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Abstract. Biometric authentication performance is often depicted by a DET curve. We show

that this curve is dependent on the choice of samples available, the demographic composition

and the number of users specific to a database. We propose a two-step bootstrap procedure to

take into account of the three mentioned sources of variability. This is an extension to the Bolle

et al.’s bootstrap subset technique. Preliminary experiments on the NIST2005 and XM2VTS

benchmark databases is encouraging, e.g., the average result across all 24 systems evaluated on

NIST2005 indicates that one can predict, with more than 75% of DET coverage, an unseen DET

curve with 8 times more users. Furthermore, our finding suggests that with more data available,

the confidence intervals become smaller and hence more useful.
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1 Introduction

Biometric authentication is a process of verifying an identity claim using a person’s behavioral and
physiological characteristics. There are several factors that can affect a biometric system’s perfor-
mance. Some of these factors are the deformable nature of biometric traits, corruption by envi-
ronmental noise, variability of biometric traits over time, the state of users (especially behavioral
biometrics) and occlusion by the user’s accessories. As a consequence, even if two biometric samples
are acquired from the same user, the system cannot produce exactly the same output score. Therefore,
when assessing the performance, the uncertainty introduced by these numerous and often uncontrolled
distortions has to be taken into account.

A biometric authentication system can make two types of error, i.e., falsely rejecting a genuine
user (client) or falsely accepting an impostor. The respective error rates are called False Acceptance
Rate (FAR) and False Rejection Rate (FRR)1. These two measures are fundamental building blocks
to many visualizing tools. The most commonly used ones are Receivers’ Operating Cost (ROC) and
Decision Error Trade-off (DET) curves [12].

The goal of this paper is to establish a confidence interval around a DET curve by explicitly
considering the correlation structure of match scores, i.e., the fact that match scores resulting from
multiple attempts of a person making the same identity claim are correlated, regardless of whether the
person is a client or an impostor. Confidence interval estimation techniques developed in the medical
field, e..g, [9] and in machine learning, e.g., [10, 11], cannot be used in biometric authentication
because the correlation structure is person-dependent. In [4], a bootstrap algorithm that exploits this
person-dependent correlation structure was proposed to estimate the confidence of FAR given an FRR
of interest, or the confidence of FRR given an FAR of interest. This algorithm was called “bootstrap
subset” because it considers only a subset of scores associated to a claimed identity. For clarity, we
also refer to this bootstrap as a user-specific bootstrap to distinguish it from the conventional sample
bootstrap which does not take the claimed identity associated to each score into consideration. The
bootstrap subset algorithm is better because it does not systematically underestimate the confidence
interval as would any conventional parametric or non-parametric algorithm.

In this paper, we propose another bootstrap-based algorithm that can be seen as an improvement
of the bootstrap subset in the following way:

• Joint FAR-FRR estimate of confidence interval: Instead of the point-wise estimation of
confidence interval, i.e., fix FAR and then estimate the confidence interval of FRR, and vice-
versa, we jointly estimate the FAR-FRR confidence interval of the whole DET curve.

• Consideration of the effect of sample variability: While the person-dependent variability
was considered in [4], the sample variability, i.e., the choice of samples (given that the population
of users are fixed), was not considered.

Our goal of estimating the confidence of the whole DET curve is so that one can predict a future DET
curve that is different from the one available in the following ways:

1. A different sample set

2. A larger population size

3. A completely different population of users

1In the fingerprint and face communities, FAR is known as False Match Rate whereas FRR is False Non-Match

Rate [15, Chap. 6 pg. 50]. Furthermore, client accesses are considered match (or mated-pair) accesses and impostor
accesses are non-match (or non-mated pair) accesses. In the speaker verification community (most represented in
the NIST evaluation), FAR is known as False Alarm Rate and FRR is miss detection rate [15, Chap. 8 pg. 259].
Furthermore, clients are called target whereas impostors are sometimes referred to as non-targets. There exists two
other error types where a system fails to give any output. They are Failure To Capture (FTC) and Failure To Enroll
(FTE). These errors are not considered in this paper because we are concerned with algorithmic evaluation and not
operational evaluation. Our choice is not a weakness because it is possible to modify FRR to take account of FTC and
FTE.
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Ideally, this future DET curve should be completely covered by the estimated confidence bound and
the confidence bound should be as narrow as possible to be useful. It is conventional to measure
the quality of prediction using “coverage”, e.g., [11]. Coverage is the proportion of a future DET
curve that is completely covered by the confidence bound estimated from a present DET curve with
variation due to one or more of the three factors just mentioned above. Note that in [4], the quality
of confidence bound as a performance predictor was not the principal subject of investigation while
it is our focus here. In [6], a semi-parametric approach that considers only the first two factors was
proposed. The third factor is extremely important following the study in [7], which shows that users
in a database exhibit very different behavior with respect to a biometric system. For instance, adding
a vulnerable user, also known as a lamb [7], will quickly increase the error rate of a system. Similarly,
adding a strong impostor (a wolf) will degrade the system performance. This issue is not the utmost
concern when comparing two systems evaluated on the same sets of users, i.e., from the same database.
It becomes a concern when different users are involved. The latter subject is our focus.

The original contribution of this paper is to propose a two-level bootstrap: a user-specific bootstrap
followed by a user-constrained sample bootstrap. We show that the proposed algorithm can predict a
future DET with reasonable accuracy, i.e., two thirds of coverage in the worst case scenario.

This paper is organized as follows: Section 2 presents the score data set to be used. Section 3
describes four available choices of bootstrap algorithm for generating a pool of DET curves. Section 4
addresses the issue of defining a confidence region given a pool of DET curves. Section 5 presents
some experimental results. Finally, Section 6 contains some conclusions and future works.

2 Datasets

The NIST2005 data set [13] contains 24 verification systems which are all evaluated on a common
database with a common protocol. This database contains mismatched training and test conditions.
In this study, we only have access to the match scores, the true identity, the claimed identity, the
hypothesized type of handset and the hypothesized gender information2. Since the current study
does not take account of such mismatched conditions, a subset of this data sets was used such that
it contains only females using land line handsets. This results in a subset of 124 user models, 11992
impostor accesses and 1172 genuine accesses. Therefore, on average, there are 96 impostor attempts
and 9 genuine attempts per user in the evaluation. The 24 verification systems are based on Gaussian
Mixture Models (GMMs), Neural Network-based classifiers and Support Vector Machines. A few
systems are actually combined systems using different levels of speech information. Some systems
combine different types of classifier but each classifier use the same feature sets. In accordance with
the NIST evaluation plan, the 24 systems are enumerated from 1 to 24 instead of using the actual
system name.

3 Towards Establishing Confidence Bound via Bootstrap

In most biometric authentication systems, decisions are made by comparing a score y against a
threshold ∆. The decision function is defined as:

decision∆(y) =

{

accept if y > ∆
reject otherwise.

(1)

A useful notation is to introduce the score y given the true class label k to which the biometric feature
vector belongs, i.e., yk ≡ y|k. Hence, a false acceptance is characterized by “accept = decision∆(yI)”
whereas a false rejection is characterized by “reject = decision∆(yC)”.

2The last two pieces of information are not available in the database so they are estimated using a gender and handset
classifier.
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Let Y k
j,m be the variable of the match score y due to the m-th access claim of identity j ∈

{1, . . . , J} ≡ J given that the match is due to the class label k (client or impostor) and m ∈
{1, . . . ,Mk

j } ≡ Mk
j , i.e., there are Mk

j accesses in the set Mk
j .

We also introduce another variable, Y k,′
m where m ∈ {1, . . . ,Mk}. While both Y k

j,m and Y k,′
m are

two ways of specifying the same score data, the difference between them is that the former takes into
consideration of the user index whereas the latter does not. Therefore, Mk ≫ Mk

j . For example, in

the NIST database that we are using, the average values of MC
j and M I

j (across all j) are respectively

Ej [M
C
j ] = 9 and Ej [M

I
j ] = 96 and the number of users, J , is 124. Furthermore, M I = 11992 and

MC = 1172.
The FAR and FRR given an a priori chosen threshold ∆, are defined as follow:

FAR(∆) = 1 − ΨI(∆) (2)

FRR(∆) = ΨC(∆) (3)

where
Ψk = P (Y k,′

·
< ∆),

and Y k,′
· ≡ Y k,′

m |m ∈ Mk is a class-conditional variable (dependent on k) that does not consider the
user index j. Note that, in theory, the class-conditional cumulative density function (cdf) is a smooth
function. In practice, however, it may be a stair-case like function if there are too few score samples.
A DET curve [12] is plotted by tracing ∆ ∈ [−∞,∞] across the following coordinate:

v ≡ (vFAR(∆), vFRR(∆)) ≡ (Ψ−1(FAR(∆)),Φ−1(FRR(∆))),

where Ψ−1 is the inverse of a normal cdf.
We will describe below four variants of bootstrap to generate a pool of cdfs that captures different

sources of variability.

3.0.1 Conventional Bootstrap

In order to generate a confidence bound using the conventional sample bootstrap approach, one draws
Mk samples with replacement from the sample index set Mk to create the s-th bootstrap, Mk

s . The
cdf due to the bootstrap Mk

s is:

Ψk,′
s = P (Y k,′

m < ∆|m ∈ Mk
s). (4)

3.0.2 Bootstrap Subset

The bootstrap subset approach [4] uses a user-specific subset which, written in the form of Eqn. (4),
is

Ψk
u = P (Y k

j,· < ∆|j ∈ Ju), (5)

where Ju is the u-th bootstrap of users drawn J times with replacement from the pool of all possible
users J . In this way, all the samples according to the selected users are drawn at the same time.

3.0.3 User-Constrained Sample Bootstrap

Similarly, one can also consider the sample variability of a class-conditional cdf by using the following
definition:

Ψk
s = P (Y k

j,m < ∆|j ∈ J ,m ∈ Mk
j (s)), (6)

where, the set J is fixed but only their corresponding sample varies. Note that Mk
j (s) deontes the

s-th bootstrap with replacement of the original user-specific index set Mk
j . The DET curves due to

ΨC
s and ΨI

s for different s bootstraps will reflect how the sample varies given the population.
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3.0.4 Joint/Two-Level Bootstrap

Combining both the variability due to Eqn. (5) and Eqn. (6), one obtains the following class conditional
cdf:

Ψk
u,s = P (Y k

j,m < ∆|j ∈ Ju,m ∈ Mk
j (s)). (7)

Note that in this case, the user-specific bootstrap has to be performed before the sample bootstrap,
i.e., an algorithm to do so will perform the following two loops:
For u ∈ {1, . . . , U} For s ∈ {1, . . . , S},

Calculate Ψk
s,u for both k = {C, I}

End, End
The complexity in this case is O(U × S). In Eqn. (4) or Eqn. (6), the complexity is O(S) whereas in
Eqn. (5), the complexity is O(U). Therefore, Eqn. (7) has a slightly added overhead. However, we
expect its confidence bound to have the highest coverage, which is a more important goal.

4 Establishing Confidence region

This section deals with an algorithm to estimate a confidence region on a two-dimensional DET plan
(spanned by FAR and FRR) given a set of class-conditional cdfs generated by any of the four bootstrap
methods mentioned in Section 3, i.e., Eqn. (4)–Eqn. (7). According to [11], there are several ways to
construct a confidence region, called “sweeping methods”, given a set of class-conditional cdfs. These
sweeping methods, in our context, are:

• Vertical Averaging: It works by fixing FAR and calculating the intervals of the corresponding
FRR. A variant of this procedure is to fix FRR and calculate the corresponding FAR confidence
bounds. A connected DET region can be constructed by joining all the neighboring vertical
confidence bounds. A similar approach, termed horizontal averaging, fixes FRR instead FAR in
order to estimate the corresponding FAR confidence bounds.

• Threshold Averaging: It works by averaging FAR and FRR values of different DET curves
based on a common threshold. Bolle’s technique [4] that uses Eqn. (5) falls into this category.

• Simultaneous Joint Confidence Regions: This technique does not fix any threshold nor
any axes on the DET plan but instead estimates a confidence region based on a set of paired
(FAR,FRR) data points directly. Two variants were reported in [4], i.e., fixed-width band [5] and
working-hotelling band [16]. The fixed-width band method, in our context, obtains a confidence
region that is defined by two parallel DETs3 with a fixed width distance such that the original
observed DET is fully contained inside the region. The working-hotelling band fits the best
regression line in the DET plan. Therefore, it assumes that the class-conditional scores follow a
Gaussian distribution.

We propose here another method that also belongs to the third category. This method directly
estimates the two-dimensional density of the bootstrapped DET curves spanned by all possible pairs
of FAR and FRR values. In comparison to [5], the upper and lower DET curves do not have to be
parallel or of fixed width because in our case, the bounded region is completely defined by the observed
bootstrapped DET curves. In comparison to [16], our method is advantageous because one does not
make the class-conditional Gaussian assumption.

The two-level bootstrap as in Eqn. (7) will be used since it generalizes Eqn. (5) and Eqn. (6).
The generalization of the implementation to the conventional sample bootstrap, as in Eqn. (4), is
straightforward. Our task here is to estimate p(v), the likelihood of an arbitrary location in a DET plan
– denoted by v – from the U×S bootstrapped DET curves. While several density estimation methods

3The original method applies to the ROC plan.
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can be used, e.g., a mixture of Gaussian components and Parzen windows [3], one requirement of p(v)
is that the density must be defined everywhere in the DET plan and sum to one. Two approaches are
proposed here:

• Direct estimation using GMM:

p(v) =

C
∑

c=1

wcN (µ,Σc) (8)

where N is a bivariate Gaussian with mean µc and covariance Σc for the c-th component,
each weighted by wc such that

∑

c wc = 1. These parameters can be optimized using the
Expectation Maximization algorithm and the number of components C can be optimized using
cross-validation or some other criteria [8] (e.g., minimum description length). Unfortunately,
very soon, we found that this method is not appropriate due to the GMM assumption that
every v is independently and identically sampled. This assumption is violated since the v values
belonging to the same curve (of a particular s-th and u-th bootstrap) are not independent on
each other. Despite this weakness, the estimated p(v) is still useful for characterizing the flatness
of the distribution in terms of entropy (to be described further).

• Estimation via a DET angle: One way to overcome the mentioned weakness is to work
in polar coordinates. By taking v as Cartesian coordinates, we define its corresponding polar
coordinate to be (θ, r) where

θ = tan−1

(

vFRR(∆) − vFRR(−∞)

vFAR(∆) − vFAR(−∞)

)

,

and
r =

√

(vFRR(∆) − vFRR(−∞))2 + (vFAR(∆) − vFAR(−∞))2,

for θ ∈ [0, π/2], r ∈ [−∞,∞] and (vFAR(−∞), vFRR(−∞)) is the origin4. To obtain α × 100%
confidence given the set of bootstrapped DET curves in polar coordinates, we estimate the upper
and lower bounds:

1 − α

2
≤ Ψθ(r) ≤

1 + α

2
,

where Ψθ(r) is the empirical cdf of the radius r observed from the U × S bootstrapped curves
for a given θ since each bootstrapped curve cuts through θ exactly once. The lower and upper r
will be given by rlower = Ψ−1

θ ( 1−α
2

) and rupper = Ψ−1

θ ( 1+α
2

), respectively. Note that the inverse

of Ψθ, i.e., Ψ−1

θ , requires linear interpolation5. The corresponding lower (more optimistic) DET
curve is given by (rlower cos(θ), rlower sin(θ)) across all θ ∈ [0, π/2]. The upper (less optimistic)
DET curve is defined similarly. By convention, the significance threshold α is set to 0.05 so
that one obtains a 95% level of confidence. Note that DET angle was reported in [1] to combine
several DET curves into a single one. Although DET angle seems to be an uncommon choice,
three θ values are extremely commonly used: {0, π

4
, π

2
}. They correspond respectively to the

estimate of confidence interval of FAR at FRR=0, EER and that of FRR at FAR=0. Therefore,
the procedure described here can be seen as a generalization to this practice.

In this paper, we mainly use the DET angle approach to derive a confidence region from a set of
bootstrapped DET curves. The GMM approach is used merely to quantify the flatness of the distri-
bution since it is not directly obvious how this can be done with the DET angle approach. Note that

4Since Ψ−1(−∞) = −∞, in practice, we replace the origin with the point (Ψ−1(1/N), Ψ−1(1/N)) where N is the
total number of impostor attempts rounded to the nearest (and larger) power of 10. For example, if the number of
impostor attempts is 3,800, then 10,000 can be used.

5In our implementation, we verified that by projecting a DET curve into polar coordinates and then reversing the
process, one obtains exactly the same DET curve. Therefore, there is no loss of generality by working in polar coordinates
as long as the same origin (according to footnote 4) is used.
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(a) sample bootstrap
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(b) user-specific bootstrap

Figure 1: The 95% confidence of (a) conventional bootstrap (U = 1, S = 400) and (b) user-specific
bootstrap (U = 400, S = 1), of one of the 24 systems in NIST2005, calculated from 80 users, are
shown here in the (θ, r) polar coordinates (left) as well as its corresponding Cartesian coordinates or
DET plan (right). The actual DET, plotted with a dark line, is always included in the upper and
lower DET bounds.

deriving a confidence region around a DET curve is still an open question. Our experiments show
that both approaches lead to very similar results in terms of coverage (to be reported in Section 5)
and conclusions (Section 6).

Two examples of the 95% confidence of a DET curve generated using the conventional and Bolle’s
bootstrap subset technique are shown in Figure 1. Note that like any density estimation algorithm,
too few DET curves (due to too small a number of sample bootstraps S or user-specific U bootstraps,)
will result in poor estimation of DET confidence.

Since we have an estimate of p(v), we can characterize the flatness of the distribution p(v) using
entropy, i.e.,

entropy(p) =

∫

v

−p(v) log p(v).

We expect the following property to hold for biometric authentication tasks:

entropy(p|Ψk
s,1, s ∈ S,∀k) ≤ entropy(p|Ψk

1,u, u ∈ U ,∀k) ≤ entropy(p|Ψk
s,u, u ∈ U , s ∈ S,∀k), (9)

for some fixed S and U . The first term is the entropy of the user-constrained sample bootstrap,
the second term is the entropy of the bootstrap subset technique and the third term is entropy of
our proposed two-level bootstrap. Smaller entropy implies a shaper distribution. The rationale of
the above relationship is that the sample variability is lower than the user-induced variability and
that the joint effect of the two sources of variability is larger than using either one. Eqn. (9) will be
experimentally verified in Section 5 in terms of coverage. In [4], it was shown that the conventional
sample bootstrap underestimates the confidence bounds compared to the bootstrap subset technique.
This indicates that the entropy of sample bootstrap is lower than that of bootstrap subset technique.
We verify this finding using an example already shown in Figure 1.

5 Empirical Evaluations

5.1 Effects of S and U Parameters

The goal of this section is two-fold: to empirically verify Eqn. (9) in terms of coverage and to determine
the number of sample and user-specific bootstraps, S and U , that are needed in practice. Three
variants of the same algorithm can be obtained by setting S and U

1. Sample bootstrap when S varies and U = 1



8 IDIAP–RR 05-60

2. User-specific bootstrap when S = 1 and U varies

3. Joint user-specific and sample bootstraps when both S and U vary

An experiment is carried out for each of the 24 systems in the following ways: Two data sets are
obtained such that the development set contains the (client and impostor) scores of 20 users, the
evaluation set contains the scores 80 users and the development set is a subset of the evaluation set.
In this way, we estimate a confidence region based on the 20-user data set and evaluate the prediction
performance of the future DET, in terms of coverage, based on the 80-user data set. We then apply all
the four bootstrap algorithms whose confidence region is estimated using the density-based approach
as described in Section 4. Figure 2 shows the effects of varying one of the two free parameters S and
U . The Y-axis is the average coverage over the 24 systems. A coverage is calculated as the proportion
of the 80-user DET curve that is included in the confidence region obtained from the 20-user DET
curve.

We can make the following observations

1. The user-constrained sample bootstrap technique has the lowest coverage.

2. The coverage of the joint bootstrap technique is never lower than that of the bootstrap subset
technique in terms of coverage.

3. The conventional sample bootstrap technique has coverage lower than the user-specific bootstrap
given asymptotically large number of bootstraps.

4. S,U > 30 are suitable.

5. The joint bootstrap technique and the user-specific bootstrap technique converge for large U .

Observations one and two confirm our conjecture in Eqn. (9). Observation three confirms the finding
in [4]. Observation four implies that S and U above 30 is sufficient. The last observation implies
that for biometric authentication tasks, the influence of U is more important than that of S. In other
words, as long as U is large (30 or more), the joint bootstrap procedure is insensitive to different S
values.

5.2 Assessment w.r.t. Larger Population

This section evaluates the quality of DET prediction with respect to the population size. We expect
that a larger population of users should give a more accurate prediction – hence producing higher
coverage and lower entropy (sharper distribution). We design a progressive prediction experiment
described as follows. First, we divide the original data set (of 124 users) into 10, 20, 40 and 80
users such that the smaller data set is always a subset of the larger one. Then, we apply the joint
bootstrap technique on 10-user data set and measure the coverage of the 20-, 40- and 80-user DETs.
The experiment is repeated but this time we apply the joint bootstrap procedure on the 20-user data
set and test it on the 40- and 80-user data sets. Finally, the experiment is repeated with training on
the 40-user data set and testing on the 80-user data set. The above procedure is tested using all the
24 systems available in NIST2005. A graphical output of this procedure for one of the 24 systems is
shown in Figure 3.

The average entropy and coverage over all the 24 systems are shown in Table 1 and Table 2,
respectively. As can be observed and expected, the entropy of the bootstrapped DET mass decreases
as more data is available. This trend can graphically be observed in Figure 3 as well. Coverage
generally increases as more and more data is available.
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Figure 2: Average coverage (in %) over 24 experiments using different variants of bootstraps. Each
bootstrap is trained on a DET derived from 20 users and is tested on a DET derived on 80 users. Higher
coverage implies better generalization. S is the number of sample bootstraps and U is the number of
user-specific bootstraps. The X-axis reflects the change due to varying one of these two parameters.
The user-specific bootstrap attained a maximum coverage of 81.7% while the joint-bootstrap attained
82.2%. The joint-bootstrap procedure almost always has higher coverage for any given S values.

5.3 Assessment w.r.t. User Composition Variation

This section assesses the robustness of the joint bootstrap technique to user composition. Using the
subset of NIST2005 which contains 124 users, we randomly divided the data into four equal partitions,
each containing 31 users. Data set 1 is used to estimate the confidence region while the rest of the
data sets are used separately to evaluate the goodness of prediction in terms of coverage. The same
procedure is repeated with data set 2, 3 and 4. The results are shown in Table 3. Another experiment
is repeated but with only two partitions where each partition contains 62 users. The resultant matrix
is similar to Table 3 except that it is 2-by-2 in dimension. Its values are:

[

∗1.000 0.872
0.893 ∗1.000

]

,

where the same conclusion as in Table 3 applies. The overall average coverage is evaluated to be 0.883
instead of 0.825. The increased coverage is due to the fact that the DET curves are estimated from
an increased number of users.

5.4 Validation on the XM2VTS Database

In order to verify the repeatability of experimental results on other databases, we used the XM2VTS
score-level fusion benchmark database [14]6. The first Lausanne protocols was chosen and eight
verification systems – three speech and five face systems – are available. This database contains
200 users and each user has two genuine samples and 600 impostor samples. We repeated a similar
experimental setting as in Section 5.3 using two configurations:

6Available at http://www.idiap.ch/∼norman/fusion
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Table 1: Entropy of DET mass estimated using data sets of different user size, averaged over 24
systems in NIST2005.

User size Entropy
10 7.094
20 6.975
40 6.841
80 6.658

Lower entropy implies sharper distribution.

Table 2: Average coverage over 24 systems in NIST2005 with 95% of confidence.

Actual Coverage for predicted user size
user size 10 20 40 80

10 ∗ 1.000 0.879 0.773 0.781
20 – ∗ 1.000 0.891 0.859
40 – – ∗ 1.000 0.886
80 – – – ∗ 1.000

Note: Numbers marked with “*” do not involve prediction.

1. Four partitions – hence 50 users per partition; test on same impostor set

2. Four partitions – hence 50 users per partition; test on different impostor set

Note that the most important difference between XM2VTS and NIST2005 is that in XM2VTS, the
impostor population can be the same (using the fusion development set) or different (using the fusion
evaluation set). By using S = 5 and U = 100, the coverage averaged over the eight systems is 70.5%
for the first configuration and 67.2% for the second configuration. Therefore, by using a different
impostor population set, the coverage is reduced. This indicates that by re-using the same impostors
to generate impostor scores, one will obtain an overly optimistic bias of coverage.

6 Conclusions

Generalizing performance of a system from a particular database to another is an important task.
The current visualization tool via a DET curve does not guarantee such performance generalization.

Table 3: Average coverage over 24 systems in NIST2005

Data Coverage due to data sets
sets 1 2 3 4
1 1.000 0.802 0.859 0.874
2 0.794 1.000 0.798 0.862
3 0.866 0.743 1.000 0.846
4 0.846 0.794 0.819 1.000

Note: The diagonal of the table is one because the DET is tested on the data set from which it is
derived. The average coverage across the non-diagonal elements is 0.8252.
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On the contrary, it is very sensitive the following three factors: the number of users, the choice of
users and the choice of samples. Using a two-level bootstrap and a post-processing on the density
of resultant DETs, we propose to establish a contour capturing (1 − α) × 100% of probability mass.
The proposed two-level bootstrap approach generalizes the bootstrap subset technique as proposed by
Bolle et al. [4] because our proposal takes into consideration the sample variability in addition to the
user-induced variability. Both theoretical and empirical findings suggest that the two-level bootstrap
approach has a systematically higher coverage than Bolle et al.’s bootstrap subset. Although the
experimental settings can be different, the established confidence region from a small database of
users can cover more than 75% of an actual unseen DET with 8 times the number of users. Ideally, a
good indicator should score 95% of the actual DET. While a DET is inherently sensitive to the three
aspects of variability mentioned, the proposed bootstrap procedure can mitigate such sensitivity to
some extent but cannot totally remove it.

The following are some possible extensions to the current study:

• Confidence interval estimation for threshold-dependent analysis: A DET curve is a
threshold-independent analysis. However, by using a DET curve, one assumes that the FAR and
FRR distributions of the test data set are completely known. An recently proposed alternative
is to use a threshold-dependent assessment whereby the system performance is calculated with
thresholds fixed a priori [2] on a development set.

• Mismatch between training and test sets: The current study does not handle the case
of mismatch between training and test sets. Research in this direction will require that some
representative test samples to be available so that the confidence region of a DET derived from
some training conditions can be transformed into that of the target test conditions.
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Details of Each of the 24 Systems

There are altogether 24 figures corresponding to the 24 systems particapted in the NIST2005 evalua-
tion. Each figure further contains 4 sub-figures in a similar way as in Figure 3 of the original paper.
Each of these subfigures show a 95% DET mass calculated from 10, 20, 40 and 80 users, hence four
subfigures per experiment. For each subfigure, there are three dashed lines corresponding to the up-
per, median and lower DET curves defining the DET confidence region. The actual DET curve from
which the DET confidence region was derived is plotted as a dark continuous line. The rest of the
“test” or unseen DET curves are plotted in blue lines as follow:

• thin dashed line for the 20-user DET

• thick continous line for the 40-user DET

• thick dashed line for the 80-user DET

It should be observed that the uncertainty of DET decreases, i.e., the confidence region decreases, as
more users (as well as samples) are avaialble. Furthermore, the prediction fails at low FAR (DET
angles near 90 degrees) or low FRR regions (DET angles near 0 degrees).
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Figure 3: 95% DET mass calculated from 10, 20, 40 and 80 users. Their corresponding entropies
are 7.2116, 7.1109, 6.8357 and 6.7438, respectively. The actual DETs that are superimposed on the
95% DET mass are as follows: blue dashed line: 10-user DET, blue solid line: 20 user-DET, black
dashed line: 40 user-DET and black solid line: 80 user-DET. For those (FAR,FRR) falling outside
the 95% DET of mass, crosses are plotted. This is just one of the 24 experimental outcomes. See the
supplementary materials with color prints to differentiate between blue and black colors. Otherwise,
the four curves in (a) can be inferred (d), (c) and (b) in this order.
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