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Abstract. While in general trading off exploration and exploitation in reinforcement learning is

hard, under some formulations relatively simple solutions exist. Optimal decision thresholds for

the multi-armed bandit problem, one for the infinite horizon discounted reward case and one for

the finite horizon undiscounted reward case are derived, which make the link between the reward

horizon, uncertainty and the need for exploration explicit. From this result follow two practical

approximate algorithms, which are illustrated experimentally.
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1 Introduction

In reinforcement learning, the dilemma between selecting actions to maximise the expected return
according to the current world model and to improve the world model such as to potentially be able to
achieve a higher expected return is referred to as the exploration-exploitation trade-off. This has been
the subject of much interest before, one of the earliest developments being the theory of sequential
sampling in statistics, as developed by [14]. This dealt mostly with making sequential decisions for
accepting one among a set of particular hypotheses, with a view towards applying it to jointly decide
the termination of an experiment and the acceptance of a hypothesis. A more general overview of
sequential decision problems from a Bayesian viewpoint is offered in [6].

The optimal, but intractable, Bayesian solution for bandit problems was given in [2], while recently
tight bounds on the sample complexity of exploration have been found [11]. An approximation to the
full Bayesian case for the general reinforcement learning problem is given in [5], while an alternative
technique based on eliminating actions which are confidently estimated as low-value is given in [8].

The following section formulates the intuitive concept of trading exploration and exploitation as
a natural consequence of the definition of the problem of reinforcement learning. After the problem
definitions which correspond to either extreme are identified, Sec. 3 derives a threshold for switching
from exploratory to greedy behaviour in bandit problems. This threshold is found to depend on the
effective reward horizon of the optimal policy and on our current belief distribution of the expected
rewards of each action. A sketch of the extension to MDPs is presented in Sec. 4. Section 5 uses
an upper bound on the value of exploration to derive practical algorithms, which are then illustrated
experimentally in Sec. 6. We conclude with a discussion on the relations with other methods.

2 Exploration Versus Exploitation

Let us assume a standard multi-armed bandit setting, where a reward distribution p(rt+1|at) is con-
ditioned on actions in at ∈ A, with rt ∈ R. The aim is to discover a policy π = {P (at = i)|i ∈ A},
where P (at = i) is the probability that action i is chosen at time t, which maximises E[rt+1|π], the
expected value of the reward at the following time-step under the distribution defined by the policy
π. It follows that the optimal gambler, or oracle, for this problem would be a policy which always
chooses i ∈ A such that E[rt+1|at = i] ≥ E[rt+1|at = j] for all j ∈ A. Given the conditional expecta-
tions, implementing the oracle is trivial. However this tells us little about the optimal way to select
actions when the expectations are unknown. As it turns out, the optimal action selection mechanism
will depend upon the problem formulation. We initially consider the two simplest cases in order to
illustrate that the exploration/exploitation tradeoff is and should be viewed in terms of problem and
model definition.

In the first problem formulation the objective is to discover a parameterized probabilistic policy
π =

{

P (at|θt)
∣

∣ at ∈ A
}

, with parameters θt, for selecting actions such that E[rt+1|π] is maximised.

If we consider a model whose parameters are the set of estimates θt =
{

qi = Êt[rt+1|at = i]
∣

∣ i ∈ A
}

,
then the optimal choice is to select at for which the estimated expected value of the reward is highest,
because according to our current belief any other choice will necessarily lead to a lower expectation.
Thus, stating the bandit problem in this way does not allow the exploration of seemingly lower, but
potentially higher value actions and it results in a greedy policy.

In the second formulation, we wish to minimise the discrepancy between our estimate qi and the
true expectation. This could be written as the following minimisation problem:

∑

i∈A

E
[

‖rt+1 − qi‖
2

∣

∣ at = i
]

.

For point estimates of the expected reward, this requires sampling uniformly from all actions and thus
represents a purely exploratory policy. If the problem is stated as simply minimising the discrepancy
asymptotically, then uniformity is not required and it is only necessary to sample from all actions
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infinitely often. This condition holds when P (at = i) > 0 ∀i ∈ A, t > 0 and can be satisfied by
mixing the optimal policies for the two formulations, with a probability ε of using the uniform action
selection and a probability 1 − ε of using the greedy action selection. This results in the well-known
ε-greedy policy (see for example [12]), with the parameter ε ∈ [0, 1] used to control exploration.

This formulation of the exploration-exploitation problem, though leading to an intuitive result,
does not lead to an obvious way to optimally select actions. In the following section we shall consider
bandit problems for which the functional to be maximised is

E

[ N
∑

k=0

g(k)rt+k+1

∣

∣

∣

∣

π

]

, g(k) ∈ [0, 1], N ≥ 0,

with
∑∞

k=0 g(k) < ∞. In this formulation of the problem we are not only interested in maximising the
expected reward at the next time step, but in the subsequent N steps, with the g(·) function providing
another convenient way to weigh our preference among short and long-term rewards. Intuitively it is
expected that the optimal policy for this problem will be different depending on how long-term are
the rewards that we are interested in. As will be shown later, by lengthening the effective reward
horizon through manipulation of g and N , i.e. by changing the definition of the problem that we wish
to solve, the exploration bias is increased automatically.

3 Optimal Exploration Threshold for Bandit Problems

We want to know when it is a better decision to take action i rather than some other action j, with
i, j ∈ A, given that we have estimates qi, qj for E[rt+1|at = i] and E[rt+1|at = j] respectively1. We
shall attempt to see under which conditions it is better to take an action different than the one whose
expected reward is greatest. For this we shall need the following assumption:

3.1 Assumption (Expected rewards are bounded from below) There exists b ∈ R such that

E[rt+1|at = i] ≥ b ∀ i ∈ A, (1)

The above assumption is necessary for imposing a lower bound on the expected return of exploratory
actions: no matter what action is taken, we are guaranteed that E[rt] > b. Without this condition,
exploratory actions would be too risky to be taken at all.

Given two possible actions to take, where one action is currently estimated to have a lower ex-
pected reward than the other, then it might be worthwhile to pursue the lower-valued action if the
following conditions are true: (a) there is a degree of uncertainty such that the lower-valued action can
potentially be better than the higher-valued one, (b) we are interested in maximising more than just
the expectation of the next reward, but the expectation of a weighted sum of future rewards, (c) we
will be able to accurately determine whether one action is better than the other quickly enough, so
that not a lot of resources will be wasted in exploration.

We now start viewing qi as random variables for which we hold belief distributions p(qi), with
q̄i = E[qi] = Ê[rt+1|at = i]. The problem can be defined as deciding when action i, is better than
taking action j, under the condition that doing so allows us to determine whether qi > qj + δ with
high probability after T ≥ 1 exploratory actions. For this reason we will need the following bound on
the expected return of exploration.

3.1 Lemma (Exploration bound) For any return of the form Rt =
∑N

k=0 g(k)rt+k+1, with g(k) ≥ 0,

assuming (1) holds, the expected return of taking action i for T time-steps and following a greedy

1For bandit problems with states in a state space S, similar arguments can be made by considering i, j ∈ S ×A.
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policy thereafter, when q̄i > q̄j , is bounded below by

U(i, j, T, δ, b) =
N

∑

k=T

g(k)
(

(q̄j + δ)P (qi > qj + δ) + q̄jP (qi ≤ qj + δ)
)

+
T−1
∑

k=0

g(k)
(

(q̄j + δ)P (qi > qj + δ) + bP (qi ≤ qj + δ)
)

(2)

for some δ > 0.

This follows immediately from Assumption 3.1. The greedy behaviour supposes we are following a
policy where we continue to perform i if we know that P (qi > qj + δ) ≈ 1 after T steps and switch
back to j otherwise.

Without loss of generality, in the sequel we will assume that b = 0 (If expected rewards are
bounded by some b 6= 0, we can always subtract b from all rewards and obtain the same). For further
convenience, we set pi = P (qi ≥ qj +δ). Then we may write that we must take action i if the expected
return of simply taking action j is smaller than the expected return of taking action i for T steps and
then behaving greedily, i.e. if the following holds:

N
∑

k=0

g(k)q̄j <

N
∑

k=T

g(k)
(

(q̄j + δ)pi + q̄j(1 − pi)
)

+

T−1
∑

k=0

g(k)(q̄j + δ)pi (3)

T−1
∑

k=0

g(k)
(

q̄j − (q̄j + δ)pi

)

<
N

∑

k=T

g(k)
(

δpi

)

(4)

Let g(k) = γk, with γ ∈ [0, 1]. In this case, any choice of T can be made equivalent to T = 1

by dividing everything with
∑T−1

k=0 γk. We explore two cases: γ < 1, N → ∞ and γ = 1, N < ∞.
In the first case, which corresponds to infinite horizon exponentially discounted reward maximisation
problems, we obtain the following:

q̄j − (q̄j + δ)pi <

∞
∑

k=1

γkδpi (5)

q̄j − (q̄j + δ)pi

(1 − pi)q̄j

< γ. (6)

It is possible to simplify this expression considerably. When P (qi ≥ q̄j + δ) = 1/2, it follows from (6)
that

γ >
q̄j − (q̄j + δ)/2

q̄j/2
=

q̄j − δ

q̄j

. (7)

Thus, for infinite horizon discounted reward maximisation problems, when it is known that the all
expected rewards are non-negative, all we need to do is find δ such that P (qi ≥ qj + δ) = 1/2. Then
(7) can be used to make a decision on whether it is worthwhile to perform exploration. Although
it might seem strange that qi is omitted from this expression, its distribution is implicitly expressed
through the value of δ.

In the second case, finite horizon cumulative reward maximisation problems, exploration should
be performed when the following condition is satisfied:

Nδpi > q̄j − (q̄j + δ)pi (8)

Here the decision making function is of a different nature, since it depends on both estimates. However,
in both cases, the longer the effective horizon becomes and the larger the uncertainty is, the more
the bias towards exploration is increased. We furthermore note that in the finite horizon case, the
backward induction procedure can be used to make optimal decisions (see [6] Sec. 12.4).
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3.1 Solutions for Specific Distributions

If we have a specific form for the distribution P (qi > qj + δ) it may be possible to obtain analytical
solutions. To see how this can be achieved, consider that from (6), we have:

γq̄j > q̄j − δ
pi

1 − pi

0 < δ
P (qi > qj + δ)

1 − P (qj > qj + δ)
− (1 − γ)q̄j , (9)

recalling that all mean rewards are non-negative.
If this condition is satisfied for some δ then exploration must be performed. We observe that if the

first term is maximised for some δ∗ for which the inequality is not satisfied, then there is no δ 6= δ∗

that can satisfy it. Thus, we can attempt to examine some distributions for which this δ∗ can be
determined. We shall restrict ourselves to distributions that are bounded below, due to Assumption
3.1.

3.2 Solutions for the Exponential Distribution

One such distribution is the exponential distribution, defined as

P (X > δ) =

∫ ∞

δ

βe−β(x−µ)dx = e−β(δ−µ)

if δ > µ, 1 otherwise. We may plug this into (9) as follows

f(δ) = δ
P (qi > qj + δ)

1 − P (qi > qj + δ)
= δ

e−βi(µj+δ−µi)

1 − e−βi(µj+δ−µi)
=

δ

eβi(µj+δ−µi) − 1

Now we should attempt to find δ∗ = arg maxδ f(δ). We begin by taking the derivative with respect
to δ. Set g(δ) = eh(δ) − 1, h(δ) = βi(q̄j + δ − µi)

∇f(δ) =
g(δ) − δ∇g(δ)

g(δ)2
=

g(δ) − δβi∇hg(δ)

g(δ)2
=

eh(δ)(1 − δβi) − 1

(eh(δ) − 1)2

Necessary and sufficient conditions for some point δ∗ to be a local maximum for a continuous differ-
entiable function f(δ) are that ∇δf(δ∗) = 0 and ∇2

δf(δ∗) < 0. The necessary condition for δ results
in

eβi(qk+δ−µi)(1 − δβi) = 1. (10)

Unfortunately (10) has no closed form solution, but it is related to the Lambert W function for which
iterative solutions do exist [4]. The found solution can then be plugged into (9) to see whether the
conditions for exploration are satisfied.

4 Extension to the General Case

In the general reinforcement learning setting, the reward distribution does not only depend on the
action taken but additionally on a state variable. The state transition distribution is conditioned on
actions and has the Markov property. Each particular task within this framework can be summarised
as a Markov decision process:

4.1 Definition (Markov decision process) A Markov decision process is defined by a set of states S, a

set of actions A, a transition distribution T(s′, s, a) = P (s′t+1|st = s, at = a) and a reward distribution

R(s′, s, a) = p(rt+1|st+1 = s′, st = s, at = a).
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The simplest way to extend the bandit case to the more general one of MDPs is to find conditions
under which the latter reduces to the former. This can be done for example by considering choices
not between simple actions but between temporally extended actions, which we will refer to as options
following [13]. We shall only need a simplified version of this framework, where each possible option
x corresponds to some policy πx : S ×A → [0, 1]. This is sufficient for sketching the conditions under
which the equivalence arises.

In particular, we examine the case where we have two options. The first option is to always select
actions according to some exploratory principle, such picking them from a uniform distribution. The
second is to always select actions greedily, i.e. by picking the action with the highest expected return.

We assume that each option will last for time T . One further necessary component for this
framework is the notion of mixing time

4.2 Definition (Exploration mixing time) We define the exploration mixing time for a particular

MDP M and a policy π Tε(M, π) as the expected number of time steps after which the state distri-

bution is close to the stationary state distribution of π after we have taken an exploratory action i at

time step t, i.e. the expected number of steps T such that the following condition holds:

1

‖S‖

∑

s

‖P (st+T = s|st, π) − P (st+T = s|at = i, st, π)‖ < ε

It is of course necessary for the MDP to be ergodic for this to be finite. If we only consider switching
between options at time periods greater than Tε(M, π), then the option framework’s roughly corre-
sponds to the bandit framework, and Tε in the former to T in the latter. This means that whenever we
take an exploratory action i (one that does not correspond to the action that would have been selected
by the greedy policy π), the distribution of states would remain to be significantly different from that
under π for Tε(M, π) time steps. Thus we could consider the exploration to be taking place during
all of Tε, after which we would be free to continue exploration or not. Although there is no direct
correspondence between the two cases, this limited equivalence could be sufficient for motivating the
use of similar techniques for determining the optimal exploration exploitation threshold in full MDPs.

5 Optimistic Evaluation

In order to utilise Lemma 3.1 in a practical setting we must define T in some sense. The simplest
solution is to set T = 1, which results in an optimistic estimate for exploratory actions as will be
shown below. By rearranging (2) we have

U(i, j, T, δ, b) =

N
∑

k=0

g(k)q̄j +

N
∑

k=0

g(k)δpi + (1 − pi)

(

T−1
∑

k=0

g(k)(b − q̄j))

)

(11)

from which it is evident, since qj ≥ b and g(k) ≥ 0, that U(i, j, T1, δ, b) ≥ U(i, j, T2, δ, b) when T1 < T2,
thus U(i, j, 1, δ, b) ≥ U(i, j, T, δ, b) for any T ≥ 1. This can now be used to obtain Alg. 1 for optimistic
exploration.

Nevertheless, testing for the existence of a suitable δ can be costly since, barring an analytic
procedure it requires an exhaustive search. On the other hand, it may be possible to achieve a similar
result through sampling for different values of δ. Herein, the following sampling method is considered:
Firstly, we determine the action j with the greatest q̄j . Then, for each action i we take a sample x
from the distribution p(qi) and set δ = x − q̄j . This is quite an arbitrary sampling method, but we
may expect to obtain a δ > 0 with high probability if i has a high probability to be significantly better
than j. This method is summarised in Alg. 2.

An alternative exploration method is given by Alg. 3, which samples each action with probability
equal to the probability that its expected reward is the highest. It can perhaps be viewed as a crude
approximation to Alg. 2 when γ → 1 and has the advantage that it is extremely simple.
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Algorithm 1 Optimistic exploration

if ∃ δ : U(i, j, 1, δ, b) >
∑N

k=0 g(k)q̄j then
a ⇐ i

else
a ⇐ j

end if

Algorithm 2 Optimistic stochastic exploration

j ⇐ arg maxi q̄i.

uj =
∑N

k=0 g(k)q̄j .
for all i 6= j do

δ ⇐ x − q̄j , x ∼ p(qi)
ui ⇐ U(i, j, 1, δ, b)

end for
a ⇐ arg maxi ui

6 Experiments

A small experiment was performed on a n-armed bandit problem with rewards rt ∈ {0, 1} drawn from
a Bernoulli distribution. Alg. 2 was used with g(k) = γk and b = 0, which is in agreement with the
distribution. This was compared with Alg. 3, which can be perhaps viewed as a crude approximation
to Alg. 2 when γ → 1. The performance of ε-greedy action selection with ε = 0.01 was evaluated for
reference.

The ε-greedy algorithm used point estimates for q̄i, which were updated with gradient descent
with a step size of α = 0.01, such that for each action-reward observation tuple (at = i, rt+1),
q̄i ⇐ α(rt+1 − q̄i), with initial estimates being uniformly distributed in [0, 1]. In the other two cases,
the complete distribution of qi was maintained via a population {pk

i }
K
k=0 of point estimates, with

K = 16. Each point estimate in the population was maintained in the same manner as the single
point estimates in the ε-greedy approach. Sampling actions was performed by sampling uniformly
from the members of the population for each action.

The results for two different bandit tasks, one with 16 and the other with 128 arms, averaged over
1,000 runs, are summarised in Fig. 6. For each run, the expected reward of each bandit was sampled
uniformly from [0, 1]. As can be seen from the figure, the ε-greedy approach performs relatively well
when used with reasonable first initial estimates. The sampling greedy approach, while having the
same complexity, appears to perform better asymptotically. More importantly, Alg. 2 exhibits better
long-term versus short-term performance when the effective reward horizon is increased as γ → 1.

7 Discussion and Conclusion

This paper has presented a formulation of an optimal exploration-exploitation threshold for in a n-
armed bandit task, which links the need for exploration to the effective reward horizon and model
uncertainty. Additionally, a practical algorithm, based on an optimistic bound on the value of explo-
ration, is introduced. Experimental results show that this algorithm exhibits the expected long-term
versus short-term performance trade-off when the effective reward horizon is increased.

While the above formulation fits well within a reinforcement learning framework, other useful

Algorithm 3 Sampling-greedy

a ⇐ i with probability P (a = i) = P (qi > qj) ∀j 6= i
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Figure 1: Average reward in an multi-armed bandit task averaged over 1,000 experiments, smoothed
with a moving average over 10 time-steps. Results are shown for ε-greedy (e-greedy), sampling-greedy
(sampling) and Alg. 2 (opt) with γ ∈ {0.5, 0.9, 0.99}.

formulations may exist. In budgeted learning, any exploratory action results in a fixed cost. Such a
formulation is used in [10] for the bandit problem (see also [9] for the active learning case). Then the
problem essentially becomes that of how to best sample from actions in the next T moves such that the
expected return of the optimal policy after T moves is maximised and corresponds to g(k) = 0 ∀k < T
in the framework presented in this paper. A further alternative, described in [8], is to stop exploring
those parts of the state-action space which lead to sub-optimal returns with high probability.

When a distribution or a confidence interval is available for expected returns, it is common to use
the optimistic side of the confidence interval for action selection [1]. This practice can be partially
justified through the framework presented herein, or alternatively, through considering maximising
the expected information to be gained by exploration, as proposed by [3]. In a similar manner,
other methods which represent uncertainty as a simple additive factor to the normal expected reward
estimates, acquire further meaning when viewed through a statistical decision making framework. For
example the Dyna-Q+ algorithm (see [12] chap. 9) includes a slowly increasing exploration bonus for
state-action pairs which have not been recently explored. From a statistical viewpoint, the exploration
bonus corresponds to a model of a non-stationary world, where uncertainty about past experiences
increases with elapsed time.

In general, the conditions defined in Sec. 3 require maintaining some type of belief distribution
over the expected return of actions. A natural choice for this would be to use a fully analytical
Bayesian framework. Unfortunately this makes it more difficult to calculate P (qi > d), so it might
be better to consider simple numerical approaches from the outset. We have previously considered
some simple such estimates in [7], where we relied on estimating the gradient of the expected return
with respect to the parameters. The estimated gradient was then used as a measure of uncertainty.
Further research on the use of population-based methods for explicitly representing a distribution of
estimates is currently under way.
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