

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

Invariances in Kernel
Methods: From Samples to

Objects

Alexei Pozdnoukhov Samy Bengio

IDIAP–RR 04-56

September 2004

IDIAP Research Report 04-56

Invariances in Kernel Methods: From Samples to

Objects

Alexei Pozdnoukhov Samy Bengio

September 2004

Abstract. This paper presents a general method for incorporating prior knowledge into kernel
methods such as Support Vector Machines. It applies when the prior knowledge can be formalized
by the description of an object around each sample of the training set, assuming that all points
in the given object share the same desired class. A number of implementation techniques of this
method, based on hard geometrical objects and soft objects based on distributions are considered.
Tangent vectors are extensively used for object construction. Empirical results on one artificial
dataset and two real datasets of Electro-Encephalogram signals and face images demonstrate the
usefulness of the proposed method. The method could establish a foundation for an information
retrieval and person identification systems.

2 IDIAP–RR 04-56

1 Introduction

Prior knowledge is often used in machine learning algorithms to constrain models towards reasonable
solutions. One such class of prior knowledge relates to invariances. These are transformations of
the inputs that leave the outputs unchanged. The general setting of including invariances into kernel
methods was considered by Burges (1999). One of the widely used practical methods for incorporating
invariances into Support Vector Machines (SVMs) is the Virtual Support Vector method, based on
generating artificial samples from the current Support Vectors of the problem (Scholkopf et al. (1996)).
The method performed particularly well on an optical digit recognition task. Another general way is
to modify the cost function of the algorithm in order to penalize solutions not following the invariance
properties. One such method (though not really suitable for large-scale datasets) was developed by
Chapelle et al. (2002). Finally, a method of DeCoste and Burl (2000) called“kernel jittering”combines
the generation of artificial examples with kernel modification. We do not consider here a number of
application-specific methods.

In this paper, we present yet another approach to the problem, which assumes that the prior
knowledge can be formalized as a mapping of a special kind. This mapping transforms each sample
into an object in such a way that it includes the prior knowledge, similar to that done in the Tangent
Distance approach of Simard et al.(1998) applied to neural networks. The method does not lead either
to enlarged training sets or to modification of the cost function as opposed to other techniques. It
simply exploits standard SVM optimization algorithms. It combines generative and discriminative
approaches by use of local models(objects) based on training samples.

The rest of the paper is organized as follows. The general idea is presented in Section 2, as well
as two implementations for hard geometrical (Section 3.1) and soft distribution-based objects (Sec-
tion 3.2). We give links to several other apporaches in Section 4. Section 5 presents the experiments on
artificial data where we illustrate the performance of the proposed method, and on two real datasets,
where the first task is to classify EEG signals for a Brain-Computer Interface system and the second
is devoted to a number of classification tasks in the area of face recognition or person identification.
Section 6 completes the paper with a discussion and conclusions.

2 From Samples To Objects

Suppose we have some understanding of our data that can be formalized as a transformation of the
inputs that leaves the outputs unchanged. For example, in a 2D image classification task we are often
given the evident knowledge that small rotations and translations of the raw images do not affect the
desired output class. Suppose the representation of the data (the set of features) allows us to describe
the desired transformation as a mapping that leaves the outputs unchanged. The mapping applied
to every sample produces a set of corresponding objects, which becomes a point of our consideration.
In other words, we assume that given some understanding of the data we are able to generalize each
sample into the equivalence class - the object in the input space. By doing this we aim to capture
some prior similarities in the data. If this formalization is successfully performed, it is possible to
deal with objects instead of samples when solving our particular learning problem. We will consider
several kinds of such objects below.

2.1 Hard Objects

We define “hard” objects by the following geometrical transformation

xi 7→ Sxi = {ϕα(xi), α ∈ Λ} (1)

where we denote the data samples by xi. Function ϕα(.) defines a set in the input space through the
admissible set Λ of parameters α. For example, one can consider segments instead of points xi, as
defined below in (10).

IDIAP–RR 04-56 3

2.2 Soft Objects

Instead of using hard geometrical objects one can define an object as a local distribution of the kind

xi 7→ p(x|xi, ri), (2)

where ri is a vector of parameters of the local distribution p(x|xi, ri). This distribution is constructed
in a way to describe the desired local transformations of a sample. It represents the probability that
a given point x is in fact a (transformed) sample xi.

Though a uniform distribution on the bounded support can be considered as a hard object, we still
discriminate the hard/soft cases due to the different underlying approaches used to define the kernel
functions.

2.3 Objects Based on Tangent Vectors

One evident way to create objects from samples is to use the tangent vector approach. Tangent vectors
were extensively used in the work of Simard (1998) to introduce invariances. We will partly follow the
notations of their paper. A good intuition for the following equations lies in considering 2D images
on the plane (ξ, ψ). The intensity of the image is defined by some function U(ξ, ψ). It provides a
high-dimensional input vector x for a given discrete set of coordinates (ξ, ψ).

Suppose the 2D transformation of the image plane tα we want to be invariant to is defined by the
set of parameters α in some region of D ⊂ R2:

tα : D ⊂ R2 7→ tα(D) ⊂ R2, (3)

where α is a J-dimensional vector which parametrises the transformation. This transformation is
assumed to be differentiable with respect to α and (ξ, ψ) ∈ D, and reduces to the identity transfor-
mation for some value of α0. Then the object generated by this transformation and associated with
an image U is defined by

S(U,α) = U ◦ t−1
α , α ∈ Λ, (4)

where Λ is some admissible set of parameters α. In the case of J local transformations one can linearly
approximate S(U,α) as follows:

S1(U,α) = U +
J∑

j=1

(αj − α0
j)Lαj (U), (5)

where Lαj (U) are local transformations of U defined by:

Lαj (U) =
∂S(U,α)

∂αj

∣∣∣∣
α=α0

. (6)

Note that Lαj are operators that generate the whole space of local transformations (a Lie algebra
of local transformations). For example, three operators of X-translation, Y-translation and rotations
about the origin produce a transformation (and a corresponding object) of all possible translations and
rotations. Tangent vectors `j(x) can be obtained by discretising the result of applying the operators
Lαj to the continious image U which correspond to a discrete sample x.

The examples of tangent vectors calculation for widely used transformations such as rotations and
scaling are shown below:

• Rotation:
tα =

(
cos α
sin α

− sin α
cos α

)
, Lrot

α = ψ ∂
∂ξ − ξ ∂

∂ψ . (7)

• Scaling:
tα =

(
1+α

0
0

1+α

)
, Lsc

α = ξ ∂
∂ξ + ψ ∂

∂ψ . (8)

4 IDIAP–RR 04-56

If Λ = RJ , (4) is an J-dimensional differentiable manifold and (5) is a corresponding linear tangent
manifold which is used in the tangent distance method of Simard et al.(1998). However, tangent
vectors can hardly model the transformation of complex images, such as faces, providing acceptable
results only for small values of αi. Therefore, the bounded set of parameters α ∈ Λ can be used. Since
every parameter αi corresponds to a transformation we intend to be invariant to, then the choice of
the set Λ defines the influence of this or that type of prior information on the invariances. Later, we
will use tangent vectors for the construction of specific distributions which represent soft objects.

2.4 Objects Based on Sample Models

In general there is no need to build identical objects for every sample. Consider an example from
Optical Character Recognition (OCR). There is no need to build an object which represents a set
of symmetrically rotated characters for every sample of the database. A number of characters may
appear to be rotated significantly already and the latter object representation would make them worse
by rotating them unreasonably much.

So far, object construction can also be thought of as follows. Suppose we have an (output-
independent) model Ψ(.) for the samples we are dealing with. The model represents our knowledge
of the sample’s properties and can be of a very general kind. Given a sample from the dataset, the
model transforms it into an object based on some estimated sample-dependent parameters: objecti =
Ψ(samplei). Following the example from OCR, suppose we estimated the angle a digit character
is rotated by, hence an object will be constructed to describe basically the rotation in the opposite
direction.

However, practical implementation of this approach requires solving the tasks of application-
dependent model construction and estimation of model parameters, which are rather complicated
and will not be considered further here.

3 Kernels for Objects

There are two major ways to make use of objects in kernel methods. Generally, one would like to
formulate a criterion for a learning algorithm directly for objects. For example, a criterion can be to
maximise the margin between objects of different classes. One of the first attempts for constructing
an algorithm of this type was recently proposed by Graepel et. al (2003). We explore here another
approach based on defining a kernel function for objects, which can be used in a standard algorithm
like SVM.

3.1 Kernels for Hard Objects

Since we apply our knowledge directly and deal with objects in the input space, it is reasonable to
deal with distance-based kernels that have clear intuitive interpretation as a measure of similarity.

Suppose one uses a distance-based kernel, for example the commonly used Gaussian Radial Basis
Function (RBF) kernel:

K(xi, xj) = e
−ρ(xi,xj)2

2σ2 , (9)

where sample-to-sample distance in the input space is defined by ρ(xi, xj)2 = ‖xi − xj‖2 and σ2 is
the variance of the kernel.

Substituting the object-to-object distances into the kernel, one includes the prior knowledge into
the algorithm. The problem here is to provide a way to compute distances between objects efficiently.
In the following subsections we give some simple examples of distances that can be derived analytically
and calculated efficiently.

IDIAP–RR 04-56 5

3.1.1 Linear Scaling

Consider the linear transformation

x 7→ Gx = {αx, α ∈ [a, b]} (10)

where a, b ∈ R1. This transformation corresponds to a brightness change of the image (given a raw
image representation) or to an amplitude scaling of the signal. Note that in general for a finite range
of α this transformation cannot be taken into account by simple normalization of the input data.

Consider the distance given by:

ρ(x,G(x̂))2 = (x− |α∗|[a,b]x̂)2, α∗ =
x · x̂
x̂2

, (11)

where |g|[a,b] is defined as a if g < a, b if g > b, and g otherwise. This is simply the distance between
x and the segment Gx̂ = [ax̂, bx̂] of the line corresponding to the directing vector x̂. Though segment-
to-segment distance can be easily derived, we will use a symmetrized sample-to-segment distance in
the experiments below for an illustrative artificial example (Section 5.1) and the task of EEG signals
classification (Section 5.2).

3.1.2 Translations

The second example is a particular case of translation invariance, i.e. the desired transformation is

x 7→ Px = {eiti + x; ti ∈ [−tlimi , tlimi]}, (12)

where ei are the basis vectors of the input space RN and tlimi is the maximum allowed translation in
dimension i, with i = 1, 2, ..., N . It corresponds to the mapping into an interior of the cuboid whose
“center” is vector x and all the edges are parallel to the axes. This transformation corresponds to a
speckle noise in the image and its use will be illustrated experimentally in Section 5.3.

The distance between vector x and cuboid Px̂ is given by minimization of

ρ(x, Px̂)2 = min
~t

(x− Px̂(~t))2, (13)

over the set of parameters ~t = {t1, t2, ...tN} and can be calculated as follows:

ρ(x, Px̂)2 =
N∑

i=1

((xi − x̂i)− |xi − x̂i|[−tlim
i ,tlim

i])
2, (14)

where xi, x̂i are the components of the corresponding vectors.
The distance between two objects defined by (12) can be similarly computed with

ρ(Px, Px̂)2 =
N∑

i=1

∣∣|xi − x̂i| − 2tlimi

∣∣
[0,∞]

. (15)

We will use this distance later for noisy image classification (Section 5.3).

3.1.3 Object to Object Distances

Using the sample-to-object distances, we take into account some prior knowledge but still use a kernel
matrix that might not be positive definite. One can use an average of two sample-to-object distances
to make the kernel matrix symmetric. Ideally, an object-to-object distance may be preferable, but its
calculation is often quite a difficult task and can not always be easily performed. For the considered
examples it is possible to compute segment-to-segment and box-to-box distances (15).

6 IDIAP–RR 04-56

In general, the computation of the Euclidean distance between the objects leads to a constrained
optimization problem. Consider two objects S(x, α) and Ŝ(x̂, α̂). We approximate the Euclidean
distance between them with the Euclidean distance between their linear approximations:

ρ(S, Ŝ)2 ' ρ(S1, Ŝ1)2 = min
α,α̂

(
x− x̂ +

L∑

i=1

αi`αi
(x)− α̂i`α̂i

(x̂)

)2

, (16)

subject to
αi ∈ [αmin

i , αmax
i], α̂i ∈ [α̂min

i , α̂max
i]. (17)

This problem can be considered as a Nearest Point Problem and a number of simple iterative
methods such as Gilbert’s or Mitchel-Demyanov-Malozyomov algorithms (which are also used for
SVM training) can be applied for distance minimization (e.g. Keerthi et al. (1999) and references
therein). By controlling the maximum number of iterations one defines a trade-off between accuracy
and speed. The unconstrained problem corresponds to the Tangent Distance method. Its direct
application for SVM kernels was considered by Haasdonk and Keysers, 2002.

3.2 Kernels for Soft Objects

Given a soft object in a form of local distributions centered at each sample, one can apply a number of
approaches developed in statistics for comparing two distributions. We first introduce here a special
kind of distribution which makes use of tangent vectors. Next, we present some methods for defining
the corresponding kernels.

3.2.1 Local Distributions based on Tangent Vectors

Suppose the transformation we want to be invariant to defines a differentiable manifold in the input
space. Hence the tangent vectors can be defined as described above, and the whole set of tangent
vectors can be used to model all the local linear transformations of the given image. Let us define the
following function H which gives the measure of proximity of a given vector x to the linear span of
some vector x′ generated with a tangent vector `j :

H(x|x′, `j) = e
− (x−x′)2`2j−((x−x′)·`j)2

2γ2
w`2

j , (18)

where γw is the parameter related to the width of the proximity region.
The following distribution Ks describes a similarity between given sample x and an object based

on sample x′ generated by a set of corresponding tangent vectors {`1, ...`J}:

Ks(x, x′) = e−
(x−x′)2

2σ2 ·
J∏

j=1

(η + H(x|x′, `j)) (19)

where σ is a bandwidth and the real number η ∈ [0, 1] defines the shape of the distribution.
Assuming η = 0 in (19) and applying normalization, one can reduce (19) to a standard Gaussian:

Ks(x, x′) = e
−(x−x′)T L

−1
x′ (x−x′)

(2π)N/2|Lx′ |1/2 , where :

L−1
x′ =

(
1

2σ2 + J
2γ2

w

)
I −

J∑
j=1

`j`T
j

2γ2
w`2j

,

(20)

where I is an identity matrix, and |...| denotes the determinant. This representation will be extensively
used below for kernel evaluation.

IDIAP–RR 04-56 7

3.2.2 Tangent Vector Kernels

The simplest way to use the latter distribution for introducing invariances into kernel methods is to
consider (19) as a one-sided (sample-to-object) similarity measure. Then, a two-sided kernel Kd can
be obtained by taking the following average:

Kd(x, x′) =
1
2
(Ks(x, x′) + Ks(x′, x)). (21)

The proposed kernel combines the advantages of both VSV and Tangent Distance approaches. In
this approach we not only analytically include the Virtual SV into the model (without putting them
into the data), but also take into account all the linear combinations of invariant transformations of
interest. Moreover, using all the tangent vectors which correspond to linear transformations, one can
take into account all the possible local linear transformations of an image.

The proposed kernel (19)-(21) is not the only possible one to make use of the tangent vectors.
Other kernels can be constructed in a similar way to the one presented by combining the terms (18)
in a different manner.

3.2.3 Distribution-based Tangent Vector Kernels

To be consistent in the sample-to-object approach, let us consider the distributions (18) defined for
every sample. We introduce the Distribution-based Tangent Vector Kernel (DB TVK) as follows. The
kernel can be obtained by measuring the overlap of two distributions that correspond to the object
based on samples x and x′. To do this we introduce the following kernel between two distributions:

KB(x′, x′′) =
∫

Ks(x, x′)ρKs(x, x′′)ρdx, 0 ≤ ρ ≤ 1, (22)

which is a dot product in the space of functions Ks(., x′) and was called the probability product kernel
in Kondor and Jebara (2004).

The closed form of KB(x′, x′′) can be obtained for a number of cases. For η = 0 and using
equation (20), KB(x′, x′′) reduces to integration of Gaussians and can be expressed as follows:

KB(x′, x′′) = (2π)
(1−2ρ)N

2

∣∣∣L̂
∣∣∣
1
2 |Lx′ |−

ρ
2 |Lx′′ |−

ρ
2

exp(−ρ
2x′T L−1

x′ x′ − ρ
2x′′T L−1

x′′ x
′′ + 1

2 x̂T L̂x̂)
(23)

where L̂ = (ρL−1
x′ + ρL−1

x′′)
−1 and x̂ = ρL−1

x′ x′ + ρL−1
x′′ x

′′.
A closed form equation for the distribution-based tangent vector kernel can also be derived for

η 6= 0 and ρ = 1, which is more interesting but yields an even more cumbersome expression. We
consider this case in the next section.

3.2.4 Making Distribution-based TVK practical

Direct implementation of the proposed DB TVK demands costly computations. Therefore, we propose
here a practical way to compute (22). It consists of computing the approximation of the integral (22)
for η 6= 0, ρ = 1 and Ks(x, x′) as presented in (19). Note that we fixed ρ = 1, hence the latter
approximates the corresponding expected likelihood kernel. The following approximation can be used:

KB(x′, x′′) = I0 + (1 +
σ2

2γ2
w

)
1−D

2

J∑

j=1

(I ′j + I ′′j) + ..., (24)

where
I0 = e−

(x′−x′′)2
4σ2 . (25)

8 IDIAP–RR 04-56

The term I0 correspond to the RBF kernel between samples x′ and x′′. The terms I ′j and I ′′j correspond
to the impact of jth invariance of the samples x′′ and x′ to the samples x′ and x′′ correspondingly.
The exact expressions of I ′j and I ′′j are quite cumbersome. We present here the general idea only. The
expansion of(22) with terms given by(19), ρ = 1 and η = 1 consist of the sum of products. One can
neglect the terms which include the products of three and more exponents. Then the integration of
the rest terms is analogous to(23). This approximation requires only O(J ·N) operations to compute.

The impact of invariances reduces as the input dimension increases. For very high dimensional
input spaces its influence vanishes, and the only term that matters is I0. We’ve faced this problem in
our experiments, which we describe later in Section 5.4.

4 Analysis and Links to Other Methods

4.1 Links with Kernel Jittering and Virtual SV

The distance between hard objects is a distance between some of the points the objects consist of. The
points that give minimum to the distance effectively affect the model and can be considered as virtual
samples. This allows interpretation of the described approach as a kind of virtual sample approach
with automated choice of virtual samples, which may differ for every pair of objects. Furthermore,
virtual samples can be used to replace tangent vectors with finite difference vectors. It appeared to
be useful in our face classification experiments (see Section 5.3).

In analogy with the Virtual Support Vector approach of Scholkopf et al.(1996), one can define
objects based on pre-determined support vectors only to enhance the speed of the algorithm.

The method of kernel jittering was proposed by DeCoste and Burl (2000). It combines artificial
sample generation and kernel function modification as follows. Consider two samples, xi and xj and
the corresponding non-jittered kernel function Kij . Assume sample xj could have been any of a set
of values around xj according to a “jittering” function. Consider the transformed (“jittered”) forms of
the sample xj , including itself, and select one (xq∗) closest to xi in the feature space according to the
Euclidean distance in the feature space:

q∗ = arg min
q

√
Kii − 2Kiq + Kqq. (26)

The new “jittered” kernel for the examples xi and xj is simply Kiq∗ . This idea can be interpreted as
follows. Believing that transformed examples belong to the same class, kernel jittering corresponds
to a kernel based on the distance between the sets generated from the examples by the allowed
transformations.

The main drawback of the jittering approach is the need to do a lot of kernel calculations while
selecting the minimal distance (26). The approach also requires that we do these calculations during
the testing phase.

The distance-based methods proposed above can be considered as an analytical jittering. It does
not suffer from the drawbacks described above, however it introduces valuable restrictions on the
allowed transformations.

4.2 Vicinal Risk Minimization

Vapnik (2000) considered local distributions(soft objects) instead of samples to introduce the Vicinal
Risk Minimization (VRM) learning principle. Defining the vicinities of the training samples and
assuming some local density p(x|xi, ri) therein, one obtains the following Vicinal Risk functional:

Rvic(α) =
1
`

∑̀

i=1

L

(
y −

∫
f(x, α)p(x|xi, ri)dx

)
, (27)

IDIAP–RR 04-56 9

where xi is a training sample and ri is its vicinity parameter. Minimizing (27) instead of empirical
risk is called the Vicinal Risk Minimization (VRM) principle.

Vapnik mentions how to use the VRM principle to incorporate an invariance into the learning
algorithm. Using the density functions p(x|xi, ri) defined on the non-symmetrical support that de-
scribes the invariance to the desired transformation, one enforces the learning algorithm to obey the
invariance’s properties.

The following Vicinal Support Vector algorithm is obtained by Vapnik (2000):

f(x) =
∑̀

i=1

β∗i D(x, xi) + b, (28)

where the β∗i coefficients are such that

β∗ = arg max
β

∑̀

i=1

βi − 1
2

∑̀

i,j=1

yiyjβiβjM(xi, xj), (29)

subject to the constraints:
∑̀
i=1

yiβi = 0,

0 ≤ βi ≤ C.
(30)

Functions D(x, xi) and M(xi, xj) are one- and two-vicinal kernels correspondingly:

D(x, xi) =
∫

K(x, x′)p(x′|xi, ri)dx′, (31)

M(xi, xj) =
∫∫

K(x, x′)p(x|xi, ri)p(x′|xj , rj)dxdx′. (32)

4.2.1 Scaling Invariance

Let us now present a simple example. To obtain the invariance described by (1) with β = 0, consider
the following vicinity density function:

p(x|xi, γ) =
1√
2πγ

∫
δ(x− (1− α)xi)e

− α2

2γ2 dα, (33)

where δ is the delta function, and the γ parameter defines the width of the vicinity and, hence, the
influence of scaling invariance.

Substituting (33) in both (31) and (32) using the standard isotropic RBF kernel function given
in (9) with the bandwidth parameter σ gives:

D(x, xi) =
σ

κ
e−

(x−xi)
2

2κ2 e−
γ2

2σ2κ2 (x2x2
i−(x,xi)

2) (34)

and

M(xi, xj) =
σ2

η
e
−σ2(xi−xj)2

2η2 e
− γ2

η2 (x2
i x2

j−(xi,xj)
2)

, (35)

where the following definitions were used:

κ2 = γ2x2
i + σ2, (36)

η2 = γ2σ2(x2
i + x2

j) + γ4(x2
i x

2
j − (xi, xj)2) + σ4. (37)

The resulting kernels are still RBF-based. The “effective” kernel bandwidth depends both on the
σ and γ parameters and on the samples xi and xj . One can note the similarity of (34)-(35) to the
kernels presented before.

10 IDIAP–RR 04-56

5 Applications and Experiments

It is often difficult to formulate real-life problems in a way suitable for object definition in the input
space. For example, it is difficult to define objects that correspond to the invariances of interest in
image processing such as 3D rotations with changing lighting conditions. This is one of the drawbacks
of the described approaches.

We present a series of experiments illustrating the proposed approaches. These are an artificial
two-class classification task, a problem of EEG signals classification and a number of face image
classification tasks.

5.1 Artificial Data

To illustrate the action of the considered methods, we used an artificial dataset generated to be
invariant to (10). The goal is thus to illustrate the influence of the modified kernels on the decision
boundary.

Figure 1: Artificial two-class classification problem. Black training points have to be discriminated
against white training points. Left: Original decision function of an SVM with RBF kernel (σ = 0.2),
Center: decision function using slightly jittered kernel, Right: decision function facing full invariance.

Figure 1 illustrates the training data for both classes and the decision boundaries obtained with
the following algorithms: the left image shows the original SVM with RBF kernel (σ = 0.2); the
center one shows an SVM with RBF kernel (σ = 0.2) and distance defined by (11) with a = 0.5,
b = 2; finally, on the right we see an SVM with RBF kernel (σ = 0.2) and distance defined by (11)
with a = 0.01, b = 10. The substantial difference between the presented solutions lies in the number
of support vectors, which is 20 for the standard solution (left figure) and 8 for the modified one (right
figure). Note, that given the knowledge of global scaling invariance (Equation (10) with α ∈ R1) one
could obtain the right solution by simply using input normalization. However, this is not the case if
the scaling is bounded (Equation (10) with α ∈ [a, b]). VRM-based approach described in Section 4.2
results in similar solutions.

5.2 EEG Signals Classification

The next series of experiments used EEG signals taken from the first competition devoted to Brain-
Computer Interface system design. The competition was organized after the NIPS’01 Brain Computer
Interface workshop. The task is to classify the signals that correspond to imaginary movements of
the left or right hand. The original data consists of signals taken from different electrodes located
on a human’s head. The difference between two particular signals (from the C3 and C4 electrodes,
according to the standard labeling) was taken as input for the algorithm. The data were resam-
pled to 100Hz, the input dimension (the signal length) is 150. The dataset consists of 413 train-

IDIAP–RR 04-56 11

Table 1: Experimental results on the EEG dataset

Algorithm Testing Error, %
EEG SVM 9

Segment-based SVM 6
VRM-based SVM 6

ing and 100 testing samples. The details of data collecting and problem settings can be found at
[http://newton.bme.columbia.edu/competition.htm].

Raw data usage may appear not to be the best way of carrying out classification. However, it was
found to work well for SVMs. For example, the classification performance based on auto-regressive
coefficients was significantly worse. The evident properties of these data are the invariances to the
signal amplitude and the selection of the reference point of the“zero” level of the signal. These findings
are also justified by the physical conditions of the EEG signal measuring process.

The results for the baseline SVM classifier based on Gaussian RBF kernel and SVMs with modified
kernels (as derived in Sections 3.1.1 and 4.2.1) are presented in Table 1. The hyper-parameters of all
the algorithms were tuned according to cross-validation on the training set. The obtained values are
C = 25, σ = 1500. The invariance-defining parameters are γ = 0.55 for VRM-based kernel, and for
the kernel based on hard objects (segment-based SVM) the scaling range is [0.5, 1.5].

Both methods provided an improvement of the classification performance according to the testing
error. However, this improvement is hardly statistically significant (79% confidence only) since the
size of the test set is only 100 samples. This is a basic disadvantage of the competition setting caused
by difficulties in data collection.

5.3 Face Recognition Experiments

The next example presented here deals with a real dataset obtained from a face detector. These are
faces detected on every fifth frame of a movie using a face detector from Schneiderman and Kanade
(2000). Image dimension is 81 by 81 and greyscale level is 8 bit. There were 2899 images in the
database. The data is available at [http://www.robots.ox.ac.uk/ vgg/data]. We present an approach
to the problem of binary classification of the main actor against all the other images captured. Hence,
this task can be seen either as a person identification or an information retrieval task.

The training set consists of every tenth image of the database, while the testing set consists of
all the other ones. We used the first thousand images of the database, ending up with training and
testing sets of 100 and 900 samples correspondingly. Example images are presented in Figure 2.

Figure 2: Examples of clean samples. Left: two random training samples. Right: three random testing
samples. The labels for class membership are shown below the images.

12 IDIAP–RR 04-56

5.3.1 Noisy Image Classification

To illustrate the use of the method described in Section 3.1.2 we have corrupted the images with an
additive speckle noise. The noise is generated from a uniform distribution with zero mean and variance
30. Example images with noise are shown in Figure 3. Another noisy testing set was obtained by
corrupting the clean testing set with the same noise, and “outliers”: random 10% of the pixels were
corrupted with uniform noise with zero mean and variance 70.

Figure 3: Examples of noisy samples. The labels for class membership are shown below the images.

To show the performance of the method, we added noise to the testing set only. The objective is
to obtain an algorithm robust to a known type of noise while given a clean training set only. Hence
we are given a training set and a prior knowledge about the type of noise that occurs in the testing
samples.

We used the raw image as input. Standard SVMs with Gaussian RBF kernel (9) were trained on
the clean training set. The parameters were chosen according to the minima of the cross-validation
error. The parameters are: σ = 3000, C = 100. Classification error on the clean testing data is 9%,
17% on the noisy testing data and 37% on the noisy data with outliers. One possible solution to handle
noise is to use denoising techniques to preprocess the testing data before applying the SVM classifier.
Different denoising techniques such as Wiener filtering, median filtering and Gaussian bluring were
used. The best result achieved was 14% of testing error for noisy data and 34% for the noisy data
with outliers.

The SVM with an object-based kernel (15) was applied to the problem. The testing error for
various values of the prior parameter tlim is presented in Figure 4 for both noisy testing sets. The
minima of the testing error is achieved for the values of prior parameter tlim which correspond to the
standard deviation of the noise. The modified algorithm significantly outperforms standard SVM on
the noisy testing data. However, testing error of the modified algorithm with tlim = 5 gives 10.8% of
the testing error on the clean testing data.

Figure 4: Testing error curve of the SVM with object-based kernel for both noisy testing sets. X-axis:
tlim parameter, Y-axis: testing classification error rate. Testing errors at tlim = 0 (37% and 0.18%)
correspond to standard SVM.

IDIAP–RR 04-56 13

5.4 Invariant Face Images Classification

In order to test the proposed approaches of Section 3.2, we conducted experiments using images of
the faces from the database described above. All the 2899 images of the database were used. We used
subsets of 300 training and 2599 testing samples. The resolution was decreased to 60x60 picsels.

We compared standard SVM with RBF kernel, Virtual Support Vector method, Kernel Jittering,
and the proposed approaches of sections (3.2.2) and (3.2.3). Two types of invariant transformations
were studied: rotations (7) and scalings (8). Some considerations of practical implementation of the
approaches are described below starting with tangent vectors evaluation.

5.4.1 Tangent Vectors and Finite Difference Vectors

There are some noticeable limitations in computing the tangent vectors. An input image has to be
smooth enough to compute gradients that would approximate local transformations of the original
image. The original method works well for binary images of digits, which were blurred with Gaussian
filter for computing the gradients. We applied the method for our data using different Gaussian
smoothing and found that the obtained approximation from these tangent vectors was not sufficient
to describe real transformations. Instead we generated virtual samples by applying a finite desired
transformation and used them for computing the finite differences that were used to approximate
the tangent vectors. Example transformed images obtained by rotations with original gradient-based
tangent vectors and finite differences are shown in Figure 5.

Figure 5: Two Types of Virtual Images.

The first line in Figure 5 presents images obtained by applying direct calculation of tangent vectors
according to (7). We can thus see that despite the accurate tuning of Gaussian filtering and other
“tricks”, only very local rotations are reasonable.

The second line in Figure 5 presents the original sample image x in the center; virtual samples
obtained from x by applying rotations of 10 degrees are shown on the left and right of the figure. Let
us denote them as x + `exp

left and x + `exp
right. The intermediate images in between are x + 0.5`exp

left and
x + 0.5`exp

right.
The problem described here complicates the approach. On the other hand, the use of finite

difference vectors allows for better modelling of the real-life invariances.

5.4.2 Scaling and Rotational Invariances with TVK

Since this approach implied that left and right rotations correspond to different tangent vectors, we
used the following modified Tangent Vector Kernel:

Kfd
s (x, x′) = e−

(x−x′)2
2σ2 +

J∑

j=1

H(x|x′, `j) · e−
(x−x′−`j)2

2γ2
r , (38)

where we introduced one extra parameter γr corresponding to the length of proximity region and
replaced product with a sum. The experiments with modified kernels based on products (as presented

14 IDIAP–RR 04-56

in (19)) led to similar results. Note, that with this modification, one uses more than one “tangent
vector” per invariance.

With a proper choice of parameters in (38) (γw ∼ ∞, γr = σ), the resulted model is closely linked
to VSV. The noticeable difference is that in the VSV approach every virtual sample is included in the
decision function with its own weight, while in our case all the virtual samples form an object hence
share the same weight.

The parameters of the algorithms were chosen according to the minimum of cross-validation error
over the training set, resulting in σ = 600, C = 100. Parameters γw and γr in (38) can be chosen by
the following heuristics: γw ∼ σ, and γ2

r ∼ V ar(`ij), i.e. the variance of tangent vectors. We used
γw = 500 and γr = 1000.

5.4.3 Scaling and Rotational Invariances with DB-TVK

Despite of the problems described above, we used non modifyed Distribution-Based TVK, as it was
introduced in Section 3.2.3. The parameters were as follows: σ = 600, C = 100, γw = 1000.

As it was mentioned above, DB-TVK has worse performance for high-dimensional input spaces.
It is clearly seen from equations in Section 3.2.4, that the impact of “invariant” terms of the kernel
reduces with dimensionality. However, we obtained reasonable results in the presented case study.

5.4.4 Experimental Results

Table 2 presents testing errors obtained with SVM with Gaussian RBF kernel (SVM), SVM trained
with virtual samples (VSV SVM), SVM with jittered kernel (KJ SVM) and SVM with Tangent Vector
and Distribution-based Tangent Vector Kernel (TVK SVM and DB-TVK SVM). We used the same
virtual samples both for VSV and KJ SVM and for computing the finite difference vectors in TVK
and DB-TVK. This is the reason of similar results obtained with all the methods. The improvement of
the testing error in comparison to the baseline SVM is statistically significant with a 95% confidence
interval.

Table 2: Testing Error
Algorithm Testing Error, %

SVM 11.2
VSV SVM 9.8
KJ SVM 10.0

TVK SVM 9.7
DB-TVK SVM 9.9

5.5 The Importance of Prior Knowledge for Small Datasets

Another interesting experiment is to show the relative importance of prior knowledge with respect
to the amount of available training data. We thus split the data using every N -th sample of the
entire data for training, while the rest of the data were used for testing. Figure 6 shows the testing
errors obtained for these different partitions. The X-axis in Figure 6 corresponds to the logarithm of
the training set size and the Y-axis corresponds to the testing error. As expected, when the number
of training examples is very small, prior knowledge is of prime importance, while its importance
eventually decreases with increased amount of training examples.

IDIAP–RR 04-56 15

Figure 6: SVM with RBF and TVK kernels.

6 Discussion and Conclusions

The method of prior knowledge incorporation considered in this paper results in a kernel modification
and exploits the standard SVM algorithm. The main idea of the kernel construction is to consider an
object in the input space: a set which can be derived for each training sample by applying all known
invariant transformations. Then the kernel is defined for pairs of objects. Kernel calculation can
appear to be a computationally expensive part of the algorithm, although in the considered examples
it was not the case. The method does not lead to enlarging the training set.

The proposed approach has close links with the regularization framework. Loosely speaking,
regularization is used to enforce smoothness of the function in the vicinity of the training points. For
a learning algorithm based on the squared loss function it is shown by Leen (1999) that, under certain
assumptions, the approaches of adding virtual samples to the training set and adding a regularization
term to the cost function are equivalent. Our approach generalizes the virtual sample approach, and
obviously it has regularizing properties.

Since we propose an object definition based on combining the sample and some prior knowledge,
the presented method naturally establishes a link between kernel methods and generative models.
Considering the whole structure of local distributions, we somehow model the class density. The
general approach in this field is given in Jaakkola and Haussler (1999), where the Fisher kernel based
on a metric defined on a parametric generative probability model is presented.

Some similar approaches were recently proposed by Kondor and Jebara (2003). The idea there is
to make a transition from samples to the sample-characterizing distributions which are then used for
kernel definition. This approach mainly uses the distributions (objects) for data representation. As
the evolution of the previous research, Kondor and Jebara (2004) presented a similar sample-to-object
framework. This transition step was used as an intermediate one to introduce probability product
kernels. The aim of the presented research is to focus on the prior knowledge incorporation.

In conclusion, in this paper we presented a general method to incorporate prior knowledge into
kernel methods. It is based on modifying the setting of the problem by a transition from samples
to objects, which are generated from them using some prior knowledge. We mainly considered these
objects in the form of local distributions. Tangent Vectors were extensively used for the construction of
the latters. Several methods of kernel definition were presented and tested in experiments on artificial
and real-life data.

Acknowledgments

This research has been partially carried out in the framework of the European project LAVA, funded
by the Swiss OFES project number 01.0412. It supported in part by the IST Programme of the
European Community, under the PASCAL Network of Excellence, IST-2002-506778, funded in part
by the Swiss OFES. It was also partially funded by the Swiss NCCR project (IM)2.

16 IDIAP–RR 04-56

References

[1] C.J.C. Burges, 1999. Geometry and invariance in kernel-based methods. In: B.Scholkopf, C.J.C. Burges,
and A.J. Smola (eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press.

[2] B. Scholkopf, C. Burges, and V. Vapnik, 1996. Incorporating invariances in support vector learning
machines. In: C. von der Malsburg, W. von Seelen, J. C. Vorbŕluggen, and B. Sendhoff, (eds.), Artificial
Neural Networks ICANN‘96, pp. 47-52, Berlin. Springer Lecture Notes in Computer Science, Vol. 1112.

[3] O. Chapelle and B. Scholkopf, 2002. Incorporating invariances in nonlinear SVMs. In: T.G. Dietterich,
S. Becker and Z. Ghahramani, (eds.),Advances in Neural Information Processing Systems, vol. 14, pp.
609-616. MIT Press, Cambridge, MA, USA.

[4] D. DeCoste, M.C. Burl, 2000. Distortion-invariant recognition via jittered queries. In Computer Vision
and Pattern Recognition, CVPR-2000, June.

[5] B. Haasdonk, D. Keysers. Tangent Distance Kernels for Support Vector Machines. In the proc. of ICPR’02,
Vol.2, pp. 864-868.

[6] P. Simard, Y. LeCun, J. Denker, B. Victorri, 1998. Transformation invariance in pattern recognition,
tangent distance and tangent propagation. In: G. Orr and K. Muller, (eds.), Neural Networks: Tricks of
the trade. Springer.

[7] V. Vapnik, 1998. Statistical Learning Theory. J.Wiley, NY, 1998.
[8] O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, 2001. Vicinal risk minimization. In: T.K. Leen, T.G.

Dietterich, and V. Tresp, (eds.), Advances in Neural Information Processing Systems, vol. 13, pp. 416-422.
[9] V. Vapnik, 2000. The Nature of Statistical Learning Theory. Second edition, Springer-Verlag, NY.
[10] T.K. Leen, 1995. From data distributions to regularization in invariant learning. Neural Computation,

vol. 7, no. 5, pp. 974-981.
[11] T. Jaakkola, and D. Haussler, 1999. Exploiting generative models in discriminative classifiers. In:

M.S.Kearns, S.A.Solla, D.A.Cohn (eds.) Advances in Neural Information Processing Systems, vol. 11,
pp. 487-493, MIT Press.

[12] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, 2000. A Fast Iterative Nearest Point
Algorithm for Support Vector Machine Classifier Design. IEEE Transactions on Neural Networks, 11(1),
pp.124−136.

[13] R. Kondor, T. Jebara, 2003. A Kernel Between Sets of Vectors. In proceedings of the Twentieth Inter-
national Conference on Machine Learning (ICML-2003), Washington DC.

[14] R. Kondor, T. Jebara, A. Howard, 2004. Probability Product Kernels Journal of Vachine Learning
Research 5(2004), pp.819−844.

