Detecting Group Interest-level in Meetings

Finding relevant segments in meeting recordings is important for summarization, browsing, and retrieval purposes. In this paper, we define relevance as the interest-level that meeting participants manifest as a group during the course of their interaction (as perceived by an external observer), and investigate the automatic detection of segments of high-interest from audio-visual cues. This is motivated by the assumption that there is a relationship between segments of interest to participants, and those of interest to the end user, e.g. of a meeting browser. We first address the problem of human annotation of group interest-level. On a 50-meeting corpus, recorded in a room equipped with multiple cameras and microphones, we found that the annotations generated by multiple people exhibit a good degree of consistency, providing a stable ground-truth for automatic methods. For the automatic detection of high-interest segments, we investigate a methodology based on Hidden Markov Models (HMMs) and a number of audio and visual features. Single- and multi-stream approaches were studied. Using precision and recall as performance measures, the results suggest that (i) the automatic detection of group interest-level is promising, and (ii) while audio in general constitutes the predominant modality in meetings, the use of a multi-modal approach is beneficial.


Année
2004
Publisher:
Martigny, Switzerland, IDIAP
Mots-clefs:
Note:
Submitted for publication.
Laboratoires:




 Notice créée le 2006-03-10, modifiée le 2019-03-16

n/a:
Télécharger le documentPDF
Lien externe:
Télécharger le documentURL
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)