIFT 133

tions for which there exists a free reference from the record to the variable.
If the given record is a primary constructor, the initialized class is added
to the call set. This is done because primary constructors must initialize
the extra fields of the instance to initialize.

The variables whose value must be boxed are all the local mutable vari-
ables that are referenced by at least one local record in which they are free.

5.6.3 Program Rewriting

The specification of the functions implementing the program rewriting is
given in Figure 5.19 and their implementation in Figure 5.20, Figure 5.21
and Figure 5.22.

II-P(P) Rewrites the program P.

II-D(D Rewrites the definition D.

ll-e(P,e) Rewrites the expression e in the context of the record P.

extra-D(R) Returns the definitions of the extra type and value
members of the record R.

extra-m(R, m) Returns the extra member of the record R for the mem-
ber m of its extra set.

extra-x(f) Returns the extra initialization expressions for the pri-

mary constructor f. This function is used in the rewrit-
ing of function definitions in II-D.

extra-O(P,1,R) Returns the new overrides for the record R in the con-
text of the record P and the nesting level /. This func-
tion is used in the rewriting of class definitions in /I-D
and record types in ll-e.

path-to(P,I,R) Returns a path to the current instance of the enclosing
record R in the context of the record P and the nesting
level .

is-refed (v) Returns whether the value of the variable v is boxed in
an instance of the class Ref.

is-initialization(x) Returns whether the value expression x is an initializa-
tion assignment. We assume that there are two kinds
of assignments: initialization and updates. Initializa-
tions are assignments that set the initial value of a (mu-
table or immutable) field. Updates are assignments
that modify the value of an initialized mutable field.

Figure 5.19: Lambda Lift Rewriting Functions

134 CHAPTER 5. THE CORE LANGUAGE

The function [I-P first appends to the program the definition of all the
extra fields and extra parameters and then transforms all the definitions of
the resulting program.

I-P(P) = case P of D = II-D((D,extra-D({R | R € symbol(D)})))
II-'D(D) = case map-D(ll-e, D) of
[P defines £] = [P’ defines &'] where
P’ = case & of (C|F) = aux(P) where
aux(R) = case R of (f|b) = aux(owner(R)) otherwise = R
& = case € of
[class C extends C{O}] =
[class C extends C {ll-¢(C, (O, extra-O(C,0,C)))}]
[def f{f}[V]1(®): X=x] =
[def f{f}[V’,V] (7',0): X=x1; ... ;X5 ;x] where
V', 7 = extra-m(f, extra-set(f))
X = is-primary-constructor(f) ? extra-x(f) : €
[mutable val v: X] if is-refed(v) =
[val v: Ref {override Elem>: sink(X,1) <: sink(X,1)}]
otherwise = &

Figure 5.20: Lambda Lift Rewriting Functions Implementation (1)

The function /I-D updates the owner of local classes and local func-
tions. In addition to that, it augments classes whose superclasses have ex-
tra type fields with extra type refinements. These refinements correspond
to the extra type arguments of the superclasses in the Scala version. The
function /I-D also adds the extra parameters of functions to their param-
eter lists and augments the body of primary constructors with initializa-
tions of the extra fields of the new instance. Finally, it updates the type of
mutable variables whose value must be boxed in an instance of the class
Ref.

The function Il-e relies on two auxiliary functions aux; and aux,. The
function aux; performs the modifications related to the boxing of the value
of mutable variables. The function aux, performs all the other modifica-
tions.

The first case of the function aux; augments references to boxed vari-
ables with a selection of the field elem. The third case modifies in a similar
way updates of boxed variables. The second case handles initializations
of boxed variables. In that case, a new instance of the class Ref must be
created. This instance is used to initialize the variable. The instance must

5.6. LAMBDA LIFT 135

itself be initialized by calling the constructor of the class Ref and passing
to it as arguments the new instance and the value that was previously used
to initialize the variable.

ll-e(P,e) = aux;1(0,e) where
auxy(l,e) = let e’ = auxy(l,e) in case ¢’ of
[p.v] if is-refed(v) = [p.v.elem]
[p.v=x] if is-refed(v) A is-initialization(e') = [y;z] where
y = [p.v=new Ref {sink(O,1)}]
z =[g.ref[1(p.v,x)]
O = [override Outer@Ref >: g.type<: g4.type],
[override Elem>: Y <: Y]
q = auxy(l,path-to(P,1,Root))
Y = case definition(v) of [R defines mutable val v: X] =
auxi (I, subst(X, [this(0) — path-to(P,I,R)]))
[p.v=x] if is-refed(v) = [p.v.elem=x]
otherwise = ¢
auxy(l,e) = let ¢/ = map-e(auxy, 1, e) in case ¢’ of
[p.outer@R.outer@(f|b)] if Vb, R # b = [p.outer@R]
[p.outer@R.v] if v € extra-set(R) = [p.v'] where
v' = extra-m(R, v)
[p.outer@R.V] if V € extra-set(R) = [p.V'] where
V' = extra-m(R, V)
[p-fIX1(PO] = [p-fLY, X1(q,p)] where
Y =let7 = path-to(P,l,owner(V)) in auxy (I, [r.V])
g = let7 = path-to(P,1,owner(v)) in auxy(l,[7.7])
V,T = extra-set(f)
[R{O3}] = [R{O,aux;(l +1,extra-O(P,l +1,R))}]
otherwise = ¢

Figure 5.21: Lambda Lift Rewriting Functions Implementation (2)

The first case of the function aux, removes selections of implicit outer
fields of records that are no longer enclosing records. The second and
third cases replace references to free variables with references to the cor-
responding extra parameters or fields. The fourth case adds the required
extra type and value arguments to function calls. The fifth case adds ex-
tra type refinements to record types. These refinements correspond to the
extra type arguments of class types in the Scala version.

136 CHAPTER 5. THE CORE LANGUAGE

extra-D(R) = extra-D(extra-set(R)) where
extra-D(m) = case definition(m) of
[P defines £] = [R defines "] where
&" = subst(&’, [this(0) — path-to(R,0, P)])
&' = case extra-m(R,m), & of
V', [type V>: X<: Y] = [type V'>: X<:Y]
v’ , [[mutable] val v: X] = [[mutable] val v’: X]
extra-m(R, m) =
if m € extra-set(R) then the extra member of R for m else undefined
extra-X(f) = let V, 7 = extra-set(C) in extra-x(0) where
Cu = initialized-class(f), self-value(f)
extra-x(v) = [this(0).u.v' =this(0).w'] where
v, w' = extra-m(C,v),extra-m(f,v)
extra-O(P, 1, R) = case extra-set(R) of V, 7 = extra-O(V) where
extra-O(V) = [override V'>: p.V <: p.V] where
V' = extra-m(R, V)
p = path-to(P,1,owner(V))
path-to(P,1,R) = aux([this(])], P) where
aux(p, Q) = if Q = R then p else aux([[p.outer@Q], owner(Q))
is-refed(v) = Ju € refed-vars(),v = u VvV 3R, v = extra-m(R, u)

Figure 5.22: Lambda Lift Rewriting Functions Implementation (3)

5.7 Explicit Outer

This section gives a formal description of the explicit outer transformation
described in Chapter 4.

5.7.1 Introduction

The explicit outer transformation for Core code is a bit different from the
one for Scala code described in Chapter 4. This comes from the fact that
there are no type parameters in the Core language. In Scala, a lifted in-
ner class must be augmented with an extra type parameter for each type
parameter of its enclosing classes. In the Core language, type parameters
are encoded by type fields and those can be extracted from any instance
of their class. Therefore, inner classes do not need extra type parame-
ters as they can access the type fields corresponding to the type parameter

5.7. EXPLICIT OUTER 137

of their enclosing classes through their explicit outer field. This implies
that encoding Scala code into Core code and then apply the explicit outer
transformation does not yield the same result as first applying the trans-
formation and then perform the encoding. It implies also that all inner
classes are always augmented with an explicit outer type field and an ex-
plicit outer value field and nothing else. To illustrate this difference, we
consider the Scala code below.

class A[X]() {
class B[Y](x: X, _yv: YY) {val x: X= _x; valy: Y=_y; }
}
val a: A[Int] = new A[Int]();
val b: a.B[Int] = new a.B[Int]();

The application to this code of the explicit outer transformation de-
scribed in Chapter 4 yields the following code:

class A[X]() {}

class B[Outer$B <: A, X$A, Y](_outer$b: Outer$B, _x: X$A, _y: Y) {
val outer$b: Outer$B = _outer$b;
val x: X$A = _x;
val y: Y = _y;

}

val a: A[Int] = new A[Int]();

val b: B[a.type, Int, Int] = new B[a.type, Int, Int](a);

The Core version of the untransformed Scala code is the following one
where the functions a and b correspond to the constructors of the classes A
and B.

def a(that: A { override Outer@A >: outer@a.type
<: Root; }): Unit = {};
class A {
type X;
def b(that: B { override Outer@ >: outer@b.type <: A; },
_x: outer@b.X, _y: that.Y): Unit =
{ that.x = _x; that.y = _y; }
class B { type Y; val x: outer@B.X; val y: Y; }
3
val a: A { override Outer@A = Root.this; override X = Int; } =
val v: A { override OuterCA = Root.this; override X = Int; }
new A { override Outer@A = Root.this; override X = Int; };
Root.this.a(v);
\%

}

{

138 CHAPTER 5. THE CORE LANGUAGE

val b: B { override OQuter@B = a.type; override Y = Int; } = {
val w: B { override Outer@B = a.type; override Y = Int; } =
new B { override Outer@ = a.type; override Y = Int; };
a.b(w);
w

}

The explicit outer transformation lifts the class B and its constructor b to
the top-level. It adds the explicit outer type and value fields Outer$B and
outer$B to the class B and the explicit outer type and value parameters
Outer$b and outer$b to the constructor b. Furthermore, all references to
the implicit outer fields of B and b are replaced with references to these
extra variables. The resulting code is given below. The definitions of the
class A, its constructor a and the variable a, which remain unchanged, have
been omitted.

def b[Outer$b <: A](outer$b: Outer$b,
that: B { override Outer$B >: outer$b.type <: A; },
_X: outer$b.X, _y: that.Y): Unit =
{ that.outer$B = outer$b; that.x = _x; that.y = _y; }
class B {
type Outer$B <: A;
val outer$B: Outer$B;
type Y;
val x: outer$B.X;
val y: Y;
}
val b: B { override Outer$B = a.type; override Y = Int; } = {
val w: B { override Outer$B = a.type; override Y = Int; } =
new B { override Outer$B = a.type; override Y = Int; };
bl[a.typel(a, w);
w

}

The lifted class B does not have an extra type field for the type pa-
rameter X of the class A. Indeed, the type field corresponding to this type
parameter can be accessed through the explicit outer field outer$B in the
class B and through the explicit outer parameter outer$b in the construc-
tor b.

References to the unique instance of the root context are treated in a
special way to avoid the generation of implicit outer fields on plain fields.
To illustrate this, we consider the following example:

val c: C;

5.7. EXPLICIT OUTER 139

class C {
type T;
class D1 {
def f(): outer@f.outer@ l.outer@C.c.T
}
class D2 extends D1 {
def g(): outer@g.outer@?.outer@C.c.T
}
3

outer@f.f();

outer@g.f();

If the class D1 is lifted to the top-level without handling in a special way
its reference outer@f . outer@Dl.outera@cC to the unique instance of the root
context, the following code is obtained:

class D1 {
type Outer$Dl <: C;
val outer$D1: Outer$D1;
def f£(): outer@f.outer$Dl.outer@C.c.T = outer@f.f();

}

In this code, the implicit outer field outer@C is selected on the plain
field outer$D1. This is not welcome because the unique instance of the
root context is not a real value and the implicit outer field outera@cC is not
a real field. Both do not exist at runtime. In this example, the variable c
corresponds to a static variable. Therefore, the implicit outer field outer@C
should only appear in expressions corresponding to encodings of the ex-
pression Root.this. Or, in other words, it should only by selected on
qualifiers that are constituted only of other implicit outer fields. For this
reasons, references to the unique instance of the root context are handled
in a special way. For example, the type of the method £ is shortened to
the type outer@f.outer@l.c.T where all implicit outer fields are indeed
selected on other implicit outer fields or the current instance. Thus, the
lifted definition of the class D1 is the following one:

class D1 {
type Outer$D1 <: C;
val outer$D1: Outer$D1;
def f£(): outer@f.outer@l.c.T = outer@f.f();

}

The special handling of references to the unique instance of the root
context imposes that subclasses of inner classes and record types of in-
ner classes are also handled in a special way. The reason for this can be
observed in the lifted version of the class D2 given below.

class D2 extends D1 {

140 CHAPTER 5. THE CORE LANGUAGE

eo-P(P) Rewrites the program P.

eo-D(D) Rewrites the definition D.

eo-e(P,e) Rewrites the expression e in the context of the record P.

is-lifted(R) Returns whether the record R is lifted.

extra-D(R) Returns the definitions of the explicit outer type and
value fields of the lifted record R. This function is used
by eo-P.

extra-V(R) Returns the symbol of the explicit outer type of the lifted
record R.

extra-v(R) Returns the symbol of the explicit outer field of the lifted

extra-O(P, 1, R)

path-to-root(P, 1)

record R.

Returns the new overrides of the implicit outer type of
the lifted records among R in the context of the record P
and the nesting level I. This function is used in the
rewriting of class definitions in eo-D and record types
in eo-e.

Returns the path to the unique instance of Root in the
context of the record P and the nesting level I.

Figure 5.23: Explicit Outer Rewriting Functions

type Outer$D2 <: C;

val outer$D2:

Outer$D2;

def g(): outer@g.outer$D2.c.T = outer@g.f();

}

In the lifted class, the body of the method g does not longer conform to
its return type. Indeed, the type this.outer@g.outer@l.c.t of its body
is not a subtype of its return type this.outer@g.outer@D2.c.t because it
is impossible to prove that the expressions this.outer@g.outer@1l and
this.outer@g.outer@d2 denote the same value. To enable this, the class
D2 must be augmented with the following refinement:

override Outer@l = outer@D2.type;

This refinement states that the enclosing instance of the superclass D1 is

the same as its own one. Similarly, all record types C { ...

} of an inner

class C must be augmented with a similar refinement like this:

C { override Outer@C = Root.this.type; ... }

5.7. EXPLICIT OUTER 141

5.7.2 Implementation

The specification of the functions implementing the explicit outer trans-
formation is given in Figure 5.23 and their implementation in Figure 5.24
and Figure 5.25.

The function eo-P transforms each definition of the program and ap-
pends the definition of the explicit outer type and value fields added to
each inner class and the definition of the explicit outer type and value pa-
rameters added to each constructor of all inner classes.

eo-P(P) = case P of D = eo-D(D), extra-D({R | is-lifted(R)})
eo-D(D) = let D’ = map-D(eo-¢,D) in case D’ of
[P defines class C extends C {O}] =
[Root defines class C extends C {O, extra-O(C,0,C)}]
[P defines def f{f}[V1(D): X =x] if is-lifted(f) =
[Root defines def f{f}[V,V] (v,0): X=x"] where
V,v = extra-V(f),extra-v(f)
x' = is-primary-constructor(f) ? [y;x] : x
y = [this(0).w.v' =this(0).7]
w, v = self-value(f), extra-v(initialized-class(f))
otherwise = D’

eo-¢(P,e) = aux(0,e) where
aux(l,e) = let ¢’ = map-e(aux,l,e) in case ¢’ of

[p.outer@R] if owner(R) = [Root] = path-to-root(P,I)
[p.outer@R] if is-lifted(R) = [p.v] where v = extra-v(R)
[p.Outer@R] if is-lifted(R) = [p.V] where V = extra-V(R)
[override Outer@R SJ if is-lifted(R) =

[override V S| where V = extra-V(R)
lp. fIX1(P] if is-lifted(f) =

[g-flp.type, X1(p,7)] where q = path-to-root(P,1)
[R{O}] = [R{O,extra-O(P,1 +1,R)}]
otherwise = ¢/

Figure 5.24: Explicit Outer Rewriting Functions Implementation (1)

The first case of the function eo-D handles classes. It adds a refinement
of the outer type field of each lifted superclass. The second case handles
constructors of inner classes. It adds the explicit type and value parame-
ters to the parameter lists. And, if the constructor is a primary one, it adds
to the body of the constructor an initialization of the explicit outer field of

142 CHAPTER 5. THE CORE LANGUAGE

the new instance.

The first case of the function eo-e replaces references to the unique in-
stance of the root context with direct references to this instance including
only implicit outer field selections. The second, third and fourth cases re-
place implicit outer fields with the corresponding explicit ones. The fifth
case handles calls to constructors. Finally, the sixth case inserts in record
types a refinement of the implicit outer fields of each of its lifted classes.

is-lifted(R) = case R of
C = owner(C) # [Root]
f = owner(f) # [Root] A is-constructor(f)
_ = false

extra-D(R) = [R defines T], [R defines V] where
T,V = [type V >: bottom<: P {}], [val v: this(0).V]
V,v = extra-V(R), extra-v(R)
P = owner(R)

extra-V (R) = is-lifted(R) ? the extra type field of R : undefined
extra-v(R) = is-lifted(R) ? the extra value field of R : undefined

extra-O(P,1,R) = [override Outer@R >: X <: X] where
R = {R| R € R Ais-lifted(R)}
X = [path-to-root(P,1).type]
path-to-root(P,1) = aux([this(l)], P) where
aux(p, Q) = if Q = [Root] then p else
aux([p .outer@Q], is-lifted(Q) ? [Root] : owner(Q))

Figure 5.25: Explicit Outer Rewriting Functions Implementation (2)

Chapter 6

Scaletta

This chapter describes Scaletta, a calculus that is focused on the interplay
between inner classes and virtual types and which was a great source of
inspiration for the design of the Core language.

6.1 Introduction

The combination of inner classes and virtual types can be observed in sev-
eral object-oriented programming languages like BETA [16] and Scala [20].
Both concepts, inner classes and virtual types, have been studied and well-
understood separately [14, 13] but little has been done on the formalization
of their interaction. Scaletta is a calculus of classes and objects whose goal
is to study this interaction and more specifically to type virtual types in
the presence of inner classes.

Scaletta consists of a very limited number of constructs. For example,
the calculus has no notion of mutable fields. It is limited to a functional
fragment where objects have no state and no identity like in [12]. The
calculus also has neither methods nor class constructors. Instead it has a
more general concept of abstract inheritance that lets a class extend an ar-
bitrary object. This choice greatly reduces the number of evaluation rules
but poses also some specific problems. Finally, thanks to an interpretation
of values as types the calculus also unifies type fields and value fields.

Scaletta was developed in collaboration with Vincent Cremet and was
described in a technical report [2]. This chapter is an adapted and slightly
extended version of that report.

Section 6.2 explains informally that typing virtual types in the presence
of inner classes requires a kind of alias analysis. Section 6.3 introduces the
untyped fragment of Scaletta. Section 6.4 gives an interpretation of values

144 CHAPTER 6. SCALETTA

as types that lets us simulate type fields with normal value fields and in-
troduces a type system based on the concept of abstract evaluation. We
illustrate by an example how this type system performs the required alias
analysis identified in Section 6.2. Section 6.5 extends the type system to
address the problem of typing abstract inheritance. Section 6.6 describes
how higher-level constructs can be encoded in the typed calculus. Sec-
tion 6.7 discusses the undecidability of the type system and introduces
the concept of typing strategies. Section 6.8 compares Scaletta to the Core
language. Finally, Section 6.9 reviews the related works.

All examples presented in this chapter have been typed-checked and
evaluated using our Scaletta compiler. Both the complete versions of the
examples and the compiler can be found on the Scaletta home page [1].

6.2 Typing Virtual Types with Inner Classes

Typing virtual types in the presence of inner classes requires some kind of
alias analysis. This is illustrated by the following Scala code.

abstract class A {
type T <: Object;
abstract class X {
val x: A.this.T;
b
¥
class B extends A {
type T = String;
class Y extends X {
val x = "foo";
}
}

This code and in particular the assignment of the field x in the class Y
is well-typed. The field x is declared in the class X with the type T and T
is a virtual type of the class A. The exact value of the type T is not known,
at least not in the class X. So, how is it possible to assign "foo" to x in one
of its subclasses? The assignment is legal because it is possible to establish
that for any instance of the class Y, its enclosing instance and the enclosing
instance of its superclass X are the same. Thus, the enclosing instance of
the superclass X is not only an instance of the class A but also an instance of
the class B, which assigns the type String to the virtual type T. The field x
can therefore be assigned with values of type String.

6.3. UNTYPED CALCULUS 145

This example illustrates the fact that typing virtual types in the pres-
ence of inner classes requires some kind of alias analysis on enclosing in-
stances. Indeed, in this example, it is possible to establish that in the class Y
the type T of the field x is equal to String only if it is possible to establish
that for any instance of the class Y its enclosing instance and the enclos-
ing instance of its superclass are the same. Otherwise, it would only be
possible to establish that the type T is upper bounded by Object.

Parameterized classes have been presented as an alternative to virtual
types [5]. For instance, the code above can also be written with type pa-
rameters instead of virtual types. The idea of the translation is to replace
each virtual type of a class with a type parameter of that class. The code
below and in particular the assignment of the field x in the class Y is well-
typed. This is true for exactly the same reasons as for the code above. The
well-formedness proof requires the same alias analysis to determine that
the enclosing instance of the class Y and the one of its superclass are the
same and that the type T occurring in the class X is therefore equal to the
type String in class Y.

abstract class A[T] {
abstract class X {
val x: T;
b
ks
class B extends A[String] {
class Y extends X {
val x = "foo";
b
b

This observation shows that Scaletta whose goal is to type virtual types
in the presence of inner classes can also be used to understand the inter-
action between inner classes and parameterized classes in languages like
Scala or Java 5.

6.3 Untyped Calculus

This section describes the untyped fragment of Scaletta and explains its
semantics. The full syntax is summed up in Figure 6.1 and the semantics
is given in Figure 6.2.

146 CHAPTER 6. SCALETTA

6.3.1 Syntax

A Scaletta program consists of a list of class declarations and a main ex-
pression. Each class has a name, zero or one parent and a list of field
valuations. Within a program, classes are referred to through their name,
therefore all classes must have a globally unique name.

Class name B,C =

Field name f = ...

Class declaration D = class C extends p {d}

Class parent p = t|nothing

Class member d = field f =t field valuation

Term t,u = this current instance
| t!C instance creation
| t.f field selection
| taC outer field selection

Program P = Dt

Evaluation context E = () | EIC|E.f|E@C

Values v = this |v!C

Figure 6.1: Scaletta Syntax

All classes are defined at the top-level but all are nonetheless inner
classes. Indeed, each class has an implicit outer field and an enclosing
instance has to be provided to instantiate them. To bootstrap the whole,
there is an implicit root class Root, which may never be explicitly instanti-
ated and whose unique instance is provided from the outside.

Inheritance is implemented through delegation. This means that any
instance c of a class C with inherited members contains a value that im-
plements those members. This value is called the delegate of c. Each time
the implementation of a member is requested on ¢, it is searched in the
class C. If it is not found, the request is forwarded to the delegate of c. The
parent of a class C is a term ¢, which is used to compute the delegate of
new instances of the class C. This term is evaluated in the context of the
enclosing class of C; the expression this denotes the enclosing instance of
the class C in the term ¢.

Terms are of four different kinds. The traditional this denotes the cur-
rent instance. The field selection ¢. f denotes the evaluation of the field f
on the term t. The instance creation t!C corresponds to the Scala expres-
sion newt.C(). It creates a new instance of the class C with the enclosing
instance t. In other words, it creates a new instance of the class C whose

6.3. UNTYPED CALCULUS 147

implicit outer field is initialized with t. The outer field selection t@C cor-
responds to the Scala expression t.outer$C where outer$C denotes the
implicit outer field of the class C. In some sense, the operation t@C is the
opposite of t!C; it extracts from an instance of the class C the enclosing
instance that was used to create it. One could expect that for any term ¢
and any class C, the expression t!C@C is equal to t. Later in this section
we will see that this is indeed true.

6.3.2 Semantics

The semantics of Scaletta is defined by three inductive relations and two
auxiliary relations. All are implicitly parameterized by the list of class
declarations of the program; when a class declaration D appears in the
premises of a rule, it simply means that D belongs to this list.

Auxiliary Relations
class C extends p {d} class C extends p {d}
C extends p C declares d;

Reduction t—u

t<C C declares (field f = u)
(—-FIELD) -

t.f — [t/this]u
(—-OUTER) t<u!'C t—u
(—-CONTEXT) teC — u E(t) — E(u)
Expansion
(<-REFL) PR PN by
(=-TRANS) 7
(<-RED) t—t t—t t<u
t<C C extends u

(=-EXT)

t < [teC/this|u
Inheritance
t<u!C

-N
(<-NEW) = C

Figure 6.2: Scaletta Semantics

Among the three semantics relations, there is a reduction relation ¢t —
u, which states that t reduces to u. The two others are the expansion rela-

148 CHAPTER 6. SCALETTA

tiont < u, which states that u is a delegate of t, and the inheritance relation
t < C, which states that t is a (direct or indirect) instance of class C.

Values are terms that consist only of instance creations. The initial this
of values and also of all successive terms produces during a reduction
denotes the unique instance of the implicit root class.

The expansion relation extends the notion of delegate of a term ¢ to
include not only the direct delegate of new instances (<-EXT), but also the
term ¢ itself (<-REFL), all delegates of any of its delegate (<-TRANS) and
the reduction of any of its delegate (<-RED). The outer field selection t@C
in rule (<-EXT) expresses the fact that the parent term ¢ of a class C has to
be evaluated in the context of the enclosing class of C (i.e. in the parent
term, this denotes the current enclosing instance of the class C). We use
the notation [t/ this]u to represent the term obtained by substituting ¢ for
this in u.

The inheritance relation consists of a single rule (<-NEw), which states
that a term ¢ is an instance of a class C if one of its delegates is a (direct)
new instance of the class C. Strictly speaking, this relation is not really
necessary here; its single rule could easily be inlined in the two other re-
lations. We introduce it in anticipation of the typed calculus, which adds
two other deduction rules.

The reduction relation imposes no order on evaluation, as expressed
by the deduction rule (—-CONTEXT). In this rule the notation E(t) repre-
sents the term obtained from the context E by replacing the hole () with
the term t. Field selections are reduced the same way as parameterless
methods are evaluated in standard object-oriented languages (—-FIELD)
by a lookup of the field starting from the receiver object. As Scaletta is
purely functional, this behavior is indistinguishable from one where fields
are evaluated only once and cached. The rule (—-OUTER) expresses the
fact that the outer fields of a value are split over its delegates; each dele-
gate stores the value of one outer field, namely the one of the class it is a
direct instance of. It expresses also the fact that given the exact class of a
value t and the value of the outer field of that class, the value of all other
outer fields can be computed simply by recomputing the delegates of .

6.3. UNTYPED CALCULUS 149

6.3.3 Examples

First, we prove that, as stated earlier, for any term ¢ and any class C, the
term t ! C@C reduces to t. Here is the proof:

-R
(SREFL) e

(—-OUTER) ———
t1ceC —t

Now, let us try to encode positive integers with a base class Int and
two subclasses Zero and Succ. The idea is to encode 0 with the value
this!Zero and any strictly positive integer n with an instance of class Succ
whose enclosing instance stores the predecessor of n. Thus, any positive
integer n is represented by the value this!Zero followed by 7 instance
creations of class Succ. For example, the number 2 is represented by the
value this!Zero!Succ!Succ. For now, we equip our integers with only
two fields: pred and succ, which return respectively the predecessor and
the successor of the receiver integer.

class Int extends nothing {
field succ = this!Succ;
class Succ extends this@Int!Int {
field pred = this@Succ;
b
b

class Zero extends this!Int {
field pred = this;
3

Note that although in the calculus all classes are declared at the same
level, in our code examples we nest classes that are logically nested. For
example, in the code above, the class Succ is nested in class Int because
we expect that the enclosing instance of any instance of class Succ will
always be an instance of class Int.

Now, let us try to reduce the term this!Zero.succ.pred. We start by
proving that this!Zero is an instance of class Int:

(=<-REFL) - -
this!Zero < this!Zero
(<-NEw) -)
(<-EXT) this!Zero < Zero Zero extends this!Int
<-EXT
(-0) this!Zero < this!Zero@Zero!Int
—-OUTER

this!Zero < Int

As class Int declares that field succ is equal to this!Succ, we may
apply the rule (—-FIELD) to reduce this!Zero.succ to this!Zero!Succ.

150 CHAPTER 6. SCALETTA

This is an instance of class Succ, which declares that the field pred is equal
to this@Succ. We may therefore again apply the rule (—-FIELD) to reduce
this!Zero!Succ.pred to this!Zero!Succ@Succ, which can be reduced to
this!Zero by applying our previous result about terms of the form ¢! C@C.
Altogether, with some additional applications of the rule (—-CONTEXT),
this lets us conclude that this!Zero.succ.pred reduces to this!Zero.

6.3.4 Syntactic Sugar

In order to make our next examples a bit easier to read, we introduce some
syntactic sugar. First of all, we will omit the extends clause of classes that
extend nothing. We will also replace sequences of outer field selections
that designate the current instance of an enclosing class C with the Java
syntax C.this. Finally, we make the initial this of a term optional.

Here is the integer example rewritten with the newly introduced syn-
tactic sugar.

class Int { // "extends nothing" -> ""
field succ = !Succ; // "this" -> "
class Succ extends Root.this!Int { // "this@Int" -> "Root.this"

field pred = Int.this; // "this@Succ" -> "Int.this"

3

}

class Zero extends !Int { // "this" - "
field pred = this;

¥

6.3.5 Methods

Methods and method calls are not part of the calculus but they can be en-
coded using classes. To illustrate this, we augment our integers with a
method add that computes the sum of the receiver object and its param-
eter. Its implementation is trivial in the class Zero; the method simply
returns its parameter. It is a bit more complex in the class Succ; it involves
a method call, namely a recursive call to itself.

class Int {
field succ = !Succ;
class Succ extends Root.this!Int {
field pred = Int.this;
method add(that) = pred.add(that.succ);
}

6.3. UNTYPED CALCULUS 151

}

class Zero extends !Int {
field pred = this;
method add(that) = that;
}

The definition of a method m is encoded by an auxiliary class M and a
field m, which is initialized with an instance of the class M. The class M
has one abstract field for each parameter of m and a result field result
whose value is the encoding of the body of the method. This encoding
replaces all the references to parameters of the method m by references to
the corresponding fields of the class M. The values of the parameter fields
are provided when the method is called.

The method add in the class Zero is desugared into the two following
definitions.

class AddInZero { field result = AddInZero.this.that; }
field add = !'AddInZero;

Note that in the untyped calculus abstract fields are not declared at
all. This explains the occurrence of the undeclared field that in the class
AddInZero. In the class Succ, the method add is desugared into the follow-
ing definitions.

class AddInSucc {
field result = pred.add(AddInSucc.this.that.succ);

}
field add = !'AddInSucc;

A method call t.m(u%) is encoded by the term this!N.r where N is
an auxiliary class and r the name of the result field of the method m. The
class N extends the term ¢.m and contains a field valuation for each argu-
ment u;.

We can now rewrite the class AddInSucc without syntactic sugar for its
method call:

class AddInSucc {
class Apply extends pred.add {
field that = AddInSucc.this.that.succ;

}
field result = !Apply.result;

}

All instances of the class Succ have the same single delegate this!Int.
This is not true for the class Apply for which the value of the parent varies
from one instance to the other. For example it can be shown that the sole

152 CHAPTER 6. SCALETTA

delegate of 1!AddInSucc!Apply is 0!AddInZero while the sole delegate of
2!AddInSucc!Apply is 1!AddInSucc. Such a behavior is only possible be-
cause classes extend arbitrary terms instead of classes. We call this mech-
anism abstract inheritance. Abstract inheritance is the key element that lets
us encode methods.

6.3.6 Blocks

As a second demonstration of the simplicity for encoding classical high-
level programming constructs in Scaletta, we show now how we can en-
code blocks. We introduce the syntactic sugar {D;d;t} for expressing a
block consisting of a list of class definitions D, field definitions d and of
a main expression f representing the value of the block. Such a block ex-
pression is translated into the class

class C { 5;3; field result = ¢; }

and the expression this!C.result where the class name C and the field
name result are both fresh.

6.3.7 Functions

Using inner classes, methods and blocks, it is possible to encode functions
as objects containing a method apply and function applications as calls
to this method. It follows that our calculus has first-class functions and
therefore can trivially encode the lambda-calculus.

We formally define here the translation (M) from a term M of the
lambda-calculus into an untyped Scaletta program D t consisting of a list
of classes D and a main term . For expressing the result of the translation,
we use the already introduced syntactic sugar for methods and blocks, and
we spatially nest classes that are logically nested.

(Variable) (My=Dt (N)=D'u

(Application) (x) =x (M N) = DD’ t.apply(u)
(M)=Dt C fresh class name

(Ax.M) = class C {method apply(x) = {D;t}} this!C

(Abstraction)

For instance the encoding of the term A f.Ax.fx is

class C1 {
method apply(f) = {

6.3. UNTYPED CALCULUS 153

class CO { method apply(x) = f.apply(x); }
this!CO
b

}
this!Cl

6.3.8 Safety and Confluence

The untyped fragment of Scaletta is neither safe nor confluent. It is unsafe
because the reduction of field and outer field selections may both be stuck.
The reduction of a field selection ¢. f is stuck if the value denoted by the
term t has no valuation for the field f. The reduction of an outer field se-
lection t@C is stuck if the value denoted by the term ¢ is not an instance
of the class C. These two issues are addressed by Section 6.4, which aug-
ments the calculus with type annotations and presents a well-formedness
predicate.

The calculus is not confluent for two reasons. Firstly, a value may in-
herit a field valuation for a given field f from several classes. If the field f
is selected on such a value, the rule (—-FIELD) does not specify which val-
uation should be used. Therefore, anyone can be used. Secondly, it is
possible to build values that inherit several times from some class C but
with different enclosing instances. If the outer field of the class C is se-
lected on such a value, the rule (—-OUTER) does not specify which enclos-
ing instance should be used. So, here again, anyone can be used. Both
problems could be solved by somehow ordering the inherited field val-
uations and enclosing instances and modifying the rules (—-FIELD) and
(—-OUTER) to pick the first one. However, we do not do that because our
well-formedness predicate described in Section 6.4 cannot tolerate pro-
grams where such things may arise. In Section 6.5 we describe the ad-
ditional rules needed to reject such programs.

6.3.9 Alias Analysis

We terminate this section with an example showing that our calculus can
indeed be used to do some alias analysis. We consider the Scaletta version
of the example of Section 6.2. but without the virtual type T and the field x.

class A { class X {}}
class B extends this!A { class Y extends this!X {} }

We show here that with the given rules it is already possible to formally
establish that, for a given instance of the class Y, its enclosing instance and

154 CHAPTER 6. SCALETTA

the enclosing instance of its superclass are the same value.

We do here the proof for the value this!B!Y. We have to show that
this!B!Y@X and this!B!Y@Y denote the same value. The formal proof
below demonstrates that the first term reduces to the second one.

(<-REFL) - -
this!B!Y < this!B!Y
(<-NEw) . :
this!B!Y < extends this!

(<-ExT) his!B!Y <Y Y extends this!X

<-EXT
(-0) this!B!Y < this!B!Y@Y!X
—-OUTER

this!B!Y@X — this!B!Y@Y

6.4 Type System

In this section we introduce a type system for the untyped calculus pre-
sented in the previous section and show how it can be used to perform the
alias analysis required to type the example described in Section 6.2.

6.4.1 Types

Typing a program written in an object-oriented language requires to ap-
proximate abstract fields. We follow the classical solution that consists in
attaching a type to a field.

Abstract type fields and abstract value fields share the property of be-
ing virtual; their value depends on the exact class of the value from which
they are selected. For value fields the computation of their value takes
place at runtime and is called late binding or polymorphism. For type fields
this computation happens at compile time. To keep our calculus as small
as possible we want to factor the mechanism that governs the virtual as-
pects of value and type fields. To achieve this, we choose the most naive
solution we can think of: using values as types.

Type T =t

However we have to find an interpretation of values as types. Here
is this interpretation: a value t is of type u, where u is another value, if
the value resulting from the evaluation of u is a delegate of the value re-
sulting from the evaluation of t. It makes sense to approximate objects
by their delegates because they inherit field valuations and enclosing in-
stances from them.

The unification of types and values lets us simulate type fields with
value fields, as illustrated later in the example of Section 6.4.5.

6.4. TYPE SYSTEM 155

6.4.2 Annotations

To make type-checking feasible we add to a program a list of top-level
annotations as presented in Figure 6.3.

Class annotation A = class C inside B
Field annotation a field f: T inside B
Program with annotations = AaP

Figure 6.3: Scaletta Annotations

There are two kinds of annotations, one for classes and another for
fields. A class annotation class C inside B constrains the enclosing in-
stance of an instance of C to be an instance of B. In our code examples this
requirement is implicitly expressed by nesting classes. Classes declared at
the top-level are implicitly nested in a class Root where Root is a distin-
guished class name with no corresponding class declaration.

A field annotation field f: T inside B declares a bound T for the
field f. The inside clause states that the field f may only be selected on
instances of the class B. In our code examples this clause is implicitly
expressed by nesting the field annotation in the class B.

6.4.3 Abstract Evaluation

In Section 6.2 we have seen that typing virtual types in the presence of
inner classes requires to establish some equalities between enclosing in-
stances. In the example of Section 6.3.9 we have established the equality
between two enclosing instances of a particular instance of Y by evaluating
them in our calculus. To apply this result to typing we have to estab-
lish that property for all instances of Y. A priori we cannot use the same
technique because we cannot evaluate the two enclosing instances of all
instances of Y and check that they denote the same value. We have to ab-
stract over the particular instance of Y, but we want to keep the appealing
principle of establishing equality by evaluation.

In conclusion we need to evaluate terms in a partially unknown con-
text, i.e. a context where the exact class of the current instance is not
known, but also where some fields are abstract. Such an abstract evalua-
tion is easily obtained by adding a class context B to each evaluation rule.
The class context specifies the class in which the terms have to be inter-
preted. In other words the class B denotes the class this is the current
instance of.

156 CHAPTER 6. SCALETTA

The relations that constitutes abstract evaluation are summarized in
Figure 6.4. They are implicitly parameterized by the lists of class declara-
tions, class annotations and field annotations that constitute the program.

Abstract Reduction

BrFt<C C declares (field f = u)
BrFt.f — [t/this|u

(—“-OUTER) BHt<u!C BHt—u

(—"-CONTEXT) BFteC — u B+ E(t) — E(u)

Abstract Expansion

b
(<"*-REFL) Brt—t Bt Brtou
(<"s-TRANS)

(—"s-FIELD)

(<%-RED) Bt —t Bt —t" BFt<u
(<s-pgp) field f: u inside C BrHt<C C extends u
(<"-EXT) B t.f < [t/this]u B t < [teC/this|u

Abstract Inheritance BFt<C

b
(<®5-THIS) BFt<u!C classC inside C’

(<s-NEW) : /
(<5 OUTER) B+ this < B BHt<C BFteC < C

Figure 6.4: Scaletta Abstract Evaluation

Compared to evaluation there are three new rules: one expansion rule
and two instance rules. The first new instance rule (<?*-THis) tells us that
in the class context B the current instance this is indeed an instance of B.

The second new instance rule (<"*-OUTER) and the new expansion rule
(<"-DEF) have similar roles. The former lets us approximate the value of
the outer field of a class C to an instance of the enclosing class of C. The
latter lets us approximate the value of a field to its declared bound. This
rule can compensate the absence of a valuation for a field.

We want now to prove two claims; first that abstract evaluation is a
generalization of evaluation and second that abstract evaluation can be
used to compute in a partially unknown context.

The first claim is equivalent to the theorem below, whose proof is triv-
ial, and the second claim is demonstrated in Section 6.4.5 where the value
of a field in a partially unknown context is computed.

t —-u= RoothHt—u

6.4. TYPE SYSTEM 157

6.4.4 Well-formedness

Abstract evaluation is the core of our type system. We present now typing
rules that make use of abstract evaluation to express the well-formedness
of terms, class declarations, field declarations and programs. The rules are
summarized in Figure 6.5. They are implicitly parameterized by the lists of
class declarations, class annotations and field annotations that constitute
the program.

Term Well-Formedness

(o-THIS) BFto BFt<C
(o-OUTER) B I this ¢ BFteCo

class C inside C’ field f: T inside C’
(o-NEW) BFto Brt<C BFto Brt<C(C
(o-GET) B tICo BFt.fo

Field Well-Formedness

field f: uinsideC' C'tuo Bt this<(
BFto BFu—*u BFt=<u

Bl fieldf=to

Class Well-Formedness

class C inside B p=t=BFto Ckdo

(o-FIELD)

(o-CLASS) =
I class C extends p {d } ¢
Program Well-Formedness FPo
FDo Root It ©
(0-PROG) ——
FAaDto

Figure 6.5: Scaletta Well-Formedness Relations

A particularity of this type system is that the relation that checks if
a term is well-formed does not assign a type to this term. That is not
necessary in our calculus because as types are terms, the more accurate
type that can be given to a term is itself.

The well-formedness relation for terms is parameterized by a class B
that has the same meaning as the one appearing in the abstract evaluation
rules.

In the rule (o-FIELD) for field valuations, the premise B - u —* '
contains the central idea that the bound u of a field f is reinterpreted in

158 CHAPTER 6. SCALETTA

the context of the class B containing the field valuation and that we get the
more accurate value u’.

Note that in the rule (¢-CLASS) for classes the parent clause of the class
must be interpreted in the context of the enclosing class.

The type system presented above is not sound. For instance, it does
not ensure that a term ¢ has no abstract fields when used as an enclosing
instance, like in t!C, or as prefix of a selection, like in t. f or t@C. This
problem is solved in Section 6.5 where we address the problem of typing
abstract inheritance. However it should be clear that this type system can
already reject a lot of invalid programs, namely those that select fields or
outer fields on terms that do not even inherit a declaration for that fields.
Our problem is that we accept programs that select fields and outer fields
on terms that declare them but not implement them.

6.4.5 Alias Analysis

In Section 6.2 we have informally explained why the assignment of the
tield x in the class Y was valid in the given Scala code example. We give
here a formal proof that the corresponding field valuation in a Scaletta
version given below of that code is well-formed.

class A {
field T: Root.this!Object;
class X {
field x: this@X.T;
3
}

class B extends !'A {
field T = Root.this!String;
class Y extends this!X {
field x = "foo";
3
}

We assume the presence of a top-level class String and that "foo" is
an instance of that class.

To show that the field valuation is valid we have to apply the rule
(¢-FIELD) to prove the following judgment:

Y field x = "foo" ¢

This rule has several premises. However, the main difficulty is to prove
the judgment given below. This judgment denotes the intuition that within

6.5. TYPING ABSTRACT INHERITANCE 159

class Y it is known that T is equal to String. This is the most difficult part
because it is this judgment that requires some alias analysis.

Y F this@X.T —* this@Y@B!String

We prove first that in the context of class Y, this@X and this@Y denotes
the same enclosing instance, i.e. that Y - this@X — thisay.

(<V5-THIS)
(<"5-EXT)

(—™5-OUTER)

YFthis <Y Y extends this!X
Y I this < this@Y!X
Y + this@X — this@y

Then we use this result to reduce the prefix of this@X.T.

Y - this@X — this@y
Y I+ this@X.T — this@Y.T

(—5-CONTEXT)

Finally we make use of the value of the field T in the class B.

class Y inside B

Y - this@Y < B
B declares (field T = this@B!String)

Y F this@Y.T — this@Y@B!String

(<"*-OUTER)

(—"s-FIELD)

6.5 Typing Abstract Inheritance

The choice of abstract inheritance, i.e. the possibility for a class to inherit
from an arbitrary term instead of just a class, implied until here simplifi-
cations in the syntax, semantics and typing rules. However, with abstract
inheritance it becomes far more challenging to detect the accidental over-
riding of a type field or an outer field than in a language where the class
hierarchy is statically known, like Scala. In this section we illustrate by
examples why it is not safe to allow overriding of type fields and outer
fields.

The type system presented before does not take into account these two
problems. One way of solving these problems is to add dynamic tests
that check at runtime that an object does not define two values for a same
field and that it has no two different enclosing objects corresponding to a
same class. But if we want a safe statically typed calculus we need mech-
anisms to resolve these problems at compile time. So, in this section we
also present our solutions to statically prevent these overridings.

160 CHAPTER 6. SCALETTA

6.5.1 Field Roles

A Scaletta field can conceptually play different roles depending on where
it is used. We introduce some terminology for describing these roles: we
call template field a field that is indented to be used in an extends clause, we
call type field a field that is used in the bound of another field, and we call
value field a field that is used as an object. Note that in Scaletta all fields
can simultaneously play all these roles, to simplify the formalization we
treat all the fields uniformly because they share the same characteristic of
being potentially redefined in a subclass.

In real object-oriented languages, fields (also called members) have a
statically determined role. In Scala there are type fields and value fields,
but no template fields; a field is categorized to be a type or a value from
the moment of its declaration through the use of different keywords.

In order to have a safe type system, we need to forbid the overriding
of type fields, as shown by the example of the next section. And in order
to have an expressive type system, we need to allow the type system to
exploit the actual value of a type field. Our choice of treating uniformly
the different field roles forces us to extend these constraints to all kinds of
tields. For instance, it forces us to abandon the overriding of value fields,
even if it is harmful, and it allows us to exploit the value of a value field at
compile time, a thing that most compilers do not do.

6.5.2 Overriding of Type Fields

In the type system presented so far, the typing rule (—*°-FIELD), which
approximates terms like ¢. f by [t/this]|u in presence of a field valuation
field f = u, implicitly assumes that field f = u is the only existing
valuation for f inherited by ¢t. Another valuation with a different value
would introduce an inconsistency in the type system and would break
type safety. But let us illustrate this problem with a “concrete” example.

The following Scala program is clearly unsafe because in class C the
string "foo" held by the field x is added to the integer 3.

abstract class A {
type T;
val x: T;

}

class B extends A {
type T = String;
val x = "foo";

}

6.5. TYPING ABSTRACT INHERITANCE 161

class C extends B {
type T = Int;
val y: Int = x + 3;
}

However a naive type system would accept it because:

e in class B, the bound T of the field x resolves to String, so it is legal
for x to hold the value "foo".

e similarly, in class C the bound T of the field x resolves to Int, so it is
legal to consider x as an integer and add it to 3.

The problem comes from the fact that when type-checking class B, we
make the implicit assumption that the value of T is equal to String in any
instance of B, which is not always the case if we allow the overriding of
this type field in the subclass C.

In languages with a static class hierarchy it is easy to prevent overrid-
ing of type fields, by checking that there is no path in this hierarchy that
contains two valuations for the same field, as the path C—=B—A in our ex-
ample, which contains two valuations for the field T.

But let us have a look at the following Scaletta code, which is a variant
of the previous example.

class A {
field T;
field x: T;

b

class B extends !A {
field T = !String;
field x = "foo";

b

field b: !'A = !B;

class C extends b {
field T = !Int;
field y: !Int = x + 3;

}

Note that the only difference is that class C inherits now from an in-
stance b of B instead of directly inheriting from B. For the purpose of our
argumentation, we “hide” the exact value of b behind the bound !A.

Now, without extra mechanism the only way of detecting an overrid-
ing of the field T in class C is to use the information that b holds an instance
of B. But what if this value is hidden, as in our example, or even worse if
b is an abstract field?

162 CHAPTER 6. SCALETTA

field b: !A;

Then, clearly we need an additional mechanism to follow the absence
or presence of a valuation for a field in a given term, in our example in the
term b used as parent of the class C.

6.5.3 Holes

In Scaletta a term can be an instance of a class that has abstract fields. We
say that such a term is incomplete and we call the fields that have no val-
uation in the term the holes of the term. We propose to add an annotation
to field definitions to specify the holes of the value contained by this field.
The key idea is that holes become the only fields that can be overridden.
In our example we would write:

field b: 'A misses {};

to specify that b is an instance of A with an empty set of holes. This way it
becomes possible to reject the overriding of the field T in class C, because T
is not a hole of b. More generally, a field definition

field f: t misses {f1,..., fu};

means that f holds a value that expands to t and for which valuations of
tields fi, ..., fn are missing.

Let us see an example where the hole annotation is not empty. In fact
such annotations appear in the encoding of methods. In these case the
holes will correspond to the method parameters. If the method has type
parameters, they will correspond to type fields. As our previous discus-
sion has shown, it is important to forbid the overriding of this kind of the
fields.

For instance, encoding the following add method declaration in class
Int

field add(that: !Int): !Int;

results in the following declarations’

class Intadddef {
field that: !Int;
field result: !Int;

}
field add: !Intadddef misses {that};

!We use the special character $ as a normal character in the names of classes generated
by the method encoding. It must not be confused with an operator of the calculus.

6.5. TYPING ABSTRACT INHERITANCE 163

The last line means that the field add holds an instance of Intadddef
with a missing valuation for the field that. It allows a class extending
add to provide a valuation for the field that. Such classes appear in the
encoding of an application of the method. For instance, the method call

40.add(2)

is encoded as?

class Apply extends 40.add {
field that = 2;

b

!Apply.result

In the encoding of an implementation for the method add we subclass
the field add and provide a body, as for example in class Zero:

class Zeroaddval extends !Intadddef {
field result = that;

}
field add = !Zeroaddval

The above valuation for add is legal because ! Zeroaddval conforms
to the declared type of add: it is indeed an instance of IntAdddef and its
only missing field valuation is the one for that.

We conclude the informal presentation of holes with the special hole
annotation *, which works as a wildcard for holes. Holes are mainly use-
ful for value fields and template fields: an empty set of holes for a value
field will ensure that the held value is complete and can consequently be
used as receiver object, for template fields, holes allow to avoid overriding
conflicts. As we want a uniform treatment of fields, type tields must also
receive a hole annotation, but we cannot give an exhaustive list of holes for
type fields. For instance, a type field T bounded by !0Object could receive
the value !Int in one subclass and the value !List in another. If classes
Int and List are abstract, values !Int and !List have a priori unrelated
holes. To handle this kind of cases where the set of holes is not predictable
we use the annotation *, which matches an arbitrary set of holes:

field T: !Object misses {+};

2For clarity reasons, we use the numbers 40 and 2 to denote objects built from the
classes Zero and Succ.

164 CHAPTER 6. SCALETTA

6.5.4 Formalizing Holes

To prevent multiple valuations for a field, we define a relation on terms
that returns the list of fields for which the term inherits a definition but no
valuation. We call these fields the holes of the term. The judgment

B+ holes(t) = H

expresses the fact that in the context of the class B the set of holes of term ¢
is H.

With that relation it is easy to prevent multiple valuations simply by
allowing a field valuation in a class only if the field is included in the holes
of the class parent. In order to be able to define this relation on terms, we
need to know for each field its list of holes. For this reason, we augment
tield types with a list of holes (see Figure 6.6). In addition to field names,
this list may contain the symbol *, which means that the field can contain
more holes than the ones explicitly given.

In addition to multiple valuations, the holes let us solve another prob-
lem related to field valuations, namely missing field valuations. Indeed,
the typing rule (o-GET) states that the term ¢. f is well-formed if and only if
t inherits the declaration of field f. This does not guarantee that ¢ inherits
a valuation for the field f. To prevent this, we use the holes information to
forbid any selection on terms that have any hole. This for sure will prevent
any selection of a field f on a value that inherits no valuation for f.

All the modified and newly introduced rules to handle holes are sum-
marized in Figure 6.6. The accessors defs(C) and vals(C), used for instance
in rule (HL-NEW), return respectively the set of field definitions and the set
of field valuations directly contained in a given class C.

6.5.5 Overriding of Outer Fields

We have already explained the parallel between outer fields and normal
tields, saying that outer fields were a special kind of field that come implic-
itly with the declaration of a class and whose value cannot make reference
to the current instance of this class. Like type fields, outer fields are re-
solved at compile time, and like type fields they cannot suffer arbitrary
overriding.

We start with a theoretical argument for this last claim: the typing rule
(—-OUTER), which lets one reduce the term t@C to the term u if t expands
to a term of the form u!C, implicitly assumes that ¢ does not expand to a
term u'!C where u # u'. If such other term u’ exists, the danger is to
choose one term at compile time and the other one at runtime. It would

6.5. TYPING ABSTRACT INHERITANCE 165

Syntax (modifications only)
Types T = tmisses H
Holes H = {I}|{l,+}

Hole Approximation B+ holes(t) = H
(HL-THIS) Brt—u B - holes(u) = H
(HL-RED) B\ holes(this) = {} B+ holes(t) = H
(HL-NEW) class C extends p {d } B + holes([t/this|p) = H
B+ holes(t!C) = (H Udefs(C))\vals(C)
field f: t misses H inside C
(HL-GET)

B+ holes(t.f) =H

(HL-DrOP) B I holes(t) = {f, *} frcf B holes(t) = {f}
(HL-OPEN) B F holes(t) = {f’,*} B holes(t) = {f,*}

Term Well-Formedness (modifications only) Btto

(ONEW) B poles(t) = {} B holes(t) = {} B+ holes(t) = {}

(o-GET)
(0-OUTER) BFtICo Brt.fo B taCo
Field Well-Formedness (modifications only)
field f: u misses H inside A
B+ holes(t) = H class B extends p {d}
B I holes([this@B/this]p) = H f € H' Udefs(B)
(¢-FIELD)

BF fieldf=to

Figure 6.6: Scaletta Hole Resolution

mean that the approximation made by the type-checker for t@C was in fact
wrong, which opens an obvious breach in the type safety.

We now illustrate the problem with a concrete example. The following
Scaletta example shows that it is generally not safe to allow overriding of
outer fields. An outer field is overridden if some object has two different
enclosing instances corresponding to the same class. The following exam-
ple is a variant of the one presented in Section 6.5.2. It suggests also how
mixins can be encoded in Scaletta.

class M {

166 CHAPTER 6. SCALETTA

field T: !Object;
field s: !Object;
class N extends s { field x: T; }

}
class M1 extends M { field T = !String; field s = !Object; }
class A extends !M1!N { field x = "foo"; }

class M2 extends M { field T = !Int; field s = !A; }
class B extends 'M2!N { field y: !Int = x + 3; }

The program above is unsafe because in class B the string value "foo"
held by the field x is added to the integer 3. However a naive type system
would accept it because:

e in class A, the bound this@N.T of the field x resolves to !String, so
it is legal for x to hold the value "foo".

e similarly, in class B the bound this@N.T of the field x resolves to
IInt, so it is legal to consider x as an integer and add it to 3.

The problem is that class B has two incompatible enclosing instances
corresponding to the class N, namely !M1 and !M2. More precisely we have
the following expansion chain:

!B< IM2IN < IM2.s = A < IMLIN

To break the inheritance cycle, we need a way to forbid class N to inherit
an instance of itself. But the parent s of N is abstract, so we need to attach
a field annotation to the declaration of s to specify that it cannot hold an
instance of N. We call such a mechanism class exclusion and formalize it in
the next section. The syntax for such annotations is:

field s: !Object excludes {N};

With this definition a field valuation for s may not contain an instance
of N. The field valuation field s = !Ain class M2 becomes illegal because
IA is clearly an instance of N. Thus, the unsafe program gets rejected as
expected.

6.5.6 Formalizing Class Exclusion

The problem of multiple enclosing instances arises if a value inherits dif-
ferent instances of a same class. Therefore, to avoid the problem, we make
it impossible for a value to inherit more than one instance of a given class.

6.5. TYPING ABSTRACT INHERITANCE 167

To do that, we define a relation that associates to a term a list of classes
of which the term inherits no instance. This relation is then used to make
sure that the parent of a class does not already inherit an instance of that
class. The definition of this class exclusion relation requires an additional
annotation for field types, namely a list of classes of which the field is not
an instance.
The judgment
B\ t is-not-a C

expresses the fact that in the context of the class B the term ¢ is not an
instance of any of the classes C. Note that for extensibility reasons the list
of classes C is generally not exhaustive.

The Figure 6.7 summarizes the modified and the newly introduced
rules to handle class exclusion.

Syntax (modifications only)
Types T = tmisses H excludes C
Class Exclusion Approximation ’B -t is-not-a C ‘
BFt—u Bt u is-not-a C
(EX-RED) -
B - t is-not-a C
C extends Bt [t/this|p is-not-aC' C' #C

(Ex-NEW) p [t/ i Ip ! #

B = t!C is-not-a C

field f: t misses H excludes C inside C

(EX-GET) .

Bt t.f is-not-a C;
Field Well-Formedness (modifications only)

field f: u misses H excludes C inside C

Vi. B F t is-not-a C;
(¢-FIELD) -

Brfieldf=to
Class Well-Formedness (modifications only) FDo

class C inside B p=t= Bt tis-not-aC
(0-CLASS) —
I class C extends p {d } ¢

Figure 6.7: Scaletta Class Exclusion

The basic rules for class exclusion are powerful enough to avoid the

168 CHAPTER 6. SCALETTA

inheritance of a mixin, as demonstrated in our example. In the next section
we show the limitations of these rules and suggest a natural extension.

6.5.7 Group Exclusion

The idea of class exclusion is very simple but unfortunately it does not
cover all interesting uses of abstract inheritance; for type-checking the en-
coding of a method call we need to extend the mechanism of class exclu-
sion with the concept of group of classes. Remind that a method call e.m(3)
is encoded as

class Apply extends e.m { field arg = 3; }
!Apply.result

For this class declaration to be well-formed, we must prove that e.m is
not already an instance of Apply. When we define the method m we can
just write

field m: M$def misses {arg} excludes {Apply}

to specify that m can only hold values that are not instance of Apply. If
there are more than one call to m in the program we can extend the class
exclusion annotation accordingly:

field m: M$def misses {arg} excludes {Applyl, ..., Applyn}

The problem with such a schema is that it is not extensible, in the sense
that the number of possible applications will necessary be bounded. And
we do not want to restrict the use of a method to a particular number of
applications because it precludes the idea of separate compilation. So a
simple idea is to group classes and to exclude groups instead of classes.

In this case we declare a group called ApplyGroup

group ApplyGroup;
And we let the field m exclude this group:
field m: M$def misses {arg} excludes {ApplyGroup}
Now when declaring a class Apply, we link it to the group ApplyGroup.

class Apply in ApplyGroup extends e.m { field arg = 3; }
!Apply.result

The key idea is that if m excludes the group ApplyGroup, it will a fortiori
exclude the class Apply, which is a member of this group.

The adding of groups looks as a natural and harmful extension of our
mechanism of class exclusion. But rather than formalizing groups di-
rectly we prefer simulate them with classes, which has the advantage to

6.6. ENCODINGS 169

avoid enriching unnecessarily the syntax with new concepts. We consider
that each class defines implicitly a group and that a class is member of a
group if it inherits from the corresponding class. This idea is formalized
by adding a new rule to the class exclusion relation:

class C’ extends u {d} class C’ inside B’
Bru<C B+ t is-not-a C

B+ tis-not-a C’

(Ex-GROUP)

Now, to make all methods member of a group ApplyGroup, we first
define a “mixin” ApplyGroup:

class MixApplyGroup {
field superclass: !Object excludes {ApplyGroup};
class ApplyGroup extends superclass; }

And we declare all fields corresponding to methods to exclude the
group ApplyGroup.

field m: M$def misses {arg} excludes {ApplyGroup};
Now, when calling a method, we first apply the mixin:

class Mix extends MixApplyGroup { field superclass = e.m; }
class Apply extends MixApplyGroupe!ApplyGroup { field arg = 3; }
!Apply.result

6.6 Encodings

This section describes how some higher-level constructs can be encoded
in the typed calculus.

6.6.1 Methods

The encoding of method definitions described in Section 6.3.5 defines ill-
formed members because the field corresponding to the method and the
fields corresponding to its parameters are never declared. We show here
how the encoding can be corrected for the typed calculus. To illustrate our
purpose, we will show how the method add of the following example is
encoded.

class Int {
field pred: !'Int;
field succ: !Int;

170 CHAPTER 6. SCALETTA

field succ = !Succ;
field add(that: !Int): !Int;
class Succ extends !Int {
field pred = Int.this;
method add(that) = pred.add(that.succ);
}
¥
class Zero extends !Int {
field pred = this;
method add(that) = that;
}

In the typed calculus, like fields, methods need to be declared. That
is why the class Int now contains a definition of the method add. This
definition is encoded like this:

class Add { field that: !Int; field result: !Int; }
field add: 'Add misses {that};

The type of the field add indicates that it returns a Add instance with
no field valuation for the field that. Therefore, in order to access the field
result of the value returned by the field add, one is forced to first extend
this value and assign a term to its field that. This corresponds exactly to
what happens in a method application; in order to obtain the result of a
method, one is forced to first provide an argument.

The encoding of method implementations has almost not changed. The
only difference is that the implementation class now extends the method’s
definition class. Here is the encoding of the add implementation in class
Succ.

class AddInSucc extends !'Add {
field result = pred.add(AddInSucc.this.that.succ);

}
field add = !'AddInSucc;

The encoding of method application has not changed at all. For com-
pleteness we repeat here the encoding of the call to the method add in the
class AddInSucc.

class AddInSucc {
class Apply extends pred.add {
field that = AddInSucc.this.that.succ;

}
field result = !Apply.result;

}

6.6. ENCODINGS 171

This encoding is still not well-formed. Indeed, the class Apply extends
a value that may already be an instance of the class Apply. Here we need
our group exclusion mechanism. The correct definition of the field add in
the class Int is given below. Note the additional exclude clause.

field add: !'Add misses {that} excludes {ApplyGroup};

The correct encoding of the method call in the class AddInSucc is the
following one:

class AddInSucc {
class Mix extends MixApplyGroup {
field superclass = pred.add;

}
class Apply extends !Mix.ApplyGroup {

field that = AddInSucc.this.that.succ;

}
field result = !'Apply.result;

}

6.6.2 Class Constructors

We consider the problem of defining class constructors. Given a class C
with some uninitialized fields, we would like to define a constructor that
initializes those fields. Furthermore, if the class C extends a class B, we
would like to define C constructors such that they delegate the initializa-
tion of the B part to a B constructor.

Let us try to implement a constructor for each of the two following
classes.

class Pt2D { field x: !'Int; field y: !Int; }
class Pt3D extends !Pt2D { field z: !Int; }

We implement a C constructor with two functions: initC and newC.
The function initC takes as an argument an uninitialized C instance and
as many additional arguments as needed to initialize the C instance. It
returns the given C instance with all its fields initialized. It does that by
defining a class InitC that extends the given C instance and that contains
field valuations for all uninitialized fields defined in the class C. It then
returns an instance of the class InitC. If the class C extends a class B, then
instead of immediately returning the InitC instance, the method initC
passes it to a call to a initB method and returns the result of this call.

The newC method takes as many arguments as needed to initialize a C
instance and returns an initialized instance of C. It does that simply by

172 CHAPTER 6. SCALETTA

calling the initC method with a new C instance and its own arguments.

We give here the implementation of a constructor for each of the two
classes defined above. The two init methods use the notation t {M},
which is a syntactic sugar to represent an instantiation of an anonymous
class with parent t and members M.

method initPt2D(i: !'Pt2D misses {x,v}, x0: !Int, yO: !Int): i =
i{ val x = x0; val yv = y0; };

method newPt2D(x0: !Int, yO: !Int): !'Pt2D =
initPt2D(!Pt2D, x0, vyO0);

method initPt3D(i: !Pt3D misses {x,vy,z}, x0: !Int, yO: !Int,
z0: !Int): i =
initPt2D(i { val z = z0; }, x0, y0);
method newPt3D(x0: !Int, yO: !Int, zO: !Int): !'Pt3D =
initPt3D(!Pt3D, x0, vy0, z0);

Note that the return type of the initC methods is not ! C but i where
i is the argument receiving the uninitialized C instance. This is needed
to implement the calls to the init method of the superclass. If the initC
methods had the type !C, then the body of the method initPt3D would
not be well-formed. Indeed, it would have the type !Pt2D whereas !Pt3D
is expected.

6.6.3 Interfaces and Mixins

Interfaces in Java are a means to approach structural subtyping while stay-
ing in a nominal world, because they make it possible to abstract over a
set of methods. Let us consider the following declarations.

class B {}
interface I { int i(); }
interface J { int j(O); }
class C extends B implements I,J {
int iQ) { /* ... %/ }; int jJO { /* ... =/ };
}

A method that accesses only the method i on its argument may de-
clare it to have type I. Another method that accesses only the method j
on its argument may declare it to have type J. Instances of classes that
implement both interfaces, like C, may be passed to both methods.

Although Scaletta supports only single-class inheritance and has no
notion of interface, the same kind of abstraction is possible. The trick is to
transform an interface into a kind of function whose argument is the class

6.6. ENCODINGS 173

to which the interface has to be added. Here is how interface I is written
in Scaletta.

class MixTI {
field o: !Object misses {*} excludes {I};
class I extends o { field i: !Int; }

}

Assuming the interface J has been encoded the same way, it is possi-
ble to translate the Java class C into Scaletta. The translation requires two
auxiliary classes:

class AuxCI extends !MixI { field o = !B; }
class AuxCJ extends !'MixJ { field o = !'AuxCI!I; }
class C extends !'AuxCJ!J {

fieldi=/» ... »/; field j = /* ... %/,

}

In order to declare a field f of type I, one might first try the following
declaration:

field f: IMixI!I;

However, given that declaration, it is impossible to assign the value !C
to f although class C inherits from class I. The problem is that ! C expands
to 'AuxCI!I but not to IMixI!I. By giving f the type !AuxCI!I, the value
IC would become legal but other values that inherit from class I through
other auxiliary classes than AuxCI would still be illegal. What we need to
express is that a value v may be assigned to f if it expands to w!I where w
is a value that expands to !MixI. This can be done with an auxiliary field:

field auxf: IMixI;
field f: auxf!I;

To assign a value v that implements the interface I to f one has just to
note that for such a value, v@I always expands to !MixI. Therefore, the
following is always legal.

field auxf = v@i;
field f = v;

This shows that although Scaletta supports only single-class inheri-
tance, it is able to provide the same level of abstraction as interfaces in
Java, which supports multiple-interface inheritance in addition to single-
class inheritance. Furthermore, if one considers mixins as interfaces with
code, the techniques described here can also be used to implement mixins
because nothing forbids us in our encoding to add value definitions to the
classes simulating interfaces.

174 CHAPTER 6. SCALETTA

6.6.4 Type Abstractions

In Scaletta it is possible to abstract over a term by defining in a class a field
with no value. A similar mechanism to abstract over a type would be to
introduce in the calculus the concept of type fields. But surprisingly, with-
out abandoning our formalism, we can express a kind of type abstraction.
The idea is to simulate type fields with our standard value fields. Let us
consider the following example where the value field T plays the role of
an abstract type field.

class A { field T: !Int; field x: T; }

All we know about the abstract field T is that it expands to !Int. It
implies that giving the value !Zero!Succ to x would be illegal, because
it could happen that, in a subclass, T is given the value !Zero, which is
not a parent of !Zero!Succ. That would break the invariant, assumed
everywhere during typing, that the value of a field expands always to the
value of its bound.

In the absence of a concrete value for T, the only values that can be
given to x are terms that are explicitly declared to have the type T (for
instance x itself). But as soon as T has a value, the type-checker can make
use this information and show that a particular value given to x expands
to it, as in the following subclass B.

class B extends !A { field T = !Int; field x = !Zero!Succ; }

The design pattern of letting value fields play the role of type fields can
be used to encode a limited form of polymorphism. For example polymor-
phic lists with a concatenation method can be encoded as follows, where
T represents the type of the elements.

class Lists {
field T: !Object misses {+};

class List {
method concat(that: !List): !List;
}

class Nil extends !List {
method concat(that) = that;
3
method cons(head: T, tail: !List): !List = !List {
field concat(that) = cons(head, tail.concat(that));
}
}

6.7. UNDECIDABILITY AND TYPING STRATEGIES 175

6.7 Undecidability and Typing Strategies

Typing in the field of programming languages can be seen as a way of
approximating the result of an expression without evaluating it. Evaluat-
ing an expression consists of replacing abstractions by their value. So a
good reason not to evaluate an expression at compile time is that some ab-
stractions have no value. Even when abstractions have values, typing al-
gorithms usually prefer to approximate the abstraction using its declared
interface (or type), instead of its value, in order to prevent the compiler
from looping (types usually do not loop). From this point of view typ-
ing can be seen as a kind of abstract evaluation. Scaletta makes this close
link between typing and evaluation completely explicit because the typing
relations generalize the evaluation relations, as explained in Section 6.4.

It follows that typing is undecidable because it can happen that the
only way of checking that an expression conforms to a bound is to evaluate
it. A naive solution to “approach decidability” is to never use the value of
a field during type-checking but always use its bound. But if we do that
we cannot simulate type fields with value fields anymore because the main
property of type fields is precisely that their value is used at compile time.
There is clearly a trade-off between the need of making the type-checking
“more decidable”, i.e. that it terminates on more programs, and the need
of being able to write typed solutions to interesting problems.

As the excessive usage of field valuations is a source of undecidability
in the typing of Scaletta, we define a typing strategy as a policy that restricts
this usage. From a theoretical point of view, such a policy controls the
usage of the rule (—-FIELD). It is important to note that a proof of type-
safety for our type system would still hold if the usage of the deduction
rules was restricted by a typing strategy. A type-checker using a restrictive
typing strategy would just accept less programs than one using a more
liberal strategy, but all accepted programs would still be guaranteed not
to cause errors at runtime.

In conclusion we have a type system with a degree of decidability and
expressiveness that is parameterizable by a typing strategy. We consid-
ered two simple typing strategies: one that requires that the program-
mer explicitly annotates field valuations that can be followed by the type-
checker and another that infers from the context this right, for instance if
a field plays the role of a type field. In our compiler we adopted the sec-
ond strategy because it does not require additional annotations from the
programmer and because there are in principle cases where a same field
could be considered as a type or as a value in different contexts. Our expe-
rience with our interpreter indicates that the chosen strategy works well; it

176 CHAPTER 6. SCALETTA

accepts non-trivial programs, signals useful error messages and does not
unexpectedly loop.

6.8 Scaletta vs. Core Language

Scaletta was designed with the aim of maintaining its semantics and its
typing rules as simple as possible and to avoid as much as possible any
redundancy. This makes Scaletta a very useful tool to study and prove
properties of inner classes and virtual types. But, it is not very well-suited
to be used as an intermediate language because many concepts need to be
encoded into complex structures, which could only hardly be mapped to
some real assembly code. For example, methods are encoded into several
classes and fields and it would be very difficult to map these classes and
fields to methods of the Java virtual machine.

The Core language was designed to be used as the intermediate lan-
guage of a Scala compiler. It shares many aspects with Scaletta. In some
sense, it is a pragmatic version of Scaletta. For example, Scaletta has an
explicit syntax for functions. Thus, it is not necessary to encode them into
complex structures. It makes also abstract inheritance unnecessary and
thus avoids all the problems introduced by it. On the other hand, the ad-
ditional typing rules for function calls duplicate several elements of the
rules for instance creations and variable selections. Similarly the presence
of explicit blocks avoids the need to encode them but again duplicates
some elements of the rules for instance creations and variable selections.

The Core language requires neither hole annotations nor class exclu-
sion annotations. However, the encoding of class constructors in Scaletta
described in Section 6.6.2 shows that something similar could maybe be
useful to track uninitialized variables, which is currently completely ab-
sent in the Core language.

In Scaletta, typing is undecidable because of the presence of abstract
inheritance and also because there is no distinction between type fields
and value fields. The Core language makes this distinction. Thanks to this
and to the absence of abstract inheritance typing is decidable. The price
to pay is some redundancy in the typing rules for type fields and value
tields. This distinction also prevents the definition of typing as a kind of
abstract evaluation.

Like Scaletta, the Core language distinguishes the notions of member
definition and member overriding. The Core language furthermore dis-
tinguishes the notion of refining the signature of an inherited member
from the notion of overriding the implementation of an inherited mem-

6.9. RELATED WORKS 177

ber whereas in Scaletta field valuations play the two roles. There is also
a difference in the way members are defined. In Scaletta, member defi-
nitions define abstract members, which can be implemented only once in
a subclass. In the Core language, there are no abstract members further-
more functions can be overridden multiple times in subclasses and type
fields can be refined multiple times. This is possible because there is no
abstract inheritance and thus no risk of accidentally overriding or refining
a member with an ill-typed body or signature.

The Core language introduces mutable fields. This has for consequence
that it is necessary to distinguish stable expressions from ordinary expres-
sions and to allow only stable expression in types. In Scaletta, all expres-
sions are stable. The presence of mutable fields has also for consequence
that a semantics for the Core language would be based on a heap and
would therefore be completely different from the one of Scaletta.

The Core language also introduces the notion of record types with re-
finements. Thanks to these refinements, outer fields can be handled like
normal fields. Indeed, in the Core language outer fields are just fields with
a special symbol. Unlike in Scaletta, there are no special typing rules for
outer fields. The record types of the Core language are also more fine-
grained than the types of Scaletta. For example, it is possible to express
the type of all instances of some inner class C with the record type C {}.
This is not possible in Scaletta because one necessarily also has to specify
the enclosing instance of the class C.

6.9 Related Works

Both concepts, inner classes and virtual types, have been studied and well
understood separately. Inner classes are described in [14] and virtual types
are formalized in [13].

The interaction between inner classes and virtual types is less well un-
derstood. We know only about four works related to this problem.

In [23] the authors aim at formalizing the type system of the Scala pro-
gramming language. They do not especially focus on inner classes and
virtual types. They describe a calculus that also includes other concepts
like object identity, mixins and first-class class constructors. Its type sys-
tem is proved to be sound. However the calculus is rather complex and
therefore is very hard to use as a basis to understand the interaction be-
tween inner classes and virtual types. We claim to have a simpler calculus
with just the required concepts to formalize inner classes and virtual types.

BETA is an object-oriented programming language with inner classes

178 CHAPTER 6. SCALETTA

and virtual classes. Virtual classes in BETA are equivalent to the notion
of virtual types described in our paper. In [18] the author considers the
problem of typing virtual classes in the presence of inner classes in BETA.
The main difference between his and our work is that he describes the al-
gorithms used by the BETA compiler to perform the semantic analysis of a
program whereas we give a calculus with a type system that formally de-
fines well-formed programs. We do not describe in the paper an algorithm
to build well-formedness proofs. However we have written an interpreter
that incorporates such algorithms. The algorithms presented for BETA
performs simultaneously name and type analysis. A contribution of our
work is to show that it is possible to specify the static semantics without
having to include rules to perform name analysis. Note however that our
interpreter implements a name analysis and thus does not impose globally
unique names. The same paper contains interesting examples describing
more intricate situations than our examples.

gbeta [11] is an extension of BETA with the possibility to extend virtual
classes. This mechanism is similar to our notion of abstract inheritance.
Our understanding of gbeta is very weak, and we would be interested to
know if our solutions for typing abstract inheritance could somehow be
used to type virtual classes in gbeta.

We lately discovered in [34, 33] that the author had developed ideas
and solutions for a calculus of classes and objects very close to the ones
we developed for Scaletta. The author distinguishes in his work two ap-
proaches to inheritance: the modificationist approach that views classes
mainly as code libraries whereas the specialisationist approach insists on
considering them as abstractions. As we do, he recommends the later,
claiming that overriding is not essential. He develops also a mechanism
similar to holes and uses it in exactly the same way as we do for encoding
methods. However he is more extremist than we are when he claims that
only one kind of names is necessary. On the contrary we think after our
experience that it is important to make a clear distinction between class
names and field names and that any unification of both concepts is likely
artificial. His work goes beyond the work presented in this paper when he
tries to integrate in his formalism a kind of structural subtyping for han-
dling full polymorphism. Finally, the author is also missing a soundness
proof that would validate his interesting ideas.

Chapter 7

Conclusion and Future Work

7.1 Scala

We have described in details several aspects of Scala with a focus on its
numerous type constructs. We have informally explained how typing was
performed. We have also described the relationships between different
type constructs and in particular we have described how type parameters,
virtual types, parameterized class types, qualified class types and refined
types are related.

We have also exhibited some shortcomings of Scala due to its syntax
and its typing rules and we have proposed generalizations to avoid them.

Finally we have informally described the lambda lift and the explicit
outer transformations, which are two important code transformations of
the Scala compiler. We have described the different steps of each trans-
formation and explained why they are necessary. We have also discussed
some typing issues that remain and described how they could be avoided.

7.2 Core Language

We have described the Core Language, a typed intermediate language for
a Scala compiler. It consists only of the most fundamental constructs of
Scala but can nonetheless encode most constructs of Scala. It generalizes
some aspects of Scala to overcome the shortcomings we have identified in
Scala.

We have described how Scala constructs are encoded into Core code.
We have presented a type system for the Core language and we have given
a formal description of the lambda lift and the explicit outer transforma-
tions.

180 CHAPTER 7. CONCLUSION AND FUTURE WORK

In the future, there are many properties that we would like to prove
formally. First of all, we would like to prove that our code transformations
do indeed produce well-formed code. We would also like to prove that
the type system is sound. To this effect we first need to develop a formal
semantics for the Core language. This would also let us prove that our
code transformations preserve the semantics of the transformed programs.

The description of the encoding of Scala programs into Core programs
is rather informal. It would be interesting to formalize these encodings
and also to describe how the Core language can be used by the analyzer
not only as a target language but also as a base for all type computations
performed during the name analysis and the type inference.

7.3 Scaletta

The main contribution of Scaletta is a better understanding of the interac-
tion between inner classes and virtual types through a simple and novel
calculus of classes and objects. We have formally described the non-trivial
mechanism needed to type virtual types in the presence of inner classes.
We have described the required alias analysis and showed that it requires
only a few simple rules provided that each inner class comes with an im-
plicit and accessible outer field.

This work has application for the design of type checkers for languages
that combine inner classes and virtual types. It can also be used to under-
stand type systems of existing programming languages that combine these
two aspects like BETA or Scala. It may even be used to understand, at
least partially, languages with inner classes and parameterized classes like
Java 5, which require the same kind of alias analysis as those formalized
in Scaletta.

Our priority in the future is to prove the soundness of the type system
of Scaletta. This has already been partially achieved in [6] where a proof
for a simpler version of Scaletta is given.

Bibliography

[1] Philippe Altherr and Vincent Cremet. Scaletta web page, Au-
gust 2004. Available at http://lamp.epfl.ch/\simpaltherr/
scaletta.

[2] Philippe Altherr and Vincent Cremet. Inner classes and virtual
types. Technical report IC/2005/0133, EPFL, Switzerland, March
2005. Available from http://scala.epfl.ch/.

[3] Lennart Augustsson. A compiler for lazy ML. In LFP ’84: Proceedings
of the 1984 ACM Symposium on LISP and functional programming, pages
218-227, New York, NY, USA, 1984. ACM Press.

[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In Craig Chambers, editor, ACM Symposium
on Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA), pages 183-200, Vancouver, BC, Canada, 1998.

[5] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe al-
ternative to virtual types. Lecture Notes in Computer Science, 1445:523+,
1998.

[6] Vincent Cremet. Foundations for Scala: Semantics and Proof of Virtual
Types. PhD thesis, School of Computer and Communication Sciences
, EPFL, Switzerland, May 2006. No. 3556.

[7] Olivier Danvy and Ulrik P. Schultz. Lambda-lifting in quadratic time.
Journal of Functional and Logic Programming, 2004(1), July 2004.

[8] Burak Emir. Compiling regular patterns to sequential machines. In
SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing,
pages 1385-1389, New York, NY, USA, 2005. ACM Press.

182

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Burak Emir. Translation of pattern matching in a Java-like language.
In International Kyrgyz Electronics and Computer Conference (IKECCO),
April 2006.

Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu.
Variance and Generalized Constraints for C# Generics. In European
Conference on Object-Oriented Programming (ECOOP), July 2006.

Erik Ernst. gbeta — a Language with Virtual Attributes, Block Structure,
and Propagating, Dynamic Inheritance. PhD thesis, Department of Com-
puter Science, University of Aarhus, Arhus, Denmark, 1999.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. In Loren
Meissner, editor, Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages & Applications (OOP-
SLA99), volume 34(10), pages 132-146, New York, NY, USA, 1999.

Atsushi Igarashi and Benjamin C. Pierce. Foundations for virtual
types. Lecture Notes in Computer Science, 1628:161+, 1999.

Atsushi Igarashi and Benjamin C. Pierce. On inner classes. Lecture
Notes in Computer Science, 1850:129+, 2000.

Thomas Johnsson. Lambda lifting: transforming programs to recur-
sive equations. In Functional programming languages and computer ar-
chitecture. Proc. of a conference (Nancy, France, Sept. 1985), New York,
NY, USA, 1985. Springer-Verlag.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Peder-
sen, and Kristen Nygaard. The BETA programming language. In
Bruce Shriver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming, pages 7-48. MLLT. Press, Cambridge, MA,
USA, 1987.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, second edition, April 1999.

Ole Lehrmann Madsen. Semantic analysis of virtual classes and
nested classes. In OOPSLA "99: Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and appli-
cations, pages 114-131, New York, NY, USA, 1999. ACM Press.

BIBLIOGRAPHY 183

[19]

[20]

[21]

[25]

Martin Odersky. Scala by example. Available from http://scala.
epfl.ch/.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Se-
bastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the Scala
programming language. Technical report IC /2004 /64, EPFL, Switzer-
land, 2004. Available from http://scala.epfl.ch/.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sté
phane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. An introduction to Scala. Available from http:
//scala.epfl.ch/.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sté
phane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. The Scala language specification. Available
from http://scala.epfl.ch/.

Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias
Zenger. A nominal theory of objects with dependent types. In Proceed-
ings of the European Conference on Object-Oriented Programming, Darm-
stadt, Germany, July 2003.

Martin Odersky, Enno Runne, and Philip Wadler. Two ways to bake
your pizza - translating parameterised Types into Java. In Generic
Programming, pages 114-132, 1998.

Martin Odersky and Philip Wadler. Pizza into Java: Translating the-
ory into practice. In Proceedings of the 24th ACM Symposium on Princi-
ples of Programming Languages (POPL’97), Paris, France, pages 146-159,
New York, NY, USA, 1997. ACM Press.

Martin Odersky and Matthias Zenger. Independently extensible so-
lutions to the expression problem. In Proc. FOOL 12, January 2005.

Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming systems languages and applica-
tions, pages 41-57, New York, NY, USA, 2005. ACM Press.

Michel Schinz. A Scala tutorial for Java programmers. Available from
http://scala.epfl.ch/.

184 BIBLIOGRAPHY

[29] Michel Schinz. Compiling Scala for the Java Virtual Machine. PhD thesis,
School of Computer and Communication Sciences , EPFL, Switzer-
land, 2005.

[30] Nathanael Schérli. Traits: Composing Classes from Behavioral Building
Blocks. PhD thesis, Universitiat Bern, 2005.

[31] Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and An-
drew Black. Traits: Composable units of behavior. In Proceedings
ECOOP 2003 (European Conference on Object-Oriented Programming),
volume 2743 of LNCS, pages 248-274, New York, NY, USA, July 2003.
Springer-Verlag.

[32] Kresten Krab Thorup and Mads Torgersen. Unifying genericity —
combining the benefits of virtual types and parameterized classes. In
ECOOP Proceedings, New York, NY, USA, June 1999. Springer-Verlag.

[33] Mads Torgersen. Unifying Abstractions. PhD thesis, Computer Sci-
ence Department, University of Aarhus, Arhus, Denmark, September
2001.

[34] Mads Torgersen. Inheritance is specialization. In The Inheritance Work-
shop, with ECOOP 2002, June 2002.

[35] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der
Ahé¢, Gilad Bracha, and Neal Gafter. Adding wildcards to the Java
programming language. In SAC "04: Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 1289-1296, New York, NY, USA,
2004. ACM Press.

Index

0,12 covariant
field, 15,121,122, 124
abstract type, 88 method, 13, 121, 123
alias analysis, 144, 153, 154, 158 position, 24
All, 13 type parameter, 24
AllRef, 13 current enclosing instance, 37
analyzer, 4 current instance, 82
Any, 12
AnyRef, 12 definition, 110, 111
AnyVal, 12
as-seen-from, 23, 26, 30, 43 izmi 3’7127
back-end, 4 enclosing instance, 37
base-type, 22, 42, 46 entity, 82
bottom, 88 eo-D, 140, 141
bottom type, 18, 88 co-¢, 140-142
eo-P, 140, 141
call graph, 53 expand mixin phase, 5
call set, 53 explicit outer phase, 5, 67, 136
call-set, 130, 132 explicit self type, 46, 76, 125
class extra set, 52
hierarchy, 12 extra-D, 133, 136
member, 13, 97 extra-m, 133, 136
qualifier, 40, 72 extra-O, 133, 136
type, 18, 102 extra-set, 130, 132
parameter, 19, 33, 103 extra-x, 133, 136
class file, 3 field, 14
compound type, 46, 102 field refinement, 30
conformance, 18 free-vars, 130, 132
Construct(?r, 15,57,106,171 front-end, 4
contravariant function type parameter, 19, 102
method, 14
position, 24 getter method, 14

type parameter, 24 greatest lower bound, 32

186 INDEX

implicit constructor, 15 type field, 84
initialized-class, 108 value field, 84
inner class, 37, 58 override, 14
instance creation, 17, 38, 106 owner, 84
interface, 12 owner, 110, 111

invariant position, 24
invariant type parameter, 24
is-constructor, 108
is-initialization, 133

package, 11, 100
parameter variance, 24
parameterized class type, 19, 103

is-mutable, 110, 111 parser, 4

is-primary-constructor, 108 patk—to, 133,136

is-refed, 133, 136 plain type, 26

is-stable, 110, 111 polymorphic class, 19
polymorphic method, 19

Java virtual machine, 3 primary constructor, 16
primitive class, 16

lambda lift phase, 5, 49, 127 primitive type, 17

lambda lifting, 50 primitive var, 15

least upper bound, 18

lift, 110-112 qualified class type, 40, 44, 105

II-D, 133, 134 qualifier, 40, 72

ll-e, 133-135

11-P, 133, 134 record, 82

lookup, 19, 23, 29, 31 record type, 88

Ref, 61, 127

ref, 127
refed-vars, 130, 132
reference class, 13

lookup, 109, 110, 112
lower bound, 21
lower class bound, 21

map-D, 110, 113 refined type, 30, 44, 102
map-e, 110, 113 refinement, 28, 30, 88
member inheritance, 18 refs-€, 130, 131

member type, 28, 102 refs-e, 130, 131

method, 13 refs-m, 130, 131

method refinement, 30 refs-P, 130, 131

mixin, 11, 45, 172 rewriting phase, 4
mutable variable, 60 Root, 82

root context, 82

nested class, 37
Scala compiler, 3

object, 12 secondary constructor, 16
outer self type, 46, 76
field, 38, 92 self-value, 108

INDEX

187

setter method, 14
signature, 88
signature, 110, 111
singleton
class, 12
object, 12, 100
type, 25, 88, 102
sink, 110-112
stable
expression, 86, 91
path, 25
value, 25
expression, 86
subst, 110, 112
symbol, 80, 82
symbol, 110, 111
syntactic sugar, 9, 14, 38, 86, 89,
91-93, 128, 150-152, 172

top type, 18, 88

trait, 12, 45

trans match phase, 5

type
equality, 22
erasure phase, 5
parameter, 19, 33, 102, 103
refinement, 28
signature, 88

unit value, 12
upper bound, 21
upper class bound, 21

value class, 12

value signature, 88
variance, 24

virtual parameter, 33
virtual type, 28

widening types, 81
wildcard, 35, 104

Curriculum Vitae

Personal information

Name

Philippe Altherr

Citizenship ~ Swiss (from Speicher AR)
Date of birth September 18th, 1974
Place of birth Pietermaritzburg, South Africa

Education

2000-2006

1993-1998

1990-1993

Ph.D. in Computer Science

Laboratoire des Méthodes de Programmation

Ecole Polytechnique Fédérale de Lausanne, Switzerland
Master in Computer Science

Ecole Polytechnique Fédérale de Lausanne, Switzerland
High School (scientific orientation)

Gymnase Auguste Piccard, Lausanne, Switzerland

Professional experience

2000-2005

1998-1999

Teaching Assistant

Laboratoire des Méthodes de Programmation

Ecole Polytechnique Fédérale de Lausanne, Switzerland
Teaching Assistant

Laboratoire des Systemes Répartis

Ecole Polytechnique Fédérale de Lausanne, Switzerland

