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Abstract. Harmonic probabilistic models are common in signal analysis. Framed as a linear-
Gaussian state-space model, smoothed inference scales as O(TH

2) where H is twice the number
of frequencies in the model and T is the length of the time-series. Due to their central role
in acoustic modelling, fast effective inference in this model is of some considerable interest. We
present a form of ‘rotation-corrected’ low-rank approximation for the backward pass of the Rauch-
Tung-Striebel smoother. This provides an effective approximation with computation complexity
O(TSH) where S is the rank of the approximation.
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1 Introduction

Harmonic signal decompositions are one of the main tools in audio analysis and the harmonic plus
noise model has recently been used in several applications [1, 2, 3]. In its simplest form we model
a signal by a superposition of harmonic oscillators, this being essentially the Fourier Representation.
The probabilistic interpretation of a Harmonic representation of a one-dimensional signal from time
1 to time T, y1:T , is useful since a generative model enables one to build in known constraints about
the signal generation process (see e.g. [2] for an application). Here we concentrate on the simplest
form of these models, being essentially a bank of harmonic oscillators, and show how inference can be
computed efficiently.

A useful state-space representation of a single harmonic oscillator is based on a two-dimensional
latent linear dynamics xt+1 = A(θ)xt, where A(θ) is a Givens Rotation matrix:

A(θ) = ρ

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Then xt describes a damped rotation in which at each timestep, the vector rotates anticlockwise by θ

degrees, with a length reduction factor 0 < ρ < 1. The projection of this two-dimensional vector onto
the first dimension, x1,t then describes a one-dimensional harmonic oscillator, as shown in fig(1). The
time-dependent energy related to this harmonic component is given by the length of the vector xt.
To describe a bank of such oscillators, rotating at different frequencies, we form the block-diagonal
damped rotation matrix

A =











A(θ1) 0 · · · 0
0 A(θ2) 0
...

. . .
...

0 · · · 0 A(θn)











To cope with the fact that a real signal will deviate from a perfect damped oscillator, we introduce
additive Gaussian noise both in the state-space

xt+1 = Axt + wt, wt ∼ N (0,Σx) (1)

and in the signal observation.

yt = Bxt + vt, vt ∼ N (0,Σy) (2)

Here xt is a H × H dimensional matrix, where H is equal to twice the number of frequencies in the
harmonic representation. B = [1, 0, 1, 0, . . . , 1, 0] is a 1 × H matrix (i.e. the transpose of a H × 1
vector). This model accounts for both amplitude and phase noise – a sample from such a model is
given in fig(2). An alternative probabilistic formulation of the above equations is

p(xt|xt−1) = N (Atxt−1,Σ
x) (3)

p(yt|xt) = N (Ctxt,Σ
y) (4)

Figure 1: A damped oscillator in state space form. Left: At each time step, the state vector x rotates
by θ and its length becomes shorter. Right: The actual waveform is a one dimensional projection
from the two dimensional state vector. The stochastic model assumes that there are two independent
additive noise components that corrupt the state vector x and the sample y, so the resulting waveform
y1:T is a damped sinusoid with both phase and amplitude noise.
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Figure 2: A sample from the Gaussian linear dynamical system defined by equation (1) and equation
(2) from a bank of 100 oscillators evenly spread between 0 and 2000 Hz.

which define a joint Gaussian probability distribution

p(x1:T , y1:T ) =
T

∏

t=1

p(yt|xt)p(xt|xt−1) (5)

where, by convention, p(x1|x0) is a Gaussian distribution with mean 0 and covariance Σx
1 . The above

model is then a constrained form of a Kalman Filter[4]. Given a set of observations y1:T , the two
main interests are in calculating the filtered posterior inference p(xt|y1:t) and the smoothed posterior
inference p(xt|y1:T ). We shall see that filtering is computationally efficient, but smoothing is an order
H more computationally demanding. The aim of this paper is to introduce an effective smoothing
approximation for this important class of models.

2 Kalman Filtering

The smoothed posterior p(xt|y1:t) is a Gaussian, whose mean and covariance we denote by ft and Ft

respectively. To compute ft and Ft, we may use the well-known Kalman Filter recursions[4] given in
Algorithm 1. Here Pt and Ft are H ×H symmetric matrices and Gt is a H × 1 vector. The length of
signal T that we wish to perform filtering and smoothing may be of the order of 104, so that storing
these matrices is prohibitive. In practice, the matrices Pt, Gt, Ft converge quickly to a stationary value
and we therefore adopt the usual approach of replacing these quantities by their converged values, as
given in Algorithm 2[4].

Algorithm 1 Kalman Filter

1: procedure KalmanFilter

2: F0 ← 0, f0 ← 0
3: for t ← 1, T do

4: Pt ← AtFt−1A
T
t + Σx

5: Gt ← PtB
T

(

BPtB
T + Σy

)

−1

6: Ft ← (I − GtB) Pt

7: ft ← Aft−1 − Gt (BAft−1 − yt)
8: end for

9: end procedure
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Algorithm 2 Approximate Kalman Filter

1: procedure ApproxKalmanFilter

2: F ← 0, f ← 0
3: repeatP ← AFAT + Σx

4: until P converges

5: G ← PBT
(

BPBT + Σy
)

−1

6: F ← (I − GB) P

7: for t ← 1, T do

8: ft ← Aft−1 − G (BAft−1 − yt)
9: end for

10: end procedure

Algorithm 3 Kalman Smoothing : Rauch Tung Striebel

1: procedure KalmanSmoother

2: RT ← FT , rT ← fT

3: for t ← T − 1, 1 do

4: X ← FtA
T

(

AFtA
T + Σx

)

−1

5: U = I − XA

6: Rt ← XRt+1X
T + UFt

7: rt ← Xrt+1 + Uft

8: end for

9: end procedure

Since P , F and G may be computed offline in a one-off computation, the complexity of Algorithm
2 for filtering a signal y1:T is determined by the recursion ft ← Aft−1 − G (BAft−1 − yt). Since BA

is a (transposed) vector which may be precomputed, the scalar BAft−1 takes order O(H) computa-
tions. The term Aft−1 would ordinarily take O(H2) operations. However, since A is block diagonal
(consisting of 2 × 2 rotation matrices on the diagonals), this also takes O(H) operations. Hence, the
complexity of computing f1:T takes only order O(TH) operations. That is, the complexity of filtering
(given the converged approximate values for P ) is linear in the number of harmonics desired and the
length of the time series – an agreeable complexity.

3 Kalman Smoothing

Here we want to compute p(xt|y1:T ) which is a Gaussian with mean rt and covariance Rt. The standard
approach to smoothing is to use the Rauch-Tung-Striebel smoother[4], as presented in Algorithm 3,
which makes use of the Kalman Filter results. As in the Filtering recursions, the posterior covariance
rapidly converges to a constant value, and we may also replace the time-dependent forward covariances
by their converged estimates F . Since Rt does not depend on the observations, this may also be pre-
computed. Hence, our main concern is with the following equation

rt ← Xrt+1 + ft − XAft (6)

Using the converged values, X is given by

X = FAT
(

AFAT + Σx
)

−1

which is time-independent. However, unlike in the Filter recursions, we cannot simply write X exactly
as the outer-product of two vectors and, unfortunately, this means that the computation of Xrt+1

is order O(H2). This is unacceptable since H will typically be of the order of several hundred to
a thousand. Similarly, the term XAft is problematic and also has an exact complexity of order
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Figure 3: The singular values for a the matrix X formed from a bank of 100 oscillators evenly spread
from 0 to 2000 Hz. The coefficient ρ is set to 0.999. The state covariances were set to Σx = 10−3IH

and the observation variance was set to Σy = 10−6.

O(H2). An obvious strategy would be to replace X by a low-rank approximation. However, we may
empirically observe that no-such low rank approximation of X exists, see for example fig(3), where
typically nearly all the singular values from a Singular Value Decomposition (SVD) are close to unity.
Hence, a naive strategy of projecting X to a low-rank subspace will fail since nearly all the singular
values will be required for an accurate representation of X.

3.1 A low rank ‘rotation’ compensated Approximation

First we write r̂t+1 = rt+1 − Aft, so that equation (6) can be written as

rt = ft + Xr̂t+1

Computing r̂t+1 is O(H) again thanks to the fact that A is block diagonal. We now concentrate on
X. This is given by

X = FAT
(

AFAT + Σx
)

−1

Using the converged Kalman Filter equations

P = AFAT + Σx, F = P − GBP

we may write

X = PAT P−1 − GBPAT P−1 (7)

Bearing in mind that if X was of low rank, then the computational complexity would be modest, our
aim is to find an approximate suitable decomposition of X. The term GBPAT P−1 in equation (7) is
unproblematic since this is indeed trivially of the form of the outerproduct of the vector G with the
vector P−T APT BT . Hence, this term causes no difficulty. Unfortunately, the term PAT P−1 does not

2

1
4

3

Figure 4: The effect of the operations PAT P−1. First the vector depicted 1 is transformed by P−1

into a new representation, vector 2. Then this vector is rotated by AT to the vector 3, and then
transformed back to the original basis, depicted by vector 4. If the rotation AT is not too strong, then
this will be roughly equivalent to rotating the original vector 1 by AT .
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Figure 5: The singular values for a the matrix K = PAT P−1 − AT formed from a bank of 100
oscillators even spread from 0 to 2000 Hz. The coefficient ρ is set to 0.999. The state covariances were
set to Σx = 10−3IH and the observation variance was set to Σy = 10−6. Contrast this with fig(3).

possess a low rank approximation. The fundamental reason for this is that A is (proportional to) a
rotation matrix – even if P were the identity, then A itself cannot have a low-rank approximation since
it rotates all components. However, we may gain some insight into forming a useful approximation
by the following reasoning. One may view the matrix PAT P−1 as follows : P−1 first transforms into
a new basis, we then perform a rotation in the basis (performed by AT which corresponds to inverse
rotation of A), and then transform back to the original basis. Hence, if the rotation AT is relatively
weak, then we may expect that the transformation PAT P−1 has roughly the same effect as a rotation
AT in the original basis. This is depicted in fig(4). The idea, therefore, is that K = PAT P−1−AT may
have a low rank approximation. The singular values of this rotation-corrected matrix are depicted in
fig(5), where we see that indeed, a low rank approximation would be reasonable. A more sophisticated
approximation would be to assume that PAT P−1 ≈ P̂AT P̂−1 where P̂ is formed from a block diagonal
approximation of P , although we have found that, in practice, the simpler approximation produces
reasonable results.

A low rank approximation for K is then obtained by computing the Singular Value Decomposition
K = UDV T . Then by taking only the first S singular values, we obtain an approximation K ≈ Û V̂

where Û is obtained from the first S columns of U , and V̂ is obtained from the first S rows of DV T .
With this we then may write

X ≈ Û V̂ + AT − GBPAT P−1

rt = ft + Û
(

V̂ r̂t+1

)

+ AT r̂t+1 − G
(

BPAT P−1
)

r̂t+1

The complexity of the final term G
(

BPAT P−1
)

r̂t+1 is O(H), as is AT r̂t+1 and ft. The complex-

ity of Û
(

V̂ r̂t+1

)

is O(SH) where S is the rank of the SVD approximation. Note that the SVD

approximation can be computed offline, and is a one-time only computation.
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3.2 Demonstration

In fig(6) we show a sample waveform for which we wish to find a harmonic representation using 200
frequencies evenly distributed between 0 and 2000 Hz. In fig(7) we plot the filtered spectrogram (1.3
seconds of computation using a Pentium III processor with 1 Gbyte of RAM), the exact smoothed
posterior (90 seconds) and the rank 30 approximation of the smoothed posterior (7 seconds). The
errors made by the approximation are given in fig(8), where we see that, crucially, in the regions where
the posterior components are large, then the approximation is very accurate, with a mean absolute
deviation of 0.002. Plotting the relative deviation is less meaningful since the spectrogram has mainly
small values, although it is the relatively few larger values for which the approximation needs to be
accurate.

Figure 6: The waveform, corresponding to 2.5 seconds of speech, with 8000 samples per second.

Figure 7: Spectrograms (log energy) of the waveform fig(6). Left: Filtered estimate p(xt|v1:t). Middle:
exact smoothed posterior p(xt|v1:T ). Right: approximation of the smoothed posterior using a rank 30
approximation.
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Figure 8: Each x, y point in this graph corresponds to a value (rt,i, r̂t,i) where rt,i is the exact value
of the ith frequency component of the posterior vector p(rt|v1:T ), and r̂t,i is the corresponding rank
S = 30 approximation. The mean absolute deviation of the approximation is 0.002.

4 Conclusion

Formulated as a linear dynamical system, filtered inference in Harmonic models can be carried out
computationally efficiently using the Kalman Filter recursions, scaling as O(TH) where H are the
number of frequencies of the model and T is the length of the time series. However, the smoothed
posterior cannot be exactly computed in a reasonable time, with the exact computation scaling as
O(TH2). A naive low-rank approximation of the recursion also does not yield an effective approxima-
tion. However, our rotation-corrected low-rank approximation does provide an effective approximation
to smoothing, with complexity O(TSH) where S is the rank of the approximation. Typically, we have
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found that a rank of less than 20 is often sufficient for a reasonable approximation. This approxima-
tion technique can also be applied to more complex harmonic models (e.g. work deriving from [1])
and related probabilistic models in acoustics.
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