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Abstract

Although non-parametric tests have already been propasatdt pur-

pose, statistical significance tests for non-standard ameaqdifferent
from the classification error) are less often used in theditege. This

paper is an attempt at empirically verifying how these testapare with

more classical tests, on various conditions. More pregisising a very
large dataset to estimate the whole “population”, we areythe behav-
ior of several statistical test, varying the class unbaatite compared
models, the performance measure, and the sample size. Tiherena
sult is that providing big enough evaluation sets non-patemtests are
relatively reliable in all conditions.

1 Introduction

Statistical tests are often used in machine learning inra@assess the performance of
a new learning algorithm or model over a set of benchmarksd#tawith respect to the
state-of-the-art solutions. Several researchers (saadtamce [4] and [9]) have proposed
statistical tests suited for 2-class classification tagkere/the performance is measured in
terms of the classification error (ratio of the number of exand the number of examples),
which enables the use of assumptions based on the fact thatribr can be seen as a sum
of random variables over the evaluation examples. On ther didind, various research do-
mains prefer to measure the performance of their modelg atfferent indicators, such as
the F; measure, used in information retrieval [11], describedant®n 2.1. Most classical
statistical tests cannot cope directly with such measutkeassual necessary assumptions
are no longer correct, and non-parametric bootstrap-hastidods are then used [5].

Since several papers already use these non-parametsaq2edf], we were interested in
verifying empirically how reliable they were. For this poge, we used a very large text
categorization database (the extended Reuters datafetddposed of more than 800000
examples, and concerning more than 100 categories (eaomaot was labelled with one
or more of these categories). We purposely set aside thestapgrt of the dataset and
considered it as the whole population, while a much sma#etrgf it was used as a training
set for the models. Using the large set aside dataset patésted the statistical test in the
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same spirit as was done in [4], by sampling evaluation sets which we observed the
performance of the models and the behavior of the signifedest.

Following the taxonomy of questions of interest defined bgtt@rich in [4], we can dif-
ferentiate between statistical tests that analyze legrligorithms and statistical tests that
analyze classifiers. In the first case, one intends to be robymossible variations of the
train and evaluation sets, while in the latter, one intelodsriy be robust to variations of
the evaluation set. While the methods discussed in this pagyebe applied alternatively
to both approaches, we concentrate here on the second dhes m®re tractable (for the
empirical section) while still corresponding to real liféusitions where the training set is
fixed and one wants to compare two solutions (such as duriogn@etition).

In order to conduct a thorough analysis, we tried to vary treuation set size, the class
unbalance, the error measure, the statistical test itgtlfi (ts associated assumptions),
and even theloseness of the compared learning algorithms. This paper, and maeigely
Section 3, is a detailed account of this analysis. As it valsleen empirically, theloseness

of the compared learning algorithms seems to have an effettteoresulting quality of the
statistical tests: comparing an MLP and an SVM vyields leBabie statistical tests than
comparing two SVMs with a different kernel. To the best of kmowledge, this has never
been considered in the literature of statistical tests factine learning.

2 A Statistical Significance Test for the Difference off;

Let us first remind the basic classification framework in iahétatistical significance tests
are used in machine learning. We consider comparing two lmetland B on a two-class
classification task where the goal is to classify input exasp; into the corresponding
classy; € {—1,1}, using already trained modefs (x;) or fg(z;). One can estimate their
respective performance on some test data by counting théewai utterances of each
possible outcome: either the obtained class correspontiietdesired class, or not. Let
Nc 4 (resp. N, g) be the number of errors of moddl (resp. B) and N the total number
of test examples; The difference between modend B can then be written as
Ne.A - Ne,B

I (1)

The usual starting point of most statistical tests is to @efive so-callechull hypothesis
Hy which considers that the two models are equivalent, andwbefies how probable this
hypothesis is. Hence, assuming tliatis an instance of some random varialdewhich
follows some distribution, we are interested in

p(D| < |D]) <« 2)

wherea represents the risk of selecting thkernate hypothesis (the two models are dif-
ferent) while thenull hypothesis is in fact true. This can in general be estimated easily
when the distribution oD is known. In the simplest case, known as fineportion test,

one assumes (reasonably) that the decision taken by eactl moéach example can be
modeled by a Bernoulli, and further assumes that the erfal®anodels are independent.
This is in general wrong in machine learning since the evalosets are the same for both
models. WhenV is large, this leads to estimal®as a Normal distribution with zero mean
and standard deviatianp

D =

o= [T0=0) ®

whereC' = % is the average classification error. In order to get rid ofvtheng
independence assumption between the errors of the mokels|dNemar test [6] concen-
trates on examples which were differently classified by Wedcompared models. Follow-
ing the notation of [4], lefVy; be the number of examples misclassified by motiblt not



by model B and N the number of examples misclassified by maBdbut not by model
A. It can be shown that the following statistics is approxiney distributed as a2 with
1 degree of freedom:

(INo1 = Nig| — 1)

2= , 4
No1 + Ny @)

More recently, several other statistical tests have beepgsed, such as the 5x2cv
method [4] or the variance estimate proposed in [9], whictihlxtaim to better estimate
the distribution of the errors (and hence the confidence ersthtistical significance of
the results). Note however that these solutions assumehthatrror of one model is the
average of some random variable (the error) estimated dnesanple. Intuitively, it will
thus tend to be Normally distributed A5grows, following the central limit theorem.

2.1 TheF; Measure

Text categorization is the task of assigning one or sevatafjories, among a predefined set
of K categories, to textual documents. As explained in [11}, ¢exegorization is usually
solved asK 2-class classification problems, in a one-against-therstapproach. In this
field two measures are considered of importance:

Precision= L, and Recalk= L7
Nip + Nyp Np + Nyn

where for each categoty,, is the number of true positives (documents belonging to the
category that were classified as sucN),, the number of false positives (documents out
of this category but classified as being part of it) a¥g, the number of false negatives
(documents from the category classified as out of it). Pi@tiand Recall are effective-
ness measuresg. inside[0, 1] interval, the closer to 1 the better. For each catedory
Precision measures the proportion of documents of the class amonghteawnsidered
as such by the classifier and Regate proportion of documents of the class correctly
classified.

To summarize these two values, it is common to consider #oalled F; measure [12], of-
ten used in domains such as information retrieval, texigrateation, or vision processing.
I, can be described as the inverse of the harmonic mean of ereaisd Recall:

P 1 1 L 1 ! _ 2 Precision Recall 2Ny,
! 2 | Recall ~ Precision ~ Precision+ Recall — 2N;, + Ny, + Ny,
(®)

Let us consider two modeld and B, which achieve a performance measuredhy, and
F1 g respectively. The differencél; = Fy 4 — Fy p does not fit the assumptions of the
tests presented earlier. Indeed, it cannot be decompoted um over the documents of
independent random variables, since the numerator andetientnator ofdF; are non
constant sums over documents of independent random \esialBbr the same reasén,
while being a proportion, cannot be considered as a randoiabla following a Normal
distribution for which we could easily estimate the varianc

An alternative solution to measure the statistical sigaifiee ofdF; is based on the Boot-
strap Percentile Test proposed in [5]. The idea of this te&t approximate the unknown
distribution ofd F; by an estimate based on bootstrap replicates of the data.

2.2 Bootstrap Percentile Test

Given an evaluation set of siZ€, one drawswith replacement, N samples from it. This
gives the first bootstrap replicat®, over which one can compute the statistics of interest,



dF; p,. Similarly, one can create as many bootstrap replicéigsas needed, and for
each, computeF; z . The highern is, the more precise should be the statistical test.
Literature [3] suggests to create at Ieél%treplicates wherey is the level of the test; for
the smallesty we considered (0.01), this amounts to 5000 replicates.el'5@80 estimates
dF; p, represent the non-parametric distribution of the randoriabie dF;. From it, one
can for instance consider an interyal b] such thaip(a < dF; < b) = 1 — « centered
around the mean gf(dF;). If O lies outside this interval, one can say thd@ = 0 is not
among the most probable results, and thus reject the nutithggis.

3 Analysis of Statistical Tests

We report in this section an analysis of the bootstrap peitedrst, as well as other more
classical statistical tests, based on a real large datatstirst describe the database itself
and the protocol we used for this analysis, and then prowdelts and comments.

3.1 Database, Models and Protocol

All the experiments detailed in this paper are based on thg l#ge RCV1 Reuters
dataset [10], which contains up to 806,791 documents. Wdetivit as follows: 798,809
documents were kept aside and any statistics computedtasesetD;,.,,. was considered
as being theruth (ie a very good estimate of the actual value); the remaining TR&2-
ments were used as a training $&t. (to train modelsA and B). There was a total of 101
categories and each document was labeled with one or monesé tategories.

We first extracted the dictionary from the training set, rgatbstop-words and applied
stemming to it, as normally done in text categorization. Fedecument was then repre-
sented as a bag-of-words using the usyadlf coding. We trained three different models:
a linear Support Vector Machine (SVM), a Gaussian kernel S&ihdl a multi-layer percep-
tron (MLP). There was one model for each category for the SVawsl a single MLP for
the 101 categories. All models were properly tuned usingsk@lidation on the training
set.

Using the notation introduced earlier, we define the follmywompeting hypotheses:

Hy : |dFy| = 0 and Hy : |dFy| > 0. We further define the level of the test

a = p(RejectHy|Hy), wherea takes on values 0.01, 0.05 and 0.1. Table 1 summarizes
the possible outcomes of a statistical test. With that reispejectingH, means that one is
confident with(1 — «) - 100% that Hy is really false.

Table 1: Various outcomes of a statistical test, with- p(Type | errop.
Decision
Truth || Rejectd, [ AcceptHy

Hy Type | error OK
H, OK Type Il error

In order to assess the performance of the statistical testsedr Type | error, also called
Size of the test, and on their Powerl— Type Il error, we used the following protocol.

For each category;, we sampled oveb,,.,.., S (500) evaluation set®;, of N documents,
ran the significance test over eabtj, and computed the proportion of sets for whil
was rejected given thdf, was true ovelD,,... (resp. Hy was false oveD;,....), which we
noteay,.. (resp. ).

We usedv;... as an estimate of the significance test’s probability of mgla Type | error



andr as an estimate of the significance test’s Power. Whep is higher than the fixed
by the statistical test, the test underestimates Type f,emtich means we should not rely
on its decision regarding the superiority of one model olierdther. Thus, we consider
that the significance test fails. On the contrary,,. < « Yields a pessimistic statistical
test that decides correctlfy more often than predicted.

Furthermore we would like to favor significance tests withghhr, since the Power of the
test reflects its ability to rejedily, when Hj is false.

3.2 Summary of Conditions

In order to verify the sensitivity of the analyzed statiatitests to several conditions, we
varied the following parameters:

o the value ofo: it took on values in{0.1,0.05,0.01};

¢ the two compared models: there were three models, two of e of the same
family (SVMs), hence optimizing the same criterion, white tthird one was an
MLP. Most of the times the two SVMs gave very similar resufpspbably because
the optimal capacity for this problem was near linear), w/kiile MLP gave poorer
results on average. The point here was to verify whetheretentas sensitive to
thecloseness of the tested models (although a more formal definitiool o$eness
should certainly be devised);

o the evaluation sample size: we varied it from small size®)1@ to larger sizes
(6000) to see the robustness of the statistical test to it;

¢ the class unbalance: out of the 101 categories of the probiewst of them re-
sulted in highly unbalanced tasks, often with a ratio of 1A8® between the
two classes. In order to experiment with more balanced tagksrtificially cre-
atedmeta-categories, which were random aggregations of normal categories that
tended to be more balanced,;

o the tested measure: our initial interest was to directly dé3, the difference of
Fy, but given poor initial results, we also decided to ass&ssrr, the differ-
ence of classification errors, in order to see whether the tesre sensitive to the
measure itself;

o the statistical test: on top of the bootstrap percentilg 188 also analyzed the
more classicaproportion test and McNemar test, both of them only ondCerr
(since they were not adapteddé?).

3.3 Results

Figure 1 summarizes the results for the Size of the test astgn All graphs showy,.,.,
the number of times the test rejectéy while Hy was true, for a fixedv = 0.05, with
respect to the sample size, for various statistical testdested measures.

Figure 2 shows the obtained results for the Power of the stghates. The proportion of
evaluation sets over which the significance test (wite- 0.05) rejectedH, when indeed
H, was false, is plotted against the evaluation set size.

Figures 1(a) and 2(a) show the results for balanced dataréxhe positive and negative
examples were approximatively equally present in the ettedn set) when comparing two
different models (an SVM and an MLP).

Figures 1(b) and 2(b) show the results for unbalanced datawbmparing two different
models.

Figures 1(c) and 2(c) show the results for balanced data wbeparing two similar mod-
els (alinear SVM and a Gaussian SVM) for balanced data, aatififigures 1(d) and 2(d)



show the results for unbalanced data and two similar models.

Note that each point in the graphs was computed over a ditfetember of samples, since
eg over the (500 evaluation sets 101 categories) experiments only those for whig¢h
was true inD;,.,,. were taken into account in the computatiornef,,..

When the proportion ofi, true in D, equals 0 esp. the proportion o, false inD;,...
equals 0)¢v-. (resp. ) is set to -1. Hence, for instance the first poirtsQ, . . ., 1000})

of Figures 2(c) and 2(d) were computed over only 500 evalnaets on which respectively
the same categorization task was performed. This makes gwsts unreliable. See [8]
for more details.

For each of the Size’s graphs, when the curves are ové).thdine, we can state that the
statistical test is optimistic, while when it is below thedj the statistical test is pessimistic.
As already explained, a pessimistic test should be favotezhever possible.

Several interesting conclusions can be drawn from the aisabf these graphs. First of
all, as expected, most of the statistical tests are poblitimuenced by the size of the
evaluation set, in the sense that their,,. value converges ta for large sample size's

On the available results, the McNemar test and the bootssapverlCerr have a similar
performance. They are always pessimistic even for smalliatian set sizes, and tend to
the expectedv values when the models compared on balanced tasks are ithssifihey
have also a similar performance in Power over all the diffecenditions, higher in general
when comparing very different models.

When the compared models are similar, the bootstrap testddvehas a pessimistic be-
havior even on quite small evaluation sets. However, whemtbdels are really different
the bootstrap test ovetF; is on average always optimistic. Note nevertheless that mos
of the points in Figures 1(a) and 1(b) have a standard dewiatid, over the categories,
such thatoy,... — std < « (see [8] for more details). Another interesting point isttima
the available results for the Power, g, 's bootstrap test have relatively high values with
respect to the other tests.

The proportion test have in general, on the available rgsalimore conservative behavior
than the McNemar test and tlhi€'err bootstrap test. It has more pessimistic results and
less Power. It is too often prone to “Accefily”, ieto conclude that the compared models
have an equivalent performance, whether it is true or nds fEsults seem to be consistent
with those of [4] and [9]. However, when comparidgse models in a small unbalanced
evaluation set (Figure 1(d)), this conservative behawarait present.

To summarize the findings, the bootstrap-based statisésabverdCerr obtained a good
performance in Size comparable to the one of the McNemainteditconditions. However
both significance test performances in Power are low evebifpevaluation sets in par-
ticular when the compared models are close. The bootstiapebstatistical test ovei;
has higher Power than the other compared tests, howeversit etemphasized that it is
slightly over-optimistic in particular for small evaluati sets. Finally, when applying the
proportion test over unbalanced data étwse models we obtained an optimistic behavior,
untypical of this usually conservative test.

4 Conclusion

In this paper, we have analyzed several parametric and ammetric statistical tests for
various conditions often present in machine learning taisktuding the class balancing,
the performance measure, the size of the test sets, amtbteaess of the compared mod-

'Note that the same is true for the variancewf,.(— 0), and this for any of thex values tested.
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Figure 1: Several statistical tests comparing Linear SVMWS or vs RBF SVM. The
proportion of Type | error equals -1, in Figure 1(b), wherréwas no data to compute the
proportion {e Hy was always false).

els. More particularly, we were concerned by the quality afi4parametric tests since in
some cases (when using more complex performance measulessh, ), they are the
only available statistical tests.

Fortunately, most statistical tests performed reasonably (in the sense that they were
more often pessimistic than optimistic in their decisioasyl larger test sets always im-
proved their performance. Note however thatdéi; the only available statistical test was
too optimistic although consistant for different levelsn Anexpected result was that the
rather conservative proportion test used over unbalanatadfdrclose models yielded an
optimistic behavior.

It has to be noted that recently, a probabilistic intergretaof F; was suggested in [7],
and a comparison with bootstrap-based tests should bewltitén
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