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Abstract. In this paper, we introduce a new noise robust representation of speech signal ob-
tained by locating points of potential importance in the spectrogram, and parameterizing the
activity of time-frequency pattern around those points. These features are referred to as Spectro-
Temporal Activity Pattern (STAP) features. The suitability of these features for noise robust
speech recognition is examined for a particular parameterization scheme where spectral peaks are
chosen as points of potential importance. The activity in the time-frequency patterns around
these points are parameterized by measuring the dynamics of the patterns along both time and
frequency axes. As the spectral peaks are considered to constitute an important and robust cue
for speech recognition, this representation is expected to yield a robust performance. An inter-
esting result of the study is that inspite of using a relatively less amount of information from the
speech signal, STAP features are able to achieve a reasonable recognition performance in clean
speech, when compared to the state-of-the-art features. In addition, STAP features produce a sig-
nificantly better performance in high noise conditions. An entropy based combination technique
in tandem frame-work to combine STAP features with standard features yields a system which is
more robust in all conditions.

Acknowledgements: The authors thank the Swiss National Science Foundation for the sup-
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Text).
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1 Introduction

Speech signal exhibits spectral and temporal amplitude modulations [1]. The spectral modulation
describe the harmonic and formant structure of the speech, where as temporal modulation is due
to the syllabic structure. Standard features for automatic speech recognition (ASR) systems, such
as mel-frequency cepstral coefficients (MFCC), typically represent the power spectral envelope. In
such case, temporal characteristics are typically modeled through the use of derivatives of the static
features or the use of contextual information, as done in hybrid HMM systems [2]. In recent years,
features explicitly modeling the temporal characteristics, such as TRAPS [3], MCMS [4], FDLP [5],
have been used successfully for speech recognition.

However, most of the current features give importance either to the temporal modulation or to
the frequency modulation, at a time. Where as, physiological studies conducted on different mammal
species has revealed that a joint spectro-temporal modeling is necessary for the sound perception [6].
These studies have shown that the mammalian auditory cortical neurons recognize spectro-temporal
patterns in the incoming signal during the process of recognizing the sound.

In the current work, we explore the possibility of parameterizing the the sound specific activity
found in such spectro-temporal patterns for use as features in ASR systems. These features are referred
to as Spectro-Temporal Activity Pattern (STAP) features. In addition to the joint spectro-temporal
modeling of speech signal, our aim in such an exploration is also to generate features that are robust
to noisy conditions.

In the next section, we first explain the STAP features and then discuss their parameterization.
In Section 3, we explain the experimental set up used to evaluate the STAP features. In Section 4,
we present and discuss the experimental results.

2 Spectro-Temporal Activity Pattern (STAP)

Feature extraction block in a typical speech recognition system divides the speech signal into a sequence
of short segments, typically of length 20-30 msec, and extract feature vectors from them. Traditional
features typically model the power spectral envelope of the signal within these segments.

This paper attempts to find a noise robust parameterization of the time-frequency patterns found
in the spectrogram of the speech signal. For this, a certain number of points in the spectrogram
are chosen as points of potential importance and the activity of the time-frequency patterns found
around those points are parameterized. This is because not all the points in the spectrogram have
reliable and robust time-frequency patterns around them for required for sound classification. This
new parameterization of speech is referred to as Spectro-Temporal Activity Pattern (STAP) features.

Since our aim is also to obtain features that are robust in noisy conditions, the criteria used for
identifying the points of potential importance is high Signal-to-Noise Ratio (SNR). Spectral peaks
constitute locations of high SNR and are less disturbed by noise. Some of the human perceptual
experiments also show that the spectral peaks constitute an important cue for speech recognition.
More over, a recent study showing generation of noise robust features involves emphasis of spectral
peaks [7]. Hence, we believe, the parameterization of activity of time-frequency pattern around spectral
peaks would constitute a robust feature. In the next subsection we explain the dynamic programming
algorithm used for identification of the spectral peaks.

2.1 Spectral Peak Identification

Peaks of the spectrum are identified using a simple dynamic programming algorithm which serves
as a filter yielding peak locations as its output. This algorithm is explained as follows: Figure 1
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shows a fully-connected state sequence of two states that are assumed to have emitted the spectrum.
The emission likelihood of the spectral energy value for state 1 at any point in the frequency axis is
assumed to be the positive value of the energy slope along frequency axis at that point. Likewise, the
emission likelihood for the state 2 is negative value of the energy slope. A Viterbi alignment of these
two states along the frequency axis of the spectrum would yield high score only when the state 1 is
aligned to the positive sloped regions of the spectrum and state 2 is aligned to the negative sloped
regions. Points of transition from state 1 to state 2 constitute the spectral peaks.
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Figure 1: Dllustration of spectral peak identification algorithm.

In order to avoid the identification of spurious peaks in the spectrum, which usually occur for a
short length, both the states 1 and 2 are imposed with minimum duration constraints. This avoids
identification of peaks of length less than a certain minimum value. Figure 2 shows the peak location
identified by the algorithm for an example spectrum of phoneme ‘ih’.
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Figure 2: Spikes show the locations of peaks identified in an example filter-bank spectrum correspond-
ing to phoneme ‘ih’.

Figure 3 shows mel-warped filter-bank spectrogram of a sample speech utterance taken from OGI
Numbers95 database. Figure 4 shows locations of the peaks identified by the algorithm from the
spectrogram. From the figures it is clear that there is a close resemblance between the spectral peak
trajectories and the trajectories of the peak locations identified.

2.2 Activity Parameterization

Having identified peak locations, the next step is to parameterize the activity of time-frequency pattern
around them. In this work, parameters considered for measuring the spectral activity are: 1. frequency
index of the peak location (L), 2. energy level at the peak location (E), 3. delta of energy around
the peak location along the time axis (A;E), 4. acceleration of energy along time (A?E), 5. delta
of energy along frequency (AyE), and 6. acceleration of along frequency (A%E) These parameters
identified from the spectrogram and are used as the feature components in STAP features.

However, since the peak identifying algorithm has no constraints on the number of peaks that can
be identified, other than the constraints provided by the spectral dimension and the minimum duration
of peaks, the STAP feature dimension can differs for different frames. Hence, to use these features
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Figure 3: Mel-warped filter-bank spectrogram of a sample speech utterance taken from OGI Num-
bers95 database.

Figure 4: Peak locations identified from the mel-warped filter-bank spectrogram of the sample speech
utterance.

in the conventional speech recognition systems they should be converted into uniform dimensional
vectors. This is done by applying masks whose values are non-zeros at the locations of peaks. For
example, the part of STAP feature corresponding to parameter E is obtained by masking the non-
peak locations in the energy normalized spectrogram to zeros. Figure 5 shows a sequence of such
uniform dimensional feature vectors for the spectrogram of Figure 3. These features, in fact, have
both L and E information, as the frequency index of the peak locations are also encoded in them. In
a similar way, part of the feature corresponding to A;E are obtained by applying the mask on the
delta spectrogram, and so on.

Figure 5: Sequence of STAP features where only L and E information are used.

As the spectral peaks are relatively less influenced by the external noise than the other parts of
the spectrum, algorithm is expected to yield a similar peak identification result in noisy spectrogram.
Figure 6 shows filter-bank spectrogram of the sample speech utterance of Figure 3 added with factory
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noise from Noisex92 database at 6dB SNR. Figure 7 shows {L, E} part of the STAP feature obtained
from this noisy spectrogram. A visual comparison of this plot with Figure 5 show that the peak
identification is reasonably robust and yields a {L, E} vector similar to that in the clean case. This
is in fact validated through the speech recognition experimental results given in the later sections of
this paper for noisy conditions.

Figure 6: Mel-warped filter-bank spectrogram of the sample speech utterance added with factory noise
from Noisex92 database at 6 dB Signal-to-Noise Ratio (SNR).
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Figure 7: Peak locations identified from the mel warped filter-bank spectrogram of the noisy speech
utterance.

In the next section we explain the experimental setup used for evaluating the STAP features in
clean and noisy conditions.

3 Experimental Setup

The database used for the experiments is the OGI Numbers95 connected digits telephone speech
database [11], having a lexicon size of 30 words, and 27 different phonemes. For additive noise
experiments, factory noise from Noisex92 database [12] has been added with Numbers95 database at
noise levels such as 12dB, 6 dB, and 0 dB Signal-to-Noise Ratio (SNR). The speech recognition systems
used are 1. hybrid HMM system [2] to test the characteristics of STAP features and 2. tandem system
[8] to compare the STAP features with state-of-the-art features. MLP used for hybrid HMM system
takes 9 or more frames of contextual input and has 27 output units, corresponding to the number of
context-independent phones. Hidden layer size is linearly increased with the input feature dimension®.

IThis may raise speculations about the use of different number of parameters for different features. But it has been
verified through experiments that the individual performances do not change significantly with increase in the number
of parameters.
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Tandem systems use pre-nonlinearity outputs taken from a discriminatively trained MLP as fea-
ture inputs to standard GMM-HMM system. Hidden Markov Model (HMM) system consists of 80
triphones, 3 left-to-right states per triphone, and 12 mixture Gaussian Mixture Model (GMM) to
estimate emission probability within each state. HMMs are trained using HTK. Mel-Frequency Cep-
stral Coefficient (MFCC) used as the state-of-the art feature for the experiments are of dimension 39,
including 13 static coefficients, 13 delta coefficients, and 13 delta-delta coefficients. STAP feature di-
mension varies based on how many of the activity describing parameters are used. The parameters are
basically extracted from spectrogram obtained with 24 dimensional mel-warped filter-bank spectrum.
As we have seen in previous section, STAP feature has many of its components as zeros, because of
the masking done to convert all the vectors into uniform dimensional vectors. This in addition with
the minimum duration constraint imposed by the peak picking algorithm allow us to down sample
the STAP features. Thus in our case, each of the parameter used for STAP feature contributes 12
dimension. Qut of the parameters, as mentioned already, L and E can be encoded in a single 12
dimensional vector. Hence, the use of all the parameters in STAP feature becomes would make its
dimension 60.

4 Results and Discussion

In the first set of experiments, the relative importance of various time-frequency pattern activity
describing parameters used in the STAP features is analyzed. These experiments are conducted in
a hybrid HMM system whose MLP takes 9 frames of contextual input. Table 1 gives a comparison
of the speech recognition performances when the activation describing parameters incorporated in
STAP features is varied. First column in the table gives the description of features used and the
second column gives the word error rates. It is clear from the results that incorporation of more and
more information about the activity of time-frequency patterns around the spectral peaks improves
the speech recognition performance. The use of full set of the activity describing parameters gives a
recognition performance inferior to the performance of MFCC2, which is given in the first row of the
table. However, this is yet an interesting result considering the fact the information used to achieve
this performance is less compared to the one used in MFCC. From the observations we made on
the feature vectors, typically 2-4 coefficients of the 12 dimensional feature vectors are non-zeros after
masking.

Looking at the Figure 5, one can be see that it is possible to better model the time-trajectory of the
prominent time-frequency activities with STAP feature than the original spectrogram. This is because
the STAP feature in actual has a relatively less information than its capacity and thus an additional
source of information incorporated by increasing temporal context can be modeled better. Further
more, the information that we consider as disrupting are also masked to zeros. Thus in the next set of
experiments, the contextual input to the MLP is increased to 19. The results of these experiments are
given in the third column of the Table 1. Results show an improvement in recognition performance
with more contextual input for the case of STAP feature vectors, where as for MFCC features it is
not the case.

In the next set of experiments, a comparison of performances of STAP and MFCC features is made
for clean and noisy conditions, using the state-of-the-art tandem system. For these experiments, the
full set of STAP parameters as given in the final row of Table 1 is used as the STAP feature. First
two rows in the table gives the recognition performances of these features. The STAP feature gives a
significantly better recognition performance in high noise conditions®.

2As the MFCC features are just a linearly transformed version of the mel-frequency filter-bank spectrum, STAP
features are compared, through out this paper, against MFCC instead of directly against mel-frequency filter-bank
spectrum, which one would think as the right comparison.

3The recognition performances of STAP features given in Table 1 for noisy conditions are in fact comparable to the
performance of standard noise robust features reported in [10, 7].



IDIAP-RR 04-20 7

% WER in clean

Feature speech for MLP

used input context size
9 19
MFCC 8.1 9.0
{L} 59.2 47.8
{L,E} 24.8 20.1
{L,E,A\\E,A?E} 16.6 14.4
{L,E,A\E,A}E,A\;E, AftE} 13.9 10.4

Table 1: Comparison of the speech recognition performances of STAP features incorporated with
various time-frequency pattern activity describing parameters.

The last row of the Table 1 give results of a multi-stream combination of STAP and MFCC features
in the tandem frame work. The algorithm used for the combination is as follows: The combination
is performed at the posterior outputs of the MLPs corresponding to the two features, based on the
entropy values of the MLP outputs[9]. The logarithmic posteriors from the outputs of the MLP
are weighted with a normalized inverse entropy value and added together to give a representation
which are further used as features for HMM-GMM system. The results show that the combination
performance is robust in all conditions. Interestingly, in noisy speech, the combination always gives
better recognition performance than the better performing feature.

%WER for SNR

Feature clean | 12dB | 6 dB | 0 dB
MFCC 4.7 12.9 25.8 | 52.4
STAP 10.4 15.9 24.3 41.8
STAP + MFCC | 64 12.6 20.9 | 38.9

Table 2: Performance comparison of STAP and MFCC features in tandem system. Last row give the
performance of combination of the two features.

5 Conclusion

We have introduced a new representation of speech signal, called Spectro-Temporal Activity Pattern
(STAP) features, obtained by parameterization of the activity of the time-frequency patterns around
spectral peaks. In spite of the fact that these features use relatively less amount of information from
the speech signal than the regular features, they achieve a reasonable recognition performance, when
compared to the state-of-the-art features in clean speech. The main advantage of these features is in
high noise conditions where they show a significant improvement in recognition performance. Using
these features as a complementary features, a multi-stream combination of STAP with MFCC show a
robust performance in all conditions. These results point to an interesting future work, where a better
parameterization of the activity in the time-frequency pattern, possibly in the neural network frame
work could yield better features than the simple parameterization along the time and frequency axes
that is used in this paper.
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