Tangent Vector Kernels for Invariant Image Classification with SVMs

This paper presents an application of the general sample-to-object approach to the problem of invariant image classification. The approach results in defining new SVM kernels based on tangent vectors that take into account prior information on known invariances. Real data of face images are used for experiments. The presented approach integrates virtual sample and tangent distance methods. We observe a significant increase in performance with respect to standard approaches. The experiments also illustrate (as expected) that prior knowledge becomes more important as the amount of training data decreases.


Published in:
17th Int. Conf. Pattern Recognition (ICPR)
Presented at:
17th Int. Conf. Pattern Recognition (ICPR)
Year:
2004
Publisher:
Cambridge, UK
Keywords:
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)