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Abstract. We present a new approach to model visual scenes in image collections, based on local
invariant features and probabilistic latent space models. Our formulation provides answers to three
open questions:(1) whether the invariant local features are suitable for scene (rather than object)
classification; (2) whether unsupervised latent space models can be used for feature extraction
in the classification task; and (3) whether the latent space formulation can discover visual co-
occurrence patterns, motivating novel approaches for image organization and segmentation. Using
a 9500-image dataset, our approach is validated on each of these issues. First, we show with
extensive experiments on binary and multi-class scene classification tasks, that a bag-of-visterm
representation, derived from local invariant descriptors, consistently outperforms state-of-the-art
approaches. Second, we show that Probabilistic Latent Semantic Analysis (PLSA) generates a
compact scene representation, discriminative for accurate classification, and significantly more
robust when less training data are available. Third, we have exploited the ability of PLSA to
automatically extract visually meaningful aspects, to propose new algorithms for aspect-based
image ranking and context-sensitive image segmentation.
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1 Introduction

Scene models are necessary for a number of vision tasks, including classification and segmentation.
Among these, scene classification is an important task which helps to provide contextual informa-
tion to guide other processes such as object recognition [16]. From the application viewpoint, scene
classification is relevant in systems for organization of personal and professional imaging collections,
and has been widely explored in content-based image retrieval [15, 14, 18, 19]. However, existing
approaches are mainly based on global features extracted from the whole image [18, 15] or on fixed
spatial layouts [15, 8, 19, 18].

In computer vision, viewpoint invariant local descriptors [10, 6, 17] (i.e. features computed over au-
tomatically detected local areas) have proven to be useful in long-standing problems such as viewpoint-
independent object recognition, wide baseline matching, and image retrieval. Thanks to their local
character, they provide robustness to image clutter, partial visibility, and occlusion. They were de-
signed to have high degree of invariance, and, as a result, are robust to changes in viewpoint and
lighting conditions. Recent works have exploited these features to perform retrieval within video [13],
or multi-object image categorization [20].

However, scene classification is different than image retrieval [10, 13] or object categorization [20].
While images of a given object are usually characterized by the presence of a limited set of specific
visual parts tightly organized into different view-dependent geometrical configurations, a scene is
generally composed of several entities (car, house, door, tree, rocks...) organized in often unpredictable
layouts. Hence, the content of images from a specific scene type exhibits a large variability. Whereas
the specificity of an object might rely on the geometrical configuration of a limited number of visual
patterns [13, 5], we expect that the specificity of a particular scene type greatly rests on particular
co-occurrences of a large number of visual components.

In this paper, we present an approach to model scenes, and apply it to a number of visual tasks
related to scene classification. Our approach integrates the recently proposed scale-invariant fea-
ture [6, 10] and probabilistic latent space model [7, 2] frameworks. Our paper describes a number of
contributions, both algorithmic and experimental. We first show that invariant local features, rep-
resented by bags-of-visterms, are suitable for scene classification, Secondly, we show that PLSA, an
unsupervised probabilistic model for collections of discrete data, has the dual ability to generate a
robust, low-dimensional scene representation, and to automatically capture meaningful scene aspects.
We have successfully used the first property for scene classification, and have exploited the second one
to design two new algorithms: one for aspect-based image ranking, and another for context-sensitive
image segmentation.

The paper is organized as follows. Section 2 discusses related work. Section 3 presents our
approach. Section 4 describes the experiments and results obtained in scene classification. Section 5
reports and discusses the algorithms and results obtained for ranking and segmentation. Section 6
concludes the paper.

2 Related Work

The problem of scene modeling for classification using low-level features has been studied in image
and video retrieval for several years [15, 14, 18]. Color, texture, and shape features have been widely
used in combination with supervised learning methods to classify images into several semantic classes
(indoor, outdoor, city, landscape, sunset, forest, mountain, coastal...). Vogel et al. [19] use both
color and texture and a spatial grid layout to perform landscape scene retrieval based on a two-
stage retrieval system. The two-stage system makes use of an intermediary semantic level of block
classification (concept level) to do retrieval based on the occurrence of such concepts in an image.
Graphical models were used by Kumar et al. [8] to detect and localize man made structures in a
scene, doing in this way scene segmentation and classification.

The use of local descriptors has become popular for object detection and recognition. Fergus et
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al. [5] optimize, in a joint model, a scale-invariant localized appearance model together with a spatial
distribution model. Dorko et al. [3] perform feature selection to identify local descriptors relevant
to a particular object category, given weakly labeled training images. More recently, Adaboost was
proposed to learn classifiers from a set of visual features, including local invariant ones [11]. The
analogy between local descriptors and words has been exploited recently [13, 20]. In [13], local invariant
features are clustered into ’visterms’, which allow to search efficiently through a video for frames of
the same object or scene. In [20], good results on object matching and multi-class categorization
have been reported, using a system based on a bag-of-words representation built from local invariant
features. Finally, variations of latent space models have recently been applied to the problem of
modeling annotated images [1], but the methods have relied on other types of features, and have not
addressed the classification and segmentation problems as we do here.
In what constitutes the closer work to ours, Fei-Fei and Perona [4] independently proposed two

variations of Latent Dirichlet Allocation (LDA) [2] to model scene categories. Their approach also
relies on a probabilistic co-occurrence visterm analysis. However, they do not study the effect of the
amount of less training data and also do not apply their method to obtain segmentation. Furthermore,
in their method the introduced class node does not allow model learning using unlabeled data.

3 Image Representation

In this section, we present the two models that will be used as image representation: first the bag-of-
visterms (BOV), built from automatically extracted and quantized local descriptors. The second is
obtained through higher-level abstraction of the bag-of-visterms into a set of aspects using the latent
space modeling.

3.1 Bag-of-visterms Representation

The construction of the BOV feature vector h from an image d involves the different steps illustrated
in Fig. 1. In brief, regions of interest are automatically detected in the image, then local descriptors
are computed over those regions. All the descriptors are quantized into visterms, and the occurrences
in the image of each specific visterm in the vocabulary are counted to build the BOV. In the following
we describe in more detail each of the steps.
The goal of the interest point detector is to automatically extract characteristic points in the image

which are invariant to some geometric and photometric transformations. From existing detectors [6,
10, 17], we used the difference of Gaussians (DOG) point detector [6]. This detector essentially
identifies blob-like regions and is invariant to translation, scale, rotation, and constant illumination
variations. We preferred this detector over fully affine-invariant ones [10, 17], as the increase of the
invariance degree may remove valuable information about local image content.
Local descriptors are computed on the characteristic region around each detected interest point.

We use the SIFT (Scale Invariant Feature Transform) descriptor [6]. This orientation invariant de-
scriptor is based on the grayscale representation of images, and was shown to perform best in terms
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Figure 2: Samples from 3 different visterms. More results in www.idiap.ch/∼monay/ICCV05/.

of specificity of region representation and robustness to image transformations [9]. SIFT features are
local histograms of edge directions computed over different parts of the interest region. In [6], it was
shown that the use of 8 orientation directions and a grid of 4x4 parts give best results, leading to a
descriptor s of size 128.
In order to obtain a text-like representation, we quantize each local descriptor s into one of a

discrete set V of visterms v according to a nearest neighbor rule:

s 7→ Q(s) = vi ↔ dist(s, vi) ≤ dist(s, vj),∀j ∈ {1, .., NV},

where NV denotes the size of the visterm set. We will call vocabulary the set V of all the visterms.
The vocabulary construction is performed through clustering. More specifically, we apply the k-means
algorithm to a set of local descriptors extracted from training images, and keep the means as visterms.
We used the Euclidean distance in the clustering and quantization processes, and choose the number
of clusters depending on the desired vocabulary size.
Finally, the bag-of-visterms (BOV) representation is constructed from local descriptors according

to:

h(d) = (hi(d))i=1..NV
, with hi(d) = n(d, vi), (1)

where n(d, vi) denotes the number of occurences of visterm vi in image d. This vector-space represen-
tation of an image contains no information about spatial relationships between visterms, in the same
way the standard bag-of-words text representation removes the word ordering information.

3.2 Latent Space Representation

The bag-of-visterms representation is simple to build. However it may suffer from two issues: poly-

semy -a single visterm may represent different scene content- and synonymy -several visterms may
characterize the same image content. To illustrate these issues, consider samples from three different
visterms obtained when building the vocabulary V1000 (see Section 4.4 for details), as shown in Fig-
ure 2. As can be seen, the top visterm (first two rows) represents mostly eyes. However, windows
and publicity patches get also indexed by this visterm, indicating the polysemic nature of that vis-
term, which means that although this visterm will mostly occur on faces, it can also occur in city
environments. The second two rows present samples from another visterm. Clearly, this visterm also
represents eyes, which makes it a synonym of the first displayed visterm. Finally, the samples of a
third visterm (last two rows) indicate that this visterm captures a certain fine grain texture arising
from different contexts, illustrating that not all visterms have a clear semantic interpretation.
Recently, probabilistic latent space models [7, 2] have been proposed to capture co-occurrence

information between elements in a collection of discrete data in order to disambiguate the bag-of-words
representation. The analysis of visterm co-occurrence can be considered using similar approaches. In
this paper, we use the Probabilistic Latent Semantic Analysis [7] model for that purpose.
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PLSA is a statistical model that associates a latent variable zl ∈ Z = {z1, . . . , zNA
} with each

observation (the occurrence of a word in a document). These variables, usually called aspects, are
then used to build a joint probability model over images and visterms, defined as the mixture

P (vj , di) = P (di)

NA∑

l=1

P (zl|di)P (vj |zl). (2)

PLSA introduces a conditional independence assumption: it assumes the occurrence of a visterm vj

to be independent of the image di it belongs to, given an aspect zl. The model in Equation 2 is defined
by the conditional probabilities P (vj |zl) which represent the probability of observing the visterm vj

given the aspect zl, and by the image-specific conditional multinomial probabilities P (zl|di). The
model expresses the conditional probabilities P (vj |di) as a convex combination of the aspect specific
distributions P (vj |zl).
The parameters of the model are estimated using the maximum likelihood principle, using a set

of training images D. The optimization is conducted using the Expectation-Maximization (EM)
algorithm [7]. This estimation procedure allows to learn the aspect distributions P (vj |zl). These
image independent parameters can then be used to infer the aspect mixture parameters P (zl|d) of
any image d given its BOV representation h(d). Consequently, the second image representation we
will use is defined by:

a(d) = (P (zl|d))l=1...NA
(3)

This representation will be used as input to a scene classifier as well as to perform the visterm image
segmentation.

4 Scene Classification Results

Experiments are divided into three separate problems: indoor/outdoor, city/landscape, and indoor/city/landscape.
In this section we describe the datasets used, protocol and baseline setup. We show classification re-
sults of our approach, first using the BOV representation, then using the aspect representation, and
compare them with the baseline method. We also analyze the evolution of the results under different
conditions (vocabulary size, number of latent aspects, amount of training data).

4.1 Datasets and Protocol

In our experiments, we used 4 datasets.

D1: a subset of the COREL [18] database composed of 2505 city and 4175 landscape images, of size
384x256 pixels.

D2: composed of 2777 indoor images retrieved from the Internet. The size of these images are
approximately 384x256 pixels. Images with larger size were resized using bilinear interpolation.
Image size in the dataset was kept similar since, it is known that the number of detected interest
points is highly dependent on the resolution of the image and would bias the bag-of-visterms
representation.

D3: constituted by 3805 images from several sources: 1002 building images (ZuBud) [12], 144 images
of people and outdoors [11], 435 indoor peoples’ faces [20], 490 indoors (COREL) [18], 1516
city/landscape overlap images (COREL) [18] and 267 Internet photographic images.

D4: composed of all images taken from the datasets D1 and D2.

We use the dataset D1 for city/landscape scene classification, and D4 for indoor/outdoor and in-
door/city/landscape scene classification. Dataset D3 was used for vocabulary construction. Using
3805 images, we obtained approx. 1 million descriptors for vocabulary construction.
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Method indoor/outdoor city/landscape

baseline 10.4 (0.8) 8.3 (1.5)

BOV V100 8.5 (1.0) 5.5 (0.8)
BOV V300 7.4 (0.8) 5.2 (1.1)
BOV V600 7.6 (0.9) 5.0 (0.8)
BOV V1000 7.6 (1.0) 5.3 (1.1)

Table 1: Classification error for the baseline model and the BOV representation, for 4 different
vocabularies. Mean and standard deviation (in brackets) are shown.

The protocol of all classification experiments was as follows. The full dataset was divided into 10
parts, resulting in 10 different splits of the full dataset. One split corresponds to keeping one part of
the data for testing, while using the other 9 parts for training. In this way, we obtain 10 different
classification results. Reported values for all experiments correspond to the average error over all
splits, and standard deviations of the errors are provided in brackets after the mean value.
These datasets are also used for further experiments with latent aspect models in the next section.

4.2 Baseline Methods

We use Vailaya et al. [18] methods as baseline. We chose these methods since they allow for good
classification on landscape, city and indoor scenes, and are commonly regarded as the most represen-
tative state-of-the-art baseline. A different strategy is used to tackle each problem. Color features are
used to classify images as indoor/outdoor, and edge features are used to classify outdoor images as
city/landscape. Color features are based on the collection of the LUV first and second order moments
in a 10x10 spatial grid in the image, resulting in a 600-dimensional histogram feature. Edge features
are based on edge coherence histograms calculated on the whole image. Edge coherence histograms
are based on extracting edges in coherent neighborhoods, eliminating areas where edges are noisy.
Directions are then discretized into 72 directions and placed on a histogram. An extra non-edge pixels
bin is added to the histogram. The final feature’s dimension is 73.
The baseline approach applies both baseline methods in a hierarchical implementation. Images

are classified as indoor or outdoor based on color, and next all correctly classified outdoor images are
classified as city or landscape based on an edge coherence direction histogram.

4.3 SVM Classifier

To classify an input image d represented either by the bag-of-visterms vector h, aspect parameters a,
or any of the baseline’s feature vector (see previous section), we employed Support Vector Machines
(SVMs). We used Gaussian kernel SVMs. Hyperparameters of the SVM (e.g. the bandwidth) were
chosen based on a 5-fold cross-validation.

4.4 Results and Discussion BOV

To analyze the effect of varying the vocabulary size employed to construct the BOV representation,
we considered four vocabularies of 100, 300, 600 and 1000 visterms, denoted by V100, V300, V600, and
V1000, respectively, constructed from D3 as described in Section 3.
Binary Classification

Table 1 provides the classification error for the binary classification tasks. First, we can see that
the BOV approach consistently outperforms the baseline methods. This is confirmed by the Paired
T-test criterion in all cases, for p=0.05.
Regarding vocabulary size we can see that for vocabularies of 300 visterms or more the classification

errors are equivalent. This contrasts with the work in [20], where the ’flattening’ of the classification
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Method indoor/city/landscape

baseline 15.9 (1.0)

BOV V100 12.3 (0.9)
BOV V300 11.6 (1.0)
BOV V600 11.5 (0.9)
BOV V1000 11.1 (0.8)
BOV V1000 hier. 11.1 (1.1)

Table 2: Three class classification error for baseline and BOV models. The baseline model system is
hierarchical (cf Section 5.2).

Total Classification error 11.1 (0.8)

Resulting Classification Classification
Ground Truth indoor city landscape Error (%)

indoor 2489 242 23 10.3
city 364 1873 268 25.2

landscape 49 84 4042 3.1

Table 3: Confusion matrix from the three-class classification problem, using vocabulary V1000. The
total number of classified images is presented.

performance was observed only from a vocabulary of 1000 visterms. A possible explanation may come
from the difference in task (they perform object image classification) and in their use of the Harris-
Affine point detector [10]. The DOG point detector is known to be more stable than the Harris-Affine
detector [9].

The results of Table 1 show that constructing a vocabulary from an auxiliary dataset D3 does well
in our experiments. This suggests that as long as the auxiliary dataset contains significant images for
our task, it allows to build a good visterm vocabulary. This point is especially relevant in practice, as
it could allow for re-usability if we find a dataset that is significant for several tasks.

Three-class Classification

Combining both classification problems, we define a 3-class classification problem (indoor/city/landscape).
We present results with BOV in Table 2 along with the baseline. Classification results were obtained
using both a multi-class SVM and two binary SVMs in the hierarchical case.

First, we can see that once again our system outperforms the state-of-the-art approach with sta-
tistically significant differences. Secondly, we again observe the stability of results with vocabularies
with 300 or more visterms, the vocabulary of 1000 visterms giving slightly better performance. Based
on these results, we assume V1000 to be optimal and use it for all remaining experiments in this paper.

For the 3-class classification experiments we can further analyze results by looking at the confusion
matrix, in Table 3. We see that landscape images are well classified, and indoor images get slightly
confused with city images. However, performance lowers for city images, which get classified as both
indoor and landscape. This may be caused by the fact that city images often contain visterms that
can also occur in images of other classes.

4.5 Results and Discussion PLSA

In PLSA, we use the probability of each latent aspect l given each specific document i P (zl|di) as
a NA dimensional feature vector. Without any reference to the class label during the PLSA model
learning, how much discriminant information would remain in this aspect representation? To evaluate
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PLSA-I A indoor/outdoor city/landscape 3-class
V1000 20 9.5 (1.0) 5.5 (0.9) 12.6 (0.8)
V1000 60 8.3 (0.8) 4.7 (0.9) 11.2 (1.3)

PLSA-O A indoor/outdoor city/landscape 3-class
V1000 20 8.9 (1.4) 5.6 (0.9) 12.3 (1.2)
V1000 60 7.8 (1.2) 4.7 (0.9) 11.8 (1.0)

Table 4: Comparison of PLSA-I and PLSA-O strategies on the indoor/outdoor and city/landscape
scene classification tasks, using 20 or 60 aspects and for vocabulary V1000.

PLSA-O
A 20 40 60 80 100
Error 5.6 (0.9) 4.9 (0.8) 4.7 (0.9) 4.8 (1.0) 5.0 (0.9)

Table 5: Classification results for city/landscape using different number of aspects for PLSA-O.

this, we compare the classification errors obtained with the PLSA and BOV representations.
Furthermore we test the influence of the training data on the aspect model. To investigate the

latter issue, we conducted two experiments which only differ in the data used to train the aspect
models (i.e. the P (vj |zl) multinomial probabilities).

PLSA-I : for each split of the data, the training data split (that is used to train the SVM classifier,
cf Section 4) was also used to learn the aspect models.

PLSA-O : the aspect models are trained only once on the auxiliary database D3.

As the dataset D3 comprises city, outdoor, and city-landscape overlap images, PLSA performed on
this set should capture valid latent aspects for the three classification tasks simultaneously. Such
a scheme presents the advantage of constructing a common NA-dimensional representation for each
image that can be tested on all classification tasks.
Classification Results

We show in Table 4 results for PLSA with 20 and 60 aspects, for the PLSA-I and PLSA-O strategies,
using V1000. Overall, the performance of PLSA-I and PLSA-O is comparable for city/landscape
scene classification, and PLSA-O even significantly improves over PLSA-I for indoor/outdoor. This
suggest that learning the aspect model on the same set used for the classifier training may cause
some overfitting. Using PLSA we obtain a dimensionality reduction with a factor of 50 and 17 times
for 20 and 60 aspects respectively, while keeping the discriminant information and still performing
significantly better than the baseline. Since using PLSA-O allows us to learn one single model for
several tasks we keep this model for the rest of the paper.
Table 5 displays the evolution of the error with the number of aspects. Results show that the

performance is relatively independent of the number of aspects for the city/landscape case. For the
rest of this paper we will use a PLSA model with 60 aspects.
Decreasing the Amount of Training Data

Since PLSA captures co-occurrence information from the data from which it is learned, it can
provide a more stable image representation. We expect this to help in the case of lack of sufficient
training data. Table 6 compares classification errors for the BOV and the PLSA representations for
the different tasks when using less data to train the SVMs.
Table 6 shows that PLSA performs better than both baseline and BOV approaches for all reduced

training set experiments and deteriorates less as the training set is reduced. Previous work on latent
space modeling has reported similar behavior for text data [2]. PLSA better performance in this
case is due to the ability of PLSA to capture aspects that contain general information about visual
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Data size 90% 10% 5% 2.5%
Indoor/Outdoor
data size 8511 945 472 236
PLSA 7.8(1.2) 9.1(1.3) 10.0(1.2) 11.4(1.1)
BOV 7.6(1.0) 9.7(1.4) 10.4(0.9) 12.2(1.0)
Baseline 10.4(0.8) 15.9(0.4) 19.0(1.4) 23.0(1.9)
City/Landscape
data size 6012 668 334 167
PLSA 4.7(0.9) 5.8(0.9) 6.6(0.8) 8.1(0.9)
BOV 5.3(1.1) 7.4(0.9) 8.6(1.0) 12.4(0.9)
Baseline 8.3(1.5) 9.5(0.8) 10.0(1.1) 11.5(0.9)
Indoor/City/Landscape
data size 8511 945 472 236
PLSA 11.8(1.0) 14.6(1.1) 15.1(1.4) 16.7(1.8)
BOV 11.1(0.8) 15.4(1.1) 16.6(1.3) 20.7(1.3)
Baseline 15.9(1.0) 19.7(1.4) 24.1(1.4) 29.0(1.6)

Table 6: Comparison between BOV results and PLSA-O approach, with SVM classifier trained with
progressively less training data.

co-occurrence. Thus, while the lack of data impairs the simple BOV representation in covering the
manifold of documents belonging to a specific scene class, PLSA-based representation is less affected.
Since we learn the aspect-based representation on auxiliary non-labeled data, the improvement we

obtained for reduced training data demonstrates the potential of this approach in partially labeled
data problems.

5 PLSA-based Ranking/Segmentation

As shown above, PLSA modeling can improve the classification performance under limited labeled
data conditions. However, latent space models were introduced to solve ambiguity issues (cf Section 3)
in text modeling, and it is known that the latent structure identified by PLSA relates to the semantic
aspects of the data [7]. In this section, we illustrate this relationship on our visual data through two
applications: unsupervised image ranking and context based image segmentation.

5.1 Aspect-based Image Ranking

Given an aspect z, images can be ranked according to:

P (d|z) =
P (z|d)P (d)

P (z)
∝ P (z | d) (4)

The observation of the top-ranked images of an aspect illustrates its potential ’semantic meaning’ for
a given set of images. Figure 3 displays the 7 most probable images from the first split of the D1
database, for five out of 20 aspects learned on D3. The top-ranked images of aspect 1 and 61 belong
to the landscape class. More precisely, aspect 1 seems to be related to horizon/panoramic scenes, and
aspect 4 to forest/vegetation. Conversely, top-ranked images from aspect 4 and 14 are related to the
city class. However, as aspects are identified by analyzing the co-occurrence of local visual patterns,
aspect may be consistent from this point of view (e.g. aspect 19 is consistent in terms of texture)
without allowing for a direct semantic interpretation.

1Note that the aspect indices have no intrinsic relevance to a given class, given the unsupervised nature of the PLSA
model learning.
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aspect 1 aspect 6 aspect 4 aspect 14 aspect 19

Figure 3: The 7 most probable images from dataset D1 for five aspects out of 20 learned on D3
images. More results in www.idiap.ch/∼monay/ICCV05/.
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The correspondence between aspects and scene type can be measured more objectively by consid-
ering the aspect-based image ranking as an image retrieval system. Defining the Precision and Recall

paired values by:

Precision(r) = RelRet
Ret

Recall(r) = RelRet
Rel

,

where Ret is the number of retrieved images, Rel is the total number of relevant images and RelRet

is the number of retrieved images that are relevant, we can compute precision/recall curves associated
with each aspect-based image ranking considering either City and Landscape queries, as illustrated
in Fig. 4. Those curves demonstrate that some aspects are related to either ’City’ or ’Landscape’
concept, and confirm observations made previously with respect to aspects 4, 6 and 14. As expected,
aspect 19 does not appear in either the City or Landscape top precision/recall curves. These results
illustrate that the latent data structure identified by PLSA correlates with the semantic structure of
our data and makes PLSA a potential tool for browsing/annotating unlabelled image dataset.
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Figure 4: Precision/recall curves for each of the 20 aspect-based image rankings, relative to the
landscape (left) and city (right) query. Floor precision values correspond to the proportion of city
(resp. landscape) images in the dataset.

5.2 Aspect-based Image Segmentation

A third way to assess the relevance of the PLSA modeling is to evaluate whether the aspect’s individual
visterms themselves match the aspect scene type. This can be achieved by mapping each visterm of
an image to its most probable aspect and displaying the resulting visterm labeling to generate a
segmentation-like image. Accordingly, the mapping can be computed by:

zvj
= argmax

z
(P (z | vj , di))

= argmax
z
(

P (vj | z)P (z | di)∑
z P (vj | z)P (z | di)

). (5)

Fig.5 shows two images along with their aspect distribution over the 20 aspects learned on D3. Based
on this distribution, the most probable aspects are selected, and only visterms labeled with those
aspects are displayed. In Fig. 5(b), aspects 6 and 12 are the most probable, which are related to
landscape and city respectively. In the second example, in addition to city and landscape aspects, vis-
terms associated with aspect 1 clearly corroborate its horizon/panoramic semantic meaning suggested
by Fig.3. These results show that PLSA modeling not only correctly describes images as mixtures
of city- and lanscape-related concepts, but also that visterms labeled by those aspects are located on
corresponding image regions.
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Figure 5: Visterm labeling according to argmaxz(P (z|v, d)) (see text for details). More results in
www.idiap.ch/∼monay/ICCV05/.

A first evaluation of PLSA’s segmentation potential is proposed here as a preliminary study. Note
however that since visterms are not covering the whole image uniformly by construction, since we
attribute visterms to a given region type, the result is a ’sparse segmentation’ of the image. For
evaluation, we manually segmented 485 images containing both landscape and man-made structures.
Then, visterms were attributed to the man-made class if their center fell into the man-made image
region, or to the lanscape class otherwise. As evaluation procedure, we considered again precision
and recall measures based on ’visterm retrieval’, where the task is to retrieve local descriptors related
either to man-made structures or landscape.
Given a labeling of all visterms into aspects, different retrieval points are obtained by introducing

one aspect at a time and adding its associated visterms in the retrieved list. The introduction order
for the man-made (resp. landscape) visterm retrieval task is selected by ranking the aspects according
to the average precision of the ’city’ (resp. landscape) precision/recall curves in Fig. 4, enabling
to successively select the corresponding local descriptors according to the confidence they belong to
man-made structures.
We compare two strategies for mapping aspects to local descriptors. The first one, given by

Eq. 5, is image-contextual in the sense that the mapping actually depends on the content of image di.
The second is non-contextual, and consists of building an image-independent mapping by attributing
aspects to local descriptors according to:

zvj
= argmax

z
(P (z|vj)) = argmax

z
(
P (vj |z)P (z)

P (vj)
) (6)

By comparing the two mapping methods, we can analyze the effect of learning P (z|d) for a given
image and observe if it improves the local descriptors attribution. As can be seen from Figure 6,
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Figure 6: Visterm retrieval precision/recall curves, relative to the landscape (left) and man-made
(right) queries, using contextual or non-contextual mapping.

which displays precision and recall curves corresponding to both methods, the introduction of context
in the aspect-based segmentation significantly improves the segmentation precision for a given recall.

6 Conclusion

Based on the results presented in this paper, we believe that our scene modeling methodology is promis-
ing. We have first shown that the bag-of-local-descriptor approach is adequate for scene classification,
consistently outperforming state-of-the-art methods relying on a suite of hand-picked features. We
have also shown that the PLSA-based representation is competitive with the bag-of-visterms in terms
of performance, but it also provides a number of interesting advantages, including a more graceful
performance degradation with decreasing amount of training data, and the multi-faceted clustering
property that we have exploited for aspect-based image ranking and contextual image segmentation.
Each of these results have value on their own.
One can argue whether the discrete representation obtained with k-means clustering is actually

a true ’visual vocabulary’. Visual inspection of the clusters shows they contain meaningful features
(e.g., the eyes shown in Fig. 2), but also, in most cases, a lot of noisy patches. This is due to the fact
that k-means actually partitions the data, assigning each and every feature to the closest cluster, even
if this cluster is relatively far. We plan to study other clustering algorithms, that are equally well
suited for high-dimensional data and large datasets, but yield more meaningful clusters. Other paths
for further investigation include ways to determine the optimal vocabulary size and/or the number of
aspects.
The description of visual scenes as a mixture of aspects is a concept worth of further exploration.

We plan to extend our work on scene segmentation based on this concept. We will also study feature
fusion mechanisms (e.g. color and local descriptors) in the latent space framework.
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Figure 7: Retrieved visterms of the most relevant city aspect using the two mapping strategies: non-
contextual (left) and contextual (right). More results in www.idiap.ch/∼monay/ICCV05/
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