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Abstract. Autoregressive modeling is applied for approximating the temporal evolution of
spectral density in critical-band-sized sub-bands of a segment of speech signal. The generalized
autocorrelation linear predictive technique allows for a compromise between fitting the peaks and
the troughs of the Hilbert envelope of the signal in the sub-band. The cosine transform coefficients
of the approximated sub-band envelopes, computed recursively from the all-pole polynomials, are
used as inputs to a TRAP-based speech recognition system and are shown to improve recognition
accuracy.
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Figure 1: The two dual forms of linear prediction. On the left column (time) we plot 50 ms of a
speech signal, the FDLP all-pole fit and corresponding squared Hilbert envelope. On the right column
(frequency) we display the DCT of the same signal, the conventional time-domain LP all-pole fit and
the corresponding power spectrum. Both models use 28 poles.

1 Introduction

The speech signal is not stationary but carries information it its dynamics. To enable the use of
processing techniques that assume signal stationarity, short segments of the signal (10-30 ms) are
used to derive short-term features for pattern classification in automatic speech recognition (ASR).
The signal dynamics are then represented by a sequence of the short-term feature vectors with each
vector representing a sample from the actual underlying dynamic process, in a manner similar to the
way motion in movies is represented by a sequence of static shots. The issues of windowing, time-
frequency resolution compromises, proper sampling of the short term representation, emulating the
unequal frequency resolution of hearing, etc., are typically addressed in an ad hoc manner.

To parameterize short-term spectral envelopes, a rich inventory of techniques has evolved. Among
them, the linear predictive (LP) regression model offers a convenient way of approximating the un-
derlying short-term power spectrum of speech in terms of its dominant peaks. There are a number of
alternative ways to describe the autoregressive model. In particular, it can be computed directly from
the power spectrum of the signal [1] and modifications of the power spectrum prior to LP modeling
can be used to advantage (e.g. [2]).

Some recent work has looked into better ways to exploit local speech dynamics in speech recog-
nizers. It has been shown a number of times (see e.g. [3]) that the important linguistic information
lies in the 1-16 Hz modulation frequency range. In order to use information in the modulation spec-
trum at those frequencies, one has to look at signals over relatively long time scales. Therefore, in
the TRAP-TANDEM technique [4, 5] temporal trajectories of spectral densities in individual critical
bands over windows as long as 1 sec are used as features for pattern classification. However, the
temporal dynamics are still described by a sequence of short-term features; it would be interesting
and elegant to model these trajectories more directly, and frequency-domain linear prediction (FDLP)
[6, 7] is a technique that allows for that. The technique was originally applied to very short segments
of speech to emulate some effects of temporal masking in hearing [6], and later used for extracting
temporal features from larger segments of the speech signal for ASR [7].

The current paper presents a further evolution of the FDLP technique and its application in
modeling long Hilbert envelopes of a signal in critical bands for TRAP-TANDEM based ASR. Since
we use linear prediction polynomials in order to parameterize each TRAP, we call this model linear
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predictive temporal patterns or LP-TRAP.

In the next section we motivative our model and present the building blocks for this novel param-
eterization. In section 3 we describe the TRAP-TANDEM setup and evaluate it using features from
the new model. Lastly in section 4 we discuss the results and present the conclusions.

2 Parameterizing the temporal envelopes

Almost all current ASR systems represent temporal information by a sequence of feature vectors
from short-time Fourier analysis. To emulate the non-equal spectral resolution of human hearing,
the frequency resolution of the Fourier spectra is typically modified by Mel or Bark frequency energy
grouping to a small number of sub-bands. The temporal resolution of such a representation is the
same at all frequencies and is given by the applied analysis window (typically around 25 ms) which
acts as a lowpass filter on the temporal trajectories.

An alternative way of deriving the short-term speech representation (applied e.g. in the original
Spectrograph) could be using the rectified output from a bank of band-pass filters. Spectral resolution
could be then controlled by band-pass filter design, and the temporal resolution could be different at
different frequencies depending on the lengths of impulse responses of the individual filters.

2.1 Frequency-domain linear prediction (FDLP)

There is a third, perhaps less obvious way of deriving the short-term spectral representation. Just as a
squared Hilbert envelope (squared magnitude of the analytic signal) represents instantaneous energy
in a signal, the squared Hilbert envelopes of the sub-band signals are a measure of the instantaneous
energy in the corresponding sub-bands. To get the Hilbert envelope would normally involve the use
of either the Hilbert operator in the time domain (whose infinite impulse response presents some
practical issues) or the double use of the Fourier transform with modifications to the intermediate
spectrum [8].

An interesting and practical alternative is to get the all-pole approximation of the Hilbert envelope
by computing a linear predictor on the cosine transform of the signal. Such Frequency Domain Linear
Prediction (FDLP) is the frequency-domain dual of the well-known time-domain linear prediction
(TDLP). In the same way TDLP fits an all-pole model to the power spectrum of a signal, FDLP fits
an all-pole model to the squared Hilbert envelope. Since the cosine transform represents the Fourier
transform of the even-symmetrized time signal, the “spectrum” of the resulting predictor gives an
approximation to the Hilbert envelope of the signal (in the same way as the spectrum of the predictor
derived in the time domain is an approximation of the power spectrum of the signal). To get an all-
pole approximation of the Hilbert envelope for a specific sub-band, the prediction needs to be derived
only from the appropriate part of the cosine-transformed signal.

The parametric all-pole description of the temporal trajectory offers control over the degree of
smoothing of the Hilbert envelope. Moreover, the fit can be controlled by applying transform tech-
niques introduced in [2]. The easily-computable “cepstrum” of the time-domain all-pole model repre-
sents in this case the spectrum of the logarithmically-compressed temporal envelope and is related to
the cosine transform of the original TRAP which has been found useful in ASR [9].

The duality between the power spectrum and the squared Hilbert envelope is essential to the
understanding of FDLP. Figure 1 illustrates these two dual forms of linear prediction. On the upper
left pane we display 50 ms of speech that we want to model using the two dual forms of linear prediction.
Conventional linear prediction (TDLP in our terminology) approximates the power spectrum of the
signal, as shown in the middle panel on the right (frequency) side of the figure, which is the TDLP
of the top-left (time) signal. The full Fourier power spectrum to which this is an approximation is
plotted directly below, in the bottom-right pane.

FDLP on the other hand operates on the DCT of the signal (top right pane) and results in an LP
model describing the temporal envelope, shown in the middle left (time) panel. Directly below it is
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Figure 2: Auditory spectrogram versus all-pole trajectories. The first pane displays the short-time
auditory spectrogram whereas the second pane shows the FDLP-approximated Hilbert envelopes using
80 poles per band.

plotted the corresponding squared Hilbert envelope that is being estimated. Each column provides
three alternative representations of each domain. Whereas TDLP exploits the spectral structure of the
signal to construct an efficient predictor of the temporal signal, FDLP exploits the temporal structure
of the signal to predict spectral values.

The concept of FDLP was to our knowledge first introduced by Herre [6] as a method for efficient
coding of transients in transform coders. Kumaresan has independently discovered and extensively
worked on FDLP, a method which he calls linear prediction in the spectral domain or LPSD [10].

2.2 Linear predictive temporal patterns (LP-TRAP)

In this paper we extend the FDLP model to speech segments up to 1 sec long. We seek here to
summarize the temporal dynamics rather than capture every single nuance of the temporal envelope.
Taking the DCT of a 1 sec speech segment at 8 kHz sampling rate generates 8000 frequency domain
samples. Instead of fitting one predictor on the whole frequency series as we do in figure 1, we first
apply 15 Bark-spaced overlapping Gaussian windows. We then apply FDLP separately on each of
the 15 bands. Each predictor then approximates the squared Hilbert envelope of the corresponding
sub-band. This is the “sub-band FDLP” introduced in [7] but here we extend the time window to
even longer speech segments and use overlapping windows.

We compute the auditory spectrogram over the 1 sec windows by stacking the individual temporal
trajectories (rather than by stacking the individual frequency vectors as done in the conventional
short-term spectral analysis). This is demonstrated in figure 2. The top panel shows the auditory
spectrogram obtained by short-term Fourier transform analysis and Bark scale energy binning to 15
critical bands. In the second panel we fit fifteen 80-pole FDLP models, one for each Bark band, and
display the 15 estimates of the squared Hilbert envelopes.

2.3 Spectral transform linear prediction (STLP)

Spectral transform linear prediction was introduced as method to adjust the relative fit of the con-
ventional (TDLP) predictor to the peaks and dips of the speech spectrum [2]. By raising the power
spectrum to an arbitrary power, the compression factor, one can adjust the peak-hugging property
of linear prediction. STLP is an integral part of the well-known perceptual linear prediction (PLP)
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Figure 3: The effect of the compression factor. The top pane shows the squared Hilbert envelope of
the sixth Bark band of figure 2. In the second pane FDLP using no compression fits the peaks. Using
moderate compression in the third pane FDLP achieves a better fit to dips in the envelope. The
fourth model fits a compressed version of the inverse spectrum, thereby fitting the dips in preference
to the peaks. The number of poles is 50 in all three cases.

technique; the cube-root compression of the power spectrum in PLP prior to prediction is an instance
of STLP with compression factor 1/3.

We borrow this idea and we apply it on the Hilbert envelopes of the Bark sub-bands instead of the
power spectra. In some sense this method could now be dubbed temporal transform linear prediction
(TTLP). In figure 3 we demonstrate the effect of the compression factor. We take the sixth Bark band
from figure 2 and this time we keep the number of poles fixed to 50. On the top pane we display the
logarithm of corresponding squared Hilbert envelope. On the second pane we plot the FDLP sub-band
envelope with compression factor 1.0 which amounts to no compression. The all-pole model fits the
peaks much better than the dips. A moderate compression of 0.1 still gives a better model of the peaks
but of a greatly compressed Hilbert envelope. This time the dips are much better modeled. Lastly for
compression of -0.5 the all-pole model fits a compressed version of the inverse Hilbert envelope. The
dips are now accurately modeled. Spectral expansion using compression factors greater than 1 is also
possible but it may result in ill-conditioned solutions due to the extreme sharpness of the peaks; we
do not consider spectral expansions here.

2.4 Feature extraction

In [7] we identified two broad approaches to extracting features from the FDLP polynomials. The
first derives features directly from the poles of the polynomial, since the angle of the pole corresponds
to very accurate timing information and the magnitude is a measure of the energy of the signal. In
[7] we showed benefits from using pole sharpness as a measure of the local dynamics of the temporal
envelope, especially in the recognition of stops.

The second approach seeks to derive features directly from the temporal envelopes. But instead
of sampling the DFTs of the envelopes and taking the DCT, we use the cepstral recursion as an
elegant and computationally efficient way to convert our all-pole models of the temporal trajectories
into modulation spectra. The recursion allows for the calculation of an arbitrary number of cepstral
coefficients.

In a conventional TRAP-TANDEM setup each sub-band is fed to a TRAP which describes the
phoneme in the center of the pattern [4], as estimated by a Multi-Layer Perceptron (MLP) trained on



6 IDIAP-RR 04-59

labeled data. The TRAP outputs from all sub-bands are combined together with a “merger” MLP,
generating further phoneme detection estimates to be fed to a GMM-HMM sequence recognizer,
operating at a 10 ms frame rate [11, 9]. This means that in the LP-TRAP we need to calculate
FDLP polynomials from 1 sec DCTs every 10 ms. Our current feature extraction still operates in
real-time but we believe that some computational short-cuts might exist for the calculation of the
FDLP envelopes in a more efficient manner.

3 Evaluation

The TRAP-TANDEM approach combines the extraction of phoneme information from long temporal
windows in narrow frequency regions [4, 5] with a learned discriminative feature transformation feeding
into a conventional GMM-HMM recognizer [11]. The TRAP-TANDEM recognizer used in this work
consisted of sub-band TRAP MLPs trained on OGI Stories, followed by a TANDEM MLP and HTK-
based GMM-HMM recognizer trained on OGI Numbers95. Testing was performed on the test part of
OGI Numbers95.

Our baseline system uses a standard TRAP front end. Temporal trajectories of 1 sec duration are
derived from short-time Fourier transform analysis and Bark binning to 15 bands. This is displayed
on the top pane of figure 2. The temporal trajectories are decorrelated via a DCT (along time) and
truncated to 50 points before being fed as the input to the per-band TRAP MLPs, thence to the
merger MLP, thence to the GMM-HMM recognizer. The word error rate for this baseline system is
5.9%.

In our experiments we substituted the standard analysis frontend with FDLP to create LP-TRAPs.
We experimented with parameter sets to obtain autoregressive envelopes that accurately approximated
the auditory spectrum. While keeping the number of Bark bands fixed to 15 for the 8 kHz sampling
rate of our database we evaluated the effect of different model orders and different compression factors.

To remove the effect of different-sized input layers on the LP-TRAP MLPs we truncated temporal
DCT representation of the input trajectories to 50 coeflicients, independent of the number of poles
or compression factor. Note that because the LP representation of the temporal envelope is not
intrinsically bandlimited, there is no limit on the order of the cepstra that can be derived from the
LP representation. Lastly we excluded Cy (the energy term) from each DCT; pilot experiments that
included Cyp gave us worse performance.

3.1 LP-TRAP results

First we fix the number of poles (at 50) and sweep the compression factor. Recognition results are
presented in the left pane of figure 4 and in table 1. Negative compression factors, corresponding
to models that concentrate on the dips in the Hilbert envelopes, gave worse performance. A small
positive compression factor of 0.1, corresponding to highly compressed envelope peaks, resulted in the
best performance.

Cmpr 1.0[-05[-01]01]05] 1.0
WER (%) | 80 | 64 | 58 | 5.3 | 56 | 5.8

Table 1: LP-TRAPs word error rate when varying the envelope compression factor. Each temporal
envelope is fit with 50 poles.

Next we fix the compression factor to 0.1 and vary the number of poles. The results are on the
right pane of figure 4 and in table 2. Extreme smoothing of the envelopes resulting from very low
model orders hurts performance. However, using between 50 and 80 poles per band (for a ‘pole rate’ of
around 0.1 pole/ms) gives good performance. We conclude that these models are sufficient to capture
the necessary temporal dynamics for ASR.
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#Poles | 1520|3040 | 50 | 60 | 80
WER (%) | 7.1 | 6.0 | 56 | 5.7 | 5.3 | 54 | 5.3

Table 2: Error rates as a function of temporal model complexity as determined by the number of poles
per sub-band. Compression is fixed at 0.1.
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N 65
2
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55 55
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Figure 4: LP-TRAP results. Word error rate as a function of compression factor and number of poles.
The compression variants all use 50 poles and the pole rate variants use a compression factor of 0.1.
The dashed line represents the baseline.

With this combination of compression and pole rate, the LP-TRAP features consistently performed
in the vicinity of 5.3% WER which represents a 10% relative improvement over the 5.9% baseline.
Increasing the number of poles up to 200, close to the limit imposed by the length of the narrowest
Bark band, reduces the accuracy to 5.7%. Subsequent experiments with 0.5 sec LP-TRAP showed
similar performance as the 1 sec LP-TRAP discussed here.

We have also performed initial experiments with alternative features including direct use of the
FDLP coefficients as well as alternative parameterizations such as the line spectral pairs (LSPs). So
far we have not found any of these to offer improvements in recognition accuracy.

4 Discussion and conclusions

All-pole approximations of the Hilbert envelopes in critical-band sub-bands are an elegant and in-
teresting alternative to the ad hoc weighted averaging of the short-term Fourier spectrum used in
conventional ASR. Issues of the short-term windowing are avoided and numerous new possibilities ap-
pear, particularly given the rich literature of techniques and variants associated with linear prediction.
So far, we have explored only a small fraction of these directions.

In the current work, this technique is used to derive features for the TRAP-TANDEM system,
where, after some optimization, it yields about 10% relative improvement in error rate on our standard
OGI Numbers task. We are confident that future investigations will reveal many more interesting and
valuable applications in speech processing and recognition.
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