A Novel Approach to Combining Client-Dependent and Confidence Information in Multimodal Biometric

The issues of fusion with client-dependent and confidence information have been well studied separately in biometric authentication. In this study, we propose to take advantage of both sources of information in a discriminative framework. Initially, each source of information is processed on a per expert basis (plus on a per client basis for the first information and on a per example basis for the second information). Then, both sources of information are combined using a second-level classifier, across different experts. Although the formulation of such two-step solution is not new, the novelty lies in the way the sources of prior knowledge are incorporated prior to fusion using the second-level classifier. Because these two sources of information are of very different nature, one often needs to devise special algorithms to combine both information sources. Our framework that we call ``Prior Knowledge Incorporation'' has the advantage of using the standard machine learning algorithms. Based on $10 \times 32=320$ intramodal and multimodal fusion experiments carried out on the publicly available XM2VTS score-level fusion benchmark database, it is found that the generalisation performance of combining both information sources improves over using either or none of them, thus achieving a new state-of-the-art performance on this database.

Published in:
Fifth Int'l. Conf. Audio- and Video-Based Biometric Person Authentication AVBPA
Presented at:
Fifth Int'l. Conf. Audio- and Video-Based Biometric Person Authentication AVBPA

Note: The status of this file is: Anyone

 Record created 2006-03-10, last modified 2020-10-25

Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
(Not yet reviewed)