A probabilistic framework for joint head tracking and pose estimation

Head Tracking and pose estimation are usually considered as two sequential and separate problems: pose is estimated on the head patch provided by a tracking module. However, precision in head pose estimation is dependent on tracking accuracy which itself could benefit from the head orientation knowledge. Therefore, this work considers head tracking and pose estimation as two coupled problems in a probabilistic setting. Head pose models are learned and incorporated into a mixed-state particle filter framework for joint head tracking and pose estimation. Experimental results on real sequences show the effectiveness of the method in estimating more stable and accurate pose values.


Published in:
17th Int. Conf. Pattern Recognition (ICPR), 4
Presented at:
17th Int. Conf. Pattern Recognition (ICPR)
Year:
2004
Publisher:
Cambridge, UK
Keywords:
Note:
Similar to RR-03-78.
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)