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Abstract. A systematic analysis of user-dependent performance variability in the context of
automatic speaker verification was first studied by Doddington et al(1998). Different categories of
users were distinguished and were called by animal names such as sheep, goats, lambs and wolves.
Although such distinctions are important, it does not directly discriminate “well-behaved” users
from “badly behaved” users. In our context, the badly behaved users are those who will bring
the performance down when added to the system. We then extend such a study to formulate
a user-specific score normalization (called F-norm’s variant) and show that the user-dependent
variability can be reduced to obtain an enhanced performance. By introducing some constraints,
the proposed framework can also provide a stable user-dependent performance in terms of DET
despite the fact that few (genuine) samples are available. In the context of multimodal biometrics,
we show that it is possible to decide whether or not fusing the output of several systems is better
than selecting any one of them, on a per user basis. This strategy is called an “OR-switcher”.
Based on 15 multimodal fusion experiments, the performance of OR-switcher is significantly better
than the state-of-the-art score-level fusion algorithms.
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1 Introduction

User-specific biometric schemes was, perhaps, first exploited by Furui [4] who introduced user-dependent
score normalization schemes to enhance the matching performance of automatic speaker verification
systems. Later, Doddington et al [3] developed a statistical framework to identify different categories
of individuals based on the matching performance of individual users. While there are several factors
that impact matching performance (e.g., environmental mismatch between training and test sessions),
their work focused on determining user-induced variability. In particular, they identified four cate-
gories of users: (a) sheep – users who can be easily recognized, (b) goats – users who are particularly
difficult to be recognized, (c) lambs – users who are easy to be imitated, and (d) wolves – users who
are particularly successful at imitating others. Thus, goats contribute significantly to the False Reject
Rate (FRR) of a system while wolves and lambs increase its False Accept Rate (FAR). The intent
of this paper is to develop a criterion to rank users based on their “recognizability” after mitigating
the effect due to the user-induced variability. Developing such a criterion is challenging because the
criterion has to (i) be based on very few user-specific genuine samples, (ii) generalize well on unseen
data (stable), and (iii) be unbiased. To the best of our knowledge, this is the first attempt in the
literature to determine the “recognizability” index of a user in a quantitative fashion. This work is
different from Doddingtonet al’s [3] at least in two aspects: (i) their analysis focused on designing
statistical procedures to identify wolves, goats, lambs and sheep based on match score data, whereas
our focus is on designing a user-specific performance criterion; and (ii) the criterion developed here
reduces the user-induced variability prior to sorting the users based on their recognizability.

Section 2 describes the database that was used to conduct experiments reported in this paper;
Section 3 outlines the user-specific LLR framework; Section 4 proposes and investigates several criteria
for ranking users and evaluates their usefulness in terms of stability and unbiasedness; and Section 5
concludes the paper.

2 Database and Data Preparation

We used the XM2VTS multimodal fusion benchmark database1 documented in [8] to conduct the
experiments reported in this paper. The database has match scores corresponding to seven face
systems and six voice systems. The database was divided into training (development) and test sets
according to the LP1 and LP2 protocols discussed in [8]. The label assigned to each system (Table 1)
has the format Pn:m where n denotes the protocol number (1 or 2) and m denotes the order in
which the respective system is invoked for an individual. For MLP-based classifiers, their associated
class-conditional scores have a skewed distribution due to the use of the logistic activation function
in the output layer. Since the Log-Likelihood Ratio (LLR) is used in this paper, these scores are
converted to a LLR-compatible domain by merely inverting the logistic function. This ensures that
all the sub-systems (i.e, modalities and algorithms) can be studied in a common framework.

3 Towards a Robust User-specific Score Normalization Pro-

cedure

Let y ∈ Y be a realization of a match score after processing and matching a biometric sample claiming
identity j ∈ {1, . . . , J}. This is accomplished by comparing the procured biometric sample against
the template feature set corresponding to identity j in the database. The user-specific transformation
into the Log-Likelihood Ratio (LLR) domain, in its most general form, can be written as:

yLLR
j = log

p(y|C, j)

p(y|I, j)
(1)

1Available at http://www.idiap.ch/∼norman/fusion.
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Table 1: The characteristics of 11 (+2 modified) systems taken from the XM2VTS benchmark fusion
database.

Labels Modalities Features Classifiers
P1:1 face DCTs GMM
P1:2 face DCTb GMM
P1:3 speech LFCC GMM
P1:4 speech PAC GMM
P1:5 speech SSC GMM
P1:6 face DCTs MLP
P1:7 face DCTs MLPi
P1:8 face DCTb MLP
P1:9 face DCTb MLPi
P2:1 face DCTb GMM
P2:2 speech LFCC GMM
P2:3 speech PAC GMM
P2:4 speech SSC GMM

DCTx is Discrete Cosine Transform coefficients and x is the size of the image block, i.e., either small
(s) or big (b). LFCC is Linear Frequency Cepstral Coefficient. PAC is Phase-AutoCorrelation. SSC
is Spectral Subband Centroids. Details of the systems can be found in [8]. MLPi denotes the output
of MLP converted to LLR using inverse hyperbolic tangent function. P1:6 and P1:7 (resp. P1:8 and
P1:9) are the same systems except that the scores of the latter are inversed.

where p(y|k, j) is the likelihood of y being in class k = {C, I}, i.e., either client (C) or impostor (I),
given the identity claim j. Note that class C is also referred to as the genuine class. The associated
decision function is:

decision(yLLR
j ) =

{
Client if yLLR

j > ∆j

Impostor otherwise,
(2)

where ∆j is a user-specific threshold. In practice, one has extremely few scores to estimate p(y|k, j),
especially for the client class. Typically, the size of {y|C, j}, for any given j, is in the order of tens2

whereas the size of {y|I, j} is in the order of hundreds when an additional (and often external) database
of users is used. For the same reason, the decision function in Eqn. (2) is user-independent, i.e., the
score yLLR or y (without the index j) is used along with a common threshold ∆ no matter what the
claimed identity is.

Due to the limited availability of user-specific data, it is sometimes assumed that p(y|k, j) (i.e.,
the user-specific distribution) is Gaussian, i.e., p(y|k, j) = N

(
y|µk

j , (σk
j )2

)
, where the mean is µk

j ≡
Ey∈Y|k,j [y] and its corresponding variance is (σk

j )2 ≡ Ey∈Y|k,j [(y − µk
j )2]. Note that such a solution

is not practical for two reasons: i) the conditional scores may not be normally distributed and ii) one
always lacks user-specific training data and hence the corresponding parameters µk

j , σk
j for k ∈ {C, I}

and for all j cannot be estimated reliably. If one further imposes the constraint that the user-specific
client information is non-informative, Eqn. (1) can be written as (see [6] for the derivation):

yLLR
j =

(y − µI
j )

2

2(σI
j )2

,

2In the database that we work on, only two or three scores are available for training the user-specific score normal-
ization procedure.
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which is proportional to the square of the Z-norm [4] having the form:

yZ
j =

y − µI
j

σI
j

. (3)

Our goal here is to estimate Eqn. (1) after relaxing the Gaussian assumption. To the best of our
knowledge, there are two methods to do so. In the first method, one can impose the constraint σI

j =
a constant because it is non-informative. In this way, we obtain:

yZ′

j = y − µI
j . (4)

We call this expression the Z-shift. Note that the constant can be discarded as the threshold in the
decision function, i.e., Eqn. (2) can be adjusted accordingly.

The second method, known as F-norm [9], has two objectives: i) it avoids the need to estimate the
second order conditional estimates σk

j ,∀k,j , and ii) it takes the user-specific client information into
account. A useful result from [7] is to make use of the F-ratio, which is defined as:

F-ratioj =
µC

j − µI
j

σC
j + σI

j

. (5)

Note that Eqn. (5) is user-specific whereas the same equation in [7] is user-independent. It is related
to the Equal Error Rate (EER) as:

EERj =
1

2
− 1

2
erf

(
F-ratioj√

2

)

, (6)

where

erf(z) =
2√
π

∫ z

0

exp
[
−t2

]
dt. (7)

In order to make F-ratio a useful user-specific score normalization procedure, we impose the following
constraint:

µC
j − µI

j

σC
j + σI

j

=
1 − 0

σ′C
j + σ′I

j

, (8)

where the numerator of the RHS term is the desired difference in mean after the transformation and
the denominator is the sum of standard deviations as a result of the transformation. Solving this
constraint yields:

σ′k
j = ασk

j , (9)

where α = (µC
j −µI

j )
−1. Using the definition of variance and taking the square of Eqn. (9), we obtain:

(σ′k
j )2 = E

[(
α(y − µk

j )
)2

]

. (10)

Note that the factor α is not dependent on y. This implies that one needs to multiply the score by
the factor (µC

j − µI
j )

−1 so as to fulfill the constraint in Eqn. (8). When this transformation is carried
out on the primitive form of Eqn. (4), we obtain the desired transformation as:

yF
j =

yZ′

j

µC
j − µI

j

=
y − µI

j

µC
j − µI

j

. (11)

We verify that the following constraints are fulfilled (by design):

µ
F,C
j ≡ E[yF |C, j] =

E[y|C, j] − µI
j

µC
j − µI

j

= 1, (12)
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and

µ
F,I
j ≡ E[yF |I, j] =

E[y|I, j] − µI
j

µC
j − µI

j

= 0. (13)

In practice, however, µC
j cannot be estimated reliably. To account for such unreliability, a possible

solution is to weigh user-specific µC
j with user-independent µC via a free parameter γ ∈ [0, 1]. Such a

solution is classical and can be found in [5]. The final form is:

yF
j =

y − µI
j

γµC
j + (1 − γ)µC − µI

j

. (14)

A similar form of normalization was proposed in [9] and has the following form:

yF ′

j =
y − µI

j

γ (µC
j − µI

j )
︸ ︷︷ ︸

+(1 − γ) (µC − µI)
︸ ︷︷ ︸

. (15)

Note that the latter weighs the difference of means between user-specific and user-independent pa-
rameters (the underbraced terms in Eqn. (15)) whereas the former (the one proposed here) weighs
between the genuine user-specific and user-independent means. Since the latter was previously called
F-norm [9], the former is considered a variant of F-norm. The F-norm’s variant is consistently used
in this paper. Note that by setting γ = 1, both F-norm and its variant converge to the same solution.
Their difference is thus rather subtle3.

As before, the combined result using the independence assumption is
∑

i ym
i,j for m ∈ {Z,Z ′, F},

using Eqns. (3, 4 and 14), respectively. Among these three methods, F-norm’s variant can be regarded
as an improved procedure over Z-norm, because the former does not take the second order moment
into account, thus requiring significantly fewer data points for reliable estimation. Furthermore, it
is client-impostor centric, i.e., it relies on both genuine and impostor parameters, while Z-norm does
not take the parameter of the genuine distribution into account. The proposed F-norm’s variant is
also an improved version of Z-shift as appeared in Eqn. (4) since the former incorporates Z-shift.
The superiority of F-norm (not its variant) over Z-norm was shown in [9] empirically using the same
database as the one used in this paper. We will use F-norm’s variant for the rest of this paper.

4 In Search of a Stable User-Specific Criterion

In the previous section, it was mentioned that in order to make a user-specific LLR transformation
practical, assuming a parametric distribution such as Gaussian is important so that the underlying
parameters can be estimated reliably based on few data samples (scores). In this section, we will
analyze the scores of the 13 systems mentioned in Section 2. First, the scores are divided into two
subsets: a development (training) set and an evaluation set. In our case, this task has been pre-
defined by the XM2VTS fusion protocols documented in [8]. For each set of scores and for each
user, we computed the class-conditional (genuine and impostor) first and second-order moments. The
results are presented by plotting µk

j |dev versus µk
j |eva shown in Figure 1 and by plotting σk

j |dev

versus σk
j |eva shown in Figure 2 for all k. Our goal here is to find out if the conditional µk

j or σk
j is

reliable enough to generalize to unseen data. Note that in the XM2VTS database, the impostors in
the development and in the evaluation sets are from two different sets of populations. Hence, we are
actually measuring if the systems behave in a predictive manner for different sets of impostors. One
way to measure the degree of generalization or “agreement” is by computing correlation ρk

t between

3Our intent here is not to claim that one is better than the other but to propose a unifying framework. Both
procedures were observed to perform equally well on the XM2VTS fusion benchmark database. The variant of the
F-norm will be used in Section 4 when developing the user-specific performance criterion.
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Figure 1: User-specific conditional score mean of development set versus that of evaluation set, i.e.,
µk

j |dev versus µk
j |eva, for k = {C, I}, of 13 systems carried out on the XM2VTS. There are 200 data

points for each statistic because there are 200 users. Blue circles are genuine means whereas red plus
signs are impostor mean.

the parameter t ∈ {µ, σ} estimated on a development set and the one estimated on an evaluation set,
for each class k = {C, I}. We summarize ρk

t of the 13 systems in Figure 3 as a boxplot. Each box
indicates the bound of upper and lower quantiles. The two horizontal lines at the top and the bottom
of a box covers the 95% confidence bound. Any data points (correlation in this case) beyond this
bound is denoted with a plus sign and is considered an outlier. Each bar contains 13 data samples.
The higher the correlation, the more stable the parameter is. As can be observed and as expected, the
user-specific impostor parameters are likely to be more stable than that of genuine, independent of the
underlying systems. Note that there are only 2 or 3 samples (depending on whether it is the LP1 or
LP2 protocol) to estimate the user-specific genuine Gaussian parameters. Despite this fact, µC

j is still

informative. On the other hand, σC
j is not at all informative, judging from its relatively low correlation

(about 0.2). Note that the outliers (with extremely low correlation values; indicated by plus signs)
are due to the MLP systems prior to applying the inversion function of hyperbolic tangent. This is
somewhat expected because the user-specific class-conditional scores are not normally distributed but
are known to have a skewed distribution due to the nature of the non-linear activation function. As a
result, their associated user-specific parameters generalize poorly compared to the rest of the systems.
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Figure 2: User-specific conditional score standard deviation of development set versus that of evalua-
tion set, i.e., σk

j |dev versus σk
j |eva, for k = {C, I}, of 13 systems carried out on the XM2VTS. There

are 200 data points for each statistic because there are 200 users. Blue circles are genuine standard
deviations whereas red plus signs are impostor standard deviations.

This shows that the inversion process is effective in mitigating this undesired effect.
A good user-specific criterion should be able to generalize over unseen novel data. Furthermore,

one should be able to estimate it based on as few samples as possible. Finally, it has to be based on
the four (or less) parameters analyzed earlier, i.e., µk

j , σk
j |k = {C, I} for each user j. An intuitive way

to do so is to quantify the degree of dispersion. One such quantity is F-ratio, as defined in Eqn. (5).
Other such measures are d-prime statistics used in [2] and two-class Fisher-ratio [1, Sec. 3.6]. While
the two latter measures are as good as the former, we prefer F-ratio because it is functionally related
to EER, as shown in Eqn. (6).

We plot the user-specific F-ratio of the 13 systems given the development set versus its evaluation
set counterpart in Figure 4. As can be seen, using the original form, this quantity is very noisy
and does not generalize well. Again, note that the goodness of prediction can be measured by a
correlation index. Hence, user-specific F-ratio (similarly d-prime and two-class Fisher ratio) is not a
good criterion because it is not stable. An intuitive way to “stabilize” such a measure is by weighting
the user-specific parameters (µ and σ) in the criterion with use-independent ones as follow:

µk
adjusted,j = µk

j γk
1

+ µk(1 − γk
1
) (16)
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Figure 3: Boxplot of the conditional correlation ρk,∀k of the four parameters, µI
j , µC

j , σI
j and σC

j of
the 13 face and speech systems XM2VTS. Each correlation value is measured on 200 users. The two
outliers in σI

j are due to (MLP,F) of P1:6 and P1:8, respectively. Similarly the outlier in µI
j is due to

(MLP,F) of P1:6.

σk
adjusted,j = σk

j γk
2

+ σk(1 − γk
2
) (17)

where γk
i ∈ [0, 1] for i = 1, 2 (first and second moments), are parameters to be estimated. These four

parameters can be plugged into the F-ratio equation in Eqn. (5). By tuning γk
i , one compensates

between the user-specific and user-independent information sources.
Note that from previous experiments (see Figures 2 and 3), σC

j is likely to contain no information.

A more conservative construction of F-ratio is to set γC
2

= 0, γI
1

= 0, µI
2

= 1 and leaving only
γC
1

≡ γ to be tuned. Note that this can be the same γ parameter used in Eqn. (14). This results in a
criterion of the form:

γµC
j + (1 − γ)µC − µI

j

σC + σI
j

(18)

Unfortunately, preliminary experiments show that this criterion is not satisfactory as it is heavily
biased, although setting γ close to 1 does help to increase the correlation and so does its generalization
ability (a figure similar to Figure 4 is not shown here but its statistics are shown in Figure 5).

We then examined the possibility of evaluating the criterion in the LLR normalized domain using
F-norm’s variant. Evaluating the criterion in the F-norm domain consists of finding the equivalence
of the F-ratio in the F-norm domain. From the constraint in Eqn. (8) and using the weighing scheme
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P1:1 GMM,F P1:2 GMM,F P1:3 GMM,S P1:4 GMM,S P1:5 GMM,S
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P2:2 GMM,S P2:3 GMM,S P2:4 GMM,S

Figure 4: User-specific F-ratio as appeared in Eqn. (5) of development set versus that of evaluation
set of the 13 face and speech based XM2VTS systems .

in Eqn. (17), the F-norm of score normalized by F-norm’s variant is:

1 − 0

σ
F,C
adjusted,j + σ

F,I
adjusted,j

, (19)

where 1 − 0 is the difference between the two conditional means after applying F-norm. By setting
γC
2

= 0 and γI
2

= 1, we obtain:
1

σF,C + σ
F,I
j

(20)

If we assume that σF,C is not informative (since σ
F,C
j and σC

j are not), we can drop the term to obtain
only:

1

σ
F,I
j

. (21)

Due to Eqn. (9), this term can equivalently be computed using:

1

(γµC
j + (1 − γµC) − µI

j )σ
I
j

. (22)
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Note that estimating σF,C in Eqn. (20) involves actually transforming the scores into the F-norm
domain. Using Eqn. (22) effectively avoids the need to do so and, hence, is computationally more
effective.

It is obvious that γ is crucial to the success of this procedure. Preliminary experiments in [9]
shows that γ = 0.5, i.e., assigning a non-informative prior to both user-specific and user-independent
information, when the genuine scores are scarce, is close to optimal. Fine-tuning γ by cross-validation
in the case when two user-specific genuine scores are available did not help. γ ≥ 0.5 on the other hand
is beneficial when abundant genuine scores are available.

We objectively compare the criteria discussed thus far using correlation and bias. Bias is defined as
the arithmetic difference between a given criterion estimated on a development set and its counterpart
estimated on an evaluation (test) set, or:

bias ≡ Ej [F-ratioj |dev − F-ratioj |eva]

Figure 5 summarizes the comparison using two boxplots: one for correlation and the other for bias.
As can be observed, the constrained F-norm ratio has the best generalization ability while having an
acceptable level of bias.

Before concluding this section, we evaluate the goodness of the constrained F-norm ratio by ex-
cluding the worst contributing users. The results are shown in Figure 6. Note that each DET curve
is a composite DET due to all the 13 systems4.

5 Summary and Future Work

In this work we have demonstrated that it is possible to derive a criterion to rank users according
to the “strength” of their performance. Such a criterion has to (i) be based on very few user-specific
genuine samples, (ii) generalize well on unseen data (stable), and (iii) be unbiased. Guided by some
preliminary experiments, we first surmised that such a criterion is best evaluated in the user-specific
LLR domain. In particular, three different user-specific LLR procedures were discussed, viz., Z-norm,
Z-shift and F-norm. The constrained F-norm ratio was observed to exhibit the desired properties. Such
a criterion is only meaningful when scores are transformed into the F-norm domain. We demonstrated
the usefulness of this criterion by filtering away badly behaved users in terms of their contribution to
the overall system error.

Presently, we are working on utilizing this information in a fusion framework. A suitably developed
“OR”-switcher will be used to invoke only a subset of the modalities in a multimodal biometric
system. The constrained F-norm ratio will be used as the criterion function to determine which of
the modalities will participate in the final decision process.
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