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Abstract. This study investigates a new client-dependent normalisation to improve a single
biometric authentication system, as well as its effects on fusion. There exists two families of
client-dependent normalisation techniques, often applied to speaker authentication. They are
client-dependent score and threshold normalisation techniques. Examples of the former family of
techniques are Z-Norm, D-Norm and T-Norm. There is also a vast amount of literature on the
latter family of techniques. Both families are surveyed in this study. Furthermore, we also provide
a link between these two families of techniques and show that one is a dual representation of the
other. These techniques are intended to adjust the variation across different client models. We
propose “F-ratio” normalisation, or F-Norm, applied to face and speaker authentication systems
in two contexts: single modal and fusion of multi-modal biometerics. This normalisation requires
that only as few as two client-dependent accesses are available (the more the better). Different
from previous normalisation techniques, F-Norm considers the client and impostor distributions
simultaneously. We show that F-ratio is a natural choice because it is directly associated to
Equal Error Rate. It has the effect of centering the client and impostor distributions such that
a global threshold can be easily found. Another difference is that F-Norm actually “interpo-
lates” between client-independent and client-dependent information by introducing two mixture
parameters. These parameters can be optimised to maximise the class dispersion (the degree of
separability between client and impostor distributions) while the aforementioned normalisation
techniques cannot. The results of 13 single modal experiments and 32 fusion experiments carried
out on the XM2VTS multimodal database show that in both contexts, F-Norm is advantageous
over Z-Norm, client-dependent score normalisation with EER and no normalisation.
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1 Introduction

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. BA is becoming an important alternative to traditional authenti-
cation methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. However, today, biometric-based
security systems (devices, algorithms, architectures) still have room for improvement, particularly in
their accuracy, tolerance to various noisy environments and scalability as the number of individuals
increases.

In this paper, we study the effect of client-dependent variations and show how client-dependent
normalisation techniques can be used to improve the overall system accuracy. Examples of work in this
direction are client-dependent threshold [20], client-dependent score normalisation [8], and different
weighing of expert opinions using linear [11] and non-linear combinations [12].

There also exists a vast literature on score normalisation, such as Z-Norm, T-Norm [1] (for Test
Normalisation), D-norm [2] (for Distance Normalisation) and more recently U-norm [10]. They are
commonly applied to speaker verification problems where client-dependent Gaussian Mixture Models
are used. The core idea about client-dependent normalisation is that there are possible variations
among different client models and that such variation can be normalised so that a global threshold
can be found. In short, all these normalisation techniques and weight change in one way or another
indeed change the final decision function.

In this study, a thorough survey was conducted on client-dependent score normalisation and client-
dependent threshold normalisation. They are surveyed in Section 2. These two families of normalisa-
tion techniques are different in that the former normalises the score such that a global threshold can
be easily found; the latter directly manipulates the threshold. This implies that the latter approach
has to be computed for given specific operating costs of false acceptance and false rejection whereas
the former is automatically handled by the global threshold, which remains to be optimised.

In the terms used in [8, 1], Z-Norm is impostor-centric (i.e, normalisation is carried out with respect
to the impostor distributions calculated “offline” by using additional data), T-Norm is also impostor-
centric (but with respect to a given utterance calculated “online” by using additional cohort impostor
models). D-Norm is neither client- nor impostor-centric; it is specific to the GMM architecture and
is based on Kullback-Leibler distance between two GMM models.

In this paper, we propose to implement client-dependent normalisation using F-ratio. The advan-
tage of F-ratio normalisation, or F-Norm, is that it considers client and impostor score distributions
simultaneously. It is hence client-impostor centric. The F-Norm that we propose here is different from
Z,T,D-Norms or client-dependent threshold techniques in that few of these techniques exploit global
(or client-independent) client and impostor distributions. Furthermore, it requires only two client
accesses to obtain the normalising parameters.

The client-impostor centric normalisation was somewhat studied by [8] but the normalisation used
is actually subtracting the empirical (and theoretical) client-dependent threshold from the expert
opinion. Hence, this technique is additive and has no multiplicative effect, i.e, it does not change the
variance of the score. Another work that exploits global information was studied in [7], whereby client-
dependent and client-independent information sources are fused using Support Vector Machines. The
authors called this technique user-adapted fusion. This approach is different from F-Norm in that the
issue of normalisation is considered as being part of the optimising parameter for fusion. In this work,
F-Norm can be treated as a pre-processing step just before a decision threshold is chosen. Hence, it
can be readily applied to a unimodal biometric system. Of course, the F-Norm normalised scores can
also be used for fusion. In any case, the impact of normalisation on fusion is also examined to evaluate
the possible gain of improvement.

We explicitly compared F-Norm with Z-Norm and client-dependent threshold normalisation and
found that F-Norm is in overall superior. The experimental results based on the average of 13 uni-
modal and 32 intramodal and multimodal fusion experiments carried out on the XM2VTS multimodal
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database support our hypothesis.
Section 3 explains how F-Norm is derived. Database and evaluation criteria used are explained in

Sections 4 and 5. Experimental results are presented in Section 6. This is followed by conclusion in
Section 7.

2 A Survey of Current Normalisation Techniques

This section reviews some of the most relevant normalisation techniques that we have found in the lit-
erature. Before presenting the survey, it is useful to present some notations and statistical background
related to normalisation in Section 2.1. The two families of client-dependent techniques reviewed are
score normalisation (presented in Section 2.2) and threshold normalisation (presented in Section 2.3).
This list is by no means complete but it is definitely representative of some of the-state-of-the-art
techniques. We also show the link between these two families of normalisation in Section 2.4.

2.1 Useful Notations and Definitions

In biometric authentication, there are only two classes: client or impostor. A fully operational bio-
metric system makes a decision using the following decision function:

F (x) =

{

accept if y(x) > ∆
reject otherwise,

(1)

where y(x) is the output of the underlying expert supporting the hypothesis that the biometric sample
x received belongs to a client. For convenience, instead of writing y(x), we use y. All variables derived
from y are thus implicitly related to x. Because of the accept-reject outcomes, the system may make
two types of errors, i.e., false rejection (FR) and false acceptance (FA), depending on the true class-
label of the respective access (client or impostor, respectively). Normalised versions of FA and FR are
often used and called false acceptance rate (FAR) and false rejection rate (FRR), respectively. They
are defined as:

FAR(∆) =
FA(∆)

NI
, (2)

FRR(∆) =
FR(∆)

NC
. (3)

where FA and FR count the number of FA and FR accesses, respectively; and NI and NC are the
total number of impostor and client accesses, respectively.

Suppose that the client score distribution is Gaussian, with mean µC and standard deviation σC ,
i.e., yC ∼ N (µC , (σC)2). The impostor score distribution is defined similarly, i.e., yI ∼ N (µI , (σI )2).
Equal Error Rate (EER) is defined as the point where FAR=FRR. By assuming Gaussian distributions
on the scores, it can be shown [19] that the theoretical EER can be calculated as:

EER =
1

2
− 1

2
erf

(

F-ratio√
2

)

, (4)

where

F-ratio =
µC − µI

σC + σI
, (5)

and

erf(z) =
2√
π

∫ z

0

exp
[

−t2
]

dt. (6)

The optimal threshold is:

∆ =
µIσC + µCσI

σI + σC
. (7)
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It can therefore be seen that F-ratio occurs naturally. The term F-ratio is used here because this
value is somewhat similar to the standard Fisher ratio. In a two-class problem, the Fisher ratio [5,
pg. 107] is defined as

µC − µI

(σC)2 + (σI )2
. (8)

In the client-dependent context, we will assume

yk(j) ∼ N (µk(j), (σk(j))2) (9)

for k = {C, I} and j is the identity of a given client. Eqns. (5, 7 and 8) can be deduced similarly.
Suppose Ψj(y) is a client-dependent normalisation function for client identity j, the final decision
function in this context becomes:

F (x) =

{

accept if Ψj(y) > ∆
reject otherwise,

(10)

which is slightly different from Eqn. (1). Note that the threshold ∆ has still to be found.

2.2 Survey on Client-Dependent Score Normalisation

In the literature [1], Z-Norm is defined as:

ΨZ
j (y) =

y − µI(j)

σI(j)
, (11)

T-Norm is defined similarly. They differ in the ways these parameters are derived. The parameters
in T-Norm are derived from scores obtained from the same access data but from different classifier
models of other clients (online). The parameters in Z-Norm are derived from additional data samples
(not used to train the classifier models) of other simulated impostors (offline). We are interested in
Z-Norm here, assuming that a few additional data samples are available from client for implementing
the normalisation.

There exists many methods that propose client-dependent normalisation assuming additional data
samples. In [8], these normalisation techniques are categorised into client-centric, impostor-centric
and client-impostor centric, each normalising using the client distribution, impostor distribution and
both distributions, respectively.

In [20], a similar version of Z-Norm but using only the client distribution was reported, i.e., the
terms µI(j) and σI (j) are replaced by µC(j) and σC(j) in Eqn. (11). However, this technique requires
much more client accesses. The authors’ experiments were based on 5 accesses per client. To increase
the robustness of the estimated client distribution parameters, score-pruning was proposed. This is an
iterative procedure that prunes scores that are deemed unreliable in each cycle until stable mean and
standard deviation are found. In [10], this client-centric score-pruning technique is called U-Norm.
It is applied to PIN-based (or password-based) speaker verification. The authors claimed that U-
Norm works in this specific context because PIN-based speech has few phonetic contents and U-Norm
effectively normalises the client score distribution against the phonetic contents. Classical a priori
Z-Norm (using uninformed casual impostors) and a more realistic a posteriori Z-Norm (using real
impostors who know the PIN) were also compared with U-Norm. For both cases, U-Norm was shown
to be superior. It should be mentioned that a priori Z-Norm performed worse than no normalisation
at all. In this experiment, as we understood, 6 utterances (from 3 other sessions; each session has 2
access claims) were used in U-Norm. Again, significantly more client accesses are needed to implement
client-centric normalisation.

Client-impostor centric normalisation was also studied in [8] and has two variants:

yTI1 = y − SEER(j) (12)

yTI2 = y − ∆(j) (13)
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where SEER(j) is a threshold found empirically (directly estimated from the data) and ∆(j) is defined
in Eqn. (7), both calculated from a given training set of client identity j. The difference between these
two normalisation techniques is that the latter relies on the Gaussian assumption whereas the former
does not.

2.3 Survey on Client-Dependent Threshold Normalisation

There exists also another category of approaches that directly estimates the client-dependent threshold
and is surveyed in [20, Sec. 2]. The decision function can be written as:

F (x) =

{

accept if y > Ψ′

j(∆)
reject otherwise.

(14)

Eqn. (14) implies that the client-dependent threshold has to be tuned to specific operating costs of false
acceptance and false rejection. This is a major difference with techniques mentioned in Section 2.2.
Nevertheless, considering the vast amount of works in this domain, they are surveyed here. Several
forms of client-dependent threshold functions were proposed in the literature. For instance,

Ψ′

j(∆) = α
(

(µI (j) − σI(j)
)

+ β (15)

Ψ′

j(∆) = µI(j) + α
(

σI (j)
)2

(16)

Ψ′

j(∆) = αµI (j) + (1 − α)µC(j) (17)

Ψ′

j(∆) = ∆ + α
(

µC(j) − µI (j)
)

(18)

Ψ′

j(∆) = α(µI (j) + βσI(j) + (1 − α)µC(j) (19)

Ψ′

j(∆) = µC(j) − ασC(j) (20)

Eqn. (15) was reported in [9]; Eqns. (16–18) in [13, 16]; Eqn. (19) in [6]; and Eqn. (20) in [20]. Note
that Eqns. (15–16) are client-centric and Eqns. (17–20) are client-impostor centric. Note also that
the global threshold ∆ is in general not considered in client-dependent threshold except Eqns. (18).
This approach is called a “threshold refinement” procedure by the author. When committing to
client-dependent (local) threshold normalisation, one does not necessarily ignore the global threshold.

2.4 Link Between Score Normalisation and Threshold Normalisation

The client-dependent score normalisation in Section 2.2 and client-dependent threshold normalisation
in Section 2.3 are strongly related. Taking the right-hand sides of Eqn. (10) and Eqn. (14), we have:

Ψj(y) > ∆, (21)

y > Ψ′

j(∆). (22)

To show that they are dual, we will re-express Eqn. (22) into the form of Eqn. (21). To do so, it is
necessary to assume that Ψ′

j(∆) takes the following form, as a function of ∆:

Ψ′

j(∆) = a∆ + b. (23)

Note that Eqns. (15–20) can all be expressed by Eqn. (23) for variables a and b. In particular, for
Eqns. (15–17, 19–20), b takes on the right-hand sides of these equations and a = 0. For Eqn. (18),
a = 1 and b = α(µC(j) − µI(j)). Replacing Eqn. (23) into Eqn. (22), we obtain:

y > a∆ + b. (24)
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Figure 1: Comparison of the effects of F-Norm and Z-Norm. Left: the original distributions containing
3 client models (each represented by continuous, dotted and dashed lines; client score distributions
are plotted with thin lines and impostor score distributions with bold lines). An global threshold may
not be optimal. Middle: after applying Z-Norm, the impostor distributions become normal whereas
the client distributions vary. Right: after applying F-Norm, all the client and impostor distributions
are aligned so that a global threshold can be found easily.

Rearranging this equation will give:

y − b

a
> ∆ (25)

From Eqn. (21) and Eqn. (25), we see that:

Ψ(y) =
y − b

a
, (26)

for Eqn. (18). For all other equations, where a = 0, we have:

Ψ(y) = y − b, (27)

and ∆ = 0. As a result, manipulating the threshold or the score y has exactly the same effect. Note
that the dual form of Eqn. (18), when written in Eqn. (26) is:

Ψ(y) = y − α(µC(j) − µI(j)), (28)

Hence, the threshold refinement procedure is just another score normalisation technique. The ad-
ditional advantage of score normalisation over threshold normalisation is the additional flexibility
provided by the global threshold which can still be adjusted to different operating costs of false ac-
ceptance and false rejection.

3 F-Ratio Normalisation

To give a quick idea about F-ratio normalisation, we will consider the effect of Z-Norm and the desired
effect of F-Norm in Figure 1. In the left, there are 3 client score distributions and their respective
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impostor score distributions, respectively modeled from the output of 3 client models. Z-Norm has the
effect of normalising the varying impostor distributions into a single canonical impostor distribution
so that decisions can be taken more easily. Unfortunately, it introduces variations into the client
distributions. The objective of F-Norm is to fix both distributions, such that their means are “locked”
into some pre-designated locations. For instance, it is intuitive to assign 1 to the client mean and -1
to the impostor mean. An immediate problem that may emerge is that the client mean cannot be
estimated reliably because there are not enough client accesses. Here, we assume that at least as few
as two samples are available. Under such limitation, we propose to use some prior information in a
discriminative way.

To begin with, suppose that the “desired” mean ck for k = {C, I}, i.e. client and impostor,
respectively. ck|∀k are defined as:

ck =

{

a if k = C

−a if k = I,

for a positive constant a. To ensure that the F-ratio value will not change, the corresponding σk for
k = {C, I} will have to be changed accordingly. Let σk′

be the modified standard deviations. We can
then write the constraint as:

F-ratio =
µC − µI

σC + σI
=

cC − (−cI)

σC′ + σI′
=

2a

σC′ + σI′
. (29)

The solution to this equation is:
σk′

= α′σk, (30)

where,

α′ =
2a

µC − µI
, (31)

for k = {C, I}. By taking the square of Eqn. (30) and applying the definition of variance of y, we
obtain

(σk′

)2 = (α′)2E
[

(yk − E[yk])2
]

= E
[

(

α′(yk − E[yk])
)2

]

(32)

Since α′ is not dependent on the class label k, Eqn. (32) is also valid when applying to y, instead
of yk. Therefore, to map the client and impostor means to canonical values, one needs to modify
the variance without affecting the F-ratio and the corresponding EER. This simply translates into
multiplying score y with α′, i.e.,

yk,′ = α′yk. (33)

However, we still need to center the mean of the transformed scores, so that they are exactly ck|∀k.
The expected value of the distribution sampled from yk,′ is:

µk,′
≡ α′µk (34)

Hence, the desired transformation, i.e., the F-ratio normalisation, can be achieved by shifting yk,′ by
µk,′ and adding ck. This can be done as follows:

yF ≡ y′ − µk,′ + ck (35)

Note that we have a choice between k = C and k = I to perform F-Norm. In biometric authentication
task, one often does not have enough data to estimate the client mean reliably whereas one often has
enough simulated impostor accesses to estimate the impostor mean more reliably. Therefore, k = I is
chosen.
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By replacing Eqn. (33) in a class-independent manner (removing the superscript k) and Eqn. (34)
into Eqn. (35), we obtain:

yF = α′y − α′µI + cI

= α′(y − µI) + cI . (36)

As a result, we obtain the F-Norm.
Until now, all variables related to y have not been tied to a particular client. Suppose that client j

consists of a total of Mj scores that can be used for normalisation and that Mj ≥ 2, i..e, there are at
least 2 client scores available (apart from those used to train the baseline systems associated to client
j). Let µC(j) be the client-dependent mean and µC be the client-independent mean of these scores.
µI(j) and µI are defined similarly. Because each client has few scores, µC(j) cannot be estimated
reliably, at least not as reliably as µI(j) (assuming that many more simulated impostor scores are
available). Hence, we need some prior information. One such prior is the overall client and impostor
means. We incorporate these client-independent information sources into Eqn. (31) as follows:

α′ =
2a

β(µC(j) − µI(j)) + (1 − β)(µC − µI)
, (37)

The β parameter weighs the mean difference between the client- independent mean difference and
the client-dependent mean difference. It is tuned by cross-validation1. Similarly, Eqn. (36) can be
incorporated with client-independent information as follow:

yF = α′
(

y −
(

γµI(j) + (1 − γ)µI
))

. (38)

Note that slightly different from Eqn. (36), Eqn. (38) does not include cI . This constant does not add
any additional information. When applied in a client-independent manner, cI actually ensures that
the impostor mean is exactly −a and the client mean is exactly a. The absence of cI implies that the
impostor distribution is centered around zero whereas the client distribution is centered around 2a,
as given by the constraint in Eqn. (29).

Preliminary experiments show that having cI in a class-dependent context can adversely affect
the resultant score. Hence, the final F-Norm function is defined by Eqns. (37 and 38). Preliminary
experiments show that γ = 1 is often optimal, indicating that the shift introduced by client-dependent
impostor mean is useful and very often reliable. This shift is exactly the same as in Z-Norm. Further-
more, these experiments also show that β can take a value of 1 and 0 and any values in between. This
shows that incorporating β as an extra parameter, tuned in a discriminative way, can automatically
adjust to the nature of the scores (which is somewhat experiment-dependent). β = 1 and γ = 1
implies that client-dependent information is beneficial whereas β = 0 and γ = 0 implies that no
client-dependent normalisation is needed. The former case is actually equivalent to client-dependent
threshold normalisation. This can be shown mathematically by finding F-ratio of F-normalised scores
and showing that this value is equivalent to F-ratio of client-dependent threshold normalised scores
(see Appendix A). In the latter case (β = 0), it can also be shown mathematically that the effect is
equivalent to no normalisation at all (see Appendix B).

Hence, effectively, F-Norm is an interpolation between client-dependent threshold normalisation
and no normalisation at all. It is different from Z-Norm, however, because Z-Norm does not make use
of the client distributions.

4 XM2VTS Database and Systems

The XM2VTS database [15] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. The database is divided into three sets: a training

1In our implementation, we choose β to maximise the F-ratio, which is the same as minimising EER assuming that
the client and impostor scores are each normally distributed, as shown in Eqn. (4).
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set, an evaluation set and a test set. The training set was used to build client models, while the
evaluation set was used to compute the decision thresholds as well as other hyper-parameters used
by classifiers and normalisation. Finally, the test set was used to estimate the performance. The 295
subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test impostors. There
exists two configurations or two different partitioning approaches of the training and evaluation sets.
They are called Lausanne Protocol I and II (LP1 and LP2). The most important thing to note here
is that there are only 3 samples in LP1 and 2 samples in LP2 for client-dependent adaptation and
fusion training. We used altogether 7 face experts and 6 speech experts for LP1 and LP2, respectively.
By combining 2 baseline experts at a time according multimodal or intramodal fusion problems, 32
fusion experiments are further identified. These experiments were reported in [17]. The 13 baseline
experiments have 400 × 13 = 5,200 client accesses and 11800 × 13 = 1,453,400 impostor accesses. The
32 fusion experiments have 400 × 32 = 12,800 client accesses and 11,800 × 32 = 3,577,600 impostor
accesses. The score files are made publicly available and are documented in [18]2.

5 Evaluation Using Pooled EPC Curve

Perhaps the most commonly used performance visualising tool in the literature is the Decision Error
Trade-off (DET) curve [14]. It has been pointed out [3] that two DET curves resulted from two
systems are not comparable because such comparison does not take into account how the thresholds
are selected. It was argued [3] that such threshold should be chosen a priori as well, based on a given
criterion. This is because when a biometric system is operational, the threshold parameter has to be
fixed a priori. As a result, the Expected Performance Curve (EPC) [3] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols defined for
the XM2VTS database. The criterion to choose an optimal threshold is called weighted error rate
(WER), defined as follows:

WER(α, ∆) = αFAR(∆∗) + (1 − α) FRR(∆∗), (39)

where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively. Note that
WER is optimised for a given α ∈ [0, 1]. Let ∆∗

α be the threshold that minimises WER on a
development set. The performance measure tested on an evaluation set at a given ∆∗

α is called Half
Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(∆∗

α) + FRR(∆∗

α)

2
. (40)

The EPC curve simply plots HTER versus α, since different values of α give rise to different values
of HTER. The EPC curve can be interpreted in the same manner as the DET curve, i.e., the lower
the curve is, the better the performance but for the EPC curve, the comparison is done at a given
cost (controlled by α). One advantage of EPC curve is that it can plot a pooled curve from several
experiments. For instance, to compare two methods over M experiments, only one pooled curve is
necessary. This is done by calculating HTER at a given α point by taking into account all the false
acceptance and false rejection accesses over all M experiments. The pooled FAR and FRR across
j = 1, . . . , M experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M
j=1 FA(∆∗

α(j))

NI × M
, (41)

and

FRRpooled(α) =

∑M
j=1 FR(∆∗

α(j))

NC × M
, (42)

2Accessible at http://www.idiap.ch/∼norman/fusion
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where ∆∗

α(j) is the optimised threshold at a given α, NI is the number of impostor accesses and NC

is the number of client accesses. FA and FR count the number of false acceptance and the number of
false rejection at a given threshold ∆∗

α(j). The pooled HTER is defined similarly as in Eqn. (40).

6 Experimental Results

Figure 2 shows the pooled EPC curve of 13 baseline experiments without applying normalisation,
applying Z-Norm and applying F-Norm. Note that we could not compare F-Norm with T-Norm
using the current database because we could not have access to the cohort models. As can be seen,
F-Norm improves steadily over Z-Norm. The pooled EPC curve should be interpreted as the average
performance over 13 baseline experiments. Of course, when analysed separately on a per experiment
basis, the performance difference between F-Norm and Z-Norm is not always significant according to
the HTER significance test [4] at 90% of confidence3. However, on average over the 13 experiments,
the gain brought by F-Norm is consistently positive and significant for some large range of operating
costs.

Figure 3 shows the results of 32 intramodal and multimodal fusion of face and speech experiments
using the mean operator. There are six sets of 32 experiments here. The first three sets of experiments
(labeled by “xxx-mean(norm)”) fuse expert scores with a simple mean operator. The next three sets
of experiments (labeled by “xxx-mean”) fuse expert scores with zero-mean unit variance normali-
sation before applying the mean operator. Applying zero-mean and unit variance normalisation is
often necessary when the expert opinions to fuse do not have the same variance. The normalisation
parameters are obtained in a class-independent manner, similar to Z-Norm in Eqn. (11) but using
global µ and σ.

The three sets of experiments use the original expert opinion, Z-Norm and F-Norm transformed
opinions, respectively. From the figure, Z-Norm is sensitive to zero-mean unit variance normalisa-
tion normalisation. Without such normalisation fusion with Z-Norm performs worse than using the
original opinions (with our without normalisation). The fusion performance of original opinions with
normalisation is somewhat better than without normalisation (the two EPC curves cut each other at
some points). Finally, fusion with Z-Norm transformed scores, with or without normalisation performs
the best, in particular the one without normalisation.

F-Norm consistently outperforms Z-Norm and Z-Norm consistently outperforms no normalisation,
over the 32 experiments. While this is true, on a per experiment basis, there are cases where Z-Norm
outperforms F-Norm and no normalisation is better than applying any normalisation. Hence, one
future direction is to examine when F-Norm should be applied and when it should not. Actually
another set of experiment using client-impostor centric with theoretical EER as in Eqn. (12) was
conducted as well. Its performance is so far away from the mentioned experiments that its EPC curve
is not shown. More sophisticated non-linear fusion could have been used. Here, it is enough to show
that the benefits obtained by F-Norm “carries through” the fusion phase.

7 Conclusions

In this paper, we proposed F-ratio normalisation, or F-Norm. This normalisation includes β and γ

parameters that can balance the use of client dependent and client-independent information. It can be
shown that when β = 1, γ = 1, F-Norm is equivalent to client-dependent threshold. When β = 0, γ =
0, F-Norm does not apply any normalisation. β balances the contribution between the client-dependent
and client-independent mean difference (between the client and impostor distributions). γ balances
the contribution between the client-dependent impostor mean and client-independent impostor mean.
Because many simulated impostor accesses are available in the experimental setting, preliminary

3The individual experimental comparisons between Z-Norm and F-Norm are accessible in
“http://www.idiap.ch/∼norman/myphp/expe/fratio”.
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Figure 2: EPC curves of 13 baseline (face and speech) experts taken from the XM2VTS database with
no normalisation, Z-Norm and F-Norm. γ = 1 and β was tuned automatically to maximise F-ratio.
The improvement due to F-Norm is 95% significant compared to Z-Norm for α between 0.2 and 0.5.
The client-dependent threshold normalisation using Eqn. (13) is in the range between 6.2% and 8.5%
of HTER.

experiments show that γ = 1 is optimal. Hence, when applying F-ratio, one needs only to estimate the
β parameter. This can be done by cross-validation or directly optimising on the training scores. With
the β and γ parameter, F-Norm provides the right balance between the client-dependent and client-
independent information in an experiment-dependent manner. We compared F-Norm with Z-Norm
on 13 baseline biometric authentication systems on the XM2VTS database and found that on average,
F-Norm is consistently superior over Z-Norm. Furthermore, for some large range of operating costs,
the improvement is significant according to the HTER significance test [4]. We also further carried
out 32 fusion experiments, each time taking 2 of the 13 baseline systems, based on the criterion that
the experiment is either multimodal fusion or intramodal fusion. Based on these experiments, it
was found that F-Norm is overall superior over no normalisation, Z-Norm and client-dependent EER
normalisation. Future research will determine which normalisation techniques should be used under
some specific conditions. Another direction of research is to integrate over no normalisation, Z-Norm
and F-Norm such that final fused score will be optimal at a given operational false acceptance and
false rejection cost.
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Figure 3: 32 × 6 (sets of) intramodal and multimodal fusion of face and speech experiments involving
2 experts carried out on the XM2VTS database using the mean operator with original expert opinions
(dash-dotted line), Z-Norm (dashed line) normalised opinions, and F-Norm normalised opinions (con-
tinuous line). Another 3 sets of experiments were repeated but applying zero-mean and unit-variance
normalisation (with parameters derived from the development set) just before fusion using the mean
operator (all three plotted in bold lines). For all experiments, γ = 1 and β was tuned automatically
to maximise F-ratio.

A Equivalence between F-Norm Scores with β = 1, γ = 1 and

Threshold Dependent Normalised Scores

Suppose that a give client model j has a set of scores generated by

yk ∼ N
(

µk(j), (σk(j))2
)

,

for k = {C, I}, when the scores are known to belong to either the client himself k = C or impostors
k = I . When β = 1 and γ = 1, the score yk is transformed into yk,F by:

yk,F =
2a

µC(j) − µI (j)

(

yk − µI(j)
)

. (43)

Suppose that normalised scores are generated by

yk,F ∼ N
(

µk,F (j), (σk,F (j))2
)

,

and we wish to find the parameters µk,F (j) and σk,F (j), for k = {C, I}. Their solutions are:

µk,F (j) = E[yk,F ]

=
2a

µC(j) − µI(j)

(

µk(j) − µI(j)
)

, (44)

using Eqn. (43)) and

σk,F (j) =
2a

µC(j) − µI(j)
σk(j), (45)
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using Eqn. (30). Note that µI,F = 0 and µC,F = 2a. This verifies that the client and impostor means
are centered correctly. The F-ratio of F-Norm normalised scores is:

F-ratioF (j) =
µC,F − µI,F

σC,F + σI,F
. (46)

Replacing Eqn. (44) and Eqn. (45) into Eqn. (46), we obtain:

F-ratioF (j) =
µC(j) − µI (j)

σC(j) + σI (j)
(47)

whereby the factor 2a
µC(j)−µI (j) was canceled out.

The client-dependent threshold normalisation using Eqn. (12) or Eqn. (13) will transform y into
yT as follows:

yT = y − ∆(j), (48)

where ∆(j) is a client-dependent threshold found by Eqns. (15–20), surveyed in Section 2.3, with the
help of Eqn. (27).

Suppose that these normalised scores are generated by

yk,T ∼ N
(

µk,T (j), (σk,T (j))2
)

,

and we wish to find the parameters µk,T (j) and σk,T (j), for all k = {C, I}. These solutions are:

µk,T (j) = µk(j) − ∆(j) (49)

and
σk,T (j) = σk(j). (50)

The F-ratio of the threshold normalised scores is:

F-ratioT (j) =
µC,T (j) − µI,T (j)

σC,T (j) + σI,T (j)
. (51)

Replacing Eqn. (49) and Eqn. (50) into Eqn. (51), we obtain:

F-ratioT (j) =
µC(j) − µI(j)

σC(j) + σI (j)
(52)

in a user-dependent manner. Hence, from Eqns. (47 and 52 ), we see that:

F-ratioF (j) = F-ratioT (j) (53)

As a result, we can conclude that F-Norm with β = 1 and γ = 1 has the same effect as applying a
client-dependent threshold approach. It is important to note that the demonstration above is only
true for a particular client. It does not imply that the effect of F-Norm across all clients is equivalent
to the client-dependent threshold approach. �

B Equivalence between F-Norm Scores with β = 0, γ = 0 and

Unnormalised Scores

When β = 0 and γ = 0, the score yk is transformed into yk,F by:

y
k,F
β=0 =

2a

µC − µI

(

yk − µI
)

. (54)
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Note that this is similar to Eqn. (44) except that the means are client-independent. Suppose that
normalised scores are generated by

y
k,F
β=0 ∼ N

(

µ
k,F
β=0, (σ

k,F
β=0)

2
)

,

and we wish to find the parameters µ
C,F
β=0 and σ

C,F
β=0. Their solutions are:

µ
k,F
β=0 =

2a

µC − µI

(

µk − µI
)

, (55)

and

σ
k,F
β=0 =

2a

µC − µI
σk (56)

The F-ratio of F-Norm normalised scores is:

F-ratioF
β=0 =

µ
C,F
β=0 − µ

I,F
β=0

σ
C,F
β=0 + σ

I,F
β=0

. (57)

Replacing Eqn. (55) and Eqn. (56) into Eqn. (57), we obtain:

F-ratioF
β=0 =

µC − µI

σC + σI

= F-ratio. (58)

whereby the factor 2a
µC

−µI , µI and a were all canceled out. Note that we obtain the client-independent
F-ratio. In short, F-Norm with β = 0 and γ = 0 has the same effect as no normalisation at all. �
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