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A GENERATIVE MODEL FOR MUSIC TRANSCRIPTION

Ali Taylan Cemgil Bert Kappen
David Barber

Abstract. In this paper we present a graphical model for polyphonic music transcription. Our
model, formulated as a Dynamical Bayesian Network, embodies a transparent and computation-
ally tractable approach to this acoustic analysis problem. An advantage of our approach is that
it places emphasis on explicitly modelling the sound generation procedure. It provides a clear
framework in which both high level (cognitive) prior information on music structure can be cou-
pled with low level (acoustic physical) information in a principled manner to perform the analysis.
The model is a special case of the, generally intractable, switching Kalman filter model. Where
possible, we derive, exact polynomial time inference procedures, and otherwise efficient approxi-
mations. We argue that our generative model based approach is computationally feasible for many
music applications and is readily extensible to more general auditory scene analysis scenarios.



A Generative Model for Music Transcription
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Abstract—In this paper we present a graphical model for a broad spectrum of applications such as interactive music
polyphonic music transcription. Our model, formulated as a performance systems, music information retrieval (Music-IR)
Dynamical Bayesian Network, embodies a transparent and com- 544 content description of musical material in large audio

putationally tractable approach to this acoustic analysis problem. . . .
An advantage of our approach is that it places emphasis on databases, as well as in the analysis of performances. In its

explicitly modelling the sound generation procedure. It provides MOst unconstrained form, i.e., when operating on an arbitrary

a clear framework in which both high level (cognitive) prior polyphonic acoustical input possibly containing an unknown
information on music structure can be coupled with low level number of different instruments, automatic music transcription
(acoustic physical) information in a principled manner to perform  amaing a great challenge. Our aim in this paper is to consider
the analysis. The model is a special case of the, generally tati | f K t | t tical
intractable, switching Kalman filter model. Where possible, a computational framework 10 move us closer 10 a practica

we derive, exact polynomial time inference procedures, and Solution of this problem.
otherwise efficient approximations. We argue that our generative  Music transcription has attracted significant research effort
mod_el b_ased apprpach is_computat_ionallyfeasible for many music in the past — see [6] and [9] for a detailed review of early
applications a_md is readlly extensible to more general auditory and more recent work, respectively. In speech processing, the
scene anaIyS|s scenarios. . . . L
related task of tracking the pitch of a single speaker is a
fundamental problem and methods proposed in the literature
are well studied[10]. However, most current pitch detection
algorithms are based largely on heuristics (e.g., picking high
I. INTRODUCTION energy peaks of a spectrogram, correlogram, auditory filter
Q k, etc.) and their formulation usually lacks an explicit

acoustical signals generated by different mechanisms w Jecti\{e fungtion or signal _model. It is ofter_1 difficult to
individual symbolic events [1]. The study and computationgll eorgtlcally justify the merits anq ghortcomlngs Of. such
modelling of this human ability forms the focus of COmput(,ifgllgorlthms, and compare them objec_tlvely to alternatives or
tional auditory scene analysis (CASA) and machine Iistenirﬁad(te_nd them FO m.org complex scenarios. .

[2]. Research in this area seeks solutions to a broad rang&tch tracking is inherently related to the detection and
of problems such as the cocktail party problem, (for examp‘f‘ét'ma“_on of 'SIHUSF)IdS.. The estimation and tracklng. of single
automatically separating voices of two or more simultaneouslj Multiple sinusoids is a fundamental problem in many
speaking persons, see e.g. [3], [4]), identification of en\}p_ra_nches of applied sciences, so it is Iegs surprising that the
ronmental sound objects [5] and musical scene analysis [BJPIC has also been deeply investigated in statistics, (e.g. see
Traditionally, the focus of most research activities has be&ht])- However, ideas from statistics seem to be not widely
in speech applications. Recently, analysis of musical scerf@plied in the context of musical sound analysis, with only a
is drawing increasingly more attention, primarily because & €xceptions [12], [13] who present frequentist techniques
the need for content based retrieval in very large digitfer very detailed analysis of musical sounds with particular

audio databases [7] and increasing interest in interactive muf§€US on decomposition of periodic and transient components.
performance systems [8]. [14] has presented real-time monophonic pitch tracking ap-

plication based on a Laplace approximation to the posterior
) o parameter distribution of an AR(2) model [15], [11, page
A. Music Transcription 19]. Their method outperforms several standard pitch tracking
One of the hard problems in musical scene analysis is algorithms for speech, suggesting potential practical benefits of
tomatic music transcription, that is, the extraction of a humahn approximate Bayesian treatment. For monophonic speech,
readable and interpretable description from a recording ofaaKalman filter based pitch tracker is proposed by [16] that
music performance. Ultimately, we wish to infer automaticalljracks parameters of a harmonic plus noise model (HNM).
a musical notation (such as the traditional western musidey propose the use of Laplace approximation around the
notation) listing the pitch levels of notes and correspondiryedicted mean instead of the extended Kalman filter (EKF).
time-stamps for a given performance. Such a representatfo®r both methods, however, it is not obvious how to extend
of the surface structure of music would be very useful ithem to polyphony.
" _ od revised Kashino [17] is, to our knowledge, the first author to apply
n I I vea; revi . H P H
A.aT.uégn?gtiI?sc\i/itﬁ UnslersseityofAmsterdam,Informaticalnstituut, Kruis—graphIcal models epr|C|tIy to the prObIem of polyphonlc

laan 403, 1098 SJ Amsterdam, the Netherlands, B. Kappen is with Radbm&'SiC transcripti(_)n. Sterian [18] de_scribed a syst_em that
University Nijmegen, SNN, Geert Grooteplein 21, 6525 EZ Nijmegen, theiewed transcription as a model driven segmentation of a

Netherlands and D. Barber is with IDIAP, CH-1920 Martigny, Switzerland.time_frequency image. Walmsley [19] treats transcription and
0000-0000/00$00 SEILLRSEEE ation in a full Bayesian framework. He employs a

Index Terms— music transcription, polyphonic pitch tracking,
Bayesian signal processing, switching Kalman filters

When humans listen to sound, they are able to associ



frame based generalized linear model (a sinusoidal model) dddntification suffers from combinatorial explosion. For this
proposes inference by reversible-jump Markov Chain Montase, we propose a greedy search algorithm based on iterative
Carlo (MCMC) algorithm. The main advantage of the model isnprovement. Consequently, we combine both algorithms for
that it makes no strong assumptions about the signal generagafyphonic music transcription. Finally, we demonstrate how
mechanism, and views the number of sources as well as thgper-)parameters of the signal process can be estimated from
number of harmonics as unknown model parameters. Davy aedl data.

Godsill [20] address some of the shortcomings of his model

and allow changing amplitudes and frequency deviations. Il. POLYPHONIC MODEL

The reported results are encouraging, although the method ig, a statistical sense, music transcription, (as many other

computationally very expensive. perceptual tasks such as visual object recognition or robot lo-
calization) can be viewed as a latent state estimation problem:

B. Approach given the audio signal, we wish to identify the sequence of
. . . %vents (e.g. notes) that gave rise to the observed audio signal.
Mu3|caIIS|gna_Is have a very m?h temporal ;tructure, bot This problem can be conveniently described in a Bayesian

on a physical (signal) and a cognitive (symbolic) level. Fro amework: given the audio samples, we wish to infer a piano-

a statisti(_:al modelling point of view, SL.JCh a hierarc_hip Il that represents the onset times (e.g. times at which a
structure induces very long range correlations that are dlf‘flCL[i)Ering, is ‘plucked”), note durations and the pitch classes of

to C?pt“re v_wth_conventlonal signal m_od_els. Moreover, in Ma dividual notes. We assume that we have one microphone, so
music applications, such as transcription or score followin

: . . ) at at each time we have a one dimensional observed quan-
we are usually interested in a §ymbol|5: rep.ref,entatmn (Syg y¢. Multiple microphones (such as required for processing
as a score) and not so much in the . details c.)f the aCtl_J ereo recordings) would be straightforward to include in our
Waveform.. To abstract away from the signal deta|ls,. we defi odel. We denote the temporal sequence of audio samples
a set of intermediate varlalzlgs (a seiquence of |r_1dlcator A\, Yer - yr} by the shorthand notatiomr.r. A
;omewhz_it analogous to a ‘[‘)_lano-rollﬁ representation. Th nstant sampling frequendy, is assumed.
intermediate layer forms .the interface” between a symbollc. Our approach considers the quantities we wish to infer as
process and the actual signal process. Roughly, the symb%h

d ibes h . X 4 and ; ollection of ‘hidden’ variables, whilst acoustic recording
Process describes how a piece 1S composed and perior uesy;.r are ‘visible’ (observed). For each observed sample
We view this process as a prior distribution on the piano-

. ) . . 1;, we wish to associate a higher, unobserved quantity that
roll. Conditioned on the piano-roll, the signal process descrlb%%els the sample, appropriately. Let us denote the unob-
how the actual waveform is synthesized. ! ’

di Most _authors“,\,/lew autqmateddmu3|c|Itranscrl_ztlorl asan a‘I:*h'dden variables will contain, in addition to a piano-roll, other
l0 to piano-ro conversg)ln anThu_sua_l y consl E_"r”p'frmo_}mlvariables required to complete the sound generation procedure.
to score” a separate problem. This view is partially justifieqyqy i elycidate their meaning later. As a general inference

since source separation and transcription from a pOIthOEJFobIem, the posterior distribution is given by Bayes' rule
source is already a challenging task. On the other hand,

automated generation of a human readable score includes p(Hurlyrr) o< p(yrr|Hir)p(Hir) (1)
nontrivial tasks such as tempo tracking, rhythm quantizati oo . . .
meter and key induction [21], [22], [23]. As also noted t;)?he likelihood termp(y..7|H1.7) in (1) requires us to specify

other authors (e.g. [17], [24], [25]), we believe that a modd generative process that gives rise to the observed audio
that integrates this higher level symbolic prior knowledge Césﬁamples. The prior term(H,.7) reflects our knowledge about

guide and potentially improve the inferences, both in tern§)|ano-rolls and other hidden variables. Our modelling task is
quality of a solution and computation time ' tRerefore to specify both how, knowing the hidden variable

. . states (essentially the piano-roll), the microphone samples will
There are many different natural generative models for ( y P ) P P

piano-rolls. In [26], we proposed a realistic hierarchical pri re. _generated, and also to state a prior on I|I_<ely piano-rolls.
L ' ) i : c1n|t|ally, we concentrate on the sound generation process of a
model. In this paper, we consider computationally S|mplesringle note
prior models and focus more on developing efficient inference ’
techniques of a piano-roll representation. The organization of ) )
the paper is as follows: We will first present a generativd- Modelling a single note
model, inspired by additive synthesis, that describes the signaMusical instruments tend to create oscillations with modes
generation procedure. In the sequel, we will formulate twihat are roughly related by integer ratios, albeit with strong
subproblems related to music transcription: melody identificdamping effects and transient attack characteristics [27]. It
tion and chord identification. We will show that both problems common to model such signals as the sum of a periodic
can be easily formulated as combinatorial optimization probemponent and a transient non-periodic component (See e.g.
lems in the framework of our model, merely by redefining th8], [29], [13]). The sinusoidal model [30] is often a good
prior on piano-rolls. Under our model assumptions, melodpproximation that provides a compact representation for the
identification can be solved exactly in polynomial time (irperiodic component. The transient component can be modelled
the number of samples). By deterministic pruning, we obtaas a correlated Gaussian noise process [16], [20]. Our signal

a practical approximation that works in linear time. Chordhodel is also in the same spirit, but we will define it in state

served quantities by{,. where eachH,; is a vector. Our
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W fundamental frequency, i.e. higher harmonics decay faster [33].

A(w, pt) is the transition matrix at time¢ and encodes the
physical properties of the sound generator as a first order

Fig. 1. A damped oscillator in state space form. Left: At each time steplarkov Process. The rotation angle can be made time

the state vectos rotates byw and its length becomes shorter. Right: Thedependent for modelling pitch drifts or vibrato. However, in

actual waveform is a one dimensional projection from the two dimensionqi- : :

state vector. The stochastic model assumes that there are two indepen Iz paper we will ,reSt”Ct ourselves to sound generators that

additive noise components that corrupt the state vectand the sample, Produce sounds with (almost) constant frequency. The state of

so the resulting waveforny,.r is a damped sinusoid with both phase andhe sound generator is representedshya 2H dimensional

amplitude noise. vector that is obtained by concatenation of all the oscillator

states in (2).

space form, because this provides a natural way to couple

the signal model with the piano-roll representation. Similag, From Piano-Roll to Microphone

formulations are used in the econometrics literature to model . . . - .

seasonal fluctuations, e.g. see [31], [32]. Here we omit th_eA piano-roll is a collection of indicator yanablegm V\‘/‘here“
transient component and focus on the periodic componeht, 1... M runs over sound generators (i.e. notes or *keys” of

It is conceptually straightforward to include the transie piano) _and =1...T'runs over time. Each souno! generator
component as this does not affect the complexity of otf@S & unique fundamental frequengyassociated with it. For
inference algorithms example, we can choossg such that we cover all notes of the

First we consider how to generate a damped sinugpid tempered chromatic scale in a certain frequency range. This

through time, with angular frequency. Consider a Gaussian choice is arbﬁtrary and for a finer pitch analysis a denser grid
process where typical realizationg.; are damped “noisy” with smaller intervals between adjacent notes can be used.

sinusoidal signals with angular frequency Each |n_d|catgr is bln_ary, W|_th values “sound” or “mute”. The
essential idea is that, if previously muted,_; = “mute” an

st ~ N(p:B(w)si—1,Q) (2) onset for the sound generatpioccurs ifr; , = “sound”. The

gy ~ N(Cs,R) (3) generator continues to sound (with a characteristic damping
s N0, S) ) decay) until it is again set to “mute”, when the generated signal
o )

) decays to zero amplitude (much) faster. The piano-roll, being
Bw) = ( CF’S(‘”) —sin(w) > (5) a collection of indicators.xs,1., can be viewed as a binary
sin(w)  cos(w) sequence, e.g. see Figure 2. Each row of the piana-fgli-

We use\ (1, ¥) to denote a multivariate Gaussian distributio§ontrols an underlying sound generator.
with mean p and covarianceX. Here B(w) is a Givens

rotation matrix that rotates two dimensional vectgrby w
degrees counterclockwisé€’ is a projection matrix defined as
C =1, 0]. The phase and amplitude characteristicg.oére

determined by the initial conditios, drawn from a prior with

covarianceS. The damping factof < p;, < 1 specifies the — —

rate at whichs, contracts ta). See Figure 1 for an example. § =

The transition noise variano@ is used to model deviations 3

from an entirely deterministic linear model. The observation T T

noise varianceR models background noise. bﬂ? M HNMWMW
In reality, musical instruments (with a definite pitch) have

several modes of oscillation that are roughly located at integer

multiples of the fundamental frequency. We can model Piano-roll. The vertical axis corresponds to the sound generator

. . L7 . Fig. 2.
such signals by a bank of oscillators giving a block dmgonﬁlljexj and the horizontal axis corresponds to time indeBlack and white

 —

T

T

T

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

transition matrix4; = A(w, p;) defined as pixels correspond to “sound” and “mute” respectively. The piano-roll can be
viewed as a binary sequence that controls an underlying signal process. Each
(1)B row of the piano-rollr; 1. controls a sound generator. Each generator is
p; ' B(w) 0 . 0 . 7 h : el
a Gaussian process (a Kalman filter model), where typical realizations are
0 (Q)B(Qw) : damped periodic waveforms of a constant fundamental frequency. As in a
P ’ (6) piano, the fundamental frequency is a function of the generator indéke
] 0 actual observed signgh . is a superposition of the outputs of all generators.
0 . 0 ng)B (Hw)

The piano-roll determines the both sound onset generation,
where H denotes the number dfarmonics assumed to be and the damping of the note. We consider first the damping
known. To reduce the number of free parameters we defiaffects.

each harmonic damping factgr”) in terms of a basic. 1) Piano-Roll : Damping: Thanks to our simple geomet-
A possible choice is to tak@th) = pl', motivated by the rically related damping factors for each harmonic, we can
fact that damping factors of harmonics in a vibrating stringharacterise the damping factor for each npte 1,..., M
scale approximately geometrically with respect to that of th®y two decay coefficient®soung @and pmue Such thatl >



! structure:

p(rle,lzT) = HHp(rm,th,tfl)

m t

C. Inference
Given the polyphonic model described in section Il, to infer
Mo the most likely piano-roll we need to compute
TT:M,LT = argmaxp(ri.m,1.7|Y1.7) (13)
T1:M,1:T

. . o where the posterior is given by
Fig. 3. Graphical Model. The rectangle box denotes “platé$ replications

of the nodes inside. Each plate= 1, ..., M represents the sound generator 1
(note) variables through time. p(rimr|yiT) p(TlT)

XP(SLM,LT\T1:M,1:T)p(7“1:M,1:T)

/dSLM,lzT p(yr1:7|S1:M,1:7)

Psound> pmute > 0. The piano-rollr; 1.7 controls the damping The normalization constanp(y;.r), obtained by summing

coefficientp; ; of notej at timet¢ by: the integral term over all configurations. 1.7 is called the
evidence?
pit = psoundrj,c = SOUNd + pmute[r; = mutg (7)  Unfortunately, calculating this most likely piano-roll config-

uration is generally intractable, and is related to the difficulty
Here, and elsewhere in the article, the notatjon= tex{ of inference in Switching Kalman Filters [35], [36]. We shall
has value equal to 1 when variabieis in state text, and is pneed to develop approximation schemes for this general case,
zero otherwise. We denote the transition matrixA%%Jte = to which we shall return in a later section.

A(wj, pmute); Similarly for Asounq As a prelude, we consider a slightly simpler, related model
2) Piano-Roll : Onsets: At each new onset, i.e. whenwhich aims to track the pitch (melody identification) in a
(rjt—1 = mute — (r;: = sound, the old states,_; iS monophonic instrument (playing only a single note at a time),
“forgotten” and a new state vector is drawn from a Gaussiauich as a flute. The insight gained here in the inference task
prior distribution A/(0, S). This models the energy injectedwill guide us to a practical approximate algorithm in the more

into a sound generator at an onset (this happens, for exampleneral case later.
when a guitar string is plucked). The amount of energy injected
is proportional to the determinant &¢f and the covariance 1. M ONOPHONICMODEL

structure ofS describes how this total energy is distributed Melody identification, or monophonic pitch tracking with

among the harmonics. The covariance maffishus captures onset and offset detection, can be formulated by a small

some of the t!mbre chqracterlstlcg of the sound. The transiti [bdification of our general framework. Even this simplified
and observation equations are given by

task is still of huge practical interest, e.g. in real time MIDI

isonsef, — (rj,_. — muteAr;, — sound ®) conversion for controlling digital synthesizers using acous-
mute soun tical instruments or pitch tracking from the singing voice.
Aje = [rje = mutgAT"®+ [, = soundA3*"9) e important problem in real time pitch tracking is the
sjt ~ [Hisonsef N (Ajsi-1,Q) time/frequency tradeoff: to estimate the frequency accurately,
+[isonse, JN (0, S) (10) an a!gorithm needs to cpllect statistips frqm a sufficigntly
i ~ N(Cs;iR) (11) long interval. However, this often conflicts with the real time

requirements.
In our formulation, each sound generator is a dynamical

In the above,C is a 1 x 2H projection matrix C k o
System with a sequence of transition models, sound and mute.

[1,0,1,0,...,1,0] with zero entries on the even component
Henceyﬂ has a mean being _the sum of the (_jamped harmonlqln the simulations we have fixed the transition paramgter=
oscillators. R models the variance of the noise in the outpuboung = p(r = soundr = mute) = 10~7

of each sound generator. Finally, the observed audio signal i§lt is instructive to interpret (13) from a Bayesian model selection perspec-

it tive [34]. In this interpretation, we view the set of all piano-rolls, indexed
the superposition of the outputs of all sound generators, by configurations of discrete indicator variables s 1.7, as the set of all
models among which we search for the best modeg], ... In this view,
Yy = Zyj’t (12) state vectorssi.as,1.7 are the model parameters that are integrated over.
; It is well known that the conditional predictive densip(y|r), obtained
through integration oves, automatically penalizes more complex models,
. . ... when evaluated ay = y;.7. In the context of piano-roll inference, this
The generqtlve model .(7)'(_12) can be deS.CHbGd qua“tatlvéglyjective will automatically prefer solutions with less notes. Intuitively, this
by the graphical model in Figure 3. Equations (11) and (12)simply because at each note onset, the state vegtisrreinitialized using
define s, ). Equations (7) (9) and (10) relate & broad GaussialvV' (0, S). Consequently, a configurationwith more onsets
d p(gldTL.l'M’l'T) q ( I) (h) ( )h . will give rise to a conditional predictive distributiop(y|r) with a larger
ands and definep(s1.a,1.7(|71:00,1:7). In this paper, the prior .qyariance. Hence, a piano-roll that claims the existence of additional onsets

modelp(r1.ar,1.7) is Markovian and has the following factorialwithout support from data will get a lower likelihood.

mutgr =
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The states evolves first according to the sounding regime o [71] [rr]
with transition matrixAs°“"and then according to the muted
regime with A™"*®, The important difference from a general
switching Kalman filter is that when the indicatorswitches Jo K
from mute to sound, the old state vector is “forgotten”. By
exploiting this fact, in the appendix I-A we derive, for a single
sound generator (i.e. a single note of a fixed pitch that gets on @ )
and off), an exact polynomial time algorithm for calculating

the evidencep(y,.7) and MAP configuration. ..

1) Monophonic pitch trackingHere we assume that at any
given timet only a single sound generator can be sounding,
i.e. r;; = sound = r;, = mute for ;' # j. Hence,
for practical purposes, the factorial structure of our origingig. 4. Simplified Model for monophonic transcription. Since there is only a
model is redundant; i.e. we can “share” a single state vecgigle sound generator active at any given time, we can represent a piano-roll
s among all sound generatérsThe resulting model will have ‘;‘éjﬁgge“n”;fafgfz%’ éhfsgjupn'%";T’]Gtté}vivr?;g{(gs'sﬂfzest'gg’x of the active
the same graphical structure as a single sound generator but ’
with an indicatorj; € 1... M which indexes the active sound
generator, and; € {soundmute} indicates sound or mute.

Inference for this case turns out to be also tractable (i.e. —WM fw\/\/’\w\/\/)\/\/’\(—

polynomial). We allow switching to a new only after an

=]
I
L
s
=1

Y1 [«€XE») yr

onset. The full generative model using the paiis; ), which mm  w W w  w m @ w o
includes both likelihood and prior terms is given as ‘ ‘ ‘ ‘ ‘ ‘ Te— ]
o — o

e~ prefre-1) T B e
isonset = (r; = soundA r;_; = mute

j¢ ~ [isonset|d(j; ji—1) + [isonset]u(j:) Fig. 5.  Monophonic pitch tracking. (Top) Synthetic data sampled from

mute sound model in Figure 4. Vertical bars denote the onset and offset times. (Bottom)
Ay = [ry = mutg AT+ [r, = sound A3 The filtering densityp(r¢, j¢|y1.¢). The vertical axis denotes the sound
sy~ [ﬂisonse;]N(Atst 1 Q) + [isonseg]N(O S) generator indey; and the gray level denotes the posterior probabjlity; =
— 1 )

sound j¢|y1:¢) where black corresponds to

Yg J\/'(Cst,R)

Here u(j) denotes a uniform distribution om,..., M and

8(j+; j+—1) denotes a degenerate (deterministic) distribution

concentrated ofj, i.e. unless there is an onset the active sourfd Signal model withH = 8 harmonics. The “training set”

generator stays the same. Our choice of a unifafr) simply consisted of a single note recorded from the same instrument;

reflects the fact that any new note is as likely as any oth&pis procedure will be discussed in more detail in section V.

Clearly, more informative priors, e.g. that reflect knowledgé/e have estimated the MAP configuration j),.7 using the

about tonality, can also be proposed. Similarly, for doing &gorithm described in appendix I-C. The figure shows that

more precise pitch analysis, we may choose a finer grid su#¥¢ estimated piano roll is quite precise. We have repeated the

thatw; 1 /w; = Q. Here, Q is the quality factor, a measure€xperiment on a pianoroll with a pitch grid @f4 semitones

of the desired frequency precision not to be confused with th@ = 2'/*%). The results reveal that thigth and 7'th degree

transition noiseQ. of the scale were intonated slightly low, which did not had
The graphical model is shown in Figure 4. The derivation épuch effect on the estimation of the pitch class when using

the polynomial time inference algorithm is given in appendix @ coarser grid. In the last experiment we have trained the

C. Technically, it is a simple extension of the single notBodel parameters using a note sung by a vocalist. As expected,
algorithm derived in appendix I-A. the results are poorer; in particular we observe Bithts or

In Figure 5, we illustrate the results on synthetic daf@ctaves are confused due to the different harmonic structure
sampled from the model where we show the filtering densi@fd transition characteristics.

p@“‘h'yl't)' After an onset, the posterior becomgs qulckly. 2) Extension to vibrato and legatdhe monophonic model
crisp, long before we observe a complete cycle. This feature is . X
. . X L . has been constructed such that the rotation angtemains
especially attractive for real time applications where a reliable " ; . . :
; ; . . constant. Although the the transition noise with variaQcstill
pitch estimate has to be obtained as early as possible.

. . : . . llows for small and independent deviations in frequencies of
We conclude this subsection with an illustration on re%1 . . L . ; ’
e, harmonics, the model is not realistic for situations with

data. We have recorded a major scale on an electric bass anq

downsampled from the original sampling rate /6f = 22050 SYS ematic pitch drift or fluctuat'lon,_e.g. as 1s th'e.case V.V'th
. vibrato. Moreover, on many musical instruments, it is possible
by a factor of D = 10. We have estimated parameters f

% play legatq that is without an explicit onset between note

3We ignore the cases when two or more generators are simultaneousl;bﬂunda”es' In our framework, plt(::h drift and legato (_:an be
the mute state. modelled as a sequence of transition models. Consider the



u i

50 100 150 200 250 300 350 400 450 500
(a) F major scale played on an electric bass, sampled with EEE—
Fs = 22050 and downsampled by a factor @ = 10. - T
— | — Fig. 7. Tracking varying pitch. Top and middle panel show the true piano-roll
— ] and the sampled signal. The estimated piano-roll is shown below.
—— I
r I
[— L L L L L L L ] . .
500 1000 1500 2000 2500 3000 3500 We can take a larger support fdXj;|j:—1), but in practice

we would rather reduce the frequency precis@nto avoid
additional computational cost.

Unfortunately, the terms included by the drift mechanism
render an exact inference procedure intractable. We derive the
details of the resulting algorithm in the appendix I-D. A simple

—_ ] deterministic pruning method is described in appendix IlI-A.
T ] In Figure 7, we show the estimated MAP trajectaily,. for
— ] drifting pitch. We use a model where the quality factor is

(b) Estimated MAP configuratior{r, j)1.7 with with
quality factorQ = 21/12

m me B w0 m0 w0 @w Q = 27120 (120 generators per octave) with drift probability
d_, = dy = 0.1. A fine pitch contour, that is accurate to
(C) A finer analysis withQ = 21/48 reveals that the 5'th Sample prec|s|0n, can be esnmated

and 7'th degree of the scale are intonated slightly low.

IV. POLYPHONIC INFERENCE

— — In this section we return to the central goal of inference
—_— 1 in the general polyphonic model described in section II.
i — ] To infer the most likely piano-roll we need to compute
e o j— argmax p(ri.a1.7|y1.r) defined in (13). Unfortunately, the
T1:M,1:T

calculation of (13) is intractable. Indeed, even the calculation
(d) Estimated piano roll, when signal model is trained of the Gaussian integral conditioned on a particular configu-
on a different instrument. Here, results are poorer since . . . . . -
parameters were estimated using human voice, which has ration r1.p7,1.7 Using standard Kalman filtering equations is
different spectral and temporal characteristics. prohibitive since the dimension of the state vectolsls =
2H x M, whereH is the number of harmonics. For a realistic
application we may havéd/ =~ 50 and H ~ 10. It is clear
that unless we are able to develop efficient approximation
technigues, the model will be only of theoretical interest.

Fig. 6. Monophonic pitch estimation on real data.

generative process for the note indgx

A. Vertical Problem: Chord identification

re o~ plredre-1) Chord identification is the simplest polyphonic transcription

_|sonse; (re = soundA r_; = mute) task. Here we assume that a given audio signal is
issound = (r; = soundA r;_; = sound generated by a piano-roll where, = r; forall* j = 1... M.
ji ~ [issound]d(j¢|ji—1) + The task is to find the MAP configuration

[
[re = Mut€d(ji; je—1) + [isonsefju(j:) i = argmaxp(yi.r,T1::m)
LM

Here, d(j:|j:—1) is a multinomial distribution reflecting our

prior belief how likely is it to switch between notes. Whe Fach configuration corresponds to a chord. The two ex-

reme cases are “silence” and “cacophony” that correspond

r, = mute, there is no regime change, reflected by th . .

L o 0 configurationsry. s [mute mute ... mutd and
deterministic distributiond(j;; j;—1) peaked aroung;_;. Re- und sound sound respectively. The size of the
member that neighbouring notes have also close fundamerL%QI P y-

earch space in this cagé!, which is prohibitive for direct

frequencyw. To simulate pitch drift, we choose a fine gri .
computation.

such thatw;/w;+1 = Q. In this case, we can simply de-

fine d(ji|ji-1) as a mU|tin_0mia| diStribUt.ic_m with SUPport on e i assume that initially we start from silence whergy = mute for
[jt—1 — 1,7¢—1,Jt—1 + 1] with cell probabilities[d_, dy di]. alj=1...M
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due to diminishing likelihood contribution, we obtain a diffuse
Fig. 8. We have first drawn a random piano-roll configuration (a rando%OSterlor on the plano-roll and eventua”y the results will be
chord)ry.5s. Givenry.y,, we generate a signal of lengti®0 samples with [POOr€Er.
«(’v\samplin% frei]quencyr:s = 4300 froln; p(yl:l”]T|7"1:AI)- We aSSCL;Te 2(;1 nO(tjes In Figure 9, we show the results of such an experiment.
2 octaves). The synthesized signal from the generative model and its disc : _
time Fourier transform modulus are shown above. The true chord configurati‘gn}8 have downsampleg‘l:T with factor D = 2,3 and4. The
and the associated log probability is at the bottom of the table. For the iterat&BErgy Spectrum is quite coarse due to the short length of the
algorithm, the initial configuration in this example was silence. At this poirdata. Consequently many harmonics are not resolved, e.g. we
we compute the probability for each single note configurations (all one fllgan not identify the underlying line spectrum by visual inspec-
neighbours of silence). The first note that is added is actually not presentin . . .
the chord. Until iteratiord, all iterations add extra notes. Iteratiorand10  tion. Methods based on template matching or identification of
turn out to be removing the extra notes and iterations converge to the tpleaks may have serious problems for such examples, On the
chord. The intermediate configurations visited by the algorithm are shown i ; ; ; ;
the table below. Here, sound and mute states are representes &yd o’s. dther hand, our model driven approach is able to Id(_:"mlfy the
true chord. We note that, the presented results are illustrative
only and the actual behaviour of the algorithm (sensitivity to
A simple approximation is based on greedy search: we, importance of starting configuration) will depend on the
start iterative improvement from an initial configuratielf), ~details of the signal model.
(silence, or randomly drawn from the prior). At each iteration
i, we evaluate the probabilify(y., 71.as) of all neighbouring B. Piano-Roll inference Problem: Joint Chord and Melody

configurations ofrﬁj). We denote this set byeigh(rifgj)). identification

A configurationr’ € neigh(r), if ' can be reached from  thg piano-roll estimation problem can be viewed as an
r W'(tﬂ?) a single flip (i.e., we add or remove single noteshytension of chord identification in that we also detect on-
If 7)., has a higher probability than all its neighbourssets and offsets for each note within the analysis frame. A
the algorithm terminates, having found a local maximumyactical approach is to analyze the signal in sufficiently short
Otherwise, we pick the neighbour with the highest probabilityme windows and assume that for each note, at most one

and set changepoint can occur within the window.
7"%4 — argmax  p(yrr, T1ia) . Consider data in a shor.t wmd.ow,o)sgyw. We start iterative
71,01 Eneigh(r(71) improvement from a conﬂguratloﬁ:MLW, where each time

and iterate until convergence. We illustrate the algorithm #ce Tioz)vu for t = 1...W is equal to a “chordry.a,0.
a signal sampled from the generative model, see Figure ¢ chordri., o can be silence or, during a frame by frame
This procedure is guaranteed to converge to a (possibly |ch[)alysis, the last time slice of the best configuration found
maxima. Nevertheless, we observe that for many examples thisthe previous analysis window. Let the configuration at
procedure is able to identify the correct chord. Using multiple-1'th iteration be denoted ag', )., At each new iteration
restarts from different initial configurations will improve thei, We evaluate the posterior probabilipy(yi,w, 71:a,1:w ),
quality of the solution at the expense of computational costvhere ri.ar1.w runs over all neighbouring configurations
One of the advantages of our generative model basetir\'}}) . Each member ., 1., of the neighbourhood
approach is that we can in principle infer a chord given arig generated as follows: For eagh= 1...M, we clamp
subset of data. For example, we can simply downsample all the other rows, i.e. we set; 1.y = rj(“ll%, for j/ #
(without any preprocessing) by an integer factor [ofand j. For each time steg = 1...W, we generate a new
view the discarded samples as missing values. Of coursenfiguration such that the switches up to timeare equal
when D is large, i.e. when we throw away many samples$p the initial switchr; o, and its opposite-r; o after ¢, i.e.



rjy =rjolt’ <t]4+-wr;o[t’ > t]. This is equivalent to saying
that a sounding note may get muted, or a muted note may
start to sound. The computational advantage of allowing only
one changepoint at each row is that the probability of all
neighbouring configurations for a fixgdcan be computed by
a single backward, forward pass [23], [36]. Finally, we pick Lo T T AT ]
the neighbour with the maximum probability. The algorithm W
is illustrated in Figure 10. B o
The analysis for the whole sequence proceeds as follows:

Consider two successive analysis windoWgey = y1.w and il

Y = ywi1.20w. SUppose we have obtained a soluti@;;;ev = wf

1.1 Obtained by iterative improvement. Conditioned on ° Z E o
Rprev» We compute the posteriop(si.a,w |Yprew Rprey) DY

Kalman filtering. This density is the prior affor the current @

analysis windowY. The search starts from a chord equal to
the last time slice of?},. In Fig. 11 we show an illustrative

result obtained by this algorithm on synthetic data. In similar
experiments with synthetic data, we are often able to identify

‘
| oo
‘
|

158311

the correct piano-roll. ’
This simple greedy search procedure is somewhat sensitive [T T,
to location of onsets within the analysis window. Especially, [ —

when an onset occurs near the end of an analysis window,
it may be associated with an incorrect pitch. The correct
pitch is often identified in the next analysis window, when
a longer portion of the signal is observed. However, since |
the basic algorithm does not allow for correcting the previous

estimate by retrospection, this introduces some artifacts. A ()

possible method to overcome this problem is to use a fixed lag

smoothing approach, where we simply carry out the analysig. 10. Iterative improvement with changepoint detection. The true piano-
on overlapping windows. For example, for an analysis WindOIWII‘F the Sigggl %ﬂd its ']f_OUfietr_ tfanggorm _ftné(ljggitU_de a_;e ST_OWH_ in Figure 10t-(a)-
Virew = i We find 77y The next analysis window 7,94 10.0) confaurations | visted durn teraive improierment
is taken asyr1.w4r Where L < W. We find the prior shown on the right. The initial configuration (i.e. “chord®).so is set to
p(sle)L|y1:L7 TI:J\LI:L) by Kalman filtering. On the other silence. At the first step, the algorithm searches all single note configurations

. . ith a single onset. The winning configuration is shown on top panel of
hand, ObVIOUSIy' the algorlthm becomes slower by a faCtggure 10.(b). At the next iteration, we clamp the configuration for this note

of L/W. and search in a subset of two note configurations. This procedure adds and
An optimal choice forL and W will depend upon many removes notes from the piano-roll and converges to a local maxima. Typically,

factors such as signal characteristics, sampling frequenmrzo\',’v‘i’ggjtncmeal'jng“;?dzitu?,”gst?r? (E;f’ced“re 's able to identify the true
downsampling factorD, onset/offset positions, number of

active sound generators at a given time as well as the amount
of CPU time available. In practice, these values may be critical
and they need to be determined by trial and error. On the other
hand, it is important to note thdt and just determine how

the approximation is made but not enter the underlying model.

V. LEARNING W i Wm

In the previous sections, we assumed that the correct signal
model parameter = (S, p, Q, R) were known. These include
in particular the damping coefficienisoung pPmute: transition
noise variancey, observation noise? and the initial prior ]
covariance matrixS after an onset. In practice, for an in- —
strument class (e.g. plucked string instruments) a reasonable
range for¢ can be specified a-priori. We may safely assumﬁg. 11. Atypical example for Polyphonic piano-roll inference from synthetic

that 6 will be static (not time dependent) during a giverjata. We generate a realistic piano-roll (top) and render a signal using the
performance. However, exact values for these quantities watllyphonic model (middle). Given only the signal, we estimate the piano-roll

; ; ; iterative improvement in successive windows (bottom). In this example,
vary among different instruments (e'g' old and new Smng%ﬁly the offset time of the lowest note is not estimated correctly. This is a

and recording/performance conditions. consequence that, for long notes, the state vectmonverges to zero before
One of the well-known advantages of Bayesian inferendfe generator switches to the mute state.

is that, when uncertainty about parameters is incorporated
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in a model, this leads in a natural way to the formulation
of a learning algorithm. The piano-roll estimation problem,
omitting the time indices, can be stated as follows:

o = argmax [ db [ ds plyls, O)p(slr Op(O() (19

In other words, we wish to find the best piano-roll by taking (a) A single note from an electric bass.
into account all possible settings of the paramétexreighted Original sampling rate 022050 Hz is re-
by the prior. Note that (14) becomes equivalent to (13), if duced by downsampling with factdp ~

y the p : q ! 20. Vertical lines show the changepoints

we knew the “best” parametdt”, i.e. p(6) = §(8 — 6%). of the MAP trajectoryry. .
Unfortunately, the integration o can not be calculated

analytically and approximation methods must be used [37]. A . : :
crude but computationally cheap approximation replaces the ’ J( l JL
integration ond in (14) with maximization: Lo

J 4

r*:arginaxmeax/dsp(y\S,Q)p(SVﬂ)p(e)p(r) 1 I T T P e ¢

Essentially, this is a joint optimization problem on piano-
rolls and parameters which we solve by a greedy coordinate
ascent algorithm. The algorithm we propose is a double )
loop algorithm where we iterate in the outer loop between o T T T T T T
maximization overr and maximization overd. The latter [
maximization itself is calculated with an iterative algorithm:

(i) (i—1) (i—1) (i—1) (b) Top to Bottom: Fourier transform of
r = argmax [ dsp(yls,0 )p(s|r, 6 )p(0 )p(r) the downsampled signal and diagonal en-

T tries of S, @ and damping coefficients
psound for each harmonic.

69 = argmax / dsp(yls, O)p(s|r®, O)p(8)p(r®)
0

Fig. 12.  Training the signal model with EM from a single note from

For a single note, conditioned on a fixééf—l), r(® can be an electric bass using a sampling rate 2%050 Hz. The original signal

; ; s downsampled by a factor adb = 20. Given some crude first estimate
Cal?wat?d exaCtly,’ using the_r,nessage, propagapon_ algom@ﬂmodel pgrame)t/ersﬁ(o)(& p,Q,R), we estimater(), shown in (a).
derived in appendix I-B. Conditioned off), maximization on conditioned o), we estimate the model parametéfd) and so on. Let
the 6 coordinate becomes equivalent to parameter estimatiindenote the2 x 2 block matrix from the diagona$, corresponding to the
in linear dynamical systems, for which no closed form solutigfy" harmonic, similarly forQ),. In (b), we show the estimated parameters
. . _for each harmonic sum of diagonal elements, I¥.S;, and Tr Q. The
is known. Nevertheless, this step can be calculated by an it@4mping coefficient is found assoung = (det A, AT)I/4 where A, is a
ative expectation maximization (EM) algorithm [36], [38]. In2 x 2 diagonal block matrix of transition matrix4s°'"d For reference, we

practice we observe that for realistic starting conditiétfs also show the Fourier transform modulus of the downsampled signal. We can
’ . __see, that on the low frequency bandanimics the average energy distribution

the () are identical, suggesting that the best segmentation of e note, However, transient phenomena, such as the strongly damped
is not very sensitive to variations thnear to a local optimum. 7'th harmonic with relatively high transition noise, is hardly visible in the
In Figure 12, we show the results of training the signal mod gquency spectrum. On the_ other hand for online pitc_h deteg:tion, such high

. . requency components are important to generate a crisp estimate as early as
based on a single note (a C from the low register) of an electfigssiple.
bass.

In an experiment with real data, we illustrate the per-

formance of the model for two and three note polyphony ) ] o o
(See Fig.13). We have recorded three separate monoph&ﬁéaw(_)ur is qualitatively similar to other method; repo.rted
melodies; ascending modes of the major scale starting from {Rethe literature, e.g. [18], [19], but clearly, more simulation
root, 3rd and 5'th degree of a major scale. We have estimatetfudies have to be carried out for an objective comparison.
model parameters using a single note from the same regist@yestigating the log likelihood ratio
For each monophonic melody, we have calculated the ground
truth % | . by the algorithm described in section Ill-.1. We Pyl e )P (S 1)
have constructed the two note example by adding the first two log - "
melodies. The analysis is carried out using a window length of PO )P .r)
W = 200 samples, without overlap between analysis frames
(i.e. L = W). We were able to identify the correct pitch classesuggests that the failure is due to the suboptimal estimation
for the two note polyphony case. However, especially sonpeocedure, i.e. the model prefers the true solution but our
note offsets are not detected correctly. In the three note cagesedy algorithm is unable to locate it and gets stuck in
pitch classes are correct, but there are also more artifacts, ejg,, ;.--, wherer* denotes here the configuration found by
the chord around sample ind&R0 is identified incorrect. We the algorithm. In the conclusions section, we will discuss some
expect results to go worse with increasing polyphony; thaternative approximation methods to improve results.

>0
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(a) (Top) The ground truth estimated when all
melodies are transcribed separately. (Middle) The
superposition of first two melodies downsampled
by a factor of D = 10. (Bottom) Piano-roll
estimated with an analysis window of siZg =
200 samples, without overlap between analysis

for this correctly in our model.

An additional advantage of our formulation is that we
can still deliver a pitch estimate even when the fundamental
and lower harmonics of the frequency band are missing.
This is related to so calledirtual pitch perception [40]: we
tend to associate notes with a pitch class depending on the
relationship between harmonics rather than the frequency of
the fundamental component itself.

There is a strong link between model selection and poly-
phonic music transcription. In chord identification we need to
compare models with different number of notes, and in melody
identification we need to deduce the number of onsets. Model
selection becomes conceptually harder when one needs to
compare models of different size. We partially circumvent this
difficulty by using switch variables, which implicitly represent
the number of components.

Following the established signal processing jargon, we may
call our approach a time-domain method, since we are not
explicitly calculating a discrete-time Fourier transform. On

frames. the other hand, the signal model presented here has close

links to the Fourier analysis and sinusoidal modelling. Our
analysis can be interpreted as a search procedure for a sparse
representation on a set of basis vectors. In contrast to Fourier
analysis, where the basis vectors are sinusoids (e.g. see [41]
for a Bayesian treatment), we represent the observed signal
implicitly using signals drawn from a stochastic process which
typically generates decaying periodic oscillations (e.g. notes)
with occasional changepoints. The sparsity of this representa-
tion is a consequence of the onset mechanism, that effectively
puts a mixture prior over the hidden state vectof his prior

is peaked around zero and has broad tails, indicating that
most of the sources are muted and only a few are sounding.
It is well known that such Gaussian mixture priors induce
sparse representations, e.g. see [42], [43] for applications in
the context of source separation.

— T s
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(b) Result for the same experiment with three
notes polyphony.

A. Future work

Fig. 13. Experiment with two and three note polyphony. Three monophonic .
melodies (ascending modes of the F major scale starting from the root,Although our approach has many desirable features (auto-

3'rd and 5'th degree) are recorded and transcribed separately to obtain treatically deducing number of correct notes, high temporal
ground truth. Model parameters are learned using a single note recorded fr@gomﬂon e.t.c.), one of the main disadvantage of our method
the same register. Finally, melodies are added to create two- and three-note . . . - .
polyphonic examples. IS computational cost associated with updating large covari-
ance matrices in Kalman filtering. It would be very desirable
to investigate approximation schemas that employ fast trans-
formations such as the FFT to accelerate computations.
When transcribing music, human experts rely heavily on
We have presented a model driven approach where trgmior knowledge about the musical structure — harmony, tempo
scription is viewed as a Bayesian inference problem. In this expression. Such structure can be captured by training
respect, at least, our approach parallels the previous workpwbbabilistic generative models on a corpus of compositions
[19], [20], [39]. We believe, however, that our formulationand performances by collecting statistics over selected features
based on a switching state space model, has several ad\arg. [44]). One of the important advantages of our approach
tages. We can remove the assumption of a frame based masléhat such prior knowledge about the musical structure can
and this enables us to analyse music online and to sampk formulated as an informative prior on a piano-roll; thus
precision. Practical approximations to an eventually intractaldan be integrated in signal analysis in a consistent manner.
exact posterior can be carried out frame-by-frame, such as\Wg believe that investigation of this direction is important in
using a fixed time-lag smoother. This, however, is merely designing robust and practical music transcription systems.
computational issue (albeit a very important one). We may alsoOur signal model considered here is inspired by additive
discard samples to reduce computational burden, and accamynithesis. An advantage of our linear formulation is that

VI. DISCUSSION
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we can use the Kalman filter recursions to integrate out thiene algorithms for calculating the evidenggy,.7) and MAP
continuous latent state analytically. An alternative would beonfigurationr;., = argmaxp(y1.7,m1.7) respectively. The

to formulate a nonl!near dynamical system that mplemenﬁAP configuration is 'Useful for onset/offset detection. In
a nonlln.ear synthesis modgl (e.9. FM synthesis, waveshap{ d following section, we extend the onset/offset detection
synthesis, or even a phyS|'caI model[45]). Such an approagi orithms to monophonic pitch tracking with constant fre-
would reduce the dlmens[onahty' of thg latent state spa fiency. We derive a polynomial time algorithm for this case
but force us to use approximate integration methods suchi sappendix I-C. The case for varying fundamental frequency
particle filters or EKF/UKF [46]. It remains an interesting Opek. 4o ived in the following appendix I-D. In appendix Il we

q“es“o.f? whether, in practice, one sh0u!d traqe-oﬁ analyt'cﬁéscribe heuristics to reduce the amount of computations.
tractability versus reduced latent state dimension.

In this paper, for polyphonic transcription, we have used _ _ .
a relatively simple deterministic inference method based éh Computation of the evidenggy,.r) for a single sound
iterative improvement. The basic greedy algorithm, whilst stifi€nerator by forward filtering
potentially useful in practice, may get stuck in poor solutions. We assume a Markovian prior on the indicategswhere
We believe that, using our model as a framework, better polytr, = i|r,_1 = j) = p; ;. For convenience, we repeat the
phonic transcriptions can be achieved using more elaborgtnerative model for a single sound generator by omitting the
inference or search methods. For example, computation timete index;.
associated with exhaustive search of the neighbourhood for all
visited configuations could be significantly reduced by ran- 't p(refri-1)
domizing the local search (e.g. by Metropolis-Hastings movdgonset = (r; = soundA ry_; = mute)
5) or use heuristic proposal distributions derived from easy-to- s, [-isonsetl NV (A,,si—1, Q) + [isonse N (0, S)
compute features such as the energy spectrum. Alternatively, yi ~ N(Csi,R)
sequential Monte Carlo methods or deterministic message
propagation algorithms such as Expectation propagation (B simplicity, we will sometime use the labels and 2
[47] could be also used. to denote sound and mute respectively. We enumerate the
We have not yet tested our model for more general sceniignsiton models asf,, (si[si-1) = N(A s:-1,Q). We
ios, such as music fragments containing percussive instrumegéine the filtering potential as

2

or bell sounds with inharmonic spectra. Our simple periodic
signal model would be clearly inadequate for such a scenarfs. = Pt $t,7, T11) = Z /dSO:t—lp(ylih 80:t,T1:1)
On the other hand, we stress the fact that the framework Tlit=2

presented here is not limited to the analysis of signals withle assume thaj is always observed, hence we use the term
harmonic spectra, and in principle applicable to any familyotential to indicate the fact thai(yi.;, s¢, 74, 7:—1) IS not
of signals that can be represented by a switching state spaocemalized. The filtering potential is in general a conditional
model. This is already a large class since many real-wor@aussian mixture, i.e. a mixture of Gaussians for each con-
acoustic processes can be approximated well with piecewfeguration of r,_1.,. We will highlight this data structure by
linear regimes. We can also formulate a joint estimatiamsing the following notation
schema for unknown parameters as in (14) and integrate 11 1.2
them out (e.g. see [20]). However, this is currently a hard = { O‘g,l 0‘5_2 }
and computationally expensive task. If efficient and accurate X QA
approximate.integration methods can be deyeloped, our mogflere eachn’’ = p(yiu, se,m = .11 = j) for i,j =
will be applicable to mixtures of many different types ofi o are also Gaussian mixture potentials. We will denote
acoustical signals and may be useful in more general auditghé conditional normalization constants as
scene analysis problems. _ 4
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APPENDIXI We also define the predictive density
DERIVATION OF MESSAGE PROPAGATION ALGORITHMS
In the appendix, we derive several exact message propadd<—-1 = P(Yr:e—1, 86,7, Te—1)
tion algorithms. Our derivation closely follows the standard = Z /dgt,l pselsi—1, 7o, re—1)p(relre—1) a1
derivation of recursive prediction and update equations for

Tt—2

the Kalman filter [48]. First we focus on a single sound o ) )
generator. In appendix I-A and I-B, we derive polynomial In general, for switching Kalman filters, calculating exact
' posterior features, such as the evidede= p(y;.1), is not

5This improvement is suggested by one of the anonymous reviewers tractable. This is a consequence of the fact that the number of
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mixture components to required to represent the exact filterindpere ¢(s, ) are Gaussian potentials for each configuration
density o; grows exponentially with time steg (i.e. one of ». We can compute the MAP configuration
Gaussian for each of the exponentially many configurations
r1.). Luckily, for the model we are considering here, the r* = argmaX/ds ¢(s,r) = argmax {Z', 7%}
growth is polynomial ink only. See also [49]. _ "
To see this, suppose we have the filtering density availawaere Z7 = [ ds ¢(s,r = j). We evaluate the normalization
at timet — 1 asay_1. The transition models can be organize@f each component (i.e. integrate over the continuous hidden
also in a table wheré&th row andj’th column Correspond to variables fiI’St) and finally find the maximum of all normal-
p(S¢|St—1,70 = 0,741 = §) ization constants.
However, direct calculation of;. . is not feasible because of
p(se|si—1, 1 mem1) = { fi(stlsi—1) m(st) } exponential explosion in the number of distinct configurations.
fa(selsi-1)  fa(selsi-1) Fortunately, for our model, we can introduce a deterministic
Calculation of the predictive potential is straightforward®runing schema that reduces the number of kernels to a
First, summation over;_» yields pqunom|al order and mganwhﬂe gua.rantees that we will never
eliminate the MAP configuration. This exact pruning method
_ a%’_ll + oztl’_21 _ &, hinges on the factorization of the posterior for the assignment
-1 = affl + affl £ of variablesr; = 1,7,_1; = 2 (mute to sound transition) that
breaks the direct link between) ands;_1:

Tt—2

Integration overs;_; and multiplication by p(r¢|r:—1)

yields the predictive potential (50751202, T8-1 = 2,7 = 1, 1py11) =

S0:t—15T1:t—2,Tt—1 = 2)O(Se.1y Tea1.7, 7t = 1|re—1 = 2

Ot = { Pl,ﬂ/’%(st) p17QZt2—17T(St) } 9801, P12, T JO(ser, T Iri-1 ()15)
te= p21U3(se)  p22v3(se)
. In this case:
where we define
, , max,,,, [ dso.r ¢(so:r,T10—2,Te—1 = 2,74 = 1, 7q1:7)
Zi1 = /dst*lgtfl = max,,,, , [ dso—1 ¢(So:t—1,T1:0—2,T1—1 = 2)
i j X maxy, .. | dsg. Sty Tea1:T,Te = 1|ry_1 = 2
'L/)i(st) = /dst—lfi(st‘st—l)fi_l ) t,Tf t:T (b( Ty t4+1:Ts 7t ‘ t—1 )
= Z} xmaxy, ., [dser ¢(spr, i1, e = 1re—1 = q)16)

The potentialg)] can be computed by applying the standargthis Equation shows that whenever we have an onset,
Kalman prediction equations to each component{pf,. we can calculate the maximum over the past and future
The updated potential is given by, = p(y:|s)oyi—1. ThiS configurations separately. Put differently, provided that the
quantity can be computed by applying standard Kalman upda@P configuration has the formi, = [rf,_ 571 =
equations to each component®f;; ;. 2,1y = Lrj 7], the prefix [ri;, 5,71 = 2] will
From the above derivation, it is clear thaﬁ’2 has only be the solution for the reduced maximization problem
a single Gaussian component. This has the consequence #hginax,,,, , [ dso.i—1 ¢(S0:—1,T1:t—1)-
the number of Gaussian componentsdfi’ increases only 1) Forward pass:Suppose we have a collection of Gaussian
linearly (the first row-sum termg&' ; propagated througlfy). potentials

The second row sum terr§? is more costly; it increases SRR 51

at every time slice by the number of componentséjn,. Si_1 = { 55—; 5531 } = { 65*1 }

Since the size ot} ; grows linearly, the size of? grows =1 Tt—1 t—1

guadratically with timet. with the property that the Gaussian kernel corresponding the

prefix ri,_, of the MAP state is a member af,_4, i.e.
d(St—1,7T.4_1) € 041 Strfp = [ri,_1, 5] We also define

B. Computation of MAP configuratiort,,- the subsets

The MAP state is defined as

62Lj1 = {é(st-1,71:4-1) : P € dp_1andry_1 = 4,149 =5}
iy = ar%f;ax/dso:Tp(yl:T,SO:TyTl:T) i = Udi—jl
J
= arggax/dSO:T¢(50:T7rliT) We show how we findj;. The prediction is given by
For find.ing the MAP state, we replape sqmmatio_ns over Qo1 = /dsf,_1 D(Ste|8t—1, T, o1 )P(relri—1)de—1
r, by maximization. One potential technical difficulty is that,

unlike in the case for evidence calculation, maximization anthe multiplication by p(r;|r,_1) and integration oves, ,
integration do not commute. Consider a conditional Gaussigields the predictive potential, ;_;

potential L )
{ P11 [ dsi—1 f1(se|se—1)07_, p127(se) [dse—1 67, }

o(s,7) = {d(s,r=1),¢(s, 7 =2)} P21 [dsi—1 fa(selse—1)0i_1 P22 [dsi—1 fa(se|si—1)07_4
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By the (16), we can replace the collection of numbeffirst calculate the predictive potential. Summation overs
[ ds;—1 67—, with with the scalarZ? ; = max [ds,—; 67, Yyields the row sums
without changing the optimum solution: i) Z NenRCED

t—1 - t—1

1,2 _ 2
5t|t—1 = pl-,QZt—lﬂ(St) r’.j’

The updated potential is given by = p(y:|s:)d;,—1. The Integration overs,_; and multiplication byp(z¢|z;—1) yields
analysis of the number of kernels proceeds as in the previdhe predictive potentialy,,_;. The components are given as

section. aglrfji)l(T’*-jl) —

2) Decoding: During the forward pass, we tag each Gaus-
sian component of, with its past history ofr;.;. The MAP 1/ M)prom(s)ZT 7 r=1Ar =2 18)
state can be found by a simple searc_:h in the coII_ectlon of [j = '] % pr T,wt(m)(r’u") otherwise
polynomially many numbers and reporting the associated tag: '

where we define
i argll;r;ax/dsT or Zt(ill’j/) _ /dst_l ggixijl)

We finally conclude that the forward filtering and MAP o .
(Viterbi path) estimation algorithms are essentially identical YT = /d8t71 Frj(selse—)e )
with summation replaced by maximization and an additional
tagging required for decoding. The potentialsyy can be computed by applying the standard

Kalman prediction equations to each component;.ofNote
that the forward messages have the same sparsity structure as
the prior, i.e.aiﬁ{)“ ) £ whenp(ry = r,ji = jlri—1 =

In this section we derive an exact message propagation;, — ;') is nonzero. The updated potential is givendyy=
algorithm for monophonic pitch tracking. Perhaps surprisinglx(yt|St)at‘t_1_ This quantity can be computed by applying
inference in this case turns out to be still tractable. EV%andard Kalman update equations to each nonzero Component
though the size of the configuration spagey,1.r is of size of o
(M +1)T = 0(271°e M) the space complexity of an exact
algorithm remains quadratic in First, we define a “mega” o ) , )
indicator nodez, = (j;, ;) wherej, € 1...M indicates the D. Monophonic pitch tracking with varying fundamental fre-
index of the active sound generator ande {soundmuteg} ~94UeNCY
indicates its state. The transition mogegk,|z; 1) is a large ~ We model pitch drift by a sequence of transition models.
sparse transition table with probabilities We choose a grid such that; /w;;1 = Q, whereQ is close
to one. Unfortunately, the subdiagonal terms introduced to the

C. Inference for monophonic pitch tracking

t]t—1-

P11 pl’z_/M pl’Q_/M prior transition matrixp(z; = (1, j;)|2:—1 = (1,4¢-1))
: h : (do+dy) d_y
P11 | pr2/M ... pi2/M (17) d do  d_s
P21 P22 ) )
P11 X dy R (19)
P21 D22 o dy d_q
. d do +d_
where the transitiong(z, = (j,r)|z-1 = (j',r')) are 1 (dot+do)
organized at then'th row and m'th column wheren = render an exact algorithm exponential in The recursive

rxM+j—1andm = " x M + j° — 1. (17). The update equations, starting witla;_;, are obtained by sum-
transition modelsp(s¢|si—1,2: = (j,7),2.-1 = (5/,7')) can ming over z;_,, integration overs,_; and multiplication by

be organized similarly: p(zt|z:—1). The only difference is that the prediction equation
)" _
fix 7(s)) .. 7(se) (18) needs to be changed mélt_l =
I d(j = ) % pro D) = 1A =1
fiar | w(se) .. m(st) (1/M)pypm(s) 277 r=1Ar =2
73)(r",5") —

for faa = 31 % Pt
' where ¢y and Z are defined in (19). The reason for the

fom Jom exponential growth is the following: Remember that each
Here, f.; = f.;(s¢|s;_1) denotes the transition model of¢:""("-7") has as many components as an entire row sum of
the j'th sound generator when in state The derivation for &7 = S a{"("-7) "Unlike the inference for piecewise
filtering follows the same lines as the onset/offset detecti@@nstant pitch estimation, now at some rows there are two or
model, with only slightly more tedious indexing. Suppose weore messages (e.gillt’{)l(l’]) and aillt’{)l(l’]“)) that depend
have the filtering density available at time- 1 asa;_1. We on .
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APPENDIXII
COMPUTATIONAL SIMPLIFICATIONS

El

A. Pruning [10]

Exponential growth in message size renders an algorithin,

M. Plumbley, S. Abdallah, J. P. Bello, M. Davies, G. Monti, and
M. Sandler, “Automatic music transcription and audio source separa-
tion,” Cybernetics and Systemsl. 33, no. 6, pp. 603-627, 2002.

W. J. HessPitch Determination of Speech SignaNew York: Springer,

B. G. Quinn and E. J. HannanThe Estimation and Tracking of

useless in practice. Even in special cases, where the messageFrequency Cambridge University Press, 2001.

size increases only polynomially i, this growth is still [1?

prohibitive for many applications. A cheaper approximatgg)
algorithm can be obtained by pruning the messages. To
keep the size of messages bounded, we limit the numibkH
of components toN and store only components with the
highest evidence. An alternative is discarding components of a
message that contribute less than a given fraction (e)§01) (15]
to the total evidence. More sophisticated pruning methods wit
profound theoretical justification, such as resampling [23] or
collapsation [50], are viable alternatives but these are comptr-
tationally more expensive. In our simulations, we observe that
using a simple pruning method with the maximum numbéts]
of components per message setNo= 100, we can obtain

results very close to an exact algorithm. [19]
o . . [20]

B. Kalman filtering in a reduced dimension
[21]

Kalman filtering with a large state dimensi¢s] at typical
audio sampling rate¢’; ~ 40 kHz may be prohibitive with [22]
generic hardware. This problem becomes more severe Wl’[lzeglil
the number of noted/ is large, (which is typically around
50 — 60), than even conditioned on a particular configuration
r1.., the calculation of the filtering density is expensivel24]

. . ) . ) 25]
Hence, in an implementation, tricks of precomputing th[e
covariance matrices can be considered [48] to further reduce
the computational burden. 26]

Another important simplification is less obvious from the
graphical structure and is a consequence of the inherent
asymmetry between the sound and mute states. Typicalfy]
when a note switches and stays for a short period in the Mg
state, i.er;, = mute for some period, the marginal posterior
over the state vectos;, will converge quickly to a zero 2]
mean Gaussian with a small covariance mategardlessof
observationg;. We exploit this property to save computation$3o]
by clamping the hidden states for sequences;gfy to zero
for r; 4.+ = “mute”. This reduces the hidden state dimensio 1
since typically, only a few sound generators will be in sound
state. (32]

[33]
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