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Abstract. In this paper, we present a robust speech acquisition system to acquire continuous speech using
a microphone array. A microphone array based speech recognition system is also presented to study the
environmental interference due to reverberation, background noises and mismatch between the training and
testing conditions. This is important in the context of smart meeting rooms of Augmented MultiParty Interac-
tion (AMI) project which aims at significant development of conversational speech recognition. In this regard,
an audio-visual database containing the Wall Street journal phrases was recorded in a real meeting room for
the stationary speaker, moving speaker and overlapping speech scenarios. We carried out speech enhance-
ment and continuous speech recognition experiments on stationary speaker data. Using a microphone array
with beamformer followed by a postfilter enhances speech quality slightly inferior to that of close-talk head-
set,and better than lapel. We achieved a significant reduction in word error rates using models adapted based
on maximum linear likelihood regression (MLLR) and maximum-a-posteriori (MAP) approaches. Though
the error rates of the microphone array data are larger than those of headset data, they are significantly smaller
compared to the error rates of lapel data.
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1 Introduction

Most speech recognizers perform well only for small vocabularies under matched training and testing condi-
tions. The present best speech recognition systems are able to achieve 1 % error rate in speaker-dependent
isolated word recognition task with 20,000 word vocabulary [1] and less than 0.5 % word error-rate in speaker
independent digit recognition task [2]. For speaker-independent continuous speech recognition word error-rate
of 5 % and 10 % is possible [3]. This high level recognition accuracy is achievable only with matched training
and test data. In real world conversational settings like meetings,the microphone arrays can be used for speech
acquisition as they provide high SNR needed for speech recognition applications. However, the performance
degradation can be observed when these are deployed in meeting rooms where input speech is degraded due to
changes in acoustical and articulatory characteristics of the speech.

In this paper, we investigate the use of microphone arrays for speech enhancement and speech recognition
in meetings. Earlier studies have shown microphone arrays based on beamforming techniques can replace
close-talk headset for speech recognition in real reverberant environments [4, 5]. The effects of using a speech
recognition system, trained on clean data when used for distant microphone array system are discussed here.
While the previous studies signified the robustness of microphone array system to various background noise
sources, the speech recognition experiments were limited to numbers and words. The performance of the
current state-of-the-art systems trained on clean data deteriorate when used with microphone array speech data
in meetings.A perfectly trained isolated word recognizer could recognize only 30 % when white noise with 10
dB SNR was added to the signal [6]. The word error-rate of the SPHINX speech recognition system raised from
15 % to 80 % when table-top microphone was used in place of close-talking microphone [7]. This degradation
results from low quality speech signal, different training and testing scenarios and when the testing speaker’s
native language is not the same as with which the system was trained.

The microphone array based speech recognition research suffers from the lack of appropriate corpus as
most of the speech corpora comprise of single-channel data. Hence, we have started recording an audio-visual
database based on the Wall Street journal phrases in a real meeting room for the stationary speaker, moving
speaker and overlapping speech scenarios. The database comprises of non native English speakers with no
constraints on speaking styles and accents. It has been designed to suit speaker independent audio-visual based
continuous speech recognition thus enabling realistic evaluation of multimodal component technologies.Three
instrumented meeting rooms at IDIAP Research Institute, Switzerland, The Centre for Speech Technology
Research, Edinburgh and TNO Human Factors, The Netherlands are involved in the recording of the data.

This work presents the results of initial experiments, using a part of the database to show continuous speech
recognition based on array processing techniques. The clean training data was from Wall Street Journal-based
CSR Corpus [8]. To reduce the mismatch between the training and the testing conditions baseline HMM
models were adapted using maximum linear likelihood regression (MLLR) and maximum-a-posteriori (MAP)
techniques to obtain better recognition results. We discuss performances of speech recognition on data obtained
from different audio channels; headset, lapel and microphone array.

This paper is organized as follows. In section2 we describe the physical setup and database recording
procedure. Section3 details the microphone array processing for speech enhancement, while continuous speech
recognition and experimental results are described in Section4. Conclusions and outline for future work are
given in section5.

2 Physical setup and Recording Procedure

The recording setup comprises of three widely spaced and four close-up CCTV cameras, two microphone ar-
rays, headset, lapel, manikin connected to a fully synchronized capture devices. The meeting room dimensions
are 8.2mx3.6mx2.4m containing a 4.8mx1.2m rectangular table [9]. The audio sensors are configured as an
2 eight-element, circular equi -spaced microphone array centered on the table and on the roof, with diameter
20cm, and composed of high quality miniature electret microphones. Additionally, lapel and close-talk mi-
crophones are available to each speaker. Two cameras on opposite walls record frontal views of participants,
including the table and workspace area, and have non-overlapping fields-of-view (FOVs). A third wide-view
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camera looks over the top of the participants towards the white-board and projector screen. Four close-up
cameras capture close views of different positions. The video sensor array provides 720x576 resolution images
at 25 frames per second, while audio was recorded at 16 kHz with 16 bits per sample. Top view of the entire
system is shown in fig. 1 and sample of pictures from the experimental environment are shown in fig. 2.
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Figure 1: Top view of the physical setup

Figure 2: Right,center and left views of the meeting room

The major objective is to design a flexible database for realistic evaluation of component research areas
in particular speaker localization, tracking, speech enhancement and recognition. The database consists of
three major sections, first single speaker reading 1/6 sentences from 6 locations, second single speaker moving
around the area of focus in the meeting room and the third pairs of overlapping speakers. To combat the effects
of overlapping speech, which hinder the performance of speech recognition, the part of database is dedicated
to the overlap speech. Each section comprises of 15 speakers hence resulting in a total of 45 recordings. The
speakers were asked to read the phrases from the Wall Street journal (100 for each recording). The speakers
were mainly non native English speakers and the recordings were as natural as possible with no constraints on
speaking styles,accents and pronunciations.Around 20 hours of data including stationary, moving, overlapping
speech was recorded.

3 Microphone Array Speech Enhancement

Microphone array speech enhancement processing involves transformation of low quality noisy speech into a
high quality speech signal as close to close-talk headset. The microphone array speech enhancement system
which includes a filter-sum beamformer followed by a post-filter stage as shown in fig. 3 is similar to the system
presented in [10].
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Figure 3: Integrated microphone array speech recognition system

3.1 Beamformer

Beamformer steer an array of microphones towards the active speaker direction through an array signal process-
ing and geometry rather than physically moving the array. The Beamformer uses the superdirective technique
to calculate the channel filters maximizing the array gain, maintaining a minimum constraint on the white noise
gain. This detailed explanation of this technique is described in [11].

3.2 Postfilter

Beamformer followed by post-filtering significantly improve the enhancement of the speech signal by reducing
the background noise. In Marro et al [12], it is mathematically demonstrated that by associating post-filter with
the output of the microphone array suppresses the uncorrelated components and improves the performance of
the beamformer.Assuming that the noise and reverberations form a diffuse noise field and hence are uncorre-
lated at each microphone of the array. Wiener filter transfer function [11] can be estimated from the cross- and
auto-spectral densities of the input channels. This estimate can be made more robust by averaging the spectral
densities over all possible sensor combinations and can be written as,

W
�
f ���

2
P � P � 1 � ∑P � 1

i � 1 ∑P
j � i � 1 φ̂xix j

�
f �

1
P ∑P

i � 1 φ̂xixi

�
f � (1)

Where f is the frequency index, P is the number of microphones, φ̂xix j is the estimated cross-power spectral

density between the time compensated microphone signals i and j and φ̂xixi the estimated power spectrum
density of the delayed signal of the i-th microphone.

In [13], a detailed analysis of the Zelinski array post-filter modified to handle wide range of noise-fields
has been shown to improve the broadband noise reduction of the array, and lead to better performance in
speech recognition applications. The average segmental signal to noise ratio (SNR) is calculated to evaluate the
effectiveness of the microphone array in acquiring clean speech. All the results are calculated with respect to the
level on single table-top microphone to normalise for different levels of individual speakers and hence represent
SNR enhancement(SNRE). The SNRE results in Table 1 show that the signal quality of the microphone array
is slightly inferior to that of close-talk headset but better than lapel.

Table 1: SNRE results for different data channels
Channel SNRE(dB)
Headset 29.7
Lapel 24.3
Array 27.6
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4 Experiments and Results

In our recognition experiments, a full HTK based recognition system [15] trained on original close talking
Wall Street Journal corpus was used. The acoustic feature set has 39 elements, which comprises of 13 Mel
frequency cepstrum coefficients (MFCC) with mean removal and their first and second derivations computed
using a 25-ms Hamming window shifting every 10 ms. Our system used 3 state per HMM context-dependent
triphone models with around 9000 tied states, each modelled by a mixture of 16 Gaussians. The baseline
system gave a WER of 20 % using the clean test data from the original Wall Street journal corpus.

Table 2: Adaptation and test data description
Data Number of speakers Number of utterances
Adaptation 7 91
Testing 5 65

As mentioned before, we only used stationary speaker data for these experiments. The details of this data
is presented in Table 2. We used around 12 minutes data of 7 speakers for adaptation and 8 minutes data of
5 speakers for testing. All of our speakers, except two, were non-native English speakers. The adaptation
data have been recorded under the same conditions as the test data. In Table 3 , we show word error rates of
headset, microphone array and lapel data using baseline models, i.e. models trained on original WSJ corpus.
The headset data produces a much lower word error rate than microphone array data and lapel data.

Table 3: WERs obtained from baseline models
Channel WER (%)
Headset 42.5
Lapel 67.0
Array 64.2

To compensate the mismatch between the training and the test conditions, we adapted the baseline HMM
models. For adaptation we used both maximum likelihood linear regression (MLLR) and maximum-a-posteriori
(MAP) approaches. In MLLR, we used a static two-pass approach, where in the first pass a global transfor-
mation was performed. In the second pass a set of more specific transforms was estimated using the global
transform . Since we have a small amount of adapation data, we used MLLR transformed means as the priors
for MAP adaptation. The performace of each of these three data channels were improved when we used models
adapted using MLLR and MAP techniques.

Table 4: WERs obtained from MLLR adapted models
WER (%)

Channel Headset-adapted models Lapel-adapted models Array-adapted models
Headset 34.5 – –
Lapel 60.4 53.5 –
Array 51.3 – 46.1

The word error rates for headset, microphone array and lapel datasets obtained using MLLR adaptation
on headset data are presented in Table 4. A significant reduction in WERs can be seen in all of the three
data channels. We also adapted models using microphone array data as well as lapel data and used them for
respective datasets. Using these channel specific adapted models, we achieved further reduction in word error
rates.
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Table 5: WERs obtained from MAP adapted models
WER (%)

Channel Headset-adapted models Lapel-adapted models Array-adapted models
Headset 33.5 – –
Lapel 59.6 52.2 –
Array 49.7 – 47.9

Table 5, presents word error rates of all the three data channels using MAP adapted models. We obtained
further reduction (around 1% absolute) using MAP adapted models, except in the case of microphone array
data. This may be due to insufficient data for MAP adaptation, compared to other data channels (headset
and lapel), this data may probably contain reverbation and background noises. In MAP adapatation also, we
obtained good performance using models adapted using the respective datasets.

5 Conclusions and Future Work

In this paper we present a framework for microphone array based speech acquisition and recognition. For this
we recorded an audio-visual database based on the Wall Street journal phrases in a real meeting room for the
stationary speaker, moving speaker and overlapping speech scenarios. The database comprises of non native
English speakers with no constraints on speaking styles and accents. The speech enhancement experiments
showed that using a beamformer followed by a postfilter enhanced speech quality slightly inferior to that of
close-talk headset,and better than lapel.

A full HTK based recognition system trained on original close talking Wall Street Journal corpus was used
for our experiments. When using these models, the headset data produced a much lower error rate compared
to lapel data and microphone array data,however microphone array data performance was better than the lapel
data. The MLLR and MAP adaptations helped in reduction of word error rates significantly. The MAP adapted
models resulted in slightly less word error rates compared MLLR adapted models. With more data to follow
from the partner institutions we hope to improve the recognition performances further.

Number of issues have been raised by our studies; to study the recognition performances on the moving
speaker and overlapping speech data, noise robust features and approaches to deal with microphone array data.
In the future we also plan to study the effects of tracking beamformer on recognition performances.
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