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Résumé. Chord progressions are the building blocks from which tonal music is constructed.

Inferring chord progressions is thus an essential step towards modeling long term dependencies in

music. In this paper, three different representations for chords are designed. In a first represen-

tation, Euclidean distances roughly correspond to psychoacoustic dissimilarities between chords.

Estimated probabilities of chord substitutions are then derived from these distances and are used

to introduce smoothing in graphical models observing another chord representation. Finally, a

third representation where we model directly each chord components leads to a probabilistic

model considering the interaction between melodies and chord progressions. Parameters in the

graphical models are learnt with the EM algorithm and the classical Junction Tree algorithm is

used for inference. Various model architectures are compared in terms of conditional out-of-sample

likelihood. Both perceptual and statistical evidence show that binary trees related to meter are

well suited to capture chord dependencies.
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1 Introduction

Probabilistic models for analysis and generation of polyphonic music would be useful in a broad
range of applications, from contextual music generation to on-line music recommendation and retrieval.
However, modeling music involves capturing long term dependencies in time series. This has proved
very difficult to achieve with traditional statistical methods. Note that the problem of long-term
dependencies is not limited to music, nor to one particular probabilistic model Bengio et al. (1994).
This difficulty motivates our exploration of chord progressions and their interaction with melodies.
Chord progressions constitute a fixed, non-dynamic structure in time and thus can be used to aid in
describing long-term musical structure.

One of the main features of tonal music is its organization around chord progressions. A chord is
a group of three or more notes (generally six or less). A chord progression is simply a sequence of
chords. In general, the chord progression itself is not played directly in a given musical composition.
Instead, notes comprising the current chord act as central polarities for the choice of notes at a given
moment in a musical piece. Given that a particular temporal region in a musical piece is associated
with a certain chord, notes comprising that chord or sharing some harmonics with notes of that chord
are more likely to be present. In typical tonal music, most chord progressions are repeated in a cyclic
fashion as the piece unfolds, with each chord having in general a length equal to integer multiples of
the shortest chord length.

Chord changes tend to align with metrical boundaries in a piece of music. Meter is the sense of
strong and weak beats that arises from the interaction among a hierarchy of nested periodicities. Such
a hierarchy is implied in Western music notation, where different levels are indicated by kinds of notes
(whole notes, half notes, quarter notes, etc.) and where bars establish measures of an equal number
of beats Handel (1993). For instance, most contemporary pop songs are built on four-beat meters. In
such songs, chord changes tend to occur on the first beat, with the first and third beats (or second
and fourth beats in syncopated music) being emphasized rhythmically. Chord progressions strongly
influence melodic structure in a way correlated with meter. For example, in jazz improvisation notes
perceptually closer to the chord progression are more likely to be played on metrically-accented beats
with more “dissonant” notes played on weaker beats. See Cooper and Meyer (1960) for a complete
treatment of the role of meter in musical structure.

This strong link between chord structure and overall musical structure motivates our attempt
to model chord sequencing directly. With an appropriate chord representation, it is then possible
to learn the interaction of chords with melodies. The space of sensible chord progressions is much
more constrained than the space of sensible melodies, suggesting that a low-capacity model of chord
progressions could form an important part of a system that analyzes or generates polyphonic music.
As an example, consider blues music. Most blues compositions are variations of a basic same 12 bar
chord progression1. Identification of that chord progression in a sequence would greatly contribute to
genre recognition.

In this paper we present chord representations designed to be embedded in graphical models. These
probabilistic models can capture the chord structures and their interaction with melodies in a given
musical style using as evidence a limited amount of symbolic MIDI2 data. One advantage of graphical
models is their flexibility, suggesting that our models could be used either as analytical or generative
tools to model chord progressions. Moreover, model like ours could be integrated into more complex
probabilistic transcription models Cemgil (2004), genre classifiers, or automatic composition systems
Eck and Schmidhuber (2002).

Cemgil (2004) uses a somewhat complex graphical model that generates a mapping from audio to
a piano-roll using a simple model for representing note transitions based on Markovian assumptions.
This model takes as input audio data, without any form of preprocessing. While being very costly,
this approach has the advantage of being completely data-dependent. However, strong Markovian

1In this paper, chord progression are considered relative to the key of each song. Thus, transposition of a whole piece
has no effect on our analysis.

2In our present work, we only consider notes onsets and offsets in the MIDI signal.
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assumptions are necessary in order to model the temporal dependencies between notes. Hence, a
proper chord transition model could be appended to such a transcription model in order to improve
polyphonic transcription performance.

Raphael and Stoddard (2003) use graphical models for labeling MIDI data with traditional Western
chord symbols. In this work, a Markovian assumption is made such that each chord symbol depends
only on the preceding one. This assumption seems sufficient to infer chord symbols, but we show in
this paper (see Section 2.3.1) that longer term dependencies are necessary to model chord progressions
by themselves in a generative context, without regard to any form of analysis.

Lavrenko and Pickens (2003) propose a generative model of polyphonic music that employs Markov
random fields. Though the model is not restricted to chord progressions, the dependencies it considers
are much shorter than in the present work. Also, octave information is discarded, making the model
unsuitable for modeling realistic chord voicings. For instance, low notes tend to have more salience in
chords than high notes Levine (1990).

Allan and Williams (2004) designed a harmonization model for Bach chorales using Hidden Markov
Models (HMMs). A harmonization is a particular choice of notes given a sequence of chord labels.
While generating excellent musical results, this model has to be provided sequences of chords as
input, restricting its applicability in more general settings. Our work goes a step further by modeling
directly chord progressions in an unsupervised manner. This allows our proposed models to be directly
appended to any supervised model without the need for additional data labeling.

The generalization performance of a generative model depends strongly on how observed data
is represented. If we had an infinite amount of data, we could simply represent each chord as the
state of a discrete random variable with a number of possible states equal to the total number of
possible chords. Unfortunately, typical symbolic music databases are very small compared to the
complexity of the polyphonic music signal. To solve this problem, we explore three different ways of
including musical knowledge in models for chord progressions. In Section 2, we build a continuous space
embedding chords where the Euclidean distance between two chords corresponds to psychoacoustical
similarity. In Section 3, we go a step further and convert these Euclidean distances into probabilities
of substitution between chords in order to include the chord similarity measure in the graphical model
framework. Finally, we present in Section 4 a chord representation that is closer to the data in the
sense that we model directly each component of the chords. In each section, we also describe and
evaluate a probabilistic model for chord sequences observing these representations. We evaluate these
models in terms of prediction ability. Note that it is also possible to sample these models in order to
generate chord progressions.

2 Continuous Chord Space

A useful approach for building a statistical model for chord progressions is to include notions of
psychoacoustic similarity between chords. This allows the model to redistribute efficiently a certain
amount of probability mass to unseen events during training according to musical similarity. To
achieve this, we found it more convenient to build a general representation directly tied to the acoustic
properties of chords rather than considering some attributes of Western chord notation such as “minor”
and “major”. A possibility for describing chord similarities is set-class theory, a method that has
been compared to perceived closeness Kuusi (2001) with some success. In this section, we consider
a simpler approach where each group of observed notes forming a chord is seen as a single timbre
Vassilakis (1999). From this timbre information, we derive a continuous distributed representation
where perceptually similar chords tend also to be close in Euclidean distance. We propose in Section 2.2
a graphical model that directly observes these continuous representations of chords.

2.1 Chord Representation

More specifically, the frequency content of an idealized musical note i is composed of a fundamental
frequency f0,i and integer multiples of that frequency. The amplitude of the h-th harmonic fh,i = hf1,i
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of note i can be modeled with geometric decaying ρh, with 0 < ρ < 1 Valimaki et al. (1996).
Consider the function

m(f) = 12(log2(f) − log2(8.1758))

that maps frequency f to MIDI note m(f). Let X = {X1 . . .Xs} be the set of the s chords present in
a given corpus of chord progressions. Then, for a given chord Xj = {i1, . . . , itj

} with tj the number of
notes in chord Xj , we associate to each MIDI note n a perceived loudness

lj(n) = max
h∈N,i∈Xj

({ρh|round(m(fh,i)) = n} ∪ {0}) (1)

where the function round maps a real number to the nearest integer. The max function is used
instead of a sum in order to account for the masking effect Moore (1982). The quantization given by
the rounding function corresponds to the fact that most of the tonal music is composed using the well-

tempered tuning. For instance, the 3rd harmonic f3,i corresponds to a note i + 7 which is located one
perfect fifth (i.e. 7 semi-tones) over the note i corresponding to the fundamental frequency. Building
the whole set of possible notes from that principle leads to a system where flat and sharp notes are not
the same, which was found to be impractical by musical instrument designers in the baroque era. Since
then, most Western musicians used a compromise called the well-tempered scale, where semi-tones are
separated by an equal ratio of frequencies. Hence, the rounding function in Equation (1) provides a
frequency quantization that corresponds to what an average contemporary music listener experiences
on a regular basis.

For each chord Xj , we then have a distributed representation lj = {lj(n1), . . . , lj(nd)} correspon-
ding to the perceived strength of the harmonics related to every note nk of the well-tempered scale,
where we consider the d first notes of this scale to be relevant. For instance, one can set the range of
the notes n1 to nd to correspond to audible frequencies. Using octave invariance, we can go further
and define a chord representation vj = {vj(0), . . . , vj(11)} where

vj(i) =
∑

nk:1≤k≤d, (nk mod 12)=i

l(nk). (2)

This representation gives a measure of the relative strength of each pitch class3 in a given chord. For
instance, value vj(0) is associated with pitch class c, value vj(1) to pitch class c sharp, and so on.

Throughout this paper, we define chords by giving the pitch class letter, sometimes followed by
symbol # (sharp) to raise a given pitch class by one semi-tone. Finally, each pitch class is followed by
a digit representing the actual octave where the note is played. For instance, the symbol c1e2a#2d3
stands for the 4-note chord ���

�
� � �

with a c on the first octave, an e and an a sharp (b flat) on the second octave, and finally a d on the
third octave.

Figure 1 show the normalized values given by Equation (2) for 2 voicings of the C major chord,
as defined in Levine (1990). We see that perceptual emphasis is higher for pitch classes present in the
chord. These two chord representations have similar values for pitch classes that are not present in
either chords, which makes their Euclidean distance small. We have also computed Euclidean distances
between chords induced by this representation and found that they roughly correspond to perceptual
closeness, as the trained musician should see in Table 1. Each column gives Euclidean distances

3All notes with the same note name (e.g. C#) are said to be part of the same pitch class.
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Fig. 1 – Normalized values given by Equation (2) for 2 voicings of the C major chord. We see that
perceptual emphasis is higher for pitch classes present in the chord. These two chord representations
have similar values for pitch classes that are not present in either chords, which makes their Euclidean
distance small.

between the chord in the first row and some other chords that are represented as described here. For
instance, the second column is related to a particular inversion of the C minor chord (c1d#2a#2d3).
We see that the closest chord in the dataset (c1a#2d#3g3) is the second inversion of the same chord,
as described in Levine (1990). Hence, we raise the note d#3 by one octave and replace the note d3 by
g3 (separated by a perfect fourth). These two notes share some harmonics, leading to a close vectorial
representation.

This distance measure could have considerable interest in a broad range of computational generative
models in music as well as for music composition.

2.2 Graphical Model in the Continuous Space

Graphical models Lauritzen (1996) are a useful framework to describe probability distributions
where graphs are used as representations for a particular factorization of joint probabilities. Vertices
are associated with random variables. If two vertices are not linked by an edge, their associated
random variables are considered to be unconditionally independent. A directed edge going from the
vertex associated with variable A to the one corresponding to variable B accounts for the presence of
the term P (B|A) in the factorization of the joint distribution for all the variables in the model. The
process of calculating probability distributions for a subset of the variables of the model given the
joint distribution of all the variables is called marginalization (e.g. deriving P (A, B) from P (A, B, C)).
The graphical model framework provides efficient algorithms for marginalization and various learning
algorithms can be used to learn the parameters of a model, given an appropriate dataset.

We now propose a graphical model for chord sequences using the input representation described
in Section 2.1. The main assumption behind the proposed model is that conditional dependencies
between chords in a typical chord progression are strongly tied to the metrical structure associated
to it. Another important aspect of this model is that it is not restricted to local dependencies, like
a simpler Hidden Markov Model (HMM) would be. This choice of structure reflects the fact that a
chord progression is seen in this model as a two dimensional architecture. Every chord in a chord
progression depends both on its position in the chord structure (global dependencies) and on the
surrounding chords (local dependencies.) We show in Section 2.3 that considering both aspects leads
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Tab. 1 – Euclidean distances between the chord in the first row and other chords when chord repre-
sentation is given by Equation (2), choosing ρ = 0.97.

c1a2e3g3 0.000 c1d#2a#2d3 0.000
c1a2c3e3 1.230 c1a#2d#3g3 1.814
c1a2d3g3 1.436 c1e2a#2d#3 2.725
c1a1d2g2 2.259 c1a#2e3g#3 3.442
c1a#2e3a3 2.491 c1e2a#2d3 3.691
a0c3g3b3 2.920 a#0d#2g#2c3 3.923
c1e2b2d3 3.162 a#0d2g#2c3 4.155
c1g2c3e3 3.398 g#1g2c3d#3 4.363
a0g#2c3e3 3.643 c1e2a#2c#3 4.612
c1f2c3e3 3.914 a#1g#2d3g3 4.820
c1d#2a#2d3 4.295 f1a2d#3g3 5.030
e1e2g2c3 4.548 d1f#2c3f3 5.267
g1a#2f3a3 4.758 a0c3g3b3 5.473
e0g2d3f#3 4.969 g1f2a#2c#3 5.698
f#0e2a2c3 5.181 b0d2a2c3 5.902
g#0g2c3d#3 5.393 e1d3g3b3 6.103
f#1d#2a2c3 5.601 f#1e2a#2d#3 6.329
g0f2b2d#3 5.818 d#1c#2f#2a#2 6.530
g1f2a#2c#3 6.035 g#0b2f3g#3 6.746
g1f2b2d#3 6.242 b0a2d#3g3 6.947

to better generalization performance as well as better generated results than by only considering local
dependencies.

The design of our model is motivated by theories of musical rhythm Cooper and Meyer (1960) and
music structure Lerdahl and Jackendoff (1983). A given musical note does not itself have a certain
meaning. Its meaning, if any, is defined by the role it plays in longer musical elaborations such as
melodies. To make an analogy to language, musical notes are perhaps more similar to letters than to
words. However, the analogy is not entirely correct because even musical phrases do not have meaning
in isolation in the same way that words do. A principal source of music structure is the meter of a
piece. Almost all Western music is metered, indicating a fixed hierarchical temporal structure with
small integer relationships between levels. We used meter to guide the construction of probabilistic
trees, employing a binary tree structure suggested by the meter of the jazz standards in our database.
Though this tree structure differs from that of other forms of music (thus representing a built-in
stylistic prior motivated by music theory) the difference is not as great as it might seem. Most meters
yield binary trees similar to the one we employ. Furthermore, if a tree is non-binary, then it is usually
so only on a single level. For example, in a typical 3/4 piece of waltz music, the quarter-note level
is indeed ternary (3 :1). However, the higher-level relationships remain binary, with musical phrases
being formed out of 2, 4 or 8 measures.

Figure 2 shows a graphical model constructed as described above. Discrete nodes in levels 1 and 2
are not observed. The purpose of the nodes in level 1 is to capture global chord dependencies related
to the meter. Nodes in level 2 are modeling local chord dependencies conditionally to the global
dependencies captured in level 1. For instance, the fact that the algorithm is accurately generating
proper endings is constrained by the upper tree structure. On the other hand, the smoothness of the
voice leadings (e.g. small distances between generated notes in two successive chords) is modeled by
the horizontal links in level 2.

The bottom nodes of the model are continuous observations conditioned by discrete hidden va-
riables. Hence, Gaussian distributions can be used to model each observation given by the distributed
representation described in Section 2.1. Suppose a Gaussian node G has a discrete parent D, then the
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Fig. 2 – A probabilistic graphical model for chord progressions. White nodes correspond to discrete
hidden variables while gray nodes correspond to observed multivariate Gaussian nodes. Nodes in level
1 directly model the contextual dependencies related to the meter. Nodes in level 2 combine this infor-
mation with local dependencies in order to model smooth chord progressions. Finally, continuous nodes
in level 3 are observing chords embedded in the continuous space defined by Equation (2). Numbers
in level 1 nodes indicate a particular form of parameter sharing that is evaluated in Section 2.3.1.

conditional density p(G|D) is given by

p(G|D = i) ∼ N (µi, σi) (3)

where N (µ, σ) is a k-dimensional Gaussian distribution with mean µ ∈ R
k and diagonal covariance

matrix Σ ∈ R
k × R

k determined by its diagonal elements σ ∈ R
k.

The Expectation-Maximization (EM) algorithm Dempster et al. (1977) can be used to estimate
the conditional probabilities of the hidden variables in a graphical model. This algorithm proceeds
in two steps applied iteratively over a dataset until convergence of the parameters. First, the E step
computes the expectation of the hidden variables, given the current parameters of the model and the
observations of the dataset. Secondly, the M step updates the values of the parameters in order to
maximize the joint likelihood of the observations and the expected values of the hidden variables.

Marginalization must be carried out in the proposed model both for learning (during the expecta-
tion step of the EM algorithm) and for evaluation. The inference in a graphical model can be achieved
using the Junction Tree Algorithm (JTA) Lauritzen (1996). In order to build the junction tree re-
presentation of the joint distribution of all the variables of the model, we start by moralizing the
original graph (i.e. connecting the non-connected parents of a common child and then removing the
directionality of all edges) so the independence properties in the original graph are preserved. In the
next step (called triangulation), we add edges to remove all chord-less cycles of length greater than 4.
Finally, we can form clusters with the maximal cliques of the triangulated graph. The junction tree
representation is formed by joining these clusters together. To each cluster, we associate a potential
function which can be normalized to give the marginalized probabilities of the variables in that cluster.
Given evidence, the properties of the junction tree allow these potential functions to be updated by
local message passing. Exact marginalization techniques are tractable in the proposed model given its
limited complexity.

Many variations of the proposed graphical structure are possible, some of which are compared
in Section 2.3. For instance, conditional probability tables can be tied in various ways. Also, more
horizontal links in the model can be added to reinforce the dependencies between higher level hidden
variables. The chord progressions are intimately tied to the metrical structure, which has obviously
binary structure in the corpus of data. However, other tree structures may be more suitable for music
having different meters (e.g. ternary structures for waltzes). Using a tree structure has the advantage
of reducing the complexity of the considered dependencies from the order m to the order log m,
where m is the length of a given chord sequence. It should be pointed out that in this paper we



8 IDIAP–RR 05-58

only consider musical productions with fixed length. Fortunately, the current model could be easily
extended to chords sequences with variable length by adding conditional dependencies arrows between
many normalized subtrees.

Considering global dependencies to model time series is a general issue also present in other do-
mains. For instance, tree models with structures derived from common syntactical patterns could be
used to learn global dependencies in natural language processing applications. However, it should be
noted that dependencies are much more complex in natural language than in chord progressions.

2.3 Experiments in the Continuous Space

52 jazz standard excerpts from Sher (1988) were interpreted and recorded by the first author
in MIDI format on a Yamaha Disklavier piano. Standard 4-note jazz piano voicings as described in
Levine (1990) were used to convert the chord symbols into musical notes. Thus, this particular model
is considering chord progressions as they might be expressed by a trained jazz musician in a realistic
musical context. The complexity of the chord sequences found in the corpus is representative of the
complexity of common chord progressions in most jazz and pop music.

Every jazz standard excerpt was 8 bars long, with a 4 beats meter, and with one chord change
every 2 beats (yielding observed sequences of length 16.) Longer chords were repeated multiple times
(e.g. a 6 beats chord is represented as 3 distinct 2-beat observations.) This simplification has a limited
impact on the quality of the model since generating a chord progression is simply a first (but very
important) step toward generating complete polyphonic music, where modeling actual event lengths
would be more crucial. The jazz standards were carefully chosen to exhibit a 16 bar global structure.
We used the last 8 bars of each standard to train the model. Since every standard ends with a cadenza
(i.e. a musical ending), the chosen excerpts exhibit strong regularities.

2.3.1 Generalization

The chosen discrete chord sequences were converted into sequences of 12-dimensional continuous
vectors as described in Section 2.1. Frequencies ranging from 20Hz to 20kHz (MIDI notes going from
the lowest note in the corpus to note number 135) were considered in order to build the representation
given by Equation (1). A value of ρ of 0.96 was arbitrarily chosen for the experiments. It should
be pointed out that since the generative models have been trained in an unsupervised setting, it is
irrelevant to compare different chord representations (including the choice of ρ) in terms of likelihood.
This problem will be addressed in Section 3. However, it is possible to measure how well a given
architecture is modeling conditional dependencies between sub-sequences of chords. In order to do
so, average negative conditional out-of-sample likelihoods of sub-sequences of length 4 on positions
1, 5, 9 and 13 have been computed. For each sequence of chords x = {x1, . . . x16} in the appropriate
validation set, we average the values

− log P (xi, . . . , xi+3|x1, . . . , xi−1, xi+4, . . . , x16). (4)

with i ∈ {1, 5, 9, 13}. Hence, the likelihood of each subsequence is conditional on the rest of the
sequence (taken in the validation set) from which it originates.

Double cross-validation is a recursive application of cross-validation Hastie et al. (2001) where
both the optimization of the parameters of the model and the evaluation of the generalization of the
model are carried out simultaneously. This technique has been used to optimize the number of possible
values of hidden variables for various architectures and results are given in Table 2 in terms of average
conditional negative out-of-sample log-likelihoods of sub-sequences.

This measure is similar to perplexity or prediction ability. We chose this particular measure of ge-
neralization in order to account for the binary metrical structure of chord progressions, which is not
present in natural language processing, for instance.
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Tab. 2 – Average conditional negative out-of-sample log-likelihoods of sub-sequences of length 4 on
positions 1, 5, 9 and 13. These results are computed using double cross-validation in order to optimize
the number of possible values for hidden variables. The numbers in parentheses indicate which levels
of the tree are tied, as described in Figure 2. Since smaller values yield better prediction ability, we
see that some combinations of parameter tying in the trees perform better than the standard HMM.

Model (tying) Negative log-likelihood
Tree (2, 3) 93.8910
Tree (1, 3) 94.0037
Tree (1, 2, 3) 94.9309
Tree (3) 98.2446
HMM 98.2611

Different forms of parameter tying for the tree model shown in Figure 2 have been tested. All nodes
in level 3 share the same parameters for all tested models. Hence, we used only one 12-dimensional
Gaussian distributions (as in Equation (3)) independently of time, in order to constrain the capacity
of the model. Moreover, a diagonal covariance matrix Σ has been used, thus reducing the number of
free parameters to 24 in level 3 (12 for µ and 12 for Σ). Hidden variables in level 1 and 2 can be tied
or not. Tying for level 1 is done as illustrated in Figure 2 by the numbers inside the nodes.

The fact that the contextual out-of-sample likelihoods presented in Table 2 are better for the
different trees than for the HMM indicates that time-dependent regularities are present in the data.
Sharing parameters in levels 1 or 2 of the tree increases the out-of-sample likelihood. This indicates that
regularities are repeated over time in the signal. Further investigations would be necessary in order to
assess to what extent chord structures are hierarchically related to the meter. On the other hand, the
relatively high values obtained in terms of conditional out-of-sample negative log-likelihood indicates
that the number of training sequences may not be sufficient to efficiently represent the variability of
the data with this representation. The model is allowed to consider regions in the continuous space
that could not be associated to any realistic chord, thus increasing perplexity. Hence, we propose in
Sections 3 and 4 alternative chord representations where the variability of the data is more constrained
with respect to musical knowledge.

2.3.2 Generation

One can sample the proposed model in order to generate novel chord progressions. Fortunately,
Euclidean distances are relevant in the observation space created in Section 2.1. Thus, a simple ap-
proach to generate chord progressions is to take the nearest neighbors (nearest chords in the training
set) of each sampled values obtained by sampling the observation nodes.

Chord progressions generated by the models presented in this paper are available at http ://www.idiap.ch/∼paiement/ml.
For instance, Figure 2.3.2 shows a chord progression that has been generated by the graphical mo-
del shown in Figure 2. This chord progression has all the characteristics of a standard jazz chord
progression. For instance, the trained musician can observe that the last 8 bars of the sequence is a
II-V-I4 chord progression Levine (1990), which is very common. Figure 4 shows a chord progression
generated by the HMM model. While the chords are following each other in a smooth fashion, there
is no global relation between chords. For instance, one can see that the lowest note of the last chord is
not a c, which was the case for all the chord sequences in the training set. The fundamental qualitative
difference between both methods should be obvious even for the non-musician when listening to the
generated chord sequences.

4The lowest notes are d, g and c.
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Fig. 3 – A chord progression generated by the proposed model. This chord progression is very similar
to a standard jazz chord progression.
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Fig. 4 – A chord progression generated by the HMM model. While the individual chord transitions
are smooth and likely, there is no global chord structure.
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3 Probabilities of Substitution

Although it provides a very intuitive and appealing representation for chords, the representation
for chords introduced in the previous section suffer from two major drawbacks. As already pointed out
in section 2.3.1, this representation allows the model to consider regions where no realistic chord is
present. In fact, it is unnatural to compress discrete information in a continuous space ; one could easily
think of a one-dimensional continuous representation that would overfit any discrete dataset. Second,
there is no direct way to represent Euclidean distances between discrete objects in the graphical model
framework. Since the set of likely chords is finite, one may prefer to observe directly discrete variables
with a finite number of possible states.

Our proposed solution to these problems is to convert the Euclidean distances between chord
representations into probabilities of substitution between chords. Chords can then be represented as
individual discrete events. These probabilities can be included in a graphical model without relying
on extra techniques such as finding the nearest neighbors during generation (see Section 2.3.2). It is
interesting to note that the problem of considering similarities between discrete objects in statistical
models is not restricted to music and encompasses a large span of applications, including natural
language processing and biology.

One can define the probability pi,j of substituting chord Xi for chord Xj in a chord progression as

pi,j =
φi,j∑

1≤j≤s φi,j

(5)

with
φi,j = exp{−λ||vi − vj ||

2} (6)

with free parameter 0 ≤ λ < ∞ and vk components being defined in Equation (2).
It is interesting to note that it was impossible in Section 2 to optimize the parameter ρ using

cross-validation because this parameter was defining the observed representation over which likeli-
hood was evaluated. On the contrary, the parameters λ and ρ can be optimized by validation on
any chord progression dataset provided a suitable objective function, since the chord representation
will be independent of their values. With possible values going from 0 to arbitrary high values, the
parameter λ allows the substitution probability table to go from the uniform distribution with equal
entries everywhere (such that every chord has the same probability of being played) to the identity
matrix (which disallow any chord substitution). Table 3 shows substitution probabilities obtained from
Equation (5) for chords in Table 1.

3.1 Graphical Model Using Probabilities of Substitution

We now propose a graphical model for chord sequences using the probabilities of substitution
between chords described in the previous section. Again, the main assumption behind the proposed
model is that conditional dependencies between chords in a typical chord progression are tied to the
metrical structure associated with it. We show empirically in Section 3.2 that such tree structure leads
again to better generalization performance as well as better generated results than by only considering
local dependencies with an HMM model, like it was the case in Section 2.3.1.

Figure 5 shows a graphical model that can be used as a generative model for chord progressions in
this fashion. All the random variables in the model are discrete. Nodes in level 1, 2 and 3 are hidden
while nodes in level 4 are observed. Every chords are represented as distinct discrete events. Nodes in
level 1 directly model the contextual dependencies related to the meter. Nodes in level 2 combine this
information with local dependencies in order to model smooth chord progressions. Variables in level 1
and 2 have an arbitrary number of possible states optimized by cross-validation Hastie et al. (2001).

Variables in levels 3 and 4 have a number of possible states equal to the number of chords in the
dataset. Hence, each state is associated with a particular chord. The probability table associated with
the conditional dependencies going from level 3 to 4 is fixed during learning with the values given by
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Tab. 3 – Subset of the substitution probability table constructed with Equation (5). For each column,
the number in the first row corresponds to the probability of playing the associated chord with no
substitution. The numbers in the following rows correspond to the probability of playing the associated
chord instead of the chord in the first row of the same column.

c1a2e3g3 0.41395 c1d#2a#2d3 0.70621
c1a2c3e3 0.08366 c1a#2d#3g3 0.06677
c1a2d3g3 0.06401 c1e2a#2d#3 0.02044
c1a1d2g2 0.02195 c1a#2e3g#3 0.00805
c1a#2e3a3 0.01623 c1e2a#2d3 0.00582
a0c3g3b3 0.00929 a#0d#2g#2c3 0.00431
c1e2b2d3 0.00679 a#0d2g#2c3 0.00318
c1g2c3e3 0.00500 g#1g2c3d#3 0.00243
a0g#2c3e3 0.00363 c1e2a#2c#3 0.00176
c1f2c3e3 0.00255 a#1g#2d3g3 0.00134
c1d#2a#2d3 0.00156 f1a2d#3g3 0.00102
e1e2g2c3 0.00112 d1f#2c3f3 0.00075
g1a#2f3a3 0.00085 a0c3g3b3 0.00057
e0g2d3f#3 0.00065 g1f2a#2c#3 0.00043
f#0e2a2c3 0.00049 b0d2a2c3 0.00033
g#0g2c3d#3 0.00037 e1d3g3b3 0.00025
f#1d#2a2c3 0.00028 f#1e2a#2d#3 0.00019
g0f2b2d#3 0.00021 d#1c#2f#2a#2 0.00015
g1f2a#2c#3 0.00016 g#0b2f3g#3 0.00011
g1f2b2d#3 0.00012 b0a2d#3g3 0.00008

2

3

1

1

2 3

4 5 4 5

6 7 6 7 6 7 6 7

4

8 9 910 10 9 10 9 10 9 10 9 10 9 10 9

Fig. 5 – A probabilistic graphical model for chord progressions, as described in Section 3.1. Numbers
in level 1 and 2 nodes indicate a particular form of parameter sharing that has been used in the
experiments (see Section 2.3.1).
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Tab. 4 – Average negative conditional out-of-sample log-likelihoods of sub-sequences of length 8 on
positions 1, 9, 17 and 25, given the rest of the sequences. These results are computed using double cross-
validation in order to optimize the number of possible values for hidden variables and the parameters
λ and ρ. We see that the trees perform better than the HMM.

Model (Tying in level 1) Negative log-likelihood
Tree No 32.3281
Tree Yes 32.6364
HMM 33.2527

Equation (5). Values in level 3 are hidden and represent intuitively “initial” chords that could have
been substituted by the actual observed chords in level 4.

The role of the fixed substitution matrix is to raise the probability of unseen events in a way that
accounts for psychoacoustical similarities. Discarding level 4 and directly observing nodes in level 3
would assign extremely low probabilities to unseen chords in the training set. Instead, when observing
a given chord on level 4 during learning, the probabilities of every chords of the dataset are updated
with respect to the probabilities of substitution described in the previous section.

Again, the Junction Tree Algorithm (JTA) is used for marginalization and the EM algorithm for
parameter learning. Many variations of this particular model are possible, some of which are compared
in the following section.

3.2 Experiments with the Probabilities of Substitution

The same database as in Section 2.3 was used for the experiments. Every jazz standard excerpt
was 16 bars long, with a 4 beat meter, and with one chord change every 2 beats (yielding observed
sequences of length 32). The chosen discrete chord sequences were converted into sequences of 12-
dimensional continuous vectors as described in Section 2.1. In order to measure how well a given
architecture captures conditional dependencies between sub-sequences, average negative conditional

out-of-sample likelihoods of sub-sequences of length 8 on positions 1, 9, 17 and 25 have been computed
(see Equation (4)). Double cross-validation has been used to optimize the number of possible values
of hidden variables and the parameters ρ and λ for various architectures. Results are given in Table 4.

Two forms of parameter tying for the tree model have been tested. The conditional probability
tables in level 1 of Figure 5 can be either tied as shown by the numbers inside the nodes in the figure
or can be left untied. Tying for level 2 is always done as illustrated in Figure 5 by the numbers inside
the nodes, to model local dependencies. All nodes in level 3 share the same parameters for all tested
models. Also, recall that parameters for the conditional probabilities of variables in level 4 are fixed
as described in Section 3.1.

As a benchmark, an HMM consisting of levels 2, 3 and 4 of Figure 5 has been trained and evaluated
on the same dataset. The results presented in Table 4 are similar to perplexity or prediction ability.
As in Section 2.3, the fact that these contextual out-of-sample likelihoods are better for the trees
than for the HMM are an indication that time-dependent regularities are present in the data. Further
investigations would be necessary in order to assess to what extent chord structures are hierarchically
related to the meter.

It should be pointed out that the results obtained in Table 2 and in Table 4 can not be compared
quantitatively to assess the generalization capabilities of one model compared to the other. These
results can only be used to compare the prediction ability of one model versus one another over the
same chord representation. In order to compare both chord representations quantitatively, a supervised
task with an appropriate objective function (e.g. transcription, melody extraction, genre recognition)
could be designed.

One can sample the joint distribution learned by the model presented in this section in or-
der to generate novel chord progressions. Like in Section 2.3.2, we observe that chord progressions



14 IDIAP–RR 05-58

Tab. 5 – This table illustrates a way to construct a vector assessing the relative importance of each
time-step in a 4-beat measure divided in 12 time-steps. On each row, we add positions that have less
perceptual importance than the previous added ones, ending with a weight vector covering all the
possible time-steps.

Beat 1 . . 2 . . 3 . . 4 . .
1
2 1
3 1 2 1
4 1 2 1 3 1 2 1
5 1 2 3 1 2 4 1 2 3 1 2

generated by the tree model have all the characteristics of standard jazz chord progression (see
http ://www.idiap.ch/∼paiement/ml), which is not the case for chord progressions generated with
an HMM.

4 Interactions Between Chords and Melodies

After having considered chord progressions by themselves, a further step towards full modelling
of tonal polyphonic music is to model the interaction between chord progressions and melodies. A
chord representation that tells directly which notes are present in a given chord appears to be well
suited for this task. Every notes in a chord have a particular impact on the chosen notes of a melody
and a proper polyphonic model should be able to capture these interactions. Also, including domain
knowledge (e.g. A major third is not likely to be played when a diminished fifth is present) would be
much easier to include in a model dealing directly with the notes comprising a chord. While such a
model is inevitably much more tied to a particular music style, it is also able to achieve more complex
tasks like melodic accompaniment.

4.1 Melodic Representation

A simple way to represent a melody is to convert it to a 12-dimensional continuous vector repre-
senting the relative importance of each pitch class over a given period of time t. We first observe that
the lengths of the notes comprising a melody have an impact on their perceptual emphasis. Usually,
the meter of a piece can be subdivided into small time-steps such that the beginning of any note in
the whole piece will approximately occur on one of these time-steps. For instance, let t be the time re-
quired to play a whole measure. Given that a 4-beat piece (where each beat has a quarter note length)
contains only eight notes or longer notes, we could divide every measure into 8 time-steps with length
t/8 and every notes of the piece would occur approximately on the onset of one of these time-steps
occurring at times 0, t/8, 2t/8, . . . , 7t/8. We can assign to each pitch-class a perceptual weight equal
to the total number of such time-steps it covers during time t.

However, it turns out that the perceptual emphasis of a melody note depends also on its position
related to the meter of the piece. For instance, in a 4 beats measure, the first beat (also called the
downbeat) is the beat where the notes played have the greatest impact on harmony. The second most
important one is the third beat. We illustrate in Table 5 a way of constructing a weight vector assessing
the relative importance of each time-step in a 4 beats measure divided in 12, relying on the theory
of meter Cooper and Meyer (1960), as described in Section 1. At each step represented by a row in
the table, we consider one or more positions that have less perceptual emphasis than the previous
added ones and increment all the values by one. The resulting vector on the last row accounts for the
perceptual emphasis that we apply to each time-step in the measure.
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Fig. 6 – A graphical model to predict root progressions given melodies.

Although this method is based on widely accepted musicological concepts, more research would be
needed to asses its statistical reliability and to find optimal weighting factors.

4.2 Modelling Root Progressions

One of the most important notes in a chord with regard to its interaction with the melody may be
the root5. For example, bass players are playing the root note of the current chord very often when
accompanying other musicians in a jazz context. Figure 6 shows a model that learns interactions
between root notes (or chord names) and the melody. Such a model is able to predict sequences of
root given a melody, which is a non-trivial task even for humans. Nodes in level 1 and 2 are discrete
hidden variables and play the same role than in previous models. Nodes in level 2 are tied according
to the numbers shown inside the vertices. Probabilities of transition between levels 3 and 4 are fixed
by Equation (5) using single notes instead of chords and have 12 possible states corresponding to
each possible root note. We thus model the probability of substituting one root for one another.
Hence, nodes in level 3 are hidden while nodes in level 4 are observed. This part of the model is again
necessary to redistribute efficiently probability mass to unseen events during training. Nodes in level 5
are continuous 12-dimensional Gaussian distributions as defined in Equation (3). Nodes in level 5 are
also observed during training where we model each melodic observation using the technique presented
in Section 4.1.

4.2.1 Evaluation of Root Prediction Given Melody

In order to evaluate the model presented in Figure 6, a database consisting of 47 standard jazz
melodies in MIDI format and their corresponding root progressions taken in Sher (1988) has been
compiled by the authors. Every sequence was 8 bar long, with a 4 beat meter, and with one chord

5The root note of a chord is the note that gives its name to the chord. For instance, the root of the chord Em7b5 is
the note E.
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Tab. 6 – Average conditional negative out-of-sample log-likelihoods of sub-sequences of roots of length
4 on positions 1, 5, 9 and 13 given melodies. These results are computed using double cross-validation
in order to optimize the number of possible values for hidden variables. Again, the results are better
for the tree model than for the HMM.

Model Negative log-likelihood
Tree 6.6707
HMM 8.4587

Tab. 7 – Interpretation of the possible states of the structural random variables. For instance, the
variable associated to the 5th of the chord can have 3 possible states. State 1 corresponds to the
perfect fifth (P), state 2 to the diminished fifth and state 3 to the augmented fifth.

Values
Component 1 2 3 4
3rd M m sus -
5th P b # -
7th no M m M6
9th no M b #
11th no # P -
13th no M - -

change every 2 beats (yielding observed sequences of length 16). It was required to divide each measure
into 24 time-steps in order to fit each melody note to an onset. The technique presented in Section 4.1
was used over a time span t of 2 beats corresponding to the chords lengths.

The proposed tree model was compared to an HMM (builded by removing nodes in level 1) in
terms of prediction ability given the melody. We always observe melody vectors in level 5 while we
try to predict subsequences of roots in level 4. As in Section 2.3.1, average conditional negative out-
of-sample likelihood of sub-sequences of roots of length 4 on positions 1, 5, 9 and 13 were computed
and results are presented in Table 6.

Generated root sequences given out-of-sample melodies are presented in Section 4.4.1 together with
generated chord structures.

4.3 Discrete Chord Model

Before describing a complete model to learn the interactions between complete chords and melodies,
we introduce in this section a chord representation that allows to model dependencies between each
chord component and the proper pitch-class components in the melodic representation presented in
Section 4.1.

The model that we present in this section is observing chord symbols as they appear in Sher
(1988) instead of actual instantiated chords (i.e. observing directly musical notes derived from the
chord notation by a real musician) as in Sections 2 and 3. This simplification has the advantage of
defining directly the chord components as they are conceptualized by a musician. This way, it will
be easier in further developments of this model to experiment with more constraints (in the form of
independence assumptions between random variables) derived from musical knowledge. However, it
would also be possible to infer the chord symbols from the actual notes with a deterministic method,
which is done by most of the MIDI sequencers today. Hence, a model observing chord symbols instead
of actual notes could still be used over traditional MIDI data.

Each chord is represented by a root component (which can have 12 possible values given by the
pitch-class of the root of the chord) and 6 structural components detailed in Table 7.
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Tab. 8 – Mappings from some chord symbols to structural vectors according to notation described in
Table 7.

Symbol 3rd 5th 7th 9th 11th 13th
6 1 1 4 1 1 1
M7 1 1 2 1 1 1
m7b5 2 2 3 1 1 1
7b9 1 1 3 3 1 1
m7 2 1 3 1 1 1
7 1 1 3 1 1 1
9#11 1 1 3 2 2 1
m9 2 1 3 2 1 1
13 1 1 3 2 1 2
m6 2 1 4 1 1 1
9 1 1 3 2 1 1
dim7 2 2 4 1 1 1
m 2 1 1 1 1 1
7#5 1 3 3 1 1 1
9#5 1 3 3 2 1 1

While it is out of the scope of this paper to describe jazz chord notation in detail Levine (1990),
we just note that there exists a one-to-one relation between the chord representation introduced in
Table 7 and chord symbols as they appear in Sher (1988). We show in Table 8 the mappings of some
chord symbols to structural vectors according to this representation.

For instance, the chord with symbol 7#5 has a major third, an augmented fifth, a minor seventh,
no ninth, no eleventh and no thirteenth. The fact that each structural random variable has a limi-
ted number of possible states will produce a model that is computationally tractable. While such a
representation may look less general for a non-musician, we believe that it is applicable to most of
tonal music by introducing proper chord symbol mappings. Moreover, it allows to directly model the
dependencies between chord components and melodic components.

4.4 Chord Model given Root Progression and Melody

Figure 7 shows a probabilistic model designed to predict chord progressions given root progressions
and melodies. The nodes in level 1 are discrete hidden nodes as in previous models. The gray boxes
are subgraphs that are detailed in Figure 8. The H node is a discrete hidden node modelling local
dependencies and corresponding to the nodes on level 2 in Figure 2. The R node corresponds to the
current root. This node can have 12 different states corresponding to the pitch class of the root and
it is always observed. Nodes labelled from 3rd to 13th correspond to the structural chord components
presented in Section 4.3. Node B is another structural component corresponding to the bass notation
(e.g. G7/D is a G seventh chord with a D on the bass). This random variable can have 12 possible
states defining the bass note of the chord. All the structural components are observed during training
to learn their interaction with root progressions and melodies. These are the random variables we try
to predict when using the model on out-of-sample data. The nodes on the last row labelled from 0 to
11 correspond to the melodic representation introduced in Section 4.1.

It should be noted that the melodic components are observed relative to the current root. In
Section 4.2, the model is observing melodies with absolute pitch, such that component 0 is associated
to note C, component 1 to note C#, and so on. On the other hand, in the present model component
0 is associated to the root note defined by node R. For instance, if the current root is G, component 0
will be associated to G, component 1 to G#, component 2 to A, and so on. This approach is necessary
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Fig. 7 – A graphical model to predict chord progressions given root progressions and melodies. The
gray boxes correspond to subgraphs presented in Figure 8.
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Fig. 8 – Subgraph of the graph presented in Figure 7. Each chord component is linked with the proper
melodic components on the bottom.
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Tab. 9 – Average negative conditional out-of-sample log-likelihoods of sub-sequences of chord struc-
tures of length 4 on positions 1, 5, 9 and 13, given the rest of the sequences and the complete root
progressions and melodies using double cross-validation.

Model Negative log-likelihood
Tree 9.9197
HMM 9.5889

Tab. 10 – Three different harmonizations of the last 8 measures of the jazz standard Blame It On My

Youth. Rows beginning with OC correspond to the original chord progression. Rows beginning with
OR correspond to the most likely chord structures given the original root progression and melody with
respect to the model presented in Section 4.4.1. Finally, rows beginning with NH correspond to a new
harmonization generated by the same model and the root progression model presented in Section 4.2
when observing original melody only.

OC (1-8) AbM7 Bb7 Gm7 Cm7 Fm7 Fm7/Eb Db9#11 C7
OR AbM7 Bb7 Gm7 C7 Fm7 Fm7 Db7 Cm7
NH C7 C7 Gm7 Gm7 Fm7 Fm7 Bb7 Bb7
OC (9-16) Fm7 Edim7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
OR Fm7 E9 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6
NH Edim7 Gm7 Fm7 Bb7 Eb6 Eb6 Eb6 Eb6

to correctly link the structural components to the proper melodic components as shown by the arrows
between the two last rows of nodes on Figure 8.

4.4.1 Generation of an harmonization

It is possible to evaluate the prediction ability of the model for chord structures. We present in
Table 9 the average negative conditional out-of-sample log-likelihoods of chord structures of length 4
on positions 1, 5, 9 and 13, given the rest of the sequences, the complete root progressions and the
melodies for the tree model and an HMM model builded by removing the nodes in level 1 in Figure 7.

Again, we used double cross-validation in order to optimize the number of hidden variables in the
models. We observe that the HMM gives better results than the tree model in this case. This can
be explained by the fact that the root progressions are given in these experiments. This would mean
that most of the contextual information would be contained in the root progression, which make sense
intuitively. Further statistical experiments could be done to investigate this behavior.

The process of generating a chord progression given a melody is called harmonization. The pro-
posed model can be used to generate an harmonization over an unknown melody with respect to
the dependencies learned during training. Table 10 shows three different harmonizations of the last 8
measures of the jazz standard Blame It On My Youth, by O. Levant.

When observing the predicted structures given the original root progression, we see that most of the
predicted chords are the same as the originals. When the chord differs, the musician will observe that
the predicted chords are still relevant and are not in conflict with the melody shown in Figure 9.
It is more interesting to look at the sequence of chords generated by taking the sequence of root
with the highest probability given by the root progression model presented in Section 4.2 and then
finding the most likely chord structures given this predicted root progression and the original melody.
While some chord change are debatable, most of the chords comply with the melody and we think
that the final result is musically interesting. These results show that valid harmonization models for
melodies that could learn different musical styles could be implemented in commercial software in the
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Fig. 9 – The last 8 measures of the melody of the jazz standard Blame It On My Youth.

short term. Again, more generated results from the models presented in this paper are available on
http ://www.idiap.ch/∼paiement/ml.

5 Conclusion

In this paper, we introduced three different representations for chords that can be used as observa-
tions for probabilistic models. Each of these representations are adequate for different purposes. While
the continuous representation presented in Section 2 is very intuitive and has a musicological interest,
the derived probabilities of substitution presented in Section 3 seems more suited to the graphical
model framework. Although these two representations are more general and computationally simple,
we believe that a representation closer to the domain of application like the one presented in Section 4
is also very appealing. First, it is much easier to introduce domain knowledge (such as the relations
between components of chords) in a model observing such a representation. Moreover, it is also easier
to model statistical independence relationship (i.e. the absence of link between two random variables)
between chord components and other polyphonic music components when modelling directly each
chord component.

As already noted, the generalization capabilities of the different chord representations presented
in this paper should not be compared in terms of prediction ability. Supervised tasks where these
representations could play a major role such as chord recognition in audio signal, audio to symbolic
transcription or genre recognition could be designed in future work to compare quantitatively these
representations.

A second main contribution of our work is that we have shown empirically that chord progressions
exhibit global dependencies that can be better captured with a tree structure related to the meter than
with a simple dynamical HMM that concentrates on local dependencies. The importance of contextual
information for modeling chord progressions is even more apparent when one compares sequences of
chords sampled from both models. The time-dependent hidden variables enable the tree structure to
generate coherent chord progressions both locally and globally. We have also shown that it is possible
to design a probabilistic model that can generate proper chord progressions given other polyphonic
music components such as melody or even chord root progressions.

Chord progressions are regular and simple structures that condition dramatically the actual choice
of notes in polyphonic tonal music. Hence, we argue that chord models are crucial in the design of
efficient algorithms that deal with such music data. Moreover, generating interesting chord progressions
may be one of the most important aspects in generating realistic polyphonic music. Our proposed chord
representations and their associated probabilistic models constitute a first step in that direction.
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