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Abstract. In this report, we propose a discriminative decoder for the recognition of phoneme
sequences, i.e. the identification of the uttered phoneme sequence from a speech recording. This
task is solved as a 3 step process: a phoneme classifier first classifies each accoustic frame, then
temporal consistency features (TCF) are extracted from the phoneme classifier outputs, and finally
a sequence decoder identifies the phoneme sequence according to the TCF.
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1 Notation

The training data consists of a set of sequences of acoustic vectors:

X = (X1, . . . , X |X |)

along with the corresponding phoneme labels:

Y = (Y 1, . . . , Y |X |).

The labels are considered to be aligned in the sense that an acoustic sequence X i and Y i have the
same length |X i| and the jth vector xi

j of X i is assigned to the phoneme class yi
j . In the following,

the number of phonemes is denoted Nphone, i.e. ∀i, j, yi
j ∈ {1, . . . , Nphone}.

2 Phoneme Classification

The phoneme classifier is a parametric function fθ which takes as input a frame x and outputs a
Nphone-dimensional vector denoted

fθ(x) = [fθ(x, 1), . . . , fθ(x, Nphone)].

Ideally, fθ should classify each frame x such that the true phoneme y is assigned the highest output,
i.e.

∀p 6= y, fθ(x, y) − fθ(x, p) > 0. (1)

The parameters θ of f are hence selected to minimize the number of non respected constraints in (1):

C
0/1

phone =
∑

i,j,p

C0,1
phone(x

i
j , y

i
j , p)

where

C0,1
phone(x, y, p) = I{p 6= y}I{fθ(x, y) − fθ(x, p) < 0}

and I{·} is the indicator function.
This problem can be solved by applying stochastic gradient descent to the following upper bound

of C
0/1

phone:

Cphone =
∑

i,j,p

Cphone(x
i
j , y

i
j , p) (2)

where

Cphone(x, y, p) = I{p 6= y}|1− fθ(x, y) + fθ(x, p)|+

and z → |z|+ is z if z > 0 and 0 otherwise. Cphone is actually an upper bound of C
0/1

phone as,

∀z ∈ R, I{z < 0} ≤ |1 − z|+.

Moreover, if there exists θ∗ such that Cphone = 0, then θ∗ is a global minimum of both Cphone and

C
0/1

phone (with C
0/1

phone = 0). This means that, if the gradient descent procedure identifies θ∗, all the
constraints in (1) will be verified.

The cost Cphone is actually similar to the optimized criterion in multi-class Support Vector Ma-
chine (SVM) [2]. However, other models than SVM may also be trained with this type of costs, for
instance, fθ could be a Multi-Layer Perceptron (MLP), see e.g. [1, 3] . In fact, the parameters of any
differentiable function fθ can be identified through (stochastic) gradient descent over Cphone.
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3 Temporal Consistency Features

The phoneme classifier does not model temporal dependencies between frames. In order to recover
some temporal context, we define simple binary features that measure the temporal consistency of
the phoneme classifier output, such features being then used as input for the decoder (see Section 4).
The intuition behind Temporal Consistency Features (TCF) relies on two simple observations: first,
phonemes generally last longer than a single frame [4]. Second, even when the phoneme classifier fails
to correctly classify one frame (i.e. assign the highest output to the correct class), the correct phoneme
is generally among the best outputs. Hence, TCF features measure whether a phoneme consistently

appear within the n-best classifier outputs for a certain duration d, as explained below.
Given a phoneme p, an integer n < Nphone, a duration d and a ratio α, the binary feature φp,n,d,α

is defined as follows:

∀xi
j , φp,n,d,α(xi

j) =

{

1 if (i) is verified
0 otherwise

where condition (i) corresponds to:

“In X i, there exists a subsequence S of duration d containing xi
j

such that the phoneme p is among the n-best phonemes according
to fθ for at least α percent of the frames of S.”

The TCF features are then defined relying on φ for a large set of triplets,

T =
{

(n1, d1, α1), . . . , (n|T |, d|T |, α|T |)
}

,

this set being a-priori chosen using prior knowledge about the phoneme duration and the generalization
performance of fθ. Precisely, given T , the TCF vector Φ(xi

j) is defined for each frame xi
j as a

Nphone · |T |-dimensional vector whose components are
{

φp,n,d,α(xi
j), ∀(p, n, d, α) ∈ {1, . . . , Nphone} × T

}

.

Such a vector is hence high dimensional (i.e. Φ(xi
j) ∈ {0, 1}Nphone·|T |) but sparse (i.e. most φp,n,d,α(xi

j)
are null). These TCF features hence aim at detecting complex temporal patterns through the use of
many simple binary features. Such approaches have already shown to be effective in other domains,
e.g. Haar-like features allow to model complex spacial patterns through the use of many simple binary
pattern detectors [7].

4 A Discriminative Decoder

The sequence classifier G takes as input a sequence of TCF vectors

Zi = (zi
1, . . . , z

i
|Xi|),

where ∀i, j, zi
j = Φ(xi

j), and a sequence of phonemes P ,

P = (p1, . . . , p|Xi|),

where ∀j, pj ∈ {1, . . . , Nphone}, and outputs a real value:

Gθ′(Zi, P ) =

|Xi|
∑

j=1

gθ′(zi
j , pj). (3)

Ideally, Gθ′ should be such that, for any sequence Z i, the output Gθ′(Zi, Y i) for the true phoneme
sequence Y i is higher than for any other phoneme sequence,

∀i, ∀P 6= Y i, Gθ′(Zi, Y i) > Gθ′(Zi, P ), (4)
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Hence, the parameters θ′ are selected to minimize the amount of non-respected constraints in (4):

C
0/1

decoder =
∑

i

C
0/1

decoder(Z
i, Y i) (5)

where

C
0/1

decoder(Z
i, Y i) =

1

|W i|

∑

P∈W i

I{Gθ′(Zi, Y i) − Gθ′(Zi, P ) < 0}, (6)

W i corresponding to the set of wrong phoneme sequences, i.e.

W i = {1, . . . , Nphone}
|Xi| \ {Y i}.

The normalization with respet to W i further hypothesizes that each training sequence X i should

led to the same penalty (i.e. C
0/1

decoder(Z
i, Y i) = 1) when none of its corresponding constraints are

respected.
As for the phoneme classifier, we propose to select θ′ through the minimization of an upper bound

of C
0/1

decoder using stochastic gradient descent. For that purpose, we introduce the function Hθ′ which
is defined as follows,

Hθ′(Zi, P ) =

|Xi|
∑

j=1

hθ′(zi
j , pj).

where,

hθ′(zi
j , pj) = gθ′(zi

j , pj) − I{pj = yi
j}.

Then, we select θ′ through the minimization of

Cdecoder =
∑

i

1

|W i|

∑

P∈W i

|Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+ (7)

This cost Cdecoder is actually an upper bound of C
0/1

decoder as shown in the Appendix A and the

minimization of C
0/1

decoder can be performed through the minimization of Cdecoder. However, this
optimization problem may rise some tractability issues as the sum over W i could hardly be performed
for long sequences (i.e. this set grows exponentially1 with sequence length, |W i| = (Nphone)

|Xi| − 1).
Hence we introduce the following upper bound of Cdecoder,

Cmax
decoder =

∑

i

| max
P∈W i

Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+

which also bounds C
0/1

decoder by transitivity. Cmax
decoder is hence much easier to compute as the identifi-

cation of the max over W i only involves a best-path-decoding whose cost grows linearly with respect
to sequence length. Moreover, like for the phoneme classifier cost, if there exists θ∗ s.t. Cmax

decoder = 0,

then θ∗ is a global minimum of both Cmax
decoder and C

0/1

decoder (with C
0/1

decoder = 0). This means that if
this optimum is identified during training, all the constraints in (4) will be verified.

5 Incorporating Phoneme Transitions

Like in a Hidden Markov Model (HMM) [4], it may be desirable to also penalize or promote some
phoneme transitions in the decoder. Moreover, it may also be interesting to model phoneme duration.

1The cost of the computation of the gradient ∂Cdecoder

∂θ′
(Zi, Y i) may however be lower than O(|W i|) when efficient

dynamic programming techniques are used.
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These two characteristics can easily be incorporated into the model described above. For that purpose,
we modify the function Gθ′ as follows:

Gθ′(Zi, P ) =

|Xi|
∑

j=1

gfull
θ′ (zi

j , pj) (8)

=

|Xi|
∑

j=1

ge
θ′(zi

j , pj) + I{pj−1 6= pj} ·
(

gt
θ′(pj−1, pj) + gd

θ′(pj−1, dj−1)
)

where dj−1 corresponds to the duration of phoneme pj−1 in the sequence p (i.e. the length of the
longuest homogene sequence preceeding pj). In this definition (8), the function ge

θ′ plays the same
role as g in (3) while the functions gt

θ′ , gd
θ′ are respectively used to model phoneme transition and

phoneme duration. This modified model can then be trained with the cost Cmax
decoder, this only requires

to redefine h as

hfull
θ′ (zi

j , pj) = gfull
θ′ (zi

j , pj) − I{pj = yi
j}.

Like for the phoneme classifier, the parameterization of the functions ge
θ′ , gt

θ′ , gd
θ′ are not given.

Similarly to fθ, these functions should simply be differentiable in their parameters in order to apply
gradient descent. A possible choice could be, for instance, to select MLPs for ge and gd and a table
for gt.

6 Extension to Weakly Aligned Sequences

The presented approach requires training acoustic sequences to be labeled with aligned phoneme
sequence, i.e. the phoneme sequence provided should provide phoneme boundary with a resolution
of one frame. However, such an alignment can hardly be obtained automatically [5] and is also very
difficult to label manually. Hence, we propose an extension of the above approach for weakly-aligned

sequences. In the following, we first define weak-alignment and we then describe how the proposed
approach can be trained from such data.

The concept of weak-alignment considers that phoneme boundaries do not precisely occur between
two frames but during several frames, as shown in Figure 1. Hence, a weakly aligned phoneme sequence
Y is a succession of stable sub-sequences Si and transitional sub-sequences Ti, i.e.

Y = S0(T1S1) . . . (TkSk)

where k ≥ 0. Stable and transitional frames are denoted with the following formalism,

∀j, yj = (yj,1, yj,2),

which either corresponds to the phoneme yi
j,1 if yj,1 = yj,2 or to the transition yj,1 → yj,2 otherwise.

According to such definition, the weakly align sequence Y hence encompasses all aligned sequences
Y aligned such that, the phoneme labels are identical for the stable sub-sequences, i.e.

∀i, ∀j ∈ Si, y
aligned
j = yj,1 (9)

and, the phoneme labels either corresponds to yj,1 or yj,2 for transitional sub-sequences with the
additional constraint that each of these subsequences contains only a single transition which is yj,1 →
yj,2, i.e.

∀i, ∃t ∈ Ti s.t. ∀j ∈ Ti,

{

j < t ⇒ yaligned
j = yj,1

j ≥ t ⇒ yaligned
j = yj,2

(10)

We now present how the phoneme classifier and the sequence decoder can be adapted to be trained
from such data.
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Figure 1: An example of weak alignment: this weak alignment specifies that the transition between
phoneme P1 and phoneme P2 is located after frame 6 and before frame 10, and hence 4 frame-level
alignments are possible according to such information.

6.1 Phoneme Classifier Training

Weak alignment specifies that each frame xi
j should be classified either as yi

j,1 or as yi
j,2. Therefore,

the phoneme classifier can be trained such that its outputs for the two possible true phonemes would
ideally be higher than those of any other phoneme. Consequently, a cost to minimize can be

C
0/1

phone =
∑

i,j,p

C0,1
phone(x

i
j , y

i
j , p)

where
C0,1

phone(x, y, p) =

I{p /∈ y} (I{fθ(x, y1) − fθ(x, p) < 0}+ I{fθ(x, y2) − fθ(x, p) < 0})
.

We then similarly introduce Cphone which bounds C0,1
phone, i.e.

Cphone =
∑

i,j,p

Cphone(x
i
j , y

i
j , p)

where
Cphone(x, y, p) =

I{p /∈ y} (|1 − fθ(x, y1) + fθ(x, p)|+ + |1 − fθ(x, y2) + fθ(x, p)|+)
.

Stochastic Gradient Descent can then be applied to select the parameter vector θ which minimizes
Cphone.

6.2 Sequence Decoder Training

As explained above, each weakly aligned sequence Y i corresponds to a set of frame-level assigned
sequences (i.e. the set of sequences whose phoneme boundaries are located within the ranges specified
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by Y i). If this set is referred to as Ri, the phoneme decoder Gθ′ should identify a phoneme sequence
P R ∈ Ri from the TCF sequence Zi. In other words, the function P → Gθ′(Zi, P ) should be maximal
for a sequence P R ∈ Ri. This means that, our goal is to find the parameters θ′ which minimizes

C
0/1

decoder =
∑

i

C
0/1

decoder(Z
i, Y i) (11)

where

C
0/1

decoder(Z
i, Y i) =

1

|W i|

∑

P W ∈W i

I{ max
P R∈Ri

Gθ′(Zi, P R) − Gθ′(Zi, P W ) < 0}, (12)

and W i corresponds to the set of wrong phoneme sequences, i.e.

W i = {1, . . . , Nphone}
|Xi| \ Ri.

For that purpose, we redefine Cdecoder with the same approach as above,

Cdecoder =
∑

i

|Hθ′(Zi, P W ) − max
P R∈Ri

Hθ′(Zi, P R)|+

where H is defined as above,

Hθ′(Zi, P ) =

|Xi|
∑

j=1

hθ′(zi
j , pj).

and h is redefined to take into account weak alignement labels. In fact, we define hθ′(zi
j , pj) differently

depending whether pj is located in a stable or a transitional subsequence of Y i. If j belongs to a
stable subsequence S,

hθ′(zi
j , pj) = gfull

θ′ (zi
j , pj) − I{pj = yi

j,1}.

If j belongs to a transitional subsequence T ,

hθ′(zi
j , pj) = gfull

θ′ (zi
j , pj)

−I{pj = yi
j,1 and ntrans(y

i
j,1, P, bT , j) = 0}

−I{pj = yi
j,2 and ntrans(y

j
j,2, P, bT , j) ≤ 1}

where bT corresponds to the starting point of the transitional phase T and ntrans(y
i
j,1, P, bT , j) mea-

sures the number of transitions to phoneme yi
j,1 between bT and j in the sequence P , i.e.

ntrans(y
i
j,1, P, bT , j) =

j
∑

k=bT +1

I{pk−1 6= yi
j,1 and pk = yi

j,1}.

As showing that Cdecoder ≥ C
0/1

decoder is less obvious than for the phoneme classifier cost, a proof is
presented in the Appendix A. Finally, the cost Cdecoder is itself bounded by,

Cmax
decoder =

∑

i

| max
P W ∈W i

Hθ′(Zi, P W ) − max
P R∈Ri

Hθ′(Zi, P R)|+.

7 Conclusions

In this report, we presented a discriminative approach for the recognition of phoneme sequences.
This task has been divided into two steps: frame classification and sequence decoding. For frame
classification, we introduced a classifier which is trained with a cost inspired by multi-class SVM
criterion. For sequence decoding, a discriminative approach has also been adopted, the objective
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being to train a model G such that, for any accoustic sequence X and any phoneme sequence P ,
G(X, P ) is maximal (i.e. G(X, P ) = maxS G(X, S)) when P actually corresponds to the true phoneme
sequence of X . Moreover, we have introduced the Temporal Consistency Features that should allow
the decoder to be more robust with respect to frame classification errors. The underlying idea is to
feed the decoder with features which do not only rely on the descision of the phoneme classifier for a
single frame but which also depend on the neighboring frame descisions.

This proposed approach is hence an alternative to the state-of-the-art Hidden Markov Model.
Compared to the HMM, this model has two major differences, discriminative training criterion and
non-probabilistic parameterization, which is advantageous for several theoritical reasons [6]. However,
even if it is theoretically attractive, the proposed approach can only be validated through empirical
comparisons with respect to HMM. Hence, our future works will focus on such evaluations over bench-
mark datasets.
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A Appendix: Bounding the Decoder 0/1 Loss

In this section, we want to show that Cdecoder ≥ C
0/1

decoder. There are slight differences in this proof
regarding whether training phoneme labels are provided as aligned sequences or weakly-aligned se-
quences, hence we present these two cases successively.

A.1 Aligned Phoneme Sequence Case

We should show that
Cdecoder ≥ C

0/1

decoder.

According to the definition of both costs, it would actually be sufficient to show that:

∀i, ∀P ∈ W i,
|Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+ ≥ I{Gθ′(Zi, Y i) − Gθ′(Zi, P ) < 0}.

For that purpose, we rewrite the right-hand side of the equation and then bound it: given i and
P ∈ W i,

|Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+

=
∣

∣

∣

∑|Xi|
j=1

hθ′(zi
j , pj) − hθ′(zi

j , y
i
j)

∣

∣

∣

+

=
∣

∣

∣

∑|Xi|
j=1

gθ′(zi
j , pj) − gθ′(zi

j , y
i
j) −

∑|Xi|
j=1

(

I{pj = yi
j} − 1

)

∣

∣

∣

+

=
∣

∣

∣

∑|Xi|
j=1

(

1 − I{pj = yi
j}

)

− G(Zi, Y i) + Gθ′(Zi, P )
∣

∣

∣

+

As the sequence P belongs to W i, P 6= Y i. This means that P differs from Y i on at least one of its
phoneme label, and hence,

|Xi|
∑

j=1

(1 − I{pj = yi
j} − 1) ≥ 1.

This inequality leads to the following bound

|Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+ ≥
∣

∣1 − G(Zi, Y i) + Gθ′(Zi, P )
∣

∣

+

since x → |x|+ is an increasing function over R. Then, we can conclude that

|Hθ′(Zi, P ) − Hθ′(Zi, Y i)|+ ≥ I{Gθ′(Zi, Y i) − Gθ′(Zi, P ) < 0}

since ∀x ∈ R, |1 − x|+ ≥ I{x < 0}.

A.2 Weakly Aligned Phoneme Sequence Case

Similary to the above proof, we want to show that

∀i, ∀P W ∈ W i,

|Hθ′(Zi, P W ) − max
P R∈Ri

Hθ′(Zi, P R)|+ ≥ I{ max
P R∈Ri

Gθ′(Zi, P R) − Gθ′(Zi, P W ) < 0}. (13)

which is a sufficient condition to Cdecoder ≥ C
0/1

decoder according to the definitions of both cost. This
proof is divided in two steps: first, we show that

∀(P W , P R) ∈ W i × Ri,

|Hθ′(Zi, P W ) − Hθ′(Zi, P R)|+ ≥ I{Gθ′(Zi, P R) − Gθ′(Zi, P W ) < 0} (14)

and then,
arg max

P R∈Ri
Hθ′(Zi, P R) = arg max

P R∈Ri
Gθ′(Zi, P R). (15)

These two propositions would then obviously imply (13).
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Proof of (14). We first remark that, given a phoneme sequence P ,

∀j, hθ(z
i
j , pj) = gθ(z

i
j , pj) − 1 ⇔ P ∈ Ri.

This proposition is also equivalent to

∃j s.t. hθ(z
i
j , pj) = gθ(z

i
j , pj) ⇔ P ∈ W i.

since Ri and W i are complementary sets. This proposition then leads to, given (P W , P R) ∈ W i ×Ri,

{

Hθ′(Zi, P R) = Gθ′(Zi, P R) − |Zi|
Hθ′(Zi, P W ) ≥ Gθ′(Zi, P W ) − |Zi| + 1.

This implies that

Hθ′(Zi, P W ) − Hθ′(Zi, P R) ≥ 1 + Gθ′(Zi, P W ) − Gθ′(Zi, P R).

As x → |x|+ is an increasing function, we have

|Hθ′(Zi, P W ) − Hθ′(Zi, P R)|+ ≥ |1 + Gθ′(Zi, P W ) − Gθ′(Zi, P R)|+

which leads to

|Hθ′(Zi, P W ) − Hθ′(Zi, P R)|+ ≥ I{Gθ′(Zi, P R) − Gθ′(Zi, P W ) < 0}

since ∀x, |1 − x|+ ≥ I{x < 0}.

Proof of (15). As mentioned above, we have

∀P R ∈ Ri, Hθ′(Zi, P R) = Gθ′(Zi, P R) − |Zi|,

which implies that the maximum of P → Hθ′(Zi, P ) and P → Gθ′(Zi, P ) over Ri is reached at the
same point.


